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Discrete logarithm problem (DLP) (1)

Two main problems on which public key cryptography is based:

Integer factorisation (in RSA).

DLP (ElGamal Cryptosystem, Diffie-Hellman key exchange):

Let G be a cyclic finite group and g ∈ G be a generator of G. The
discrete logarithm problem (DLP) in G is the following:

Given an element h ∈ G, find the smallest positive integer x such
that

h = [x ]g (additive group) / h = gx (multiplicative group) .

We will denote such an x with DLg(h).
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Discrete logarithm problem (DLP) (2)

As we will see later, a cryptographically suitable group G must satisfy
the following conditions:

representation is easy and compact.

fast arithmetic.

DLP is computationally hard.

group order can be computed efficiently.
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CDHP and DDHP

The computational Diffie-Hellman Problem (CDHP) is the
problem:

Given g,hx = [x ]g and hy = [y ]g , compute [xy ]g .

The resolution of the DLP implies the resolution of the CDHP.

The decisional Diffie-Hellman Problem (DDHP) is the problem:

Given g, hx = [x ]g, hy = [y ]g and hz = [z]g , decide if hz = [xy ]g.

There are groups G for which DDHP is easier than CDHP or DLP,
but we do not know how to answer this question in general.

Roger Oyono The DLP and its application in Cryptography



Overview (1)

Efficient scalar multiplication

Solving the DLP in generic groups
Pohlig-Hellman
Shanks’ Baby step - Giant step
Pollard rho

Cryptographic protocols based on the DLP
Key exchange
Encryption
Signature
Security: what is a cryptographically secure group?

Roger Oyono The DLP and its application in Cryptography



Overview (2)

Subexponential algorithms for the DLP in finite (prime) fields
Generalities
Smooth numbers, factor base and subexponentiality
Adleman’s algorithm

Pairing in Cryptography
Generalities
Identity based Cryptography (IBE)
Tripartite key exchange.

Elliptic curves
Generalities

Why interesting?
Group Law

DLP on ”special elliptic curves”
Pairing with elliptic curves (Weil pairing)
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Example: binary left to right (1)

The following algorithm is based on the binary expansion of n:

[(nℓ−1 . . . n0)2]P = [2]([(nℓ−1 . . . n1)2]P)⊕ [n0]P

Example: 45 = (101101)2

P
2P
2(2P)⊕P
2(2(2P)⊕P)⊕P
2(2(2(2P)⊕P)⊕P)
2(2(2(2(2P)⊕P)⊕P))⊕P = [45]P
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Scalar multiplication using binary left to right (2)

Algorithm (binary left to right (1))

IN: P ∈ G and n ∈ N
n = (nℓ−1 . . . n0),nℓ−1 = 1.

OUT: [n]P ∈ G.

1 R← P
2 for i = ℓ−2 down to 0 do

1 R← [2]R
2 if ni = 1 then R← R⊕P

3 return R

cost: O(logn) doublings /additions in the group G.
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Generic groups (1)

A generic group is a group where we can only:

Represent group elements (uniquely)

Apply the group operation to a pair of elements to obtain a new
element.

The representation of the group elements gives us no information on
the structure of the group.

The group operation may be done using an oracle.

Most groups are not generic groups, but we can look at them as
generic groups if we ”forget” the extra information...

Algorithms for solving the DLP for generic groups give us an upper
bound on how hard things are!
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Generic groups (2)

In generic groups, we will present three methods to compute DLg(h):

Baby step - Giant step (Shanks)

Pollard ρ
Pollard kangaroo

and one more method that take advantage of the decomposition of the
group order

Pohlig-Hellman
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Pohlig-Hellman

Idea: Non trivial subgroups can make the DLP easier!

Suppose the additive cyclic group G = 〈g〉 has order

N = pα1
1 ·pα2

2 · . . . ·pαk
k

If we know DLg(h) modulo pαi
i for every i , then we can compute

DLg(h) via the Chinese remainder theorem.

From the group order, we have:

G ≃ G1×G2×·· ·×Gk

with
Gi ≃ Z/pαi

i Z
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Subgroups

We can restrict the DLP from G to Gi :

Define gi =
[

N
p

αi
i

]

g and hi =
[

N
p

αi
i

]

h .

We can compute DLgi (hi ) in a group of order pαi
i (instead of N).

We have

DLgi (hi )≡
DLg(hi )

DLg(gi )
≡

DLg(
[

N
p

αi
i

]

h)

DLg(
[

N
p

αi
i

]

g)
≡

[

N
p

αi
i

]

DLg(h)
[

N
p

αi
i

]

DLg(g)
≡ DLg(h),

and gi has order pαi
i , so

DLg(h) ≡ DLgi (hi) mod pαi
i .

Roger Oyono The DLP and its application in Cryptography



Prime Powers

Assume now that G = 〈g〉 ≃ Z/pαZ and h ∈ G. For DLg(h) = x , write

x = x0 + x1p + x2p2 + . . .+ xα−1pα−1 (mod pα)

with xi ∈ [0,p−1]Z.

Let g′ = [pα−1]g, then g′ has order p and the equality [x ]g = h
becomes:

[x0]g
′ = [x ]g′ = [pα−1]h

x0 can be find by computing DLg′([p
α−1]h) in 〈g′〉 (a subgroup of

order p). We also compute x1 via a DLP in 〈g′〉:

[x1]g
′ = pα−2([−x0]g + h)

We iterate this approach to compute x2,x3, . . . ,xα−1 and thus x .
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Pohlig-Hellman: An example

Consider in F∗11251 the DLP

23x = 9689 .

Since p−1 = 11250 = 2 ·32 ·54, the Pohlig-Hellman algorithm should
work well.
We thus have to solve

pi αi g(p−1)/p
αi
i h(p−1)/p

αi
i Solve

(

g(p−1)/p
αi
i

)x
= h(p−1)/p

αi
i

2 1 11250 11250 1
3 2 5029 10724 4
5 4 5448 6909 511
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Pohlig-Hellman: An example · · · cont

The second step is to use the CRT to solve the simultaneous
congruences

x ≡ 1 (mod 2), x ≡ 4 (mod 32), x ≡ 511 (mod 54)

The smallest solution is x = 4261, so 234261 = 9689.
For more details, we explain how to solve 5448x = 6909. The first step
is to solve

(

544853
)x0

= 690953
, i.e. 11089x0 = 11089.

