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Topics to discuss:

(a) Isoperimetric Inequalities.
(b) Symmetrization.

(c) Polygons.

Important sources:

e George Polya and Gabor Szeg0, Isoperimetric inequalities
in mathematical physics. 1951.

e Catherine Bandle, Isoperimetric Inequalities and
Applications 1980.

e Yurii Burago and Viktor Zalgaller, Geometric inequalities.
1980.

¢ Vladimir Dubinin, Condenser Capacity and Symmetrization
in Geometric Function Theory. 2014.

e Al Baernstein Il, Symmetrization in analysis. 2019.
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Classical Isoperimetric Inequality

The isoperimetric theorem states:
Theorem A. Among all planar regions Q2 with a given perimeter
L(R2), the circle encloses the greatest area:

AQ)
L(Q)2
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Queen Dido Story: Birth of Isoperimetry

This remarkable theorem even has a literary history dating

back some twenty-one centuries to Virgil's Aeneid and the saga of
Queen Dido. Apparently, the good Queen had more than her fair
share of entrepreneurial skill and mathematical ability—as well as
misfortune of epic proportion. Her legend recounts, among other
tragedies, the murder of her father by her brother, who then
directed his intentions toward her. She was obliged to assemble
her valuables and flee her native city of Tyria in ancient

Phoenicia. In due course, her ship landed in North Africa, where
she made the following offer to a local chieftain. In return for

her fortune, she would be ceded as much land as she could isolate
with the skin of an ox. The proposition must have seemed too good
to refuse. It was agreed to, and a large ox was sacrificed for its
hide. Queen Dido broke it down into extremely thin strips of
leather, which she tied together to construct a giant semicircle
that, when combined with the natural boundary imposed by the sea,
turned out to encompass far more area than anyone might have

imagined. And upon this land, the city of Carthage was born.
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Jacob Steiner Story: Invention of Symmetrization

The first geometric transformation bearing the name
symmetrization was introduced by Jacob Steiner in 1836.

A( e Y‘

Figure: Jakob Steiner (1796-1863)

Jakob Steiner, a self made Swiss
farmer’s son and contemporary of Gauss
was the foremost “synthetic geometer.”
He hated the use of algebra and analysis
and distrusted figures. He proposed
several arguments to prove that the
circle is the largest figure with given
boundary length. Besides
symmetrization, his four-hinge method
has great intuitive appeal, but is limited
to two dimensions. He published several
proofs trying to avoid analysis and the

“Calculating replaces thinking while calculus of variations.

geometry stimulates it”.



Symmetrization
[o] lelele]e]

Inventor of Symmetrization

P/ The
y greatest
geometer
since
Apolionius?

@ Springer
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Steiner Symmetrization

Let C be a closed contour on R? enclosing a domain D and let
mp(x) denote the Lebesgue measure of the intersection of D
with the vertical line vy, = {(x,y) € R?: —c0 < ¥ < co}. Then
Steiner’'s symmetrization of D with respect to the x-axis is
defined by

D" = {(x.y) € B: |y| < (1/2)mp(x)}.

This implies, in particular, that D* is symmetric with respect to
the x-axis and convex in the y-direction. Let C* = 9D* be the
boundary of D*.
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Steiner Symmetrization Visual

Symmetrize
L about the line L
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Schwarz and Pélya Symmetrizations

(@ Sdwarz symmelrization : 0of Q=R
w.R.X. a PO'\n'\: %o = R* ¢

Q*= B ()= ‘lxe R™: \x—x,\<-\_}
st 1\ = 1B (x.

@ Circular symmetrizatiow (\’o%\a sym)
of Q=R wrt. a Ray Qo=\0ﬁ ,0): xpo}

Rl‘““-" Y z=te = (x,x r.)
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Results obtained via Symmetrization
Steiner used his symmetrization to show that

(a) area D = area D", (b) length C* < length C,

which implies the classical isoperimetric inequality

area D L
(length C)? — 47’

The ingenious idea of Steiner was exploited over the years by
many mathematicians, who proved numerous, so-called,
isoperimetric inequalities for several important geometrical and

physical quantities: s.t. transfinite diameter d(D) that is equal to

the logarithmic capacity cap (D), for the inner radius r(D, a), for
the torsional rigidity P(D), and for the principal frequency A\(D):

(c) d(D*) < d(D), (d) r(D*,a*) > r(D,a) ac D,
(e) P(D*) = P(D), (f) A(D) < A(D).
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Conformal radius and logarithmic capacity

We recall that the conformal radius R(€2, zy) of a simply
connected domain Q2 c C with respect to its point z; can be
defined as

R(Q, z9) = Z“_QO exp(ga(z, 20) + log|z — z|).

