Hoja 1

- (1) Demostrar que hay infinitos primos tales que:
 - (a) $p \equiv 3 \pmod{4}$,
 - **(b)** $p \equiv 1 \pmod{4}$,
 - (c) $p \equiv 5 \pmod{6}$.

Estos son casos particulares del siguiente resultado:

Teorema De Dirichlet de los Primos en Progresiones Aritméticas:

Sean $a, m \in \mathbb{Z}$ tales que (a, m) = 1. Entonces existen infinitos primos p tales que $p \equiv a \pmod{m}$.

- (2) Sea p un primo. Demostrar
 - (a) $\binom{p}{k} \equiv 0 \pmod{p}$ $1 \le k < p$.
 - **(b)** $2^{p-1} \equiv 1 \pmod{p}$ si p es un primo impar.
 - (c) Pequeño Teorema de Fermat: Si $a, p \in \mathbb{Z}$ con p un primo tal que $p \nmid a$ entonces $a^{p-1} \equiv 1 \pmod{p}$.
- (3) Para un entero n se define $\phi(n)$ como el número de enteros menores a n y coprimos con n. A esta función se le llama la función ϕ de Euler. Demostrar la **Fórmula de Euler:** Sean $a, n \in \mathbb{Z}$ tales que (a, n) = 1, entonces $a^{\phi(n)} \equiv 1 \pmod{n}$.

Sea $\pi(x) = \#\{p \text{ primo} : p \leq x\}$, el **Teorema del Número Primo** dice:

$$\pi(x) \sim \frac{x}{\log x}$$

cuando $x \to \infty$. Este resultado fue probado en 1896, independientemente por J. Hadamard y Ch. de la Valle Poussin.

Los siguientes ejecicios no pretenden demostrar este teorema, pero si dar estimaciones de $\pi(x)$.

- (4) Sea p_k el primo k-esimo. Demostrar
 - (a) $p_{k+1} \leq p_1 p_2 \dots p_k + 1$.
 - **(b)** $p_k < 2^{2^k}$.
 - (c) $\pi(x) \ge \log(\log x)$.
- (5) (a) Demostrar $\binom{2n}{n} \le 2^{2n}$.
 - (b) Sea $\theta(n) = \sum_{p \le n} \log p$. Demostrar que $\theta(2n) \theta(n) \le 2n \log 2$.

(Ayuda:
$$\prod_{n divide a $\binom{2n}{n}$).$$

- (c) Demostrar $\theta(2^n) \le 2^{n+1} \log 2$ para todo $n \ge 0$.
- (d) Demostrar $\pi(x) \pi(\sqrt{x}) \le \frac{8x \log 2}{\log x}$. (Ayuda: Para $x \ge 2$ elegir n tal que $2^n \le x < 2^{n+1}$).
- (e) Demostrar que $\pi(x) \leq \frac{9x \log 2}{\log x}$ (Ayuda: Demostrar $\sqrt{x} \leq \frac{x \log 2}{\log x}$ para $x \geq 16$).

Ahora vamos a ver los números de Fermat que se definen como $F_n = 2^{2^n} + 1$. Fermat hizo la conjetura de que estos números eran todos primos. De hecho, $F_0 = 3$, $F_1 = 5$, $F_2 = 17$, $F_3 = 257$, $F_4 = 65537$ son primos, pero desafortunadamente, F_5 es divisible por 641. Se desconoce si hay infinitos números primos de la forma F_n , pero si que se sabe que hay un número infinito de ellos que son compuestos.

- (6) Demostrar que si $p = 2^n + 1$ es primo, entonces $n = 2^m$ para algún entero m, es decir $p = F_m$.
- (7) Demostrar que F_n divide a $F_m 2$ si n < m y de aquí deducir que $(F_n, F_m) = 1$ si $n \neq m$.

Dado un número natural n, sea $n = p_1^{\alpha_1} \dots p_n^{\alpha_n}$ su factorización única como producto de potencias de primos. Se define el radical de n, denotado por rad(n), al producto $p_1 \dots p_n$.

En 1980, Masser y Oesterlé formularon la siguiente conjetura:

Conjetura ABC: Sean A, B, C tres enteros coprimos entre sí tal que A + B = C. Para cualquier $\varepsilon > 0$, existe $k(\varepsilon)$ tal que

$$\max(|A|, |B|, |C|) \le k(\varepsilon)(\operatorname{rad}(ABC))^{1+\varepsilon}.$$

- (8) Asumiendo la Conjetura ABC, demostrar que si $x y z \neq 0$ y $x^n + y^n = z^n$ para tres enteros x, y, z coprimos entre sí entonces n está acotado.
- (9) Para todo $k \ge 1$ existen k números compuestos consecutivos.
- (10) Si n > 1 y $a^n 1$ es primo, probar que a = 2 y n es primo. A estos primos se les conoce con el nombre de Primos de Mersenne.
- (11) Un entero se llama perfecto si es la suma de sus divisores. Demostrar que si $2^n 1$ es primo, entonces $2^{n-1}(2^n 1)$ es perfecto.
- (12) Demostrar que si p es un primo impar, cualquier divisor de $2^p 1$ es de la forma 2 k p + 1, para algn entero positivo k.
- (13) Demostrar el siguiente resultado:

Teorema de Wilson: n es primo si y solo si n | (n-1)! + 1.