The answer is: x0 = 1.
The next step is to solve

(

544853
)x1

= (6909 ·5448−x0 )52
= (6909 ·5448−1)52
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Pohlig-Hellman: An example · · · cont

which reduces to 11089x1 = 3742. The answer is x1 = 2. Continuing,
we solve

(

544853
)x2

= (6909 ·5448−x0−x1·5)5 = (6909 ·5448−11)5

which reduces to 11089x2 = 1, and thus x2 = 0. The final step is to
solve

(

544853
)x3

= 6909 ·5448−x0−x1·5−x2·52
= 6909 ·5448−11

which reduces to 11089x3 = 6320, which has solution x3 = 4.
The final answer is

x = 1+ 2 ·5+ 4 ·53 = 511 .
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Pohlig-Hellman: A cryptographically weak example

Consider a finite abelian group G of order

#G = 229321514751191013

#G is a 160 bits number ...

Using Pohlig-Hellman with a exhaustive search for the discrete log on
the (sub)groups of prime order, we can solve the DLP in less than
3000 group operations.

That’s less than the cost of 12.5 scalar multiplications!
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Shanks’ Baby step - Giant step

Let G = 〈g〉, and n be a good upper bound of #G. Let u ≈√n.

Considering the u-adic expansion of x = DLg(h)

x = x0 + ux1, with xi ∈ [0,u−1] ,

we get
[x ]g = h⇐⇒ [x1]([u]g) = h− [x0]g .

To solve the DLP in G:

We construct the list

S = {h,h− [g],h− [2]g, . . . ,h− [u−1]g} (Baby step)

We compute succesively the values [x1]([u]g) for x1 = 0,1, . . .
and stop when such an element belongs to S (Giant step).
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Cost

We have u Baby steps, each taking 1 group operation.

Computing [u]g takes O(log u) group operations.

We have u Giant steps, each taking 1 group operation.

Additional cost for finding a match in the two lists: O(u logu)

The total cost is u + u + O(logu), which is O(
√

n).

The memory requirements is also O(
√

n) .
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Random walks

Let G be a finite group of order N (in practice G = 〈g〉).
A random map is a function F : G −→ G such that the image of
x ∈ G is chosen (uniformly) at random in G.

A random walk in G is a sequence of elements of G, starting at
x0, such that xi+1 = F(xi). The sequence x0,x1,x2, . . . is
eventually periodic (G is finite). We are interested in the value of i
for which the first repetition occurs.

Claim: The average time for the first repetition is
√

π/2
√

N.

Proof: Starting from x0, choose the image of xi at random the first
time you see xi . The first repetition occurs at the first time when
your random choice is an element that was chosen at a previous
step. Use the Birthday Paradox.
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Pollard ρ

Once again, we want to compute DLg(h) for h ∈ G = 〈g〉, a group of
prime order N.

If we define
F(x) = [αx ]g +[βx ]h ,

and x0 = [α0]g +[β0]h for randomly chosen αx ,βx ,α0 and β0, then
the the first repetition (the point where we close the loop) gives us a
relation of the form

[αi ]g +[βi ]h = [αj ]g +[βj ]h
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Pollard ρ

We group the g′s and h′s together, and we get:

[βi −βj ]h = [αj −αi ]g .

With a little bit of luck, gcd(N,βi −βj) = 1, and we have

DLg(h)≡ (αj −αi)/(βi −βj) (mod N) .

The expected time for the algorithm is O(
√

N).

But in this form, the algorithm has memory O(
√

N)...

Although, it is possible to reduce the memory complexity to O(1) using
distinguished points and pseudo-Random walks (Floyd’s method for
cycles detection).
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Pollard ρ - choice of the ”random function”

After getting the partition of G into three stes S1,S2,S3 with
O /∈ S2, define the following ”random walk”:

xi+1 = F(xi) =







h + xi if xi ∈ S1

2xi if xi ∈ S2

g + xi if xi ∈ S3

If xi = [αi ]g +[βi ]h then

αi+1 =







αi if xi ∈ S1

2αi if xi ∈ S2

αi + 1 if xi ∈ S3

and

αi+1 =







βi + 1 if xi ∈ S1

2βi if xi ∈ S2

βi if xi ∈ S3
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Floyd’s cycles detection

Given (x1,x2) compute (x2,x4), then (x3,x6) and so on · · ·
Given the pair (xi ,x2i), we compute
(xi+1,x2i+2) = (F(xi),F(F(x2i )))

We stop when we find a collision: xm = x2m.

Exercise: Prove that it the tails has length λ and the cycle length
µ, then

m = µ

⌈

λ
µ

⌉

Since λ≤m ≤ λ+µ, we see that m = O (
√

N).

Detect a collision with O (1) storage.
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· · · Generic groups / black box groups · · ·

Theorem: (V. Shoup)

In a ”black box group” of prime order ℓ it takes at least O(
√

ℓ)
operations to solve the discrete logarithm problem.
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Principal goals of the Cryptography

Historically, the most important goal of the cryptography was to
secure private communication (Encryption).

Nowadays, there are other goals
authentification
non-repudiation
integrity

The discover of public key cryptography provides methods to realize
the above goals:

asymmetric encryption

Signature

Key exchange (for session key in symmetric encryptions)

electronic voting, etc ...
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Diffie-Hellman Key exchange

Let G = 〈g〉 be a finite abelian cyclic group of order N.

Alice unsecure channel Bob

choose xA ∈R [1,N]
compute kA := [xA]g −→ kA

choose xB ∈R [1,N]
kB ←− compute kB := [xB]g

compute kAB := [xA]kB compute kAB := [xB]kA
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Massey-Omura encryption

Let G be a finite cyclic group of prime order N. We consider message
(to encrypt) as elements m of G.

Alice unsecure channel Bob

choose xA ∈R [1,N]
s.t. gcd(xA,N) = 1.
compute a := [xA]m −→ a

choose xB ∈R [1,N]
s.t. gcd(xB,N) = 1.

compute
b←− b := [xB]a = [xAxB]m

compute compute
a′ := [x−1

A ]b = [xB]m −→ a′ b′ := [x−1
B ]a′ = m
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Massey-Omura

The eavesdropper knows [xA]m, [xAxB]m and [xB]m. If we denote
yA = x−1

A ,yB = x−1
B and h = [yAyB]m, then we see that Eve

knows h, [yA]h, [yB ]h and wants to find [yAyB]h, this is the DHP.

