Matemáticas II

Prácticas: Formas Cuadráticas

1. Exprese las siguientes formas cuadráticas en forma matricial:

a)
$$q(x, y, z) = 2x^2 + 3y^2 + 4z^2 + xy + 4xz$$
.

b)
$$q(x, y, z) = x^2 + 2y^2 - z^2 + 6xy - 4xz + 2yz$$
.

c)
$$q(x, y, z) = x^2 - 2y^2 + 3xz - 2yz$$
.

2. Obtener las expresiones polinómicas de las formas cuadráticas $q_i\left(\vec{x}\right) = \vec{x}^t Q_i \vec{x}, \ i=1,2,3$ cuyas matrices asociadas son:

$$Q_1 = \begin{pmatrix} 3 & 5 & 1 \\ 5 & 1 & -1 \\ 1 & -1 & 4 \end{pmatrix}, \qquad Q_2 = \begin{pmatrix} 0 & -1/2 & 2 \\ -1/2 & 0 & 1 \\ 2 & 1 & -5 \end{pmatrix}, \qquad Q_3 = \begin{pmatrix} 1 & 4 & -1 \\ 4 & 0 & 0 \\ -1 & 0 & 2 \end{pmatrix}.$$

3. Para las siguientes formas cuadráticas clasificarlas mediante el cálculo de autovalores y mediante el estudio de los menores principales :

a)
$$q(x,y) = 3x^2 + 7y^2 - 4xy$$
.

b)
$$q(x, y, z) = -x^2 - 2y^2 + 2yz - 2z^2$$

c)
$$q(x, y, z) = x^2 + y^2 - z^2 + 2xy$$
.

d)
$$q(x, y, z) = -x^2 + 2yz - z^2$$
.

e)
$$q(x, y, z) = x^2 + y^2 - 2yz + z^2$$
.

- 4. Dada la forma cuadrática $q(x, y, z) = 4x^2 + 2y^2 + 4xy yz + az^2$ calcular el valor del parámetro $a \in \mathbb{R}$ para que sea definida positiva.
- 5. Clasificar las formas cuadráticas $q_i(\vec{x}) = \vec{x}^t Q_i \vec{x}, i = 1, 2, 3, 4$ en función del parámetro $a \in \mathbb{R}$:

$$Q_1 = \begin{pmatrix} 1 & a & 0 \\ a & 1 & 0 \\ 0 & 0 & 3 \end{pmatrix}, \quad Q_2 = \begin{pmatrix} a & a & 0 \\ a & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad Q_3 = \begin{pmatrix} 1 & 1 & 0 \\ 1 & a & 0 \\ 0 & 0 & a \end{pmatrix}, \quad Q_4 = \begin{pmatrix} 1 & 0 & a \\ 0 & 1 & 1 \\ a & 1 & 0 \end{pmatrix}.$$

- 6. Sea la forma cuadrática $q(x, y, z) == x^2 + 2y^2 + 4xy + 2yz + z^2$.
 - a) Encontrar una base $\mathcal B$ de vectores de $\mathbb R^3$ de forma que la matriz asociada a la forma cuadrática q respecto de $\mathcal B$ sea diagonal.
 - b) Encontrar una base de vectores \mathcal{B}' de vectores de \mathbb{R}^3 de forma que la matriz asociada a la forma cuadrática q respecto de B' sea diagonal con elementos $\lambda = 0, 1, -1$.

CUESTIONES:

