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Topics to discuss:
(a) Isoperimetric Inequalities.
(b) Symmetrization.
(c) Polygons.

Important sources:
• George Pólya and Gabor Szegö, Isoperimetric inequalities

in mathematical physics. 1951.
• Catherine Bandle, Isoperimetric Inequalities and

Applications 1980.
• Yurii Burago and Viktor Zalgaller, Geometric inequalities.

1980.
• Vladimir Dubinin, Condenser Capacity and Symmetrization

in Geometric Function Theory. 2014.
• Al Baernstein II, Symmetrization in analysis. 2019.
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Classical Isoperimetric Inequality

The isoperimetric theorem states:
Theorem A. Among all planar regions Ω with a given perimeter
L(Ω), the circle encloses the greatest area:

A(Ω)
L(Ω)2 ≤ 1

4π
.
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Queen Dido Story: Birth of Isoperimetry
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Jacob Steiner Story: Invention of Symmetrization

The first geometric transformation bearing the name
symmetrization was introduced by Jacob Steiner in 1836.
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Inventor of Symmetrization
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Steiner Symmetrization

Let C be a closed contour on R2 enclosing a domain D and let
mD(x) denote the Lebesgue measure of the intersection of D
with the vertical line vx = {(x , y) ∈ R2 : −∞ < y < ∞}. Then
Steiner’s symmetrization of D with respect to the x-axis is
defined by

D∗ = {(x , y) ∈ R2 : |y | < (1/2)mD(x)}.

This implies, in particular, that D∗ is symmetric with respect to
the x-axis and convex in the y -direction. Let C∗ = ∂D∗ be the
boundary of D∗.
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Steiner Symmetrization Visual
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Schwarz and Pólya Symmetrizations
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Results obtained via Symmetrization
Steiner used his symmetrization to show that

(a) area D = area D∗, (b) length C∗ ≤ length C,

which implies the classical isoperimetric inequality

area D
(length C)2 ≤ 1

4π
.

The ingenious idea of Steiner was exploited over the years by
many mathematicians, who proved numerous, so-called,
isoperimetric inequalities for several important geometrical and
physical quantities: s.t. transfinite diameter d(D̄) that is equal to
the logarithmic capacity cap (D̄), for the inner radius r(D,a), for
the torsional rigidity P(D), and for the principal frequency λ(D):

(c) d(D∗) ≤ d(D), (d) r(D∗,a∗) ≥ r(D,a) a ∈ D,

(e) P(D∗) ≥ P(D), (f) λ(D∗) ≤ λ(D).



Prelude Symmetrization Functional characteristics Pólya-Szegö problems on polygons Dissymmetrization

Conformal radius and logarithmic capacity

We recall that the conformal radius R(Ω, z0) of a simply
connected domain Ω ⊂ C with respect to its point z0 can be
defined as

R(Ω, z0) = lim
z→z0

exp(gΩ(z, z0) + log |z − z0|).

1
2π

logR(Ω, z0) = m(Ω, z0) = lim
ε→0

(∫
Ω\Dε(z0)

|∇u(z)|2 dA

)−1

+ log ε

 .

Similarly, the logarithmic capacity cap E of a compact set E with
connected complementary set Ω(E) = C \ E can be defined as

cap E = lim
z→∞

exp(gΩ(E)(z,∞)− log |z|).
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Torsional rigidity and Principal frequency

The torsional rigidity of a cylindrical beam quantifies its ability to
resist to twisting. In case when a cross-section is Ω, the
torsional rigidity P = P(Ω) can be defined by the following
maximization problem:

P := sup
u∈C1

0(Ω)

4
(∫

Ω u(z)dA
)2∫

Ω |∇u(z)|2 dA
,

where C1
0(Ω) – the set of differentiable functions on Ω that

vanish on its boundary ∂Ω.
To define the principal frequency Λ = Λ(Ω) of Ω, we consider Ω
as a uniformly stretched elastic membrane of a drum fixed
along the boundary ∂Ω. Then Λ is the lowest bass tone of this
drum defined as

Λ2 := inf
u∈C1

0(Ω)

∫
Ω |∇u(z)|2 dA∫
Ω(u(z))

2 dA
.
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Symmetrizing functions u ≥ 0 with compact support on Ω.

