An extremal problem for H^p

Sarah May Instanes (NTNU)

Based on joint work with Ole Fredrik Brevig and Sigrid Grepstad.

For $0 the Hardy space of analytic functions on the unit disc <math>H^p(\mathbb{D})$ consists of all analytic functions $f : \mathbb{D} \to \mathbb{C}$ such that

$$\|f\|_{H^p}^p = \lim_{r
ightarrow 1^-} \int_0^{2\pi} \left|f(re^{i heta})
ight|^p rac{\mathrm{d} heta}{2\pi} < \infty.$$

 H^∞ is the space of bounded analytic functions in $\mathbb D$, endowed with the norm

$$\|f\|_{H^{\infty}} = \sup_{|z|<1} |f(z)|.$$

- H^p is a Banach space for $1 \le p \le \infty$.
- H^p is a Quasi-Banach space for 0 .
- H^p is strictly convex for 1 .
- If $f \in H^p$ for some 0 , then

$$f^*(e^{i heta}):=\lim_{r o 1^-}f(re^{i heta})$$

exists for almost every θ and $f^* \in L^p(\mathbb{T})$.

• It follows that $||f||_{H^p(\mathbb{D})} = ||f^*||_{L^p(\mathbb{T})}$.

$$arPsi_k(oldsymbol{
ho}) = \sup\left\{\mathsf{Re}rac{f^{(k)}(0)}{k!}: \|f\|_{H^
ho} = 1
ight\}$$

$$\Psi_p(k) = 1$$
 for $1 \leq p \leq \infty$.

$$|a_{k}| = \left|\frac{1}{2\pi} \lim_{r \to 1^{-}} \int_{0}^{2\pi} f(re^{i\theta}) e^{-ik\theta} \,\mathrm{d}\theta\right| \le \|f\|_{H^{1}} \le \|f\|_{H^{p}}$$

- For $1 we have the unique extremal function <math>f(z) = z^k$.
- For p = 1 the extremals are functions of the form $f(z) = A \prod_{j=1}^{k} (z \alpha_j)(1 \overline{\alpha_j}z)$.

We want to study the extremal problem

$$\Phi_k(p,t) = \sup \left\{ \mathsf{Re} \frac{f^{(k)}(0)}{k!} : \|f\|_{H^p} \leq 1 \text{ and } f(0) = t \right\},$$

for $k \in \mathbb{N}$, $0 \leq t \leq 1$ and 0 .

- There always exists at least one function attaining the supremum
- The norm of the extremal function will always be 1

 $\Phi_k(2,t) = \sqrt{1-t^2}$ and the unique corresponding extremal function is $f(z) = t + \sqrt{1-t^2}z^k$.

イロト 不良 とうほう かいしょう

 $\Phi_k(2,t) = \sqrt{1-t^2}$ and the unique corresponding extremal function is $f(z) = t + \sqrt{1-t^2}z^k$.

Proof

It follows from Parseval's identity that

$$\|f\|_{H^2}^2 = \sum_{n \ge 0} \left| \frac{f^{(n)}(0)}{n!} \right|^2$$

Thus the extremal function $f = \sum_{n\geq 0} c_n z^n$ must be such that $c_0 = t$ and $c_k = \sqrt{1-t^2}$, with all other coefficients equal to 0.

(4回) (4回) (4回)

02.10.24

 $\varPhi_1(\infty,t) = 1 - t^2$ and the unique corresponding extremal function is f(z) = (t+z)/(1+tz).

 $\Phi_1(\infty, t) = 1 - t^2$ and the unique corresponding extremal function is f(z) = (t + z)/(1 + tz).

Proof

This follows from Schwarz-Pick inequality. Let $f : \mathbb{D} \to \mathbb{D}$ be holomorphic. Then

$$|f'(w)| \leq rac{1-|f(w)|^2}{1-|w|^2}.$$

Beneteau and Korenblum solved the case k = 1 and $1 \le p \le \infty$ by an interpolating argument.

3

(4 回) (4 回) (4 回)

Theorem (Macintyre–Rogosinski, Havinson and Kabaila)

If $f \in H^p$ is extremal for $\Phi_k(p, t)$, then there are complex numbers $|\lambda_j| \leq 1$ for j = 1, ..., kand a constant C such that

$$f(z) = C \prod_{j=1}^{l} \frac{\lambda_j - z}{1 - \overline{\lambda_j} z} \prod_{j=1}^{k} (1 - \overline{\lambda_j} z)^{2/p},$$

for some $0 \le l \le k$, and the strict inequality $|\lambda_j| < 1$ holds for $0 < j \le l$.