—1
1 log R(Q2, z9) = m(Q, Zg) = lim (/ IVu(z)[? dA) + loge
Q\De(20)

2T e—0

Similarly, the logarithmic capacity cap E of a compact set E with
connected complementary set Q(E) = C \ E can be defined as

cap E = lim exp(da(e)(2,0) — log |2]).
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Torsional rigidity and Principal frequency

The torsional rigidity of a cylindrical beam quantifies its ability to
resist to twisting. In case when a cross-section is Q, the
torsional rigidity P = P(Q2) can be defined by the following
maximization problem:

P = sup 4(f§2 U(Z) dA)2

ueC] (@) Jo |VU(Z)|2 dA’

where CJ() — the set of differentiable functions on  that
vanish on its boundary 99.

To define the principal frequency A = A(Q2) of Q, we consider Q
as a uniformly stretched elastic membrane of a drum fixed
along the boundary 992. Then A is the lowest bass tone of this
drum defined as

2
A

N = inf fQW“ ‘zd
ueCi(Q fQ dA -
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Symmetrizing functions v > 0 with compact support on €.

The c-supersets {z : u*(z) > c} of the symmetrized function
u*(z) are defined to be the symmetrization of the c-supersets
{z: u(z) > c} of the original function u(z).

D D

-0.188
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Symmetrization and the Dirichlet Integral.

A key result of the Pélya-Szegd symmetrization theory is that
symmetrization type transformations do not increase the
Dirichlet integral.

Theorem (Pdlya and Szeg6, 1951)

Suppose that u > 0 with compact support in Q has continuous
partial derivatives in Q. Then

/ VUl (22 dA < / Vu(z)P dA.
Q Q

Thus, the Dirichlet integral decreases under symmetrization.
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Pdlya-Szego6 problems on polygons

G. Pélya and G. Szegb used Steiner symmetrization to prove
the following.

Theorem (Pdlya and Szeg6, 1951)

The regular triangle and square have the maximal conformal
radius R(Q2) = maxzcq R(2, 20) and torsional rigidity P(Q2) and
the minimal logarithmic capacity cap E (that is = transfinite
diameter d(E)), the principal frequency \(Q2), the polar moment
of inertia with respect its center of gravity 1(Q?), and the
electrostatic capacity C(Q2) among all triangles and
quadrilaterals of given area.
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Symmetrizing triangles.
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Symmetrizing triangles and quadrilaterals.

V3 ! Vi
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Pdlya-Szego6 problems on polygons

The proof based on symmetrization fails for polygons with
n > 5 sides since Steiner symmetrization increases number of
sides of a polygon in general.

A

2 V2 V5
A
Vs v) v

G. Pélya and G. Szegb wrote the following:

Problem

”... to prove (or disprove) the analogous theorems for regular
polygons with more than four sides is a challenging task”.
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Pdlya-Szego6 problems on polygons

G. Pdlya and G. Szegb mentioned the following functionals:

aRroobdb=

6.

Conformal radius R(2, zp).
Torsional rigidity P(2).
Logarithmic capacity cap E.
Principal frequency \(Q).
Polar moment of inertia /().
Electrostatic capacity C(2).

For two of these functionals, conformal radius and logarithmic
capacity, their problem is solved.
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Triangulation and conformal radius

How it was solved for the conformal radius?

Let D, denote a polygon with n > 3 sides; D}, - regular n-gon.
If it is not possible to calculate characteristics of polygons, then
it is a good idea to find a way to estimate those using simpler
configurations, say triangles. Thus, we are looking for
appropriate triangulations of polygons.

Fianire: Trianaiilation of a nolvaon
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Reduced modulus of a triangle.

