Hoja nº 4

Formas bilineales y cuadráticas.

1. Sea V un \mathbb{R} -espacio vectorial de dimensión finita. Sean $f_1, \ldots, f_k : V \longrightarrow \mathbb{R}$ formas lineales linealmente independientes y $\lambda_{i,j} \in \mathbb{R}$, $1 \le i,j \le k$. Para $u,v \in V$ definimos

$$\phi(u,v) = \sum_{1 \le i,j \le k} \lambda_{i,j} f_i(u) f_j(v).$$

- (i) Demuestra que ϕ es una forma bilineal simétrica si y sólo si $\lambda_{i,j} = \lambda_{j,i}$, para $1 \le i, j \le k$.
- (ii) Demuestra que no toda forma bilineal se puede expresar de la forma anterior.
- **2.** Recordemos que dos matrices A y B son congruentes si existe una matriz invertible P tal que $B = P^t A P$. Demostrar que rango A = rango B.
- **3.** Sea V un K-espacio vectorial, y $f, g: V \longrightarrow K$ aplicaciones lineales.
 - (i) Probar que la aplicación $\phi: V \times V \longrightarrow K$ definida por $\phi(u,v) = f(u)g(v)$ es una forma bilineal.
 - (ii) Estudiar el rango y la inercia de la forma bilineal ϕ .
- **4.** Sea V un \mathbb{R} -espacio vectorial y $\phi: V \times V \longrightarrow K$ una forma bilineal. Diremos que ϕ es antisimétrica si $\phi(u,v) = -\phi(v,u)$. Demostrar que ϕ es antisimétrica si y sólo si $\phi(u,u) = 0$ para $u \in V$.
- ${\bf 5}^{\circ}$. Toda forma bilineal ϕ se puede descomponer como la suma de una forma bilineal simétrica y una antisimétrica.
- $\mathbf{6}^{\circ}$. Diagonalizar en una base ortonormal las siguientes formas cuadráticas:

$$\begin{aligned} Q_1(x,y) &= -2x^2 + y^2 + 4xy \\ Q_2(x,y,z) &= x^2 + y^2 - 2xz + 2yz \\ Q_3(x,y,z) &= x^2 + y^2 + 2z^2 - 2xz + 2yz \\ Q_4(x,y,z) &= x^2 + y^2 + z^2 - 4xz \\ Q_5(x,y,z) &= xy + yz + zx \\ Q_6(x,y,z,t) &= x^2 + 4xt + 4y^2 + 4yz + z^2 + 4t^2 \end{aligned}$$

Encontrar el carácter de las anteriores formas cuadráticas y estudiar si son equivalentes.

- 7. Sea V un K-espacio vectorial, $\phi: V \times V \longrightarrow K$ una forma bilineal y $Q: V \longrightarrow K$ la forma cuadrática asociada a ϕ (es decir, $Q(u) = \phi(u, u)$ para $u \in V$). Demostrar que existe una única forma bilineal simétrica $\tilde{\phi}: V \times V \longrightarrow K$ tal que $Q(u) = \tilde{\phi}(u, u)$ para $u \in V$. A la forma bilineal $\tilde{\phi}$ se le conoce con el nombre de forma polar de Q
- 8°. Aplicar el método de completar cuadrados de Gauss a las siguientes formas cuadráticas:

$$\begin{split} Q_1(x,y,z) &= x^2 + 5y^2 - 2xy + 2xz \\ Q_2(x,y,z) &= xy + 2xz \\ Q_3(x,y,z) &= x^2 - z^2 - 2xy + xz \\ Q_4(x,y,z) &= 2x^2 + y^2 + 5z^2 - 2xy + 6xz - 2yz \\ Q_5(x,y,z) &= 3x^2 + 2y^2 + z^2 - 6xy + 4xz \end{split}$$

Encontrar el carácter de las anteriores formas cuadráticas y estudiar si son equivalentes.