This protocol requires an authentication scheme: If C pretends to
be B, then A will send [xC]m to C and so C can read the
message m.

This encryption scheme is purely from theoretical interest
(pedagogic) and is rarely used in practice.

It is more convenient to generate a session key (via
Diffie-Hellman) for a use in a symmetric encryption (hybrid
encryption).

Principle: Both users are concerned to encrypt a message m.

Crucial point: the encryption is probabilistic.
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ElGamal Encryption (1984)

public parameters: A finite cyclic group G = 〈g〉.
Bob’s public key: h = [x ]g

Bob’s private key: x

To encrypt a message m ∈ G that Alice want to send to Bob,
Alice use the public key h of Bob and choose k ∈R [1,N−1] to
compute

a = [k ]g , and b = [k ]h + m .

Alice send (a,b) to Bob.

Bob can recover the message by computing

b− [x ]a = [k ]h + m− [kx ]g = [kx ]g− [kx ]g + m = m .
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Security of ElGamal

ElGamal has a 2-to-1 message expansion.

Theorem. ElGamal is secure against chosen cipertext attacks.
More precisely, suppose Eve has access to an oracle that
decrypts arbitrary ciphertexts encrypted using arbitrary ElGamal
public keys. Then she can use the oracle to solve the DHP. So it
is secure if one assumes that DHP is hard.

Proof: Eve is given the two values [n1]g and [n2]g and she is
required to compute [n1n2]g.
Eve chooses an arbitrary value for c2 and tells the oracle that the
public key is [n1]g and the ciphertext is ([n2]g,c2). The oracle
returns to her the supposed plaintext m that satisfies

m = c2− [n1]c1 = c2− [n1n2]g

After the oracle tells the value of m, she just computes
−m + c2 = [n1n2]g
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Security of ElGamal

ElGamal has a 2-to-1 message expansion.

Theorem. ElGamal is secure against chosen cipertext attacks.
More precisely, suppose Eve has access to an oracle that
decrypts arbitrary ciphertexts encrypted using arbitrary ElGamal
public keys. Then she can use the oracle to solve the DHP. So it
is secure if one assumes that DHP is hard.

Proof: Eve is given the two values [n1]g and [n2]g and she is
required to compute [n1n2]g.
Eve chooses an arbitrary value for c2 and tells the oracle that the
public key is [n1]g and the ciphertext is ([n2]g,c2). The oracle
returns to her the supposed plaintext m that satisfies

m = c2− [n1]c1 = c2− [n1n2]g

After the oracle tells the value of m, she just computes
−m + c2 = [n1n2]g
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ElGamal encryption example

Prime p = 809, then 909−1 = 808 is divisble by q = 101.

Compute a generator g = 16 of subgroups of F∗p of order q.

Alice chooses the private key a = 68 and computes

ga = 1668 ≡ 46 (mod p)

Alice public key is (p = 808,g = 16,h = 46) which can be
published.

Alice private key is a = 68 which she keep secret.
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ElGamal encryption example

To encrypt the message m = 100, Bob selects a random integer
k = 89 and computes

r = gk = 342 and s = mhk = 745

Bob then sends the ciphertext (r ,s) to Alice.

To decrypt, Alice first computes

r−a = 34233 = 49 (mod 809)

and recovers m by computing

m = 745 ·49 ≡ 100 (mod 809).
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ElGamal Signature

public parameters: A finite cyclic group G = 〈g〉.
Bob’s public key: h = [x ]g

Bob’s private key: x

Hypothesis: There is a (public function) f : G −→ Z/NZ.

To sign a message m ∈ [1,N−1] , Bob choose k ∈R [1,N−1] to
compute a = [k ]g .

Bob compute b ∈ Z/NZ with

m≡ xf (a)+ bk (mod N) .

Bob send the message m and its signature s = (a,b) to Alice.

Alice accepts the signature if

[f (a)]h +[b]a = [xf (a)+ kb]g = [m]g .
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Security of those protocols

The security of those protocols depends on

The choice of the (pseudo-) random generators

The problem of distribution of public key’s (PKI)

The choice of hash function

Hardware attacks, etc ...

Furthermore, for those simple protocols, we do not know if their
security is equivalent to the DLP (but for CDHP).
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Suitable groups

A cryptographically suitable group G must satisfy:

Representation of its elements in an easy and compact way.

Fast arithmetic, i.e. fast scalar multiplication.

DLP is computationally hard, in best case only the generic
methods works.

Consequence of Pohlig-Hellman reduction: It is important to know the
group order, or better to compute it efficiently. Furthermore, the value
or this order is used in some protocols.

The minimal amount of computations that we suppose infeasible is
≈ 280.

=⇒ The cardinality of the group order should have at least a 160-bit
prime factor to avoid the generic attacks.

Roger Oyono The DLP and its application in Cryptography



Finite fields

Prime fields: q = p
Multiplication: product of two integers, and reduction modulo p.
Inverse: extended euclidian algorithm.

Finite fields of characteristic 2 ;

F2[x ]/(f (x)) =

{

n−1

∑
i=0

cix
i : ci ∈ F2, 0≤ i < n

}

.

Multiplication : product of polynomials with coefficients in F2, and
reduction modulo the defining polynomial f (x).
Inverse: extended euclidian algorithm for polynomials.

=⇒ Extremly efficient arithmetic on those finite fields.
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Index calculus attacks in prime fields

Index calculus is a method to compute discrete logarithms, also
called indices.

p prime, elements of Fp represented by numbers in
{0,1, . . . ,p−1}; g generator of multiplicative group.

If h ∈ Fp factors as h = h1 ·h2 · · ·hn then

h = ga1 ·ga2 · · ·gan = ga1+a2+···+an

with hi = gai .

Knowledge of the ai , i.e. the discrete logarithms of hi to base g
gives knowledge of the discrete logarithm of h to base g.

If h factors appropriately . . .
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Smooth numbers

An integer is said to be B-smooth if its decomposition in prime factors
only contains primes p ≤ B.

To evaluate the proportion of smooth numbers, we introduce the
function

φ(x ,y) = #{1≤ n ≤ x ; n is y− smooth } .

For y = 23 we obtain the following proportions:

x 100 1000 10000 100000
φ(x ,y)

x 76 % 37 % 14 % 4 %
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Subexponentiality

Definition: subexponential functions

Let N > 0,0≤ α≤ 1,c > 0.

LN(α,c) := exp
(

c(logN)α(log logN)1−α)

If α = 0, then LN(α,c) = (log N)c : polynomial in the length of N.

