TEORÍA DE CÓDIGOS Y CRIPTOGRAFÍA

Examen Extra. : 27-6-2012

Apellidos, Nombre: _

Ejercicio 1	Ejercicio 2	Ejercicio 3	Ejercicio 4	Ejercicio 5	FINAL
5 puntos	5 puntos	3 puntos	3 puntos	4 puntos	10

- La nota FINAL se obtiene como la suma de los 5 ejercicios y dividiéndolo por 2. Para aprobar es **NECESARIO** sacar un mínimo de 3 puntos entre los ejercicios **1** y **2** y otros 3 puntos entre los ejercicios **3**, **4** y **5**.
- Razonar debídamente las respuestas
- <u>Incluir</u> todas las cuentas relativas al Algoritmo de Euclides/Teorema de Bezout y cuadrados iterados

El alfabeto utilizado en los ejercicios ${\bf 1}$ y ${\bf 2}$ es el siguiente:

A	В	С	D	Е	F	G	Н	I	J	K	L	M	N	О
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Р	Q	R	S	Т	U	V	W	X	Y	Z	!	i	i	?

- 1. Hemos entrado en el ordenador central de la OTAN y hemos obtenido que cifran sus mensajes utilizando RSA y que su clave privada es (n, d) = (38009, 16123). Enviar el mensaje **ASTANA** suplantando a la OTAN.
- 2. Recibimos el texto CFPPC¿MQBX que ha sido encriptado mediante una función de cifrado matricial lineal sobre digrafos. Sabemos que el texto comienza por EL PAIS. Calcular la función de cifrado y descifrar el mensaje completo.
- 3. Calcular $A_{11}(10,3)$.
- **4.** Un código lineal C se dice autodual si $C = C^{\perp}$. Demostrar
 - (i) C es un [2m, m]-código para algún entero positivo m.
 - (ii) Toda matriz generadora de C es matriz de paridad y recíprocamente.
- (iii) Si $G = (Id_m|A)$ es una matriz generadora de C, entonces $H = (-A^\top|Id_m)$ también lo es.
- $\mathbf{5}$. Sea C el código lineal generado por la matriz

$$G = \left(\begin{array}{cccccc} 0 & 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 2 & 0 & 1 & 0 \\ 0 & 0 & 3 & 0 & 1 & 1 \\ 0 & 1 & 4 & 0 & 1 & 0 \end{array}\right) \in M_{4x6}(\mathbb{F}_5).$$

- (i) Demostrar que es un código Hamming Ham(r,q) y determinar r y q.
- (ii) Se ha utilizado el código C para cifrar digrafos escritos en el alfabeto de 25 letras en el que $A=0, B=1,\ldots,Z=24$ de la siguiente forma: cada digrafo corresponde a un par $(n,m)\in (\mathbb{Z}/25\mathbb{Z})^2$. Escribimos n=5a+b y m=5c+d con $a,b,c,d\in \mathbb{F}_5$. Así cada digrafo corresponde a un vector $(a,b,c,d)\in (\mathbb{F}_5)^4$ y lo codificamos mediante $(a,b,c,d)\cdot G\in (\mathbb{F}_5)^6=(x_1,x_2,x_3,x_4,x_5,x_6)$. Así convertimos el digrafo definido por el par (5a+b,5c+d) en el trigrafo que viene dado por $(5x_1+x_2,5x_3+x_4,5x_5+x_6)$. Si recibimos el mensaje **FSPUSP**. Asegúrate que hemos recibido o que hemos de hacer.