Diagonalización de endomorfismos.

1° . Dados los siguientes endomorfismos

$$f_{1}: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}, \qquad f_{1}(x,y) = (y,x),$$

$$f_{2}: \mathbb{C}^{2} \longrightarrow \mathbb{C}^{2}, \qquad f_{2}(x,y) = (y,-x),$$

$$f_{3}: \mathbb{Q}^{2} \longrightarrow \mathbb{Q}^{2}, \qquad f_{3}(x,y) = (x-y/2,y-2x),$$

$$f_{4}: \mathbb{F}_{2}^{2} \longrightarrow \mathbb{F}_{2}^{2}, \qquad f_{4}(x,y) = (x,x+y),$$

$$f_{5}: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{3}, \qquad f_{5}(x,y,z) = (3y+9z,x/3+5z,x/9+y/3),$$

$$f_{6}: \mathbb{Q}^{3} \longrightarrow \mathbb{Q}^{3}, \qquad f_{6}(x,y,z) = (6x-7y-20z,-8z,x-y),$$

$$f_{7}: \mathbb{C}^{3} \longrightarrow \mathbb{C}^{3}, \qquad f_{7}(x,y,z) = (2x+y+z,2x+3y+2z,4x+4y+3z),$$

$$f_{8}: \mathbb{F}_{2}^{3} \longrightarrow \mathbb{F}_{2}^{3}, \qquad f_{8}(x,y,z) = (x+y,x+z,y+z),$$

$$f_{9}: \mathbb{R}_{3}[x] \longrightarrow \mathbb{R}_{3}[x], \qquad f_{9}(p(x)) = p'(x),$$

$$f_{10}: M_{2}(\mathbb{F}_{2}) \longrightarrow M_{2}(\mathbb{F}_{2}), \qquad f_{10}\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 0 & a+b \\ a+b+d & b+c+d \end{pmatrix},$$

$$f_{11}:: W \longrightarrow W, \qquad f_{11}(x,y,z) = (3x+y,2z,y-x), \quad \text{donde } W = \{(x,y,z) \in \mathbb{R}^{3} \mid x+y+z=0\}.$$

Se pide para cada endomorfismo lo siguiente:

- (i) Calcular los autovalores y autovectores.
- (ii) Estudiar si es diagonalizable o no sobre el cuerpo base.
- (iii) En caso de que sea diagonalizable:
 - 1. Encontrar una base \mathcal{B} formada por autovectores.
 - 2. Escribir la matriz diagonal D del endomorfismo con respecto a \mathcal{B} .
 - 3. Dar explícitamente la relación entre la matriz D y la matriz del endomorfismo que hayas utilizado para calcular el polinomio característico.
- **2°.** Determinar en cada caso en el que sea posible una base de \mathbb{R}^n (o de \mathbb{C}^n) en la que las matrices dadas a continuación diagonalicen.

$$A_{1} = \begin{pmatrix} -1 & -2 \\ 1 & -1 \end{pmatrix}, A_{2} = \begin{pmatrix} 1 & -1 \\ 1 & 3 \end{pmatrix}, A_{3} = \begin{pmatrix} 7 & 4 \\ -5 & -2 \end{pmatrix}, A_{4} = \begin{pmatrix} 2 & -1 \\ 5 & -2 \end{pmatrix}, A_{5} = \begin{pmatrix} 3 & 5 \\ -2 & -3 \end{pmatrix},$$

$$A_{6} = \begin{pmatrix} 5 & 3 & -3 \\ 3 & -3 & -1 \\ -3 & -1 & -3 \end{pmatrix}, A_{7} = \begin{pmatrix} 1 & 1 & 2 \\ -1 & 1 & 2 \\ -2 & -2 & 1 \end{pmatrix}, A_{8} = \begin{pmatrix} 1 & 6 & 3 \\ 2 & 2 & 2 \\ 1 & 2 & -1 \end{pmatrix}, A_{9} = \begin{pmatrix} 0 & -2 & 2 \\ -3 & 1 & 3 \\ -1 & 1 & 3 \end{pmatrix}$$

 $\mathbf{3}^{\circ}$. Dadas las matrices de $M_3(\mathbb{R})$

$$A_1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & -1 \end{pmatrix} \qquad y \qquad A_2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}.$$

Se pide:

- (i) Demostrar que ambas tiene los mismos autovalores.
- (ii) ¿Pueden representar el mismo endomorfismo de \mathbb{R}^3 , quizás en bases distintas?