If α = 1, then LN(α,c) = expc(log N) = Nc : exponential in the
length of N.

We say that LN(α,c) is subexponential if 0 < α < 1.

N.B.: There exists algorithms for the ”special” integer factorization
(n = p ·q) with a subexponential running time: the fastest known
method is the Number field sieve with time complexity

O
(

exp
(

(1.923+ o(1))(log N)
1
3 (log log N)

2
3

))

where o(1) = θ(n) −→ 0 for n −→+∞.
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Smoothness theorem

Theorem (Canfield, Erdós, Pomerance)

Fix a number 0 < ε < 1 and let X and B increase together while
satisfying

(lnX)ε < lnB < (ln X)1−ε

Then the number of B-smooth numbers less than X satisfies

φ(X ,B) = X ·U−U(1+o(1))

where U = lnX
lnB .

Theorem fundamental

For any c > 0, when x −→+∞, then

φ(x ,Lx(
1
2 ,c))

x
∼ 1

√

Lx(
1
2 , 1

c )
∼ 1

Lx (
1
2 , 1

2c )
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Adleman’s algorithm in prime fields

Let p a prime number, g a generator of F∗p = (Z/pZ)∗,h ∈ 〈g〉.
Choice of the ”factors base”:

Bound of smoothness B,
FB = {pi , pi prime , pi < B} .
How to compute the DLg(pi) for the pi ∈ FB ? (pi = gDLg(pi ))

Find ”some relations”:
For a random r ∈R [0,p−2], compute gr (mod p).
If the obtained number is B-smooth, it gives ”a relation”

gr = ∏
pi∈FB

pαi
i = ∏

pi∈FB

gDLg(pi )αi = g∑pi∈FB DLg(pi)αi

such that r ≡ ∑pi∈FB
DLg(pi)αi (mod p−1) .

Iterate the last step to get at least #FB relations.
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Adleman’s algorithm . . .

Linear algebra:
We have a linear system (in the unknown DLg(pi )) with more
equations than unknown. We solve it to obtain DLg(pi) for all pi .
This step needs to be done only once per field and generator, it
does not depend on the target DLP h = gx .

Solving the original DLP:

How now to solve the DLP for h ∈ 〈g〉, i.e. how to compute
DLg(h) ?
Choose randomly r ∈ [1,p−2] until gr ·h (mod p) is B-smooth.
Then,

gr ·h = ∏
pi∈FB

pβi
i and thus DLg(h) = ∑

pi∈FB

DLg(pi)βi − r .
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Adleman’s algorithm . . . an example

Given a prime p = 18443 and base element g = 37 we want to find x
such that

37x ≡ 211 (mod 18443) .

We use the factor base F = {2,3,5}.
We need at least 3 relations: by choosing random powers of 37
(mod 18443), we get the F -smooth numbers:

g12708 ≡ 23 ·34 ·5 (mod p)
g11311 ≡ 23 ·52 (mod p)
g15400 ≡ 23 ·33 ·5 (mod p)
g2731 ≡ 23 ·3 ·54 (mod p)
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Adleman’s algorithm . . . an example

Using the notations

x2 = logg(2), x3 = logg(3), x5 = logg(5) ,

we get the linear relations

12708 ≡ 3x2 +4x3 +x5 (mod 18442)
11311 ≡ 3x2 +2x5 (mod 18442)
15400 ≡ 3x2 +3x3 +x5 (mod 18442)
2731 ≡ 3x2 +x3 +4x5 (mod 18442)

Note that the above congruences are modulo
p−1 = 18442 = 2 ·9221 .
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Adleman’s algorithm . . . an example

Solving these linear system modulo 2 and 9221, we get

(x2,x3,x5) ≡ (1,0,1) (mod 2)
(x2,x3,x5) ≡ (5733,6529,6277) (mod 9221)

=⇒ (x2,x3,x5) ≡ (5733,15750,6277) (mod 18442)

To solve 37x = 211 (mod 18443), we compute the value of
211 ·37−k (mod 18443) for random values of k until we find an
F -smooth number:

211 ·37−9549 ≡ 25 ·32 ·52 (mod 18443)

=⇒ logg(211) = 9549+ 5logg(2)+ 2logg(3)+ 2logg(5)

≡ 8500 (mod 18442) .
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Analysis of Adleman’s algorithm

Principle

It is much easier to find some relation if B is large, however we then
need much more relation (since FB will be large too)!

We will choose B to be of the form

B = Lp

(

1

2
,ρ

)

.

From the smoothness theorem, the probability that a random element
in F∗p is B-smooth is

P =
1

Lp

(

1
2 , 1

2ρ

) .

Roger Oyono The DLP and its application in Cryptography



Analysis of Adleman’s algorithm

The average time we will need to find the #FB relation is:

Lp

(

1

2
,

1

2ρ

)

·Lp

(

1

2
,ρ

)

= Lp

(

1

2
,ρ+

1

2ρ

)

.

Linear algebra: The matrix representing the linear sytem is
sparse (O(log p) non zero terms in each row). We can then use
adequate algorithms with quadratic (in the length of the matrix)
running time.

The cost of the linear algebra is:

Lp

(

1

2
,ρ

)2

= Lp

(

1

2
,2ρ

)

.
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Analysis of Adleman’s algorithm

The cost of the final step (the smoothness relation of gr · · · ) is
equivalent to the cost of one smoothness relation.

The total cost of the algorithm is

Lp

(

1

2
,2ρ

)

+ Lp

(

1

2
,ρ+

1

2ρ

)

= Lp

(

1

2
,max

(

2ρ,ρ+
1

2ρ

))

.

The optimal value is obtained when ρ = 1√
2
, which gives the

complexity

Lp(
1

2
,
√

2) .

Running time with much more clever way of finding relations is

O
(

exp
(

(1.923+ o(1))(log p)
1
3 (log log p)

2
3

))
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· · · in charactersitic 2

Let q = 2n. The field with q elements Fq is isomorphic to

F2[x ]/(f (x)) =

{

n−1

∑
i=0

cix
i : ci ∈ F2, 0≤ i < n

}

where f ∈ F2[x ] is an irreducible polynomial of degree n.
Adleman’s algorithm can be trivially extended to such fields :

Factoring into powers of small primes is replaced by factoring into
irreducible polynomials of small degree.