Definition: Reduced module of T is defined as the limit:

. 1
m(T; alay, a) = EIR (mod(T(a)) to log 5) :

oo

24 1aB(By, B2) sin s
m(T; oolar, &) = 2r alo asin 2ra '

Here 8ym and > - angles of the triangle.
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Conformal radius

Step (a) Finding an upper bound using triangulation.

Lemma (Solynin 88)

Let Ty,..., Tm be a triangulation of D, centered at a; € D, and
let Ty has an angle 2oy at its vertex at ap. Then

1 m
m(Dn, aO) = E |Og R(Df'h aO) S Z aim( Tk|007 34(7 alz()
k=1

Equality occurs if and only if the triangulation is done along
images of radial segment under a conformal mapping from D
onto Dy,.
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Conformal radius

Step (b) Calculate characteristics for a triangle.

Lemma (Solynin 1988)

Let T be a triangle with angles aw and p at its vertices ap = 0,
ai=a>0. Then

1 1 a
m(T‘aO, 31732) = ; |Og4 + % IOg m,

where B(«, () is Euler’s beta-function.

Step (¢) Show that an isosceles triangle is extremal.

Lemma (Solynin 1988)

Let T be a triangle with angles 2am and s at its vertices a; = 0,
a; = a> 0, where a= a(S) is such that area(T) = S - fixed. Then

S cot(am)
aB(1/2.1/2 + o)’

1 1
m(Tl|ao, ar, a2) < ;—log4 + —log
o o
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Conformal radius

Step (d) Maximize a special weighted sum for characteristics of
triangles.

Theorem (Solynin 1988)

Let D, be a Euclidean polygon having n > 3 sides. Let

R(Dp) = maxzcp, R(Dn, z) be the maximal conformal radius of
D,. Then

FE(Dr) _ 27T = () + 1)
area(Dp) = m™ T(1 + )r(,_,

with the sign of equality only for the regular Euclidean n-gons.
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Logarithmic capacity

If we try to apply our triangulation approach to the problems on
the logarithmic capacity, torsional rigidity, or principal
eigenvalue, it fails. Let us see which exactly part fails for the
logarithmic capacity.

(a) Partitioning of the exterior of D, works.
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Logarithmic capacity

(b) Reduced module of T is computable:

oo

1 24a+1OéB ,61,ﬂ2 sin Wﬁg
m(Tlocla, ap) = e log a(sm 27roz

Here Sym and o - angles of the triangle.
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Logarithmic capacity

(c) Isosceles triangle has the largest reduced module for a fixed
angle and area:

area(Tﬁj:area(Tj*)

a

yies s

m(T|oolay, a) < m(Tiloo, a1, a).
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Logarithmic capacity

(d) Maximization of the weighted sum of reduced moduli?
— m .
m(Q(Dp),00) <> agm(Ti|oc|af, a§) — max,
k=1
1 /242 (1/2 + a)
2ray - (oktanmak) V2T (ak)

m(Tkloo|af, a3) =

Does not work!

m
sup Y aem(Ty|oolaf, a5) = co.

Qqy...,m k=1

Too many choices for triangles!
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Logarithmic capacity

Is there a smaller set of triangles such that the maximization problem
on this set gives the desired result?

Proportional systems? What they are? - area(Tx)/ax = constant.
Simple examples:

4

A 4
4 3 4 A,
T3 T,
P
T,
4 T,
4 A
a) Proportional noncovering system
4, 4,
T, T,
4, 4,
¢) Proportional system of overlapping triangles d) Proportional system for a nonconvex hexagon

Figure: Proportional systems of triangles
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Logarithmic capacity

Do proportional systems exist for any polygon D,? Is there one which
covers D,? - Those were questions, | asked Victor Abramovich
Zalgaller.

Let « denote the angle of Ty - now it is a complementary triangle. An
admissible system {T,}/_, is called proportional if the quotient
ak/area(Ty) does notdependon k=1,...,n.