4. Estudiar según los valores de los parámetros $a, b \in \mathbb{R}$ la diagonalización de los endomorfismos de \mathbb{R}^3 que, en la base canónica, tienen las matrices

$$A_1 = \begin{pmatrix} -1 & -3 & -3 \\ 3 & 5 & 3 \\ -3 & -3 & a \end{pmatrix}, \quad A_2 = \begin{pmatrix} -1 & 0 & b \\ 0 & 1 & 0 \\ 0 & 0 & a \end{pmatrix}, \quad A_3 = \begin{pmatrix} 1 & -1 & 0 \\ 0 & a & 0 \\ a & 1 & a \end{pmatrix}, \quad A_4 = \begin{pmatrix} 1 & 2 & b \\ 0 & a & 0 \\ 1 & 0 & b \end{pmatrix}.$$

 5° . Dadas las matrices

$$A_1 = \begin{pmatrix} 5/2 & -1 \\ 3 & -1 \end{pmatrix} \qquad \text{y} \qquad A_2 = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 2 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 2 \end{pmatrix},$$

calcula:

- (i) A_k^{10} para k = 1, 2.
- (ii) $\lim_{n\to\infty} A_k^n$ para k=1,2.
- **6.** Sea V un K-espacio de dimensión $n, f: V \longrightarrow V$ un endomorfismo de V, A la matriz de f con respecto a alguna base de V y $p_f(x) = det(A xI_n)$ el polinomio característico de f. Entonces
 - (i) $p_f(x) = (-1)^n x^n + (-1)^{n-1} traza(A) x^{n-1} + \dots + det(A)$, donde traza(A) es la suma de los elementos de la diagonal de A.
 - (ii) Demostrar que si B es otra matriz de f con respecto a otra base de V, entonces traza(B) = traza(A), y por lo tanto podemos definir traza(f) = traza(A) que no depende de la matriz elegida.
- 7. Sea A una matriz cuadrada con coeficientes en un cuerpo K. Demuestra que A y A^t tienen el mismo polinomio característico y por tanto los mismos autovalores (en K o en "el cierre algebraico de K").
- 8°. Sea V un K-espacio vectorial de dimensión finita y $f:V\longrightarrow V$ un endomorfismo diagonalizable. Demuestra que $V=Ker(f)\oplus Im(f)$.
- 9. Si A es una matriz triangular de orden n cuyos elementos de la diagonal principal son todos diferentes, probar que A es diagonalizable.
- 10. Sea r_{α} la rotación de ángulo α en el plano. Estudiar para qué ángulos $\alpha \in \mathbb{R}$, r_{α} es diagonalizable.
- 11. Sea R_{α} la rotación de ángulo α , en el espacio \mathbb{R}^3 , alrededor del eje Z. Estudiar para qué ángulos $\alpha \in \mathbb{R}$, R_{α} es diagonalizable.
- **12.** Sea V un K-espacio vectorial de dimensión finita y $f:V\longrightarrow V$ un endomorfismo. Sea k un entero positivo. Demuestra que si v es un autovector de f, también lo es de f^k . Además si \mathcal{B} es una base de V formada por autovectores de f, entonces \mathcal{B} diagonaliza también a f^k .
- 13. Sean $\alpha, \beta \in R$ y las matrices de $M_2(\mathbb{R})$ siguientes

$$S = \begin{pmatrix} \alpha & \beta \\ \beta & -\alpha \end{pmatrix}, \qquad \cos \alpha^2 + \beta^2 = 1,$$

$$P = \begin{pmatrix} \alpha & \beta \\ \beta & 1 - \alpha \end{pmatrix}, \qquad \cos \alpha^2 + \beta^2 = \alpha.$$

Hallar sus autovalores y autovectores. ¿Existe alguna interpretación geométrica de las aplicaciones asociada a estas matrices?

- 14°. Sea V un K-espacio vectorial de dimensión finita y $f:V\longrightarrow V$ un endomorfismo. Demuestra:
 - (i) f es biyectiva si y sólo si 0 no es valor propio de f.
 - (ii) λ es valor propio de f si y sólo si $-\lambda$ es valor propio de -f.
 - (iii) Si f es biyectiva y λ es valor propio de f, entonces λ^{-1} es valor propio de f^{-1} .
- (iv) Si $f^2 = f$, entonces {valores propios de f} \subset {0, 1}.
- (v) Si $f^2 = f$ y f es biyectiva, entonces 1 es el único valor propio de f.
- (vi) Si $f^2 = 0$, entonces 0 es el único valor propio de f.
- (vii) Si $f^2 = id$, entonces {valores propios de f} \subset {1, -1}.
- 15. Sea A una matriz de $M_n(K)$. Estudia si las siguientes afirmaciones son verdaderas o falsas. Justifica cada respuesta. (Recuerda que si la afirmación es verdadera hay que dar una demostración mientras que si la afirmación es falsa es suficiente con dar un contraejemplo).
 - (i) Los valores propios de A están en su diagonal.
 - (ii) Si existe una base de K^n de vectores propios de A, entonces A es diagonalizable.
- (iii) Si A es diagonalizable, entonces A tiene n valores propios distintos.
- (iv) Si A es diagonalizable e invertible, entonces A^{-1} también es diagonalizable.
- **16*.** Sean $W_1, W_2 \subset V$ dos subespacios vectoriales de modo que $W_1 \oplus W_2 = V$. Si $u = v_1 + v_2$ con $v_1 \in W_1$ y $v_2 \in W_2$, definimos las funciones

$$\pi_1: V \longrightarrow V$$
 $u \mapsto \pi_1(u) = v_1$
 $y \quad s: V \longrightarrow V$
 $u \mapsto s(u) = v_1 - v_2$