Same approach works, same problem of balancing size of
factorbase (and thus complexity of the matrix step) and the
likelihood of splitting completely over the factors base.
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Example in characteristic two · · ·

Given the field F = F211 = F2[x ]/(f ) where f is the irreducible
polynomial f = x11 + x8 + x6 + x2 + 1.

The field F is generated by x . Using the factor base
F = {x ,x + 1,x2 + x + 1}, we want to find n such that

xn ≡ b (mod f )

where b is the polynomial b = x10 + x9 + x7 + x6 + x3 + x2 + 1.

We find as before a relation:

x8 ·b ≡ (x + 1)2 · (x2 + x + 1) (mod f )

such that

b ≡ x2039(x + 1)2 · (x2 + x + 1) (mod f )

since x8 · x2039 ≡ 1 (mod f ).
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Example in characteristic two · · ·

Now we would like to compute n1 = logx(x + 1) and
n2 = logx(x

2 + x + 1), i.e.

xn1 ≡ x + 1 (mod f ), xn2 ≡ x2 + x + 1 (mod f )

We compute the two relations:

x11 ≡ (x + 1)4 · (x2 + x + 1)2 (mod f )
x94 ≡ (x + 1)3 · (x2 + x + 1)3 (mod f )

and we get the congruences system

11 ≡ 4n1 +2n2 (mod #F−1)
94 ≡ 3n1 +3n2 (mod #F−1)

Note that the above congruences are modulo #F−1 = 2047 .
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Example in characteristic two · · ·

Solving this linear system (with CRT), we get

n1 ≡ 1680 (mod 2047), n2 ≡ 1763 (mod 2047)

To solve xn = b (mod f ), we compute

b = x2039 · x2n1 · xn2 = x7162= ≡ x3·2047 · x1021 ≡ x1021 (mod f )
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Cryptographic interests

1000 4000 10000

480

320

160

bit length for
DLP security in
generic groups

bit length for
DLP security
in F
∗
p

Best known attack for G = F
∗
q : Lq ( 1

3 ,c)

Best known attack for generic groups: 2n/2

For the same security level, the bit length of the group order

of generic groups beahves like the cubic root of the bit length of #F
∗
q
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Elliptic curves

Let K = Fq be the finite field with q elements. An elliptic curve over K
is given by a non-singular equation

(1) E : y2 + a1xy + a3y = x3 + a2x2 + a4x + a6

where ai ∈ K . For a field extension L of K , the set of rational points of
E is

E(L) :=
{

(x ,y) ∈ L2 : (x ,y) satisfy (1)
}

∪{O } ,

where O denotes the point at infinity.

A point of E is an element of E(K̄ ) where K̄ is the algebraic closure of
K .

For any extension L of K , the set E(L) forms an abelian group with
identity element O .
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Elliptic curves: group law in E(R)

E : y2 = x3− x

P

R

−P−R

P +R
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Elliptic curves: group law (q odd)

E : y2 = x3 + a4x + a6, ai ∈ Fq

P

R

−P−R

P +R

2P

−2P

For (x1,y1) 6= (x2,−y2):

(x1,y1)⊕ (x2,y2) = (x3,y3)
= (λ2− x1− x2,λ(x1− x3)− y1),

avec

λ =

{

(y2− y1)/(x2− x1) si x1 6= x2,
(3x2

1 + a4)/(2y1) si x1 = x2

⇒ Addition and Doubling differ considerably.:
1 I, 2M, 1S vs. 1 I, 2M, 2S
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Projective Coordinates

P = (X1 : Y1 : Z1), Q = (X2 : Y2 : Z2), P⊕Q = (X3 : Y3 : Z3) on
E : Y 2Z = X 3 + a4XZ 2 + a6

Addition: P 6=±Q A = Y2Z1−Y1Z2,B = X2Z1−X1Z2

C = A2Z1Z2−B3−2B2X1Z2

X3 = BC,Z3 = B3Z1Z2

Y3 = A(B2X1Z2−C)−B3Y1Z2

Doubling: P = Q 6=−P
A = a4Z 2

1 + 3X 2
1 ,B = Y1Z1,

C = X1Y1B,D = A2−8C
X3 = 2BD,Z3 = 8B3.
Y3 = A(4C−D)−8Y 2

1 B2

No inversion is needed and the computation times are 12M + 2S for a
general addition and 7M + 5S for a doubling.
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· · · and other different coordinates systems for y2 = x3 + ax + b

system points correspondence

affine (A ) (x ,y)
projective (P ) (X ,Y ,Z ) (X/Z ,Y/Z )
jacobi (J ) (X ,Y ,Z ) (X/Z 2,Y/Z 3)
Chudnovsky jacobi (J C) (X ,Y ,Z ,Z 2,Z 3) (X/Z 2,Y/Z 3)
jacobi modified (J m) (X ,Y ,Z ,aZ 4) (X/Z 2,Y/Z 3)

system addition doubling

affine (A ) 2M 1S 1I 2M 2S 1I
projective (P ) 12M 2S – 7M 5S –
jacobi (J ) 12M 4S – 4M 6S –
Chudnovsky jacobi (J C) 11M 3S – 5M 6S –
jacobi modified (J m) 13M 6S – 4M 4S –

New efficient and ”complete” formulae using Edward’s model for elliptic
curves: =⇒ Lange & Berstein’s talks.
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Number of points

Hasse’s theorem

In cryptograhy, we usually consider elliptic curves over finite fields Fq.

The number of Fq-rational points of E is also finite, a bound is given by
Hasse’s theorem:

#E(Fq) = q + 1− t,

with |t| ≤ 2
√

q. The integer t is called the trace of E .
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DLP on special elliptic curves

For a ”generic” elliptic curve, the best known attack is Pollard ρ
(combined with Pohlig-Hellman).

=⇒ Elliptic curves behave like generic groups.

Although, there are some classes of specific curves with much faster
attack :

MOV Reduction

Anomalous curves

Curves with non-trivial automorphisms group

Weil descent
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MOV reduction

Definition

Let G a subgroup of E(Fq) of prime order N|#E(Fq). The MOV
degree is the smallest integer k such that N|qk −1 .

Theorem (Menezes-Okamoto-Vanstone, Frey-Rück)

The DLP in G can be reduced to the DLP in F∗qk .

Idea of the proof: Use the Weil pairing to embedd G in Fqk .

Remark: The DLP can be solved in a subexponential running time in
Fqk . However, for a random elliptic curve E , k is very large!