9. Dadas las siguientes formas cuadráticas y los siguientes valores de D:

$$Q_{1}(x,y) = x^{2} + xy + y^{2} y D_{1} = 2.$$

$$Q_{2}(x,y) = x^{2} + 4xy + y^{2} y D_{2} = 1.$$

$$Q_{3}(x,y) = -2x^{2} + 4xy + y^{2} y D_{3} = -8.$$

$$Q_{4}(x,y) = 2x^{2} + 2xy + y^{2} y D_{4} = 1.$$

$$Q_{5}(x,y) = x^{2} + 4xy + 4y^{2} y D_{5} = 4.$$

se pide para $i = 1, \ldots, 5$:

- (i) Estudiar las cónicas definidas por $Q_i(x,y) = D_i$ y $Q_i(x,y) = -D_i$.
- (ii) Escribir los cambios de coordenadas que diagonalizan en una base ortonormal la formas cuadráticas Q_i y comprobar que siempre se puede conseguir que el cambio de coordenadas corresponda a un giro.
- (iii) Observar que el signo del determinante de las anteriores formas cuadráticas cuyas curvas de nivel estamos estudiando decide si la curva es una elipse o una hipérbola. Demuestra por qué.
- 10° . Estudiar para que valores de a las siguientes formas cuadráticas son definidas positivas, definidas negativas o indefinidas y hallar los índices de inercia en función de a.

$$\begin{aligned} Q_1(x,y,z) &= ax^2 + y^2 + z^2 + 2axy + 2a^2xz + 2ayz \\ Q_2(x,y,z) &= ax^2 + 2xy + ay^2 + 2ayz + 2az^2 \\ Q_3(x,y,z) &= x^2 + a(a-1)y^2 + 2axy + 2xz + 4ayz \\ Q_4(x,y,z) &= x^2 + 2xy + ay^2 + 2xz + 2ayz + 3z^2 \\ Q_5(x,y,z) &= 5x^2 + y^2 + az^2 + 4xy - 2xz - 2yz \\ Q_6(x,y,z) &= x^2 + 4y^2 + z^2 + 2axy + 10xz + 6yz \\ Q_7(x,y,z) &= x^2 + 4y^2 + z^2 + 2axy + 2ayz \\ Q_8(x,y,z) &= (a+1)x^2 + (a+1)y^2 + az^2 + 2xy - 2ayz \\ Q_9(x,y,z) &= ax^2 + 2xy + ay^2 + 2ayz + 2az^2 \end{aligned}$$

 11° . Diagonalizar simultaneamente los siguientes pares de formas cuadráticas :

(i)
$$Q(x,y) = x^2 + 26y^2 + 10xy$$
 y $Q'(x,y) = x^2 + 56y^2 + 16xy$.

(ii)
$$Q(x,y) = -4xy \ y \ Q'(x,y) = x^2 + 2xy + 2y^2$$
.

(iii)
$$Q(x, y, z) = x^2 - 8xy - 4y^2 + 10xz + 4yz + 4z^2$$
 y $Q'(x, y, z) = 6x^2 + 8xy + 4y^2 - 2xz - 4yz + 2z^2$.

(iv)
$$Q(x, y, z) = -2x^2 - 4xy - 2y^2 + 2xz + 2yz - z^2$$
 y $Q'(x, y, z) = 4x^2 + 4xy + 2y^2 - 2xz - 2yz + z^2$.

12°. Dadas las siguientes aplicaciones

$$\begin{array}{ll} \phi_1:\mathbb{R}_4[x]\times\mathbb{R}_4[x]\longrightarrow\mathbb{R}, & \phi_1(p,q)=p(1)q(-1)+p(-1)q(1). \\ \phi_2:M_2(\mathbb{R})\times M_2(\mathbb{R})\longrightarrow\mathbb{R}, & \phi_2(A,B)=\operatorname{traza}(AMB^t), & \operatorname{donde}\ M\in M_2(\mathbb{R}) \ \operatorname{esta}\ \operatorname{fijada}. \end{array}$$

se pide para i = 1, 2:

- (i) Probar que ϕ_i es una forma bilineal.
- (ii) Determinar el rango y la inercia de la forma cuadrática Q_i asociada a ϕ_i .
- 13. Determinar los valores $\lambda, \mu \in \mathbb{R}$ para los que la forma cuadrática

$$\phi(x, y, z, t) = x^2 + 3y^2 - 4z^2 + \lambda t^2 + 2\mu xy$$

es degenerada. Calcular el rango y la inercia de ϕ en función de λ, μ .