- (i) Demuestra que π_1 y s son lineales y que $\pi_1^2 = \pi_1$ y $s^2 = id$.
- (ii) Si $\mathcal{B}_1 = \{w_1, \dots, w_m\}$ y $\mathcal{B}_2 = \{w_{m+1}, \dots, w_n\}$ son bases de W_1 y W_2 respectivamente escribe la matriz de π_1 y de s respecto a la base $\mathcal{B} = \mathcal{B}_1 \cup \mathcal{B}_2$.
- (iii) Si la suma $V_1 + V_2$ no fuera directa: ¿se podrían definir las aplicaciones π_1 y s de manera similar?
- 17*. Sea V un espacio vectorial de dimensión n. Se dice que un endomorfismo $s:V\longrightarrow V$ es una simetría si $s^2=id_V$ y que $\pi:V\longrightarrow V$ es una proyección si $\pi^2=\pi$. Se pide:
 - (i) Demostrar que s y π son diagonalizables.
 - (ii) Demostrar que para s (resp. π) existen $W_1, W_2 \subset V$ dos subespacios vectoriales de modo que $W_1 \oplus W_2 = V$. Así, si $u = v_1 + v_2$ con $v_1 \in W_1$ y $v_2 \in W_2$, entonces $s(u) = v_1 v_2$ (resp. $\pi_1(u) = v_1$). Observar que W_1 y W_2 dependen de s y π .

18. Llamaremos matriz estocástica a una matriz cuadrada $M=(p_{i,j})\in M_n(\mathbb{R})$ con coeficientes $p_{i,j}\geq 0$ y tal que la suma de los elementos de cada columna es 1, es decir $\sum_{i=1}^n p_{i,j}=1$ para cada $j=1,\ldots,n$ (observa que esto implica $1\geq p_{i,j}\geq 0$). Por otra parte, dado un vector $v=(x_1,\cdots x_n)\in\mathbb{C}^n$ definimos la norma infinito de v como

$$||v||_{\infty} := \max\{|x_i| : i = 1, \dots, n\}.$$

Si M es una matriz estocástica, demuestra:

- (i) 1 es autovalor de M
- (ii) Para cualquier $v \in \mathbb{C}^n$, se tiene $||M^t v||_{\infty} \leq ||v||_{\infty}$. (OJO: aquí la matriz es M^t , que es "estocástica por filas".)
- (iii) Cualquier autovalor, real o complejo, λ de M^t satisface $\|\lambda\| \leq 1$.
- (iv) Cualquier autovalor, real o complejo, λ de M satisface $\|\lambda\| \leq 1$.
- (v) (1, ..., 1) es autovector de M^t , ¿para qué autovalor? ¿Es (1, ..., 1) necesariamente autovector de M?
- 19°. Supongamos que tenemos dos depósitos de igual volumen con agua comunicados por un doble conducto por el que circula el agua como sigue:

$$\begin{array}{c|c} \operatorname{NaCl} & \longrightarrow & \operatorname{NaCl} \\ \longleftarrow & & \end{array}$$

Inicialmente, en el primer depósito hay NaCl disuelto al 1%, y en el segundo hay NaCl disuleto al 2%. Cada minuto pasa un 5% del volumen del primer depósito al segundo y viceversa. Decide de manera razonada la concentración de NaCl que habrá en cada uno de los depósitos después de 120 minutos. ¿Qué prevés que suceda a largo plazo?

 20° . Diagonalizar en una base ortonormal los endomorfismos de \mathbb{R}^{3} dados en la base canónica por las siguientes matrices

$$A_1 = \begin{pmatrix} -3 & 6 & 0 \\ 6 & 0 & -6 \\ 0 & -6 & 3 \end{pmatrix}, \quad A_2 = \frac{1}{3} \begin{pmatrix} 2 & -2 & 1 \\ -2 & 1 & -2 \\ 1 & -2 & 2 \end{pmatrix}, \quad A_3 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & -1 \end{pmatrix},$$

$$A_4 = \begin{pmatrix} 3 & 2 & 4 \\ 2 & 0 & 2 \\ 4 & 2 & 3 \end{pmatrix}, \quad A_5 = \begin{pmatrix} -2 & -2 & 1 \\ -2 & 1 & -2 \\ 1 & -2 & -2 \end{pmatrix}, \quad A_6 = \begin{pmatrix} 3 & -1 & 0 \\ -1 & 3 & 0 \\ 0 & 0 & 2 \end{pmatrix}, \quad A_7 = \begin{pmatrix} -7 & -4 & -4 \\ -4 & -1 & 8 \\ -4 & 8 & -1 \end{pmatrix}.$$