- 1. La forma cuadrática $q(x, y, z) = x^2 + 2a^2xy + b^2z^2$ es definida positiva para cualesquiera $a y b \in \mathbb{R}$ no nulos.
 - a) Falso, porque $q(1, -1, 0) = 1 2a^2 < 0$ si a = 2.
 - b) Verdadero, ya que $q\left(x,y,z\right)=x^2+2a^2xy+b^2z^2>0$ para todo $(x,y,z)\in\mathbb{R}^3$, $(x,y,z)\neq\vec{0}.$
 - c) Falso, pues por el criterio de los menores principales se tiene que la forma cuadrática q es definida negativa, ya que $D_1 = 1$, $D_2 = -a^2$ y $D_3 = b^2 a^4$ y para $a \neq 0$, $b \neq 0$ se obtiene $D_1 > 0$, $D_2 < 0$ y $D_3 > 0$.
- 2. Dada $A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 5 \end{pmatrix}$ se verifica que la forma cuadrática $q\left(\vec{x}\right) = \vec{x}^t A \vec{x}$ es semidefinida positiva.
 - a) Falso, los menores principales de A son $D_1 = 1$, $D_2 = 0$ y $D_3 = 0$ y, por ello, la forma cuadrática es indefinida.
 - b) Verdadero, pues los autovalores de A son $\lambda_1 = 0$, $\lambda_2 = 2$ y $\lambda_3 = 5$ por lo que, aplicando el criterio de los autovalores la forma cuadrática es semidefinida positiva.
 - c) Falso, ya que $q(\vec{x}) = \vec{x}^t A \vec{x} = x^2 + y^2 + 5z^2 > 0$ para todo $\vec{x} \in \mathbb{R}^3$, $\vec{x} \neq \vec{0}$, por lo que q es definida positiva.
- 3. Indicar si son verdaderas o falsas las siguientes afirmaciones:
 - a) Todo polinomio de segundo grado es una forma cuadrática.
 - b) Dada una forma cuadrática $q(\vec{x})$ con $\vec{x} \in \mathbb{R}^n$ tal que existe $A \in \mathcal{M}_n(\mathbb{R})$ con $q(\vec{x}) = \vec{x}^t A \vec{x}$ se verifica que A es una matriz simétrica.
 - c) Dada una forma cuadrática $q(\vec{x}) = \vec{x}^t A \vec{x}$, se verifica que $B = \frac{1}{2} (A + A^t)$ con $\vec{x} \in \mathbb{R}^n$, es la única matriz simétrica tal que $\vec{x}^t A \vec{x} = \vec{x}^t B \vec{x}$ para todo $\vec{x} \in \mathbb{R}^n$.
- 4. Indicar si son verdaderas o falsas las siguientes afirmaciones:
 - a) Si $q(\vec{x})$ es una forma cuadrática definida positiva entonces para todo $\vec{x} \in \mathbb{R}^n$, $q(\vec{x}) > 0$.
 - b) Si $q(\vec{x})$ es una forma cuadrática indefinida, entonces para todo $\vec{x} \in \mathbb{R}^n$, $\vec{x} \neq \vec{0}$, se verifica que $q(\vec{x}) \neq 0$.
 - c) Si $q(\vec{x})$ es una forma cuadrática indefinida, entonces siempre existen \vec{x}_0 , \vec{x}_1 y $\vec{x}_2 \in \mathbb{R}^n$ tales que

$$q(\vec{x}_0) > 0$$
 $q(\vec{x}_1) = 0$ $q(\vec{x}_2) < 0$

- d) Si $q(\vec{x})$ es una forma cuadrática definida negativa, entonces $\alpha q(\vec{x})$ es definida negativa si $\alpha > 0$ y definida positiva si $\alpha < 0$.
- 5. Sea la forma cuadrática

$$q(x,y) = ax^2 + by^2 + cxy$$

con $a, b, c \in \mathbb{R}$. Entonces se verifica que:

$$a) \ \ q\left(x,y\right) = (x,y) \left(\begin{array}{cc} a & 2c \\ -c & b \end{array} \right) \left(\begin{array}{c} x \\ y \end{array} \right).$$

$$b) \ \ q\left(x,y\right) = (x,y) \left(\begin{array}{cc} a/2 & c/2 \\ c/2 & b/2 \end{array} \right) \left(\begin{array}{c} x \\ y \end{array} \right).$$

- c) Si a>0 la forma cuadrática q no puede ser ni definida negativa ni semidefinida negativa.
- d) Si ab < 0 la forma cuadrática q es indefinida.
- e) Si a+b+c>0 la forma cuadrática q es definida positiva.