Theorem (Solynin and Zalgaller 2004)

For every n-gon D, there is at least one proportional system { Ty }7_,
that covers Dy, i.e. B
Ulr(':1 Tk D) Dn.
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Logarithmic capacity

Figure 3. Regular proportional system for small 6

For the main parameter #, we choose the inclination of Iy 1: 6 = 1 1. Let
6* be the angle formed by the sides [4], A5] and [A4], A}] of the convex hull D,
then 0 < 6 < 0",



A. Siegel’s Theorem, 2003
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Covering by triangles.

Theorem B. Let PP be a simple polygon that is not necessarily
convex. Let the vertices of P be in, counterclockwise order,
V1,1 vp. Let, for i = 1,2, ..., n the ray r; emanate from
v; and form an the angle 8; with a horizontal ray emanating
to the right from v;, and suppose that 01 < 6 < ... <6, <
01 + 2.

‘Whenever the rays from two consecutive vertices intersect, let
them induce the triangular region defined by the two vertices
and the intersection point.

Then there is a fixed « such that if all of the assigned an-
gles are increased by a, the triangular regions induced by the
redirected rays cover the interior of P.
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Logarithmic capacity

Theorem (Solynin and Zalgaller 2004)

For any polygon D, having a given number of sides n > 3,

cap? (Dp) - cap? (D,)  ntan(m/n)2(1+1/n)

AreaD, ~ AreaD; 724/2(1/2 +1/n)

with the sign of equality only for the regular n-gons.

Solynin, Alexander Yu.; Zalgaller, Victor A. An isoperimetric
inequality for logarithmic capacity of polygons. Ann. of Math.
(2) 159 (2004), no. 1, 277-3083.
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Bogdan Grechuk selected our theorem for his book Theorems
of the 21st century. Vol. I. Springer, Cham, 2019. xvi+446 pp.
He suggested the following interpretation for a general public:
How to find a quiet place to build a house?

Assume that there is a short street where you can build a
house for your families. Each family would like to live quietly, as
far away from others as possible. Where you should build the
houses to maximize “average happiness” for everyone?
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The reason for this is interpretation of the log capacity as
transfinite diameter:

_2
k(k—1)

k—1 Kk
cap(E) ~ max H H |A;i — Al
=1 j=it1

Interpretation for city government:

The log capacity = the maximal cost to build a network
between large number of households in a city if the cost is
proportional to the average distance between households
measured on the logarithmic scale.

Request to the city government: Save taxpayers money! Do
not overpay contractors!

Sincerely Yours, Mathematician.
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Torsional rigidity and Principal frequency

Problem remains widely open:
(a) Appropriate proportional triangulation is not know.

(b) Explicit formulas for triangles (with mixed boundary
conditions) are not know.

u=0

oT

ﬁdﬁuzo

(c) Extremal property of the isosceles triangles is not known.
(d) As aresult - there is no function to maximize/minimize.
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Hyperbolic polygons

Joseph Hersch conjectured that the regular hyperbolic n-gon
has the maximal conformal radius among all hyperbolic n-gons
with vertices on the unit circle. These polygons are
fundamental domains of automorphic functions. Reiner Kiilhnau
proved this for triangles.

DE
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Hyperbolic polygons

We say that a circle C intersecting the absolute T has the S-property, 0 < B < 1/2, if the angle
between C and the radius hitting the point of intersection of C' and T is at most fw. A circular n-gon
D, C U is called B-circular if its sides lie on circles having the -property. Obviously, the 0-circular n-gons
are precisely the hyperbolic n-gons. We denote by Dn(8) the regular circular n-gon with vertices at the
points 7 = exp(27i(k —1)/n), k = 1,... ,n, and with angles equal to 247, 0 < # < 1. Let R(D, zq) be the
conformal radius of a simply connected domain D with respect to a point zp € D, R(D) = max.ep R(D, z).

Theorem 1. Let D, be a B-circular n-gon,n >3, 0 < f < 1/2. Then

AaTA-2rE+4rg+6++

P e aaaan)
TA+ 3G -G +8-3)

(1)

Here T'(z) is Euler’s gamma function.
Equality in (1) holds only in the case D, = €' Dpn(8) with 8 real.

N

o
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Hyperbolic polygons

The most advanced generalization.

Theorem (R. Barnard, P. Hadjicostas, A. Solynin, 2005)

Let D, > zy be a hyperbolic polygon with n > 3 sides and

h-area A,0 < A<op,andlets=1/2—-1/n—2A/xn. Then

_PO-DrG+r+ATG+7-8)
Z+ TG+ AT (=5 8)

where I' denotes the Euler gamma function, with the sign of equality

only for the regular hyperbolic n-gons centered at z;.

