An extremal problem for H^p

Sarah May Instanes (NTNU)

Based on joint work with Ole Fredrik Brevig and Sigrid Grepstad.

For $0 < p < \infty$ the Hardy space of analytic functions on the unit disc $H^p(\mathbb{D})$ consists of all analytic functions $f : \mathbb{D} \to \mathbb{C}$ such that

$$
||f||_{H^p}^p = \lim_{r \to 1^-} \int_0^{2\pi} \left| f(re^{i\theta}) \right|^p \frac{\mathrm{d}\theta}{2\pi} < \infty.
$$

 H^{∞} is the space of bounded analytic functions in \mathbb{D} , endowed with the norm

$$
||f||_{H^{\infty}} = \sup_{|z| < 1} |f(z)|.
$$

- H^p is a Banach space for $1 \leq p \leq \infty$.
- H^p is a Quasi-Banach space for $0 < p < 1$.
- H^p is strictly convex for $1 < p < \infty$.
- If $f \in H^p$ for some $0 < p \leq \infty$, then

$$
f^*(e^{i\theta}) := \lim_{r \to 1^-} f(re^{i\theta})
$$

exists for almost every θ and $f^* \in L^p(\mathbb{T})$.

It follows that $||f||_{H^p(\mathbb{D})} = ||f^*||_{L^p(\mathbb{T})}$.

$$
\Psi_k(p) = \sup \left\{ \text{Re} \frac{f^{(k)}(0)}{k!} : \|f\|_{H^p} = 1 \right\}
$$

$$
\Psi_{p}(k)=1 \text{ for } 1\leq p\leq \infty.
$$

$$
|a_k| = \left| \frac{1}{2\pi} \lim_{r \to 1^-} \int_0^{2\pi} f(re^{i\theta}) e^{-ik\theta} d\theta \right| \leq ||f||_{H^1} \leq ||f||_{H^p}
$$

- For $1 < p \leq \infty$ we have the unique extremal function $f(z) = z^k$.
- For $p=1$ the extremals are functions of the form $f(z)=A\prod_{j=1}^k(z-\alpha_j)(1-\overline{\alpha_j}z).$

We want to study the extremal problem

$$
\Phi_k(p,t) = \sup \left\{ \text{Re} \frac{f^{(k)}(0)}{k!} : ||f||_{H^p} \leq 1 \text{ and } f(0) = t \right\},\
$$

for $k \in \mathbb{N}$, $0 \le t \le 1$ and $0 \le p \le \infty$.

- There always exists at least one function attaining the supremum
- The norm of the extremal function will always be 1

 $\overline{\Phi}_k(2,t)=\sqrt{1-t^2}$ and the unique corresponding extremal function is $f(z)=t+1$ √ $1-t^2z^k$.

K 御 ▶ K 君 ▶ K 君 ▶

4 0 F

重

 $\overline{\Phi}_k(2,t)=\sqrt{1-t^2}$ and the unique corresponding extremal function is $f(z)=t+1$ √ $1-t^2z^k$.

Proof

It follows from Parseval's identity that

$$
||f||_{H^2}^2 = \sum_{n\geq 0} \left| \frac{f^{(n)}(0)}{n!} \right|^2.
$$

Thus the extremal function $f = \sum_{n\geq 0} c_n z^n$ must be such that $c_0 = t$ and $c_k = \sqrt{2}$ $(1-t^2,$ with all other coefficients equal to 0.

つへへ

 $\varPhi_1(\infty,t)=1-t^2$ and the unique corresponding extremal function is $f(z)=(t+z)/(1+tz).$

14 B

4 0 F ∢母 어서 돈이

重

 $\varPhi_1(\infty,t)=1-t^2$ and the unique corresponding extremal function is $f