For elliptic curves with trace t = 0, we then have
#E(Fp) = p + 1|p2−1 and thus k = 2. Supersingular elliptic curves
over prime fields are thus less suitable for DLP based cryptography .
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Weil descent and anomalous curves

Weil descent

In some case, the DLP in E(F2n) can be reduced in a DLP of an
hyperelliptic curve of large genus over a smaller field.

There exists subexponential attacks for large genus curves.

The curves defined over E(F2n) where n is composite are in danger
regarding this attack.

An anomalous elliptic curve is a curve over Fp with #E(Fp) = p, such
that #E(Fp)≃ (Fp,+) .

Theorem (Smart, Satoh-Araki, Semaev)

The above isomorphism can be given explicitly.

The DLP on such groups can be computed very efficiently.
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Standards

ANSI Public Key Cryptography for the Financial Services Industry
X9.62-1998 – The Elliptic Curve Digital Signature Algorithm
(ECDSA)
X9.63-1999 – Key Agreement and Key Transport Using Elliptic
Curve Cryptography (ECIES etc.)

NIST – FDigital Signature Standard FIPS 186-2 (revision 2000)

IEEE P1363a – Standart Specifications for Public Key
Cryptography

Standarts for Efficient Cryptography Group (Certicom)

ISO 15946
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What is a Pairing

The pairing explosion · · ·
Pairings originally used destructively in MOV / Frey-Rück attack.

2000 / 2001: Papers by Sakai-Ohgish-Kasahara, Joux,
Boneh-Franklin.

Basic properties

Finite groups G1,G2,G, all of prime order r .

A bilinear map e : G1×G2 −→G, i.e.
e(P + Q,R) = e(P,R) ·e(Q,R)
e(P,R + S) = e(P,R) ·e(P,S)
It follows: e(aP,bR) = e(P,R)ab = e(bP,aR) = · · ·

Nondegeneracy: for every O 6= P in G1 there exists a Q2 ∈G2

s.t. e(P,Q) 6= 1.

Computability: e(P,R) can be efficiently computed.

DDH problem is easy using ”nice pairing” in G1×G1.
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One round-Joux’s 3-Partite Diffie-Hellman key exchange

Let G be a group of prime order q, e : G×G−→Gt be a bilinear
map, and g be a generator of G. Let ĝ = e(g,g) ∈Gt .

Alice picks a ∈R Zq, Bob picks b ∈R Zq, and Carls picks c ∈R Zq.

Alice, Bob, and Carls compute (and publish) ga,gb , and gc

respectively.

Alice computes e(gb ,gc)a = ĝabc , Bob computes
e(gc ,ga)b = ĝabc , and Carls computes e(ga,gb)c = ĝabc .
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ID based cryptography

Sakai-Ohgishi-Kasahara (2000) ID-based key exchange, Boneh
and Franklin (Crypto 2001), ID-based cryptography.

Idea: user’s identity defines his public key.

Consequences: Advantage in ID-based crypto if recipient is not in
system or sender wants to force use of a fresh key (other applications
possible).

No need for PKI, can avoid need for authentication.

Set-up requires a trusted authority (TA) which can compute the
secret key for a given public key.
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Boneh-Franklin IBE

Select two hash functions H1 : {0,1}∗ −→G1 and
H2 : G−→ {0,1}n where n is the length of the plaintexts.

TA choose an arbitrary point P ∈G1.

Master secret key of TA is s, public key is Ppub = [s]P.

Public key of ID represented by string ID is H1(ID) ∈G1.

Secret key dID = [s]H1(ID) ∈G1 computable only by TA.

Encryption: Inputs are message M and an identity ID.

Choose random t ∈ Zr

Compute the ciphertext C = 〈[t ]P,M⊕H2(e(H1(ID),Ppub)
t)〉.

Decryption: Given the ciphertext 〈U,V 〉 and the private key dID ,
compute

M = V ⊕H2(e(dID ,U)).
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Boneh-Franklin IBE

Both sender (who has t) and receiver (who has dID) can compute
e(H1(ID),P)st :

e(H1(ID),P)st = e(H1(ID), [s]P)t = e(H1(ID),Ppub)
t

e(H1(ID),P)st = e([s]H1(ID), [t]P) = e(dID ,U).
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Security assumptions

Just a few · · ·
Clearly, these systems require that the DLP is hard in the groups.

Additionally we define the following computational and decisional
problems. To ease notation let G1 = G2 and g = e(P,P).

Computational Bilinear Diffie-Hellman Problem (CBDHP):
Compute gsAsBsC given [sA]P, [sB]P, [sC ]P and P.
Decisional Bilinear Diffie-Hellman Problem (DBDHP): Given
P, [sA]P, [sB]P, [sC ]P and gr decide whether gr = gsAsBsC .
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Elliptic curves again · · ·

Torsion points

Let m ∈ N and E/K be an elliptic curve defined over a field K .
The set of m-torsion points of E is the set

E [m] := E(K̄ )[m] = {P ∈ E(K̄ ) : [m]P = O }

For the field extension K ⊂ L, then

E(L)[m] = {P ∈ E(L) : [m]P = O }

is the set of L-rational torsion points of E .

If p ∤ m, then E [m]≃ Z/mZ×Z/mZ.
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Divisors

A divisor on E is a formal sum D = ∑P nP(P) (almost all nP = 0)
where P ∈ E(Fq).
Examples:

D1 = (P1)+2(P2)+3(P3)−10121(P4)+31(P5)
D2 = −7(P1) −31(P5)+11(Q1)+(Q2)−3(Q3)
D1 +D2 = −6(P1)+2(P2)+3(P3)−10121(P4) +11(Q1)+(Q2)−3(Q3),

The set of all divisors forms an abelian group Div(E).

The degree of the divisor D = ∑P nP(P) is the integer ∑P nP .

For a function f ∈ Fq(E)∗ we associate the principal divisor
div(f ) defined by

div(f ) = ∑
P

vP(f )(P) .

Roger Oyono The DLP and its application in Cryptography



Divisors

A divisor on E is a formal sum D = ∑P nP(P) (almost all nP = 0)
where P ∈ E(Fq).
Examples:

D1 = (P1)+2(P2)+3(P3)−10121(P4)+31(P5)
D2 = −7(P1) −31(P5)+11(Q1)+(Q2)−3(Q3)
D1 +D2 = −6(P1)+2(P2)+3(P3)−10121(P4) +11(Q1)+(Q2)−3(Q3),

The set of all divisors forms an abelian group Div(E).