R7(Dn, 20) < R5(Dn(A),0)

V.

In other words, this theorem asserts that the regular hyperbolic
polygon has the maximal conformal h-radius among all
hyperbolic polygons with a fixed number of sides and
prescribed hyperbolic area.
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Identities and Inequalities for Transcendental Functions

Recent work: Md. Shafiul Alam and Toshiyuki Sugawa,
“Geometric deduction of the solutions to modular equations”,
arXiv, 12 May, 2021.

For given integers p > 2, Ramanujan, an Indian mathematical genius, considered the
equation
(11) 2Fi(a,1—a;1;1—B) :pzpl(n., l-a;;1—a)
o (a, 1 —a; 1; ) o (a,1—a; 1)
known as the generalized modular equation of degree p and signature 1/a. He left many
formulae describing relations between o and /3 in his unpublished notebooks but he did
not record any proof of those formulae (see [9] and [23]).
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For given integers p > 2, Ramanujan, an Indian mathematical genius, considered the
equation
(1.1) 2Fy(a,1—a;1;1 =) :szl(a, 1—a;1;1—a)
o Fi(a,1—a;1;8) oFi(a, 1 —a;1; @)
known as the generalized modular equation of degree p and signature 1/a. He left many
formulae describing relations between « and /3 in his unpublished notebooks but he did
not record any proof of those formulae (see [9] and [23]).

Ay
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Hyperbolic capacity

Analog of Polya-Szegé problem for the hyperbolic capacity. Hyperbolic
polygonal condenser - (D!, C \ D), where D/ is a hyperbolic n-gon.

Problem

Prove that the regular hyperbolic polygonal condenser (D2*,C \ D) has the
minimal hyperbolic capacity among all hyperbolic polygonal condensers
having n sides and a prescribed hyperbolic area of D}.

Some related questions were discussed in: M.M.S. Nasser, O. Rainio and M.
Vuorinen, Condenser capacity and hyperbolic diameter. Preprint 2020.
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A.A. Gonchar’s Problem: Invention of Dissymmetrization

LletO<r<1,n>2,0={0k}}_q, '
0=01 <6< <0p<2r 0 ={e2k=1)/mn_. Consider

compact sets Eg = U_, Ex, where E, = e%[r, 1].
Problem: Prove that w(0, Eg, D\ Eg) < w(0, E5, D\ EJ).
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A.A. Gonchar’s Problem: Invention of Dissymmetrization

LletO<r<1,n>2,0={0k}}_q, '
0=0; <0 <---<0p<2m, O ={ek-1)/mn_  Consider
compact sets Eg = U}_, Ex, where E = e'%][r, 1].

Problem: Prove that w(0, Eg, D\ Eg) < w(0, E5, D\ EJ).
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A.A. Gonchar’s Problem

Theorem (Dubinin1984)
If Eg is not a rotation of Eg+, then

w(0, Eo, D\ Eo) < w(0, E5, D\ E3).
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A.A. Gonchar’s Problem

Theorem (Dubinin1984)
If Eg is not a rotation of Eg+, then

w(0, Eo, D\ Eo) < w(0, E5, D\ E3).
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Generalized Gonchar’s Problem.

Open Problem: Al Baernstein Il considered a generalization of
Gonchar’s problem for the union of rotations of an arbitrary
compact set E C (0, 1].




Dissymmetrization

000@000000000000000OL

Generalized Gonchar’s Problem.

Open Problem: Al Baernstein Il considered a generalization of
Gonchar’s problem for the union of rotations of an arbitrary
compact set E C (0, 1].

Theorem (Solynin1998)

Given0 < ry <, <1, let Eg = U}_, E, where E, = €[y, ry].
Then
w(0.Eo. D\ Epg) < w(0. EX. D\ EX).
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Quotients of Hypergeometric Functions.

B 02 (3v | imt)
St = g T imD)

We now prove a result on the monotonicity of S(v,t) which is required for what
follows but, in our view, is also of interest for the theory of elliptic functions. Tt is
possible that experts already know of this property, but we could not find references
to it in the literature.
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Quotients of Hypergeometric Functions.