8 / 26

02.10.24

$$f_0(z) = C(1-\overline{\lambda}z)^{2/p} = rac{(1+eta z)^{2/p}}{(1+eta^2)^{1/p}}, \quad 0 \le eta \le 1.$$

$$f_0(z) = C(1-\overline{\lambda}z)^{2/p} = rac{(1+eta z)^{2/p}}{(1+eta^2)^{1/p}}, \quad 0 \le eta \le 1.$$

$$f_1(z) = C \frac{\lambda - z}{1 - \overline{\lambda} z} (1 - \overline{\lambda} z)^{2/p} = \frac{\alpha + z}{1 + \alpha z} \frac{(1 + \alpha z)^{2/p}}{(1 + \alpha^2)^{1/p}}, \quad 0 \le \alpha < 1.$$

$$f_0(z) = C(1-\overline{\lambda}z)^{2/p} = rac{(1+eta z)^{2/p}}{(1+eta^2)^{1/p}}, \quad 0 \le eta \le 1.$$

$$f_1(z) = C \frac{\lambda - z}{1 - \overline{\lambda} z} (1 - \overline{\lambda} z)^{2/p} = \frac{\alpha + z}{1 + \alpha z} \frac{(1 + \alpha z)^{2/p}}{(1 + \alpha^2)^{1/p}}, \quad 0 \le \alpha < 1.$$

Observe that

$$f_0(0) = rac{1}{(1+eta^2)^{1/p}}, \quad ext{and} \quad f_1(0) = rac{lpha}{(1+lpha^2)^{1/p}}.$$

▶ < ⊒ ▶

We use the structure theorem to find an extremal function for $\Phi_1(p, t)$. The idea is:

- 1. We define the functions $\beta \mapsto t(\beta) = (1 + \beta^2)^{-1/p}$ and $\alpha \mapsto t(\alpha) = \alpha(1 + \alpha^2)^{-1/p}$ for $0 \le \beta \le 1$ and $0 \le \alpha < 1$.
- 2. Check which *t*-values $f_0(0)$ and $f_1(0)$ can obtain, and which α and β obtain these values.

э.

We use the structure theorem to find an extremal function for $\Phi_1(p, t)$. The idea is:

- 1. We define the functions $\beta \mapsto t(\beta) = (1 + \beta^2)^{-1/p}$ and $\alpha \mapsto t(\alpha) = \alpha(1 + \alpha^2)^{-1/p}$ for $0 \le \beta \le 1$ and $0 \le \alpha < 1$.
- 2. Check which *t*-values $f_0(0)$ and $f_1(0)$ can obtain, and which α and β obtain these values.
- 3(a). If there is only one candidate for each t we have found the unique extremal function, and can calculate $\Phi_1(p, t)$.

We use the structure theorem to find an extremal function for $\Phi_1(p, t)$. The idea is:

- 1. We define the functions $\beta \mapsto t(\beta) = (1 + \beta^2)^{-1/p}$ and $\alpha \mapsto t(\alpha) = \alpha(1 + \alpha^2)^{-1/p}$ for $0 \le \beta \le 1$ and $0 \le \alpha < 1$.
- 2. Check which *t*-values $f_0(0)$ and $f_1(0)$ can obtain, and which α and β obtain these values.
- 3(a). If there is only one candidate for each t we have found the unique extremal function, and can calculate $\Phi_1(p, t)$.
- 3(b). If there are several candidates for some t we need to compare the values f'(0).

A B > A B >

3

Possible t values for $f_0(0)$ and $f_1(0)$ for p = 2

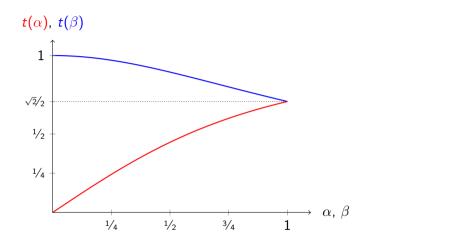


Figure: Plot of the curves $\alpha \mapsto t(\alpha) = \alpha(1 + \alpha^2)^{-1/2}$ and $\beta \mapsto t(\beta) = (1 + \beta^2)^{-1/2}$

02.10.24

▶ < ⊒ ▶

The analysis in the case k = 1 and $1 \le p \le \infty$

Let $1 \le p \le \infty$. Observe that

$$f_0(0) = 1/(1+eta^2)^{1/p} \in [2^{-1/p},1],$$

is strictly decreasing in $0\leq\beta\leq 1$ and that

$$f_1(0) = \alpha/(1+\alpha^2)^{1/p} \in [0, 2^{-1/p}),$$

is strictly increasing in $0 \le \alpha < 1$.