The degree of the divisor D = ∑P nP(P) is the integer ∑P nP .

For a function f ∈ Fq(E)∗ we associate the principal divisor
div(f ) defined by

div(f ) = ∑
P

vP(f )(P) .

Roger Oyono The DLP and its application in Cryptography



Divisors

A divisor on E is a formal sum D = ∑P nP(P) (almost all nP = 0)
where P ∈ E(Fq).
Examples:

D1 = (P1)+2(P2)+3(P3)−10121(P4)+31(P5)
D2 = −7(P1) −31(P5)+11(Q1)+(Q2)−3(Q3)
D1 +D2 = −6(P1)+2(P2)+3(P3)−10121(P4) +11(Q1)+(Q2)−3(Q3),

The set of all divisors forms an abelian group Div(E).

The degree of the divisor D = ∑P nP(P) is the integer ∑P nP .

For a function f ∈ Fq(E)∗ we associate the principal divisor
div(f ) defined by

div(f ) = ∑
P

vP(f )(P) .

Roger Oyono The DLP and its application in Cryptography



Divisors

A divisor on E is a formal sum D = ∑P nP(P) (almost all nP = 0)
where P ∈ E(Fq).
Examples:

D1 = (P1)+2(P2)+3(P3)−10121(P4)+31(P5)
D2 = −7(P1) −31(P5)+11(Q1)+(Q2)−3(Q3)
D1 +D2 = −6(P1)+2(P2)+3(P3)−10121(P4) +11(Q1)+(Q2)−3(Q3),

The set of all divisors forms an abelian group Div(E).

The degree of the divisor D = ∑P nP(P) is the integer ∑P nP .

For a function f ∈ Fq(E)∗ we associate the principal divisor
div(f ) defined by

div(f ) = ∑
P

vP(f )(P) .

Roger Oyono The DLP and its application in Cryptography



Divisors

A divisor on E is a formal sum D = ∑P nP(P) (almost all nP = 0)
where P ∈ E(Fq).
Examples:

D1 = (P1)+2(P2)+3(P3)−10121(P4)+31(P5)
D2 = −7(P1) −31(P5)+11(Q1)+(Q2)−3(Q3)
D1 +D2 = −6(P1)+2(P2)+3(P3)−10121(P4) +11(Q1)+(Q2)−3(Q3),

The set of all divisors forms an abelian group Div(E).

The degree of the divisor D = ∑P nP(P) is the integer ∑P nP .

For a function f ∈ Fq(E)∗ we associate the principal divisor
div(f ) defined by

div(f ) = ∑
P

vP(f )(P) .

Roger Oyono The DLP and its application in Cryptography



Divisors

We define the sum of a divisor as

Sum(D) = Sum( ∑
P∈E

nP(P)) = ∑
P∈E

[nP ]P ∈ E(Fq) .

A divisor D = ∑P∈E nP(P) on E is the divisor of a rational
function on E if and only if

deg(D) = 0, Sum(D) = O .

In particular: if [m]P = O , so there exists a function fm,P s.t.

div(fm,P) = m(P)−m(O ) .
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Weil pairing

Let P,Q ∈ E [ℓ], and let fℓ,P and fℓ,Q be rational functions on E
satisfying

div(fℓ,P) = ℓ(P)− ℓ(O )

and
div(fℓ,Q) = ℓ(Q)− ℓ(O ) .

The Weil pairing of P and Q (with respect to ℓ) is the quantity

eℓ(P,Q) =
fℓ,P(Q + S)

fℓ,P(S)

/

fℓ,Q(P−S)

fℓ,Q(−S)

where S is any point satisfying S /∈ {O ,P,−Q,P−Q} .
Remark: eℓ is well defined, i.e. it doesn’t depend on the point S.
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Properties of the Weil pairing

eℓ(P,Q)ℓ = 1.

eℓ is bilinear.

eℓ is alternating, i.e. eℓ(P,P) = 1 for all P ∈ E [ℓ].

eℓ is nondegenerate, i.e. if eℓ(P,Q) = 1 for all Q ∈ E [ℓ], then
P = O .

For a basis {P1,P2} of E [ℓ]. Any P ∈ E [ℓ] can be written as

P = [aP ]P1 +[bP ]P2

with aP ,bP ∈ Z/ℓZ.
In this case, we have

eℓ(P,Q) = eℓ(P1,P2)
aPbQ−aQbP .
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Miller’s algorithm

To compute Weil pairing we need to know the functions fℓ,P with
divisors div(fℓ,P) = ℓ(P)− ℓ(O ).

Let fi,P , i ∈ Z, be a function on E with

div(fi,P) = i(P)− ([i]P)− (i−1)(O ).

fi,P is called a Miller function.

The special case i = ℓ leads to

div(fℓ,P) = ℓ(P)− ([ℓ]P)− (ℓ−1)(O ) = ℓ(P)− ℓ(O ) ,

since [ℓ]P = O .
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Miller’s algorithm · · ·

Can we compute fi+j,P from fi,P and fj,P?

Compute the divisor of the product

div(fi,P · fj,P) = i(P)− ([i]P)− (i−1)(O )

+j(P)− ([j]P)− (j−1)(O )

= (i + j)(P)− ([i]P)− ([j]P)− (i + j−2)(O )

= (i + j)(P)− ([i + j]P)− (i + j−1)(O )

+([i + j](P))− ([i]P)− ([j]P)+ (O )

= div(fi+j,P)+ ([i + j]P)− ([i]P)− ([j]P)+ (O )

The sum of the divisor is ”almost” the divisor of fi+j,P .
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Miller’s algorithm · · ·

For the lines occuring in the addition of [i]P +[j]P = [i + j]P :

The first line l goes through [i]P, [j]P and −[i + j]P, so

div(l) = ([i]P)+ ([j]P)+ (−[i + j]P)−3(O ) .

The second line v is a vertical line through [i + j]P and −[i + j]P,
so

div(v) = ([i + j]P)+ (−[i + j]P)−2(O ) .

It follows

div(
l

v
) = div(l)−div(v) = ([i]P)+ ([j]P)− ([i + j]P)− (O ) .
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Miller’s algorithm · · ·

We already know

div(fi,P · fj,P) = div(fi+j,P)+ ([i + j]P)− ([i]P)− ([j]P)+ (O )

as well as

div(l)−div(v) = ([i]P)+ ([j]P)− ([i + j]P)− (O ) .