02 (3v | imt)

S(v,t) = W

We now prove a result on the monotonicity of S(v,t) which is required for what
follows but, in our view, is also of interest for the theory of elliptic functions. Tt is
possible that experts already know of this property, but we could not find references
to it in the literature.

Suprizingly enough (for me), my quotient problem attracted
attention of people working in Ramanujan’s area of
mathematics (Bruce Berndt and his students).
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Quotients of Hypergeometric Functions.

02 (3v | imt)

S(v,t) = W

We now prove a result on the monotonicity of S(v,t) which is required for what
follows but, in our view, is also of interest for the theory of elliptic functions. Tt is
possible that experts already know of this property, but we could not find references
to it in the literature.

Suprizingly enough (for me), my quotient problem attracted

attention of people working in Ramanujan’s area of

mathematics (Bruce Berndt and his students).
CONVEXITY OF QUOTIENTS OF THETA FUNCTIONS

ATUL DIXIT, ARINDAM ROY AND ALEXANDRU ZAHARESCU

ABSTRACT. For fixed w and v such that 0 < v < v < 1/2, the monotonicity of the
quotients of Jacobi theta functions, namely, 8;(ulint)/0;(v|int), j = 1,2,3,4, on 0 <
t < 0o has been established in the previous works of A.Yu. Solynin, K. Schiefermayr,
and Solynin and the first author. In the present paper, we show that the quotients
Oy (ulimt) /02 (v]int) and O5(ul|int)/05(v]int) are convex on 0 < ¢ < co.
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Paying back to Approximation Theory.

Surprisingly my estimate of the harmonic measure appeared to
be useful in Approximation Theory. Recent paper by (lgor

Pritsker, House of algebraic integers symmetric about the unit
circle, 2021)

The subject of algebraic integers located near (or on) the unit circle T := {z € C: |z| = 1}
is classical. Kronecker [8] proved that if an algebraic integer and all of its conjugates are
located in the closed unit disk I := {z € C : |z| < 1}, then it is either a root of unity or zero.
Fo.r an ﬂlgt:}.)l'z'l.i(' intcg.cr a = ay, with the complete set of conjugates {ag}7_, the house of
this algebraic integer is defined by

[a] == max |l
1<k<n o )
This brings us to celebrated Lehmer’s
conjecture [9], see also [1], [7], [17]. [18] for more details and references. Lehmer observed
from computations that the smallest Mahler measure of a non-zero and non-cyclotomic
algebraic integer scems to be coming from the largest (in absolute value sense) root ay of

Theorem 1. If a is a reciprocal algebraic integer of degree n, with complete set of conjugates

{ar}iy NT =0, then

(1.5) [a]> (1+v2)% > 1+7]‘*'”;; vV2)
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Dissymmetrization of polygons.

Theorem 1. Let D, be an m-gon circumscribed about the circle Ty; ‘with‘ m<n.

Then

(1.1) . Ay SR(Dm, 0)/r<d/z,
where Ay is defined in (8); moreover,

(12 P(Du)/r* 2 P(D}),
(L.3) . rA(Dm) < A(D}).

Eguality in the left inequality of (1.1) and in (1.2) and (13) & aztclzftne:_z' "zlt’;;
case m = n and only for a regular n-gon. Eguality in the right meg,ua i ;}» in H.—
is attained only in the case when Dy degenerates into the band €', w erve =
{z:|Imz| <r} and a€R. -

PO T ALt amntnined
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Dissymmetrization of the exterior of polygon.

2.2, Let us prove a thearem about the existence of an (#, r)-dissymmetrization of
the set 13,,,, onto the exterior of a convex m-gon with m < n. This theorem is
fundamental for the applications that follow. :
Theoremn 4. Let Dy, bea convex m-gon, and By =TC\Dy,. I m < n and L{8Dy) £
L(8D;,,) = 2nrsin(n/n), then there is an n-symmetric partition (P ;. Rp ¢} of the
set Dn,, and an (n, r)-dissymmetrization {Ay s, iy ¢} Such that

Dis, Dy =Dy,
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Dissymmetrization of the exterior of polygon.

CE e e s e ‘ y - . < .
Theorem 7. Suppose that the m-gon Dm is inscribed in the circle T and m £ n.
Then the following assertions are true.