The c-supersets {z : u∗(z) ≥ c} of the symmetrized function
u∗(z) are defined to be the symmetrization of the c-supersets
{z : u(z) ≥ c} of the original function u(z).
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Symmetrization and the Dirichlet Integral.

A key result of the Pólya-Szegö symmetrization theory is that
symmetrization type transformations do not increase the
Dirichlet integral.

Theorem (Pólya and Szegö, 1951)
Suppose that u ≥ 0 with compact support in Ω has continuous
partial derivatives in Ω. Then∫

Ω
|∇u∗

l (z)|
2 dA ≤

∫
Ω
|∇u(z)|2 dA.

Thus, the Dirichlet integral decreases under symmetrization.
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Pólya-Szegö problems on polygons

G. Pólya and G. Szegö used Steiner symmetrization to prove
the following.

Theorem (Pólya and Szegö, 1951)
The regular triangle and square have the maximal conformal
radius R(Ω) = maxz0∈Ω R(Ω, z0) and torsional rigidity P(Ω) and
the minimal logarithmic capacity cap E (that is = transfinite
diameter d(E)), the principal frequency λ(Ω), the polar moment
of inertia with respect its center of gravity I(Ω), and the
electrostatic capacity C(Ω) among all triangles and
quadrilaterals of given area.
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Symmetrizing triangles.
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Symmetrizing triangles and quadrilaterals.
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Pólya-Szegö problems on polygons

The proof based on symmetrization fails for polygons with
n ≥ 5 sides since Steiner symmetrization increases number of
sides of a polygon in general.
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G. Pölya and G. Szegö wrote the following:

Problem
”... to prove (or disprove) the analogous theorems for regular
polygons with more than four sides is a challenging task”.
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Pólya-Szegö problems on polygons

G. Pólya and G. Szegö mentioned the following functionals:
1. Conformal radius R(Ω, z0).
2. Torsional rigidity P(Ω).
3. Logarithmic capacity cap E .
4. Principal frequency λ(Ω).
5. Polar moment of inertia I(Ω).
6. Electrostatic capacity C(Ω).

For two of these functionals, conformal radius and logarithmic
capacity, their problem is solved.
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Triangulation and conformal radius

How it was solved for the conformal radius?
Let Dn denote a polygon with n ≥ 3 sides; D∗

n - regular n-gon.
If it is not possible to calculate characteristics of polygons, then
it is a good idea to find a way to estimate those using simpler
configurations, say triangles. Thus, we are looking for
appropriate triangulations of polygons.

Figure: Triangulation of a polygon.



Prelude Symmetrization Functional characteristics Pólya-Szegö problems on polygons Dissymmetrization

Reduced modulus of a triangle.

Definition: Reduced module of T is defined as the limit:

m(T ;a0|a1,a2) = lim
ε→0

(
mod (T (ε)) +

1
2πα

log ε

)
.

m(T ;∞|a1,a2) =
1

2πα
log

24α+1αB(β1, β2) sinπβ2

a sin2πα
.

Here β1π and β2π - angles of the triangle.



Prelude Symmetrization Functional characteristics Pólya-Szegö problems on polygons Dissymmetrization

Conformal radius

Step (a) Finding an upper bound using triangulation.

Lemma (Solynin 88)
Let T1, . . . ,Tm be a triangulation of Dn centered at a0 ∈ Dn and
let Tk has an angle 2αkπ at its vertex at a0. Then

m(Dn,a0) =
1

2π
logR(Dn,a0) ≤

m∑
k=1

α2
km(Tk |00,ak

1,a
k
2).

Equality occurs if and only if the triangulation is done along
images of radial segment under a conformal mapping from D
onto Dn.
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Conformal radius

Step (b) Calculate characteristics for a triangle.

Lemma (Solynin 1988)
Let T be a triangle with angles απ and βπ at its vertices a0 = 0,
a1 = a > 0. Then

m(T |a0,a1,a2) =
1
π
log 4 +

1
απ

log
a

αB(α, β)
,

where B(α, β) is Euler’s beta-function.

Step (c) Show that an isosceles triangle is extremal.

Lemma (Solynin 1988)
Let T be a triangle with angles 2απ and βπ at its vertices a0 = 0,
a1 = a > 0, where a = a(S) is such that area(T ) = S - fixed. Then

m(T |a0,a1,a2) <
1

2π
log 4 +

1
α
log

√
S cot(απ)

αB(1/2,1/2 + α)
.

