Hoja 2

- (1) (a) Si (a, m) = 1, calcular la solución (única módulo m) de la congruencia lineal $a x \equiv b \pmod{m}$.
 - (b) Resolver la congruencia $5x \equiv 3 \pmod{24}$.
 - (c) Resolver la congruencia lineal $25 x \equiv 15 \pmod{120}$.
- (2) Sea p un primo y $f(x) = c_0 + c_1 x + \ldots + c_n x^n \in \mathbb{Z}[x]$. Demostrar los siguientes resultados:
 - (a) Teorema (Lagrange): Si $p \not\mid c_n$, entonces la congruencia polinómica $f(x) \equiv 0 \pmod{p}$ tiene como mucho n soluciones. (Ayuda: Demostrarlo por inducción).
 - (b) Si $f(x) \equiv 0 \pmod{p}$ tiene más de n soluciones, entonces $c_i \equiv 0 \pmod{p}$, $i = 0, \ldots, n$.

Observación: El Teorema de Lagrange no es cierto si p no es primo. Por ejemplo, la congruencia $x^2 \equiv 1 \pmod{8}$ tiene 4 soluciones.

- (3) Probar que $5n^3 + 7n^5 \equiv 0 \pmod{12}$, para todo entero n.
- (4) Encontrar todos los enteros positivos n para los que:
 - (a) $n^{13} \equiv n \pmod{1365}$,
 - **(b)** $n^{17} \equiv n \pmod{4080}$.
- (5) Calcular:

$$\left(\frac{5}{3593}\right)$$
, $\left(\frac{5}{3889}\right)$, $\left(\frac{14}{137}\right)$, $\left(\frac{55}{179}\right)$, $\left(\frac{299}{397}\right)$, $\left(\frac{37603}{48611}\right)$.

- (6) Demostrar que $\sum_{a=1}^{p-1} \left(\frac{a}{p}\right) = 0$ para cualquier primo impar p.
- (7) (a) Sea q un primo impar tal que $q \equiv 1 \pmod{4}$, entonces q es un residuo cuadrático módulo p si y sólo si $p \equiv r \pmod{q}$, donde r es un residuo cuadrático módulo q.
 - **(b)** Calcular $\left(\frac{5}{p}\right)$.
- (8) Sea p un primo, demostrar que el número de soluciones de

$$x^2 + y^2 \equiv 1 \pmod{p},$$

con $0 \le x, y < p$, es par.

(9) El Símbolo de Jacobi

Sea m un entero positivo impar. Podemos escribir $m=p_1\dots p_s$ donde p_i son primos impares, no necesariamente distintos. Se define el símbolo de Jacobi como:

$$\left(\frac{a}{m}\right) = \prod_{i=1}^{s} \left(\frac{a}{p_i}\right).$$

Si m y m' son enteros positivos impares, demostrar

(a)
$$\left(\frac{a}{m \, m'}\right) = \left(\frac{a}{m}\right) \left(\frac{a}{m'}\right)$$
.

(b)
$$\left(\frac{a \, a'}{m}\right) = \left(\frac{a}{m}\right) \left(\frac{a'}{m}\right).$$

(c)
$$\left(\frac{a}{m}\right) = \left(\frac{a'}{m}\right)$$
 si $a \equiv a' \pmod{m}$.

(10) Si m es un entero positivo impar, demostrar

$$\left(\frac{-1}{m}\right) = (-1)^{(m-1)/2}.$$

- (11) Si m es un entero positivo impar, $\left(\frac{2}{m}\right) = (-1)^{(m^2-1)/8}$.
- (12) Ley de reciprocidad cuadrática para el símbolo de Jacobi Sean m y n enteros positivos impares tales que (m, n) = 1. Demostrar

$$\left(\frac{m}{n}\right)\left(\frac{n}{m}\right) = (-1)^{\frac{m-1}{2}\frac{n-1}{2}}.$$

El símbolo de Jacobi se puede generalizar aún mas, y es lo que se llama el **Símbolo de Kronecker**. Sea a un entero congruente con 0 ó $1 \pmod{4}$. Definimos

$$\left(\frac{a}{2}\right) = \left(\frac{a}{-2}\right) = \begin{cases} 0 & \text{si } a \equiv 0 \pmod{4}, \\ 1 & \text{si } a \equiv 1 \pmod{8}, \\ -1 & \text{si } a \equiv 5 \pmod{8}, \end{cases}$$

Para un n en general, escribimos $n = 2^c m$ con (2, m) = 1, y definimos

$$\left(\frac{a}{n}\right) = \left(\frac{a}{2}\right)^c \left(\frac{a}{m}\right)$$

donde $\left(\frac{a}{2}\right)$ se define como antes, y $\left(\frac{a}{m}\right)$ es el símbolo de Jacobi.

- (13) Si p es un primo impar, demostrar que el menor entero positivo que no es residuo cuadrático es menor que $\sqrt{p}+1$.
- (14) Demostrar que $x^4 \equiv 25 \pmod{1013}$ no tiene solución.
- (15) Demostrar que $x^4 \equiv 25 \pmod{p}$ no tiene solución si p es un primo congruente a 13 ó 17 $\pmod{20}$.
- (16) Si p es un primo congruente a 13 ó 17 (mod 20), demostrar que $x^4 + py^4 = 25z^4$ no tiene soluciones enteras no triviales.