1) The inequality
(3.1) - d(Duw) < Bar | o e
holds. Equality is attained in (3.1) only when n="n dﬂ: 13:_: ’:g 7 t,;t,;);i :

2) If in addition Dy 3 a, where a isa fixed point of t e disk Ur.

(3.2) ‘ d(Dm) 2 $4/r2 - lal.

Equality is attained in (3.2) only in the ca_fie Hfr:;:’n the m
a chord of the disk U, that has a as its miapoint

-gon Dim degenerates into
fw e a1 the m-EONS

Theorem 10. Let T be a closed m-link polygonal line with m < n. Then
(3.8) d(Tp)/L{Tm) < Bu(2nsin(m/n)) "
Eguality holds in (3.8) only when m=n and T, bounds a regular n-gon.
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Hersch’s amplification coefficient.

Let D, be a polygon on a Riemann surface R with vertices a;, j =
1,...,n,and let & = f(z) be a Riemann mapping function of D,,, 4; =
).

We say that D, admits the reflection D, ; with respect to its side
aja;y if the inverse Riemann mapping f~'(Z) can be continued confor-
mally into the domain U’ = C\U (the extended mapping might not
be univalent) across the arc A;A; 4y of T so that f~Y(U') = D, ;. If
D, admits reflection with respect to each of its sides, then 5,, will
denote the full n-sides reflection, i.e. a Riemann surface obtained from
D, by “sticking” along each side a;a;, the reflected D, ;. Following
J. Hersch [6], the quantity

R(Dy, 20)

K(Dy, 20) = =t
T RO, )

will be called the “amplification coefficient” of the conformal radius of
D, at the point zyp € D,,.
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Hersch’s amplification coefficient.

Let
k(D) = ~ic%f k(Dy. 7). (1.5)

By an “amplification center” we mean a point zo € D, such that
k(Dy) = k(D,, zo). Clearly, «(D,, z0) and x(D,) are conformal invari-
ants.
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Hersch’s amplification coefficient.

If D, is a hyperbolic n-gon, then D, is also a hyperbolic polygon
having n(n — 1) sides. Due to this fact J. Hersch [6] was able to consider
further reflections of appeared polygons. When studying the conformal
mapping onto such polygons he posed the problem of finding of the
minimal value of the amplification coefficient among all the hyperbolic
n-gons having vertices on T'. The following theorem solves this problem.

THEOREM 2 Let D, be an arbitrary n-gon, n > 2, admiiting the full
n-sides reflection D,,, zo € D,,. Then

n+1

P— (1.6)

k(Dy, 20) =

Equality in (1.6) is attained only in the case when D, is a regular

n-oon centeved at 7a
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Hersch’s amplification coefficient.

THEOREM 2 Let D, be an arbitrary n-gon, n > 2, admiiting the full
n-sides reflection D,, 2o € D,. Then

n+1
n—1

k(Dy, 20) = (1.6)

Equality in (1.6) is attained only in the case when D, is a regular
n-gon centered at 7a

7]
2, N % s
« 2

Ap \";.\

Ag 7 / -
- —_— (e -
0T Ay N el
17 A
A‘W \
N I
b N
a) ©)




Dissymmetrization
000000000000 0@O00O00(

Dissymmetrization of curvilinear polygons

In Solynin, Alexander Yu.; Zalgaller, Victor A. The inradius, the
first eigenvalue, and the torsional rigidity of curvilinear
polygons. Bull. Lond. Math. Soc. 42 (2010), no. 5, 765-783.,
we proved several inequalities for \{, P, and p in the case,
when Q is a curvilinear polygon with n sides, each of which is a
smooth arc of curvature < x. Here \{ — the first eigenvalue of
the Dirichlet Laplacian, P — the torsional rigidity, and p — the
inradius of a planar domain 2. Our main proofs rely on the
method of dissymmetrization and on a special geometrical
“containment theorem” for curvilinear polygons.
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For n> 3 and k € R, let D(n, k) be the class of simply
connected domains Q2 such that 092 consists of at most n
smooth arcs, each of which has piecewise continuous
curvature < k.

Let D(n, ) be the regular circular n-gon circumscribed about
the unit circle.