Thus, among all triangles with fixed angle at the marked vertex and
fixed area the isosceles triangle has the maximal reduced module.
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Conformal radius

Step (d) Maximize a special weighted sum for characteristics of
triangles.

Theorem (Solynin 1988)
Let Dn be a Euclidean polygon having n ≥ 3 sides. Let
R(Dn) = maxz∈Dn R(Dn, z) be the maximal conformal radius of
Dn. Then

R2(Dn)

area(Dn)
≤ 24/n

π

Γ(1 − 1
n )Γ(

1
2 + 1

n )

Γ(1 + 1
n )Γ(

1
2 − 1

n )

with the sign of equality only for the regular Euclidean n-gons.
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Logarithmic capacity

If we try to apply our triangulation approach to the problems on
the logarithmic capacity, torsional rigidity, or principal
eigenvalue, it fails. Let us see which exactly part fails for the
logarithmic capacity.
(a) Partitioning of the exterior of Dn works.

m(Dn,∞) ≤
m∑

k=1

α2
km(Tk |∞,ak

1,a
k
2).



Prelude Symmetrization Functional characteristics Pólya-Szegö problems on polygons Dissymmetrization

Logarithmic capacity

(b) Reduced module of T is computable:

m(T |∞|a1,a2) =
1

2πα
log

24α+1αB(β1, β2) sinπβ2

a sin2πα
.

Here β1π and β2π - angles of the triangle.
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Logarithmic capacity

(c) Isosceles triangle has the largest reduced module for a fixed
angle and area:

m(T |∞|a1,a2) ≤ m(Ti |∞,a1,a2).
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Logarithmic capacity

(d) Maximization of the weighted sum of reduced moduli?

m(Ω(Dn),∞) ≤
m∑

k=1

α2
km(T i

k |∞|ak
1,a

k
2) −→ max,

m(T i
k |∞|ak

1,a
k
2) =

1
2παk

log
π1/24αkΓ(1/2 + αk )

(σk tanπαk )1/2Γ(αk )

Does not work!

sup
α1,...,αm

m∑
k=1

α2
km(T i

k |∞|ak
1,a

k
2) = ∞.

Too many choices for triangles!
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Logarithmic capacity

Is there a smaller set of triangles such that the maximization problem
on this set gives the desired result?

Proportional systems? What they are? - area(Tk )/αk = constant .
Simple examples:

Figure: Proportional systems of triangles
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Logarithmic capacity

Do proportional systems exist for any polygon Dn? Is there one which
covers Dn? - Those were questions, I asked Victor Abramovich
Zalgaller.

Let αk denote the angle of Tk - now it is a complementary triangle. An
admissible system {Tk}n

k=1 is called proportional if the quotient
αk/area(Tk ) does not depend on k = 1, . . . ,n.

Theorem (Solynin and Zalgaller 2004)

For every n-gon Dn there is at least one proportional system {Tk}n
k=1

that covers Dn, i.e.
∪n

k=1T k ⊃ Dn.
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Logarithmic capacity

Figure: Proportional systems of triangles
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A. Siegel’s Theorem, 2003: Covering by triangles.
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Logarithmic capacity

Theorem (Solynin and Zalgaller 2004)
For any polygon Dn having a given number of sides n ≥ 3,

cap2 (Dn)

Area Dn
≥ cap2 (D

∗
n)

Area D∗
n

=
n tan(π/n)Γ2(1 + 1/n)
π24/nΓ2(1/2 + 1/n)

with the sign of equality only for the regular n-gons.

Solynin, Alexander Yu.; Zalgaller, Victor A. An isoperimetric
inequality for logarithmic capacity of polygons. Ann. of Math.
(2) 159 (2004), no. 1, 277–303.
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Bogdan Grechuk selected our theorem for his book Theorems
of the 21st century. Vol. I. Springer, Cham, 2019. xvi+446 pp.
He suggested the following interpretation for a general public:
How to find a quiet place to build a house?
Assume that there is a short street where you can build a
house for your families. Each family would like to live quietly, as
far away from others as possible. Where you should build the
houses to maximize “average happiness” for everyone?

%bigskip
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The reason for this is interpretation of the log capacity as
transfinite diameter:

cap(E) ≈ max

k−1∏
i=1

k∏
j=i+1

|Aj − Ai |

 2
k(k−1)

.