Consequence

There is exactly one candidate for the extremal function for each t, solving the problem $\Phi_1(p, t)$ for $1 \le p \le \infty$.

Theorem (Beneteau–Korenblum)

Fix $1 \le p \le \infty$. Then the function $t \mapsto \Phi_1(p, t)$ is decreasing and takes the values [0,1]. For $0 \le t \le 2^{-1/p}$ we have a unique extremal function f_1 , and for $2^{-1/p} \le t \le 1$ we have a unique extremal function f_0 .

For $0 \le t \le 2^{-1/p}$ we define α implicitly by $t = \alpha (1 + \alpha^2)^{-1/p}$ and the unique extremal function is

$$f_1(z) = rac{lpha + z}{1 + lpha z} rac{(1 + lpha z)^{2/p}}{(1 + lpha^2)^{1/p}}.$$

For $2^{-1/p} \leq t \leq 1$, we define β implicitly by $t = (1 + \beta^2)^{-1/p}$ and the unique extremal function is

$$f_0(z) = rac{(1+eta z)^{2/p}}{(1+eta^2)^{1/p}}.$$

Fix $0 . We want to find extremal candidates for each <math>0 \le t \le 1$, so we must study the functions

$$t(lpha)=rac{lpha}{(1+lpha^2)^{1/p}}, \quad 0\leq lpha < 1,$$

and

$$t(eta) = rac{1}{(1+eta^2)^{1/p}}, \quad 0 \le eta \le 1.$$

Fact

There is a number $2^{-1/p} \leq c_p \leq 1/2$ such that $t(\alpha)$ takes the values $[0, c_p)$ an $t(\beta)$ takes the values $[2^{-1/p}, 1]$. The function $t(\alpha)$ first increases, and then decreases, whereas $\beta(t)$ is strictly decreasing.

14/26

Possible *t* values for $f_0(0)$ and $f_1(0)$ for p = 1/2

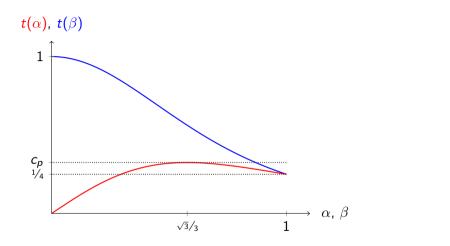


Figure: Plot of the curves $\alpha \mapsto t(\alpha) = \alpha(1 + \alpha^2)^{-2}$ and $\beta \mapsto t(\beta) = (1 + \beta^2)^{-2}$

Sarah May Instanes

▶ < 置 ▶ < 置 ▶ 02.10.24

There are 3 cases to consider:

- (a) For $0 < t < t^{-1/p}$ there is only one candidate; f_1 .
- (b) For $2^{-1/p} \le t < c_p$ there are three candidates; $f_1^{\alpha_1}$, $f_1^{\alpha_2}$ and f_0 .
- (c) For $c_p \leq t \leq 1$ there is only one candidate; f_0 .

Consequence (Connelly)

This immediately gives the unique extremal function and the value $\Phi_1(p, t)$ in the cases (a) and (c).

For $2^{-1/p} \le t < c_p$ there are three candidates; $f_1^{\alpha_1}$, $f_1^{\alpha_2}$ and f_0 . We compare the candidates and find that

Proposition

There is a point $t_p \in (2^{-1/p}, c_p)$ such that $f_1^{\alpha_1}$ is the unique extremal function for $0 \le t < t_p$ and f_0 is the unique extremal function for $t_p < t \le 1$. Both f_0 and f_1 are extremal functions for $\Phi_1(p, t_p)$.