FIGURE 1. Circular polygon for the partition ©3 = {0,7/2, 47 /3} with k = 0.5.
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FIGURE 2. Circular polygons for the partition ©3 = {0,7/2,47/3} with x =0 and k = —0.15.

Theorem (Solynin and Zalgaller 2010)

Let D be a curvilinear polygon bounded by n > 3 smooth arcs having
piecewise continuous curvature not exceeding k. If k1 = kp(Dp) < 1,
then 1 — csc(n/n) < k1 and

M(D)p?(D) < M(D(n, k1)),

P(D)p~*(D) = P(D(n, k1))

Equality occurs if and only if D coincides with D(n, k) up to a linear
transformation of C.
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Theorem (Solynin and Zalgaller 2010)

Let D € D(n, k) be a curvilinear polygon and let p = p(D) be the
inradius of D. If k < 1/p, then 1 — csc(n/n) < kp(D) and there is a
circular polygon D, circumscribed about some circle C of radius p
such that 0D, consists of n circular arcs, each of curvature , such
that D, C D.

c,=d,

V3

Ficurke 5. Construction of a circular polygon D..: case of positive curvature.
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Lemma (Solynin and Zalgaller 2010)

LetO <r<1.LetC= CyU Cy, where Cy = {z=re' : ; <0 < 2r},
0 < 61 <, and Gy is a Jordan arc in C \ D, joining the points zy = r
and z; = re’. LetQ be the domain bounded by C. Assume that C is
a smooth curve having piecewise smooth curvature < k, for some
O<k<i.

Then Q contains an open disk of radius greater than 1.

FIGURE 4. Proof of Lemma 2: inscribing a bigger cirele.
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One application of continuous symmetrization

M. Fleeman and B. Simanek conjectured in their recent paper
(Torsional rigidity and Bergman analytic content of simply connected
regions. Comput. Methods Funct. Theory 19 (2019), no. 1, 37-63)
that the isosceles right triangle has the maximal torsional rigidity
among all right triangles with fixed area. In my 2020 paper, | proved
the following.

Theorem 6.5. Let o, 0 < v < 7, be fizred. Then the torsional rigidity P(T (c, [3))
and the mazimal conformal radius R(T (o, 3)) of the triangles T (a, 3) are strictly
increasing functions of 3 and the logarithmic capacity cap (T (cv, 3)) and the prin-
cipal frequency A(T (o, 3)) are strictly decreasing functions of 3 on the interval
0<pB<(m—a)/2.

vy = wo




Dissymmetrization
000000000000 0000000E!

References:

B
B
B
B
3
3
[
[

Solynin, A. Yu. Solution of the Pélya-Szego isoperimetric problem. Zap. Nauchn. Sem. Leningrad. Otdel.
Mat. Inst. Steklov. (LOMI) 168 (1988), Anal. Teor. Chisel i Teor. Funktsii. 9, 140—153.

Solynin, A. Yu. Isoperimetric inequalities for polygons and dissymetrization. Algebra i Analiz 4 (1992), no. 2,
210-234.

Solynin, A. Yu. Some extremal problems for circular polygons. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat.
Inst. Steklov. (POMI) 206 (1993), Issled. po Linein. Oper. i Teor. Funktsii. 21, 127-136.

Solynin, A. Yu. Some extremal problems on the hyperbolic polygons. Complex Variables Theory Appl. 36
(1998), no. 3, 207-231.

Solynin, Alexander Yu.; Zalgaller, Victor A. An isoperimetric inequality for logarithmic capacity of polygons.
Ann. of Math. (2) 159 (2004), no. 1, 277-303.

Barnard, Roger W.; Hadjicostas, Petros; Solynin, Alexander Yu. The Poincaré metric and isoperimetric
inequalities for hyperbolic polygons. Trans. Amer. Math. Soc. 357 (2005), no. 10, 3905-3932.

Solynin, Alexander Yu.; Zalgaller, Victor A. The inradius, the first eigenvalue, and the torsional rigidity of
curvilinear polygons. Bull. Lond. Math. Soc. 42 (2010), no. 5, 765-783.

Solynin, Alexander Yu. Exercises on the theme of continuous symmetrization. Comput. Methods Funct.

Theory 20 (2020), no. 3—4, 465-509.



Dissymmetrization
000000000000 00000000

Thank You !
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