In particular : div(fi+j,P) = div(fi,P · fj,P)+ div(l)−div(v) .

which gives the Miller’s formula

fi+j,P = fi,P · fj,P ·
l

v

We can choose normalized functions, i.e. f1,P = 1 .
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Efficient pairing (Miller’s algorithm)

Doubling step:

f2i,P = f 2
i,P ·

l[i]P,[i]P

v[2i]P
.

Adding step:

fi+1,P = fi,P · f1,P ·
l[i]P,P

v[i+1]P
.

lR,S is the line passing through P and R (tangent if P = R), and
vR is the vertical line through R.

Roger Oyono The DLP and its application in Cryptography



Efficient pairing (Miller’s algorithm)

Miller’s algorithm

IN: P ∈ E [ℓ], Q ∈ E(Fp) and ℓ = (ℓm, · · · , ℓ0)2.
OUT: fℓ,P(Q).

R← P, f ← 1

for i = m−1 down to 0 do
f ← f 2 lR,R (Q)

v[2]R(Q)

R← [2]R
if ℓi = 1 then

f ← f
lR,P(Q)

vR+P(Q)
R← R +P

end if

end for

return f
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Embedding degree

Let E/Fp an elliptic curve and ℓ≥ 1 s.t. p ∤ ℓ. The embedding degree
of E with respect to ℓ is the smallest value of k s.t.

E(Fpk )[ℓ]≃ Z/ℓZ×Z/ℓZ.

Assume ℓ 6= p is a prime s.t. there is a point of E(Fp) of order ℓ. Then
the embedding degree of E with respect to ℓ is given by one of the
following cases:

The embedding degree of E is one. (This cannot happen if
ℓ >
√

p + 1 - exercise).

p ≡ 1 (mod ℓ) and the embedding degree is ℓ.

p 6≡ 1 (mod ℓ) and the embedding degree is the smallest value
of k ≥ 2 s.t.

pk ≡ 1 (mod ℓ) .
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MOV algorithm

MOV algorithm

Let E/Fp an elliptic curve. Let P ∈ E(Fp) a point of order ℓ, where ℓ is
a large prime. Let k be the embedding degree of E with respect to ℓ
and Q ∈ 〈P〉.

1 Compute N = #E(Fpk ).

2 Choose T ∈R E(Fpk ) with T /∈ E(Fp).

3 Compute T ′ = [N/ℓ]T . If T ′ = O , GOTO 2. Otherwise T ′ is a
point of order ℓ.

4 Compute the Weil pairing α = eℓ(P,T ′) ∈ F∗pk and

β = eℓ(Q,T ′) ∈ F∗pk .

5 If k is not too large, solve the DLP αn = β in F∗pk .

6 Then, Q = [n]P.
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MOV algorithm

Why MOV solve the ECDLP?

T ′ is generally independent of P =⇒{P,T ′} forms a basis of
E [ℓ].

The nondegeneracy of eℓ implies:

eℓ(P,T ′)r = 1 iff ℓ | r

i.e. eℓ(P,T ′) is a non-trivial ℓth root of unity in F∗pk .

If Q = [j]P, then

eℓ(P,T ′)n = eℓ(Q,T ′) = eℓ([j]P,T ′) = eℓ(P,T ′)j

and thus eℓ(P,T ′)n−j = 1, i.e. n ≡ j (mod ℓ).
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MOV algorithm

How practical is MOV?

If k is large, say k > (lnp)2, then MOV is ”infeasible”. For
example, if p ∼ 2160, then k > 4000.

A randomly chosen elliptic curve E/Fp has ”almost always”
embedding degree much larger than (lnp)2, MOV is in general
not useful.

However, supersingular curves have embedding degree k ≤ 6
(Menezes, Okamoto, Vanstone).

For example, y2 = x3 + x is supersingular for any prime p ≡ 3
(mod 4) and it has embedding degree 2 for any ℓ >

√
p + 1.
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Distortion map

For applications in crypto, we need non-alternating pairing!

The Weil pairing is alternating, i.e. em(P,P) = 1 for all P ∈ E [m].

If P1 = [a]P and P2 = [b]P then

em(P1,P2) = em([a]P, [b]P) = em(P,P)ab = 1.

If possible, find a ”nice map” φ : E −→ E with the property that P
and φ(P) are independent.

Evaluate

em(P1,φ(P2)) = em([a]P, [b]φ(P)) = em(P,φ(P))ab.
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Distortion map

Distortion map

Let ℓ≥ 3 prime, P ∈ E [ℓ]. A map φ : E −→ E is said to be an
ℓ-distortion map for P if it has the following properties:

φ([n]P) = [n]φ(P) for all n ≥ 1

The number eℓ(P,φ(P)) is a primitive ℓth root of unity, i.e.

eℓ(P,φ(P))r = 1 iff r is a multiple of ℓ .

The modified Weil pairing êℓ on E [ℓ] (relative to φ) is defined by

êℓ(Q,Q′) = eℓ(Q,φ(Q′)) .

If Q and Q′ are multiple of P then êℓ(Q,Q′) = 1 iff Q = O or
Q′ = O .
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Example of distortion map

Example

Let

prime p ≡ 3 (mod 4)

E : y2 = x3 + x

α ∈ Fp2 s.t. α2 =−1

prime ℓ≥ 3 s.t. there is a point P ∈ E(Fp)[ℓ].

Then φ : E −→ E with φ(x ,y) = (−x ,αy) is an ℓ-distortion map for P.

Take now p = 547 and take Fp2 = {a+ bi : a,b ∈ Fp}, where
i2 =−1.

#E(F547) = 548 = 22 ·137 and P = (67,481) ∈ E(F547)[137] .
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Example of distortion map

The distortion map gives φ(P) = (−67,481i) ∈ E(F5472)

To compute e137(P,φ(P)) we choose a random point
S = (256+ 110i,441+ 15i) ∈ E(F5472)

Miller’s algorithm gives:

fP(φ(P)+ S)

fP(S)
=

376+ 138i

384+ 76i
= 510+ 96i

fφ(P)(P−S)

fφ(P)(−S)
=

498+ 286i

393+ 120i
= 451+ 37i

Then

ê137(P,P) = e137(P,φ(P)) =
510+ 96i

451+ 37i
= 37+ 452i ∈ F5472

Of course, (37+ 452i)137 = 1.
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Thank you for your attention!
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