Plot of the curve $p \mapsto t_p$

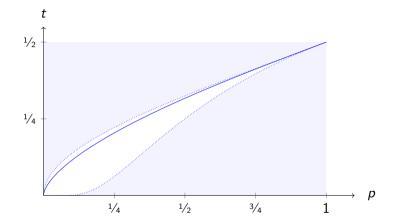


Figure: Plot of the curve $p \mapsto t_p$. Points (p, t) above and below the curve correspond to the cases where f_0 and f_1 is the extremal, respectively. The estimates $2^{-1/p} < t_p < c_p$ are represented by dotted curves.

18 / 26

If $0 \le t \le t_p$, let α denote the unique real number in the interval $0 \le \alpha < \sqrt{p/(2-p)}$ such that $t = \alpha(1 + \alpha^2)^{-1/p}$. Then

$$arPhi_1(arphi,t) = rac{1}{\left(1+lpha^2
ight)^{1/
ho}} \left(1+\left(rac{2}{
ho}-1
ight)lpha^2
ight),$$

and an extremal is

$$f(z) = \frac{\alpha + z}{1 + \alpha z} \frac{(1 + \alpha z)^{2/p}}{(1 + \alpha^2)^{1/p}}.$$

If $t_p \leq t \leq 1$, let β denote the unique real number in the interval $0 \leq \beta \leq 1$ such that $t = (1 + \beta^2)^{-1/p}$. Then

$$\varPhi_1(
ho,t) = rac{1}{\left(1+eta^2
ight)^{1/
ho}}rac{2eta}{
ho},$$

and an extremal is

$$f(z) = rac{(1+eta z)^{2/p}}{(1+eta^2)^{1/p}}.$$

Theorem (Brevig–Grepstad–I.)

Fix $0 . The function <math>t \mapsto \varPhi_1(p,t)$ is increasing from $\varPhi_1(p,0) = 1$ to

$$arPhi_1(
ho,(1-
ho/2)^{1/
ho})=(1-
ho/2)^{1/
ho}rac{2}{\sqrt{
ho(2-
ho)}}$$

and then decreasing to $\Phi_1(p, 1) = 0$. There exist a number $0 \le t_p \le 1$ such that $\Phi_1(p, t_p)$ has exactly 2 extremal functions. For all other $0 \le t \le 1$ the extremal function is unique.

▲ 国 ▶ ▲ 国 ▶ → 国 →

$\Phi_1(p,t)$ for some p.

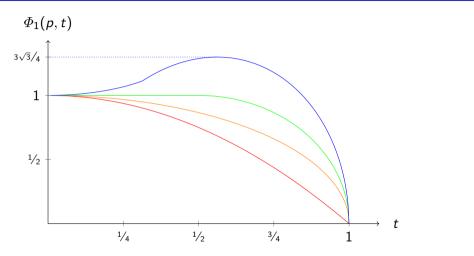


Figure: Plot of the curves $t \mapsto \Phi_1(p, t)$ for p = 1/2, p = 1, p = 2 and $p = \infty$.

Sarah May Instanes

02.10.24

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 − のへで

Let $\omega_k = \exp(2\pi i/k)$. Then for

$$f(z)=\sum_{n=0}^{\infty}a_nz^n,$$

we define the Wiener transform as

$$W_k f(z) = \frac{1}{k} \sum_{j=0}^{k-1} f(\omega_k^j z) = \sum_{n=0}^{\infty} a_{kn} z^{kn}$$

▶ < ∃ >

Consider $1 \le p \le \infty$ and $k \ge 2$. Let f be extremal for $\Phi_k(p, t)$. Then $W_k f$ is also extremal for $\Phi_k(p, t)$. This gives:

Theorem (Beneteau–Korenblum)

Let $k \ge 2$ be an integer. For every $1 \le p \le \infty$ and every $0 \le t \le 1$,

$$\Phi_k(p,t) = \Phi_1(p,t).$$

Let f_1 be the extremal function for $\Phi_1(p, t)$, then $f_k(z) = f_1(z^k)$ is an extremal function for $\Phi_k(p, t)$

24 / 26

F. Wieners trick only gives

$$\varPhi_1(p,t) \leq \varPhi_k(p,t) \leq k^{1/p-1} \varPhi_1(p,t)$$

Question

Let $0 . Is it true that the extremal for <math>\Phi_k(p, 1)$ has at most one zero in \mathbb{D} ?

Question

Fix $k \ge 2$ and $0 . Is there some <math>t_0$ such that $\Phi_k(p, t) = \Phi_1(p, t)$ holds for every $t_0 \le t \le 1$?

25 / 26

• • = • • = •

Thank you for the attention!

2.10.24

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・