Interpretation for city government:

The log capacity = the maximal cost to build a network
between large number of households in a city if the cost is
proportional to the average distance between households
measured on the logarithmic scale.

Request to the city government: Save taxpayers money! Do
not overpay contractors!
Sincerely Yours, Mathematician.
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Torsional rigidity and Principal frequency

Problem remains widely open:
(a) Appropriate proportional triangulation is not know.
(b) Explicit formulas for triangles (with mixed boundary

conditions) are not know.

(c) Extremal property of the isosceles triangles is not known.
(d) As a result - there is no function to maximize/minimize.
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Hyperbolic polygons

Joseph Hersch conjectured that the regular hyperbolic n-gon
has the maximal conformal radius among all hyperbolic n-gons
with vertices on the unit circle. These polygons are
fundamental domains of automorphic functions. Reiner Kühnau
proved this for triangles.
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Hyperbolic polygons
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Hyperbolic polygons

The most advanced generalization.

Theorem (R. Barnard, P. Hadjicostas, A. Solynin, 2005)
Let Dn ∋ z0 be a hyperbolic polygon with n ≥ 3 sides and
h-area A, 0 < A ≤ σn, and let β = 1/2 − 1/n − 2A/πn. Then

R2
h(Dn, z0) ≤ R2

h(Dn(A),0) =
Γ2
(
1 − 1

n

)
Γ
( 1

2 + 1
n + β

)
Γ
( 1

2 + 1
n − β

)
Γ2
(
1 + 1

n

)
Γ
( 1

2 − 1
n + β

)
Γ
( 1

2 − 1
n − β

) ,
where Γ denotes the Euler gamma function, with the sign of equality

only for the regular hyperbolic n-gons centered at z0.

In other words, this theorem asserts that the regular hyperbolic
polygon has the maximal conformal h-radius among all
hyperbolic polygons with a fixed number of sides and
prescribed hyperbolic area.
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Identities and Inequalities for Transcendental Functions

Recent work: Md. Shafiul Alam and Toshiyuki Sugawa,
“Geometric deduction of the solutions to modular equations”,
arXiv, 12 May, 2021.
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Hyperbolic capacity

Analog of Pólya-Szegö problem for the hyperbolic capacity. Hyperbolic
polygonal condenser - (Dh

n ,C \ D), where Dh
n is a hyperbolic n-gon.

Problem

Prove that the regular hyperbolic polygonal condenser (Dh∗
n ,C \ D) has the

minimal hyperbolic capacity among all hyperbolic polygonal condensers
having n sides and a prescribed hyperbolic area of Dh

n .

Some related questions were discussed in: M.M.S. Nasser, O. Rainio and M.
Vuorinen, Condenser capacity and hyperbolic diameter. Preprint 2020.
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A.A. Gonchar’s Problem: Invention of Dissymmetrization

Let 0 < r < 1, n ≥ 2, Θ = {θk}n
k=1,

0 = θ1 < θ2 < · · · < θn < 2π, Θ∗ = {e2πi(k−1)/n}n
k=1. Consider

compact sets EΘ = ∪n
k=1Ek , where Ek = eiθk [r ,1].

Problem: Prove that ω(0,EΘ,D \ EΘ) ≤ ω(0,E∗
Θ,D \ E∗

Θ).
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A.A. Gonchar’s Problem: Invention of Dissymmetrization
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k=1Ek , where Ek = eiθk [r ,1].

Problem: Prove that ω(0,EΘ,D \ EΘ) ≤ ω(0,E∗
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A.A. Gonchar’s Problem

Theorem (Dubinin1984)
If EΘ is not a rotation of EΘ∗ , then

ω(0,EΘ,D \ EΘ) < ω(0,E∗
Θ,D \ E∗

Θ).

Proof:
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A.A. Gonchar’s Problem
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Generalized Gonchar’s Problem.

Open Problem: Al Baernstein II considered a generalization of
Gonchar’s problem for the union of rotations of an arbitrary
compact set E ⊂ (0,1].

Theorem (Solynin1998)

Given 0 < r1 < r2 < 1, let EΘ = ∪n
k=1Ek , where Ek = eiθk [r1, r2].

Then
ω(0,EΘ,D \ EΘ) < ω(0,E∗

Θ,D \ E∗
Θ).
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Generalized Gonchar’s Problem.

Open Problem: Al Baernstein II considered a generalization of
Gonchar’s problem for the union of rotations of an arbitrary
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Given 0 < r1 < r2 < 1, let EΘ = ∪n
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Quotients of Hypergeometric Functions.

Suprizingly enough (for me), my quotient problem attracted
attention of people working in Ramanujan’s area of
mathematics (Bruce Berndt and his students).
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Quotients of Hypergeometric Functions.

Suprizingly enough (for me), my quotient problem attracted
attention of people working in Ramanujan’s area of
mathematics (Bruce Berndt and his students).
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Quotients of Hypergeometric Functions.

Suprizingly enough (for me), my quotient problem attracted
attention of people working in Ramanujan’s area of
mathematics (Bruce Berndt and his students).
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Paying back to Approximation Theory.

Surprisingly my estimate of the harmonic measure appeared to
be useful in Approximation Theory. Recent paper by (Igor
Pritsker, House of algebraic integers symmetric about the unit
circle, 2021)
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Dissymmetrization of polygons.
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Dissymmetrization of the exterior of polygon.
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Dissymmetrization of the exterior of polygon.
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Hersch’s amplification coefficient.
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Hersch’s amplification coefficient.
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Hersch’s amplification coefficient.
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Hersch’s amplification coefficient.
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Dissymmetrization of curvilinear polygons

In Solynin, Alexander Yu.; Zalgaller, Victor A. The inradius, the
first eigenvalue, and the torsional rigidity of curvilinear
polygons. Bull. Lond. Math. Soc. 42 (2010), no. 5, 765–783.,
we proved several inequalities for λ1, P, and ρ in the case,
when Ω is a curvilinear polygon with n sides, each of which is a
smooth arc of curvature ≤ κ. Here λ1 – the first eigenvalue of
the Dirichlet Laplacian, P – the torsional rigidity, and ρ – the
inradius of a planar domain Ω. Our main proofs rely on the
method of dissymmetrization and on a special geometrical
“containment theorem” for curvilinear polygons.
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For n ≥ 3 and κ ∈ R, let D(n, κ) be the class of simply
connected domains Ω such that ∂Ω consists of at most n
smooth arcs, each of which has piecewise continuous
curvature ≤ κ.
Let D(n, κ) be the regular circular n-gon circumscribed about
the unit circle.
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Theorem (Solynin and Zalgaller 2010)

Let D be a curvilinear polygon bounded by n ≥ 3 smooth arcs having
piecewise continuous curvature not exceeding κ. If κ1 = κρ(Dn) ≤ 1,
then 1 − csc(π/n) ≤ κ1 and

λ1(D)ρ2(D) ≤ λ1(D(n, κ1)),

P(D)ρ−4(D) ≥ P(D(n, κ1)).

Equality occurs if and only if D coincides with D(n, κ) up to a linear
transformation of C.
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Theorem (Solynin and Zalgaller 2010)

Let D ∈ D(n, κ) be a curvilinear polygon and let ρ = ρ(D) be the
inradius of D. If κ ≤ 1/ρ, then 1 − csc(π/n) ≤ κρ(D) and there is a
circular polygon Dn circumscribed about some circle C of radius ρ
such that ∂Dn consists of n circular arcs, each of curvature κ, such
that Dn ⊂ D.
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Lemma (Solynin and Zalgaller 2010)

Let 0 < r ≤ 1. Let C = C0 ∪ C1, where C1 = {z = reiθ : θ1 ≤ θ ≤ 2π},
0 < θ1 ≤ π, and C0 is a Jordan arc in C \ Dr joining the points z0 = r
and z1 = reiθ1 . Let Ω be the domain bounded by C. Assume that C is
a smooth curve having piecewise smooth curvature ≤ κ, for some
0 < κ < 1.
Then Ω contains an open disk of radius greater than 1.
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One application of continuous symmetrization

M. Fleeman and B. Simanek conjectured in their recent paper
(Torsional rigidity and Bergman analytic content of simply connected
regions. Comput. Methods Funct. Theory 19 (2019), no. 1, 37–63)
that the isosceles right triangle has the maximal torsional rigidity
among all right triangles with fixed area. In my 2020 paper, I proved
the following.
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Thank You !
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