Grado en Matemáticas Curso 2013–14

Examen 28-11-2013

APELLIDOS, NOMBRE:

	Problema 1	Problema 2	semi		FINAL
Razonar debidamente las respuestas					
	2 puntos	6 puntos	8 puntos	$\times 1,25$	10

Problema 1. Decide de manera razonada si la siguiente afirmación es verdadera o falsa.

■ Sea V un \mathbb{K} - espacio vectorial, y $\{u_1, \ldots, u_n\}$ una base de V. Definimos la familia de vectores de V de la manera siguiente:

$$v_i = u_1 + \dots + u_i \quad , \quad i = 1, \dots, n.$$

Entonces los vectores $\{v_1, \ldots, v_n\}$ son una base de V.

Problema 2. Sea $f: \mathbb{R}_2[x] \longrightarrow M_2(\mathbb{R})$ la aplicación lineal definida por

$$f(p(x)) = \begin{pmatrix} 0 & p(1) \\ p'(0) + p(1) & p(2) \end{pmatrix}.$$

- (i) Sea $\mathcal{B} = \{1, x, x^2\}$ y \mathcal{B}_c la base canónica de $M_2(\mathbb{R})$. Calcular $M_{\mathcal{BB}_c}(f)$.
- (ii) Calcular la dimensión de Ker(f).
- (iii) Calcular la dimensión de Im(f).
- (iv) Decide si f es un monomorfismo, epimorfismo, isomorfismo y/o endomorfismo.
- (v) Sea $\mathcal{B}' = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \right\}$. Calcular $M_{\mathcal{BB}'}(f)$.
- (vi) Calcular $det(g \circ f)$ donde $g: M_2(\mathbb{R}) \longrightarrow \mathbb{R}_2[x]$ es la aplicación lineal determinada por:

$$g\begin{pmatrix}1&0\\0&1\end{pmatrix}=x^2+2\,,\qquad g\begin{pmatrix}0&0\\1&0\end{pmatrix}=x^2+1\,,\qquad g\begin{pmatrix}1&0\\0&0\end{pmatrix}=x^2+1\,,\qquad g\begin{pmatrix}0&1\\0&0\end{pmatrix}=1\,.$$

Grado en Matemáticas Curso 2013–14

Examen 28-11-2013

Apellidos, Nombre:

	Problema 1	Problema 2	semi		FINAL
Razonar debidamente las respuestas					
	2 puntos	6 puntos	8 puntos	$\times 1,25$	10

Problema 3. Decide de manera razonada si la siguiente afirmación es verdadera o falsa.

■ Sea V un K-espacio vectorial, $\{u,v\}$ una base de V y $a,b,c,d \in K$ tal que $ad-bc \neq 0$. Entonces $\{au+bv,cu+dv\}$ es también base de V.

Problema 4. Sea $g:M_2(\mathbb{R})\longrightarrow \mathbb{R}_2[x]$ la aplicación lineal definida por

$$g\begin{pmatrix} a & b \\ c & d \end{pmatrix} = (a+c)x^2 + cx + (a+b+d).$$

- (i) Sea \mathcal{B}_c la base canónica de $M_2(\mathbb{R})$ y $\mathcal{B} = \{1, x, x^2\}$. Calcular $M_{\mathcal{B}_c\mathcal{B}}(g)$.
- (ii) Calcular la dimensión de Ker(g).
- (iii) Calcular la dimensión de Im(g).
- (iv) Decide si g es un monomorfismo, epimorfismo, isomorfismo y/o endomorfismo.
- (v) Sea $\mathcal{B}'=\left\{x^2+x+1,x-1,x^2+2x+1\right\}$. Calcular $M_{\mathcal{B}_c\mathcal{B}'}(g)$.
- (vi) Calcular $det(g\circ f)$ donde $f:\mathbb{R}_2[x]\longrightarrow \mathbb{M}_2(\mathbb{R})$ es la aplicación lineal determinada por:

$$f(x^2 + x + 1) = \begin{pmatrix} 0 & 3 \\ 4 & 7 \end{pmatrix}, \qquad f(x - 1) = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}, \qquad f(x^2 + 2x + 1) = \begin{pmatrix} 0 & 4 \\ 6 & 9 \end{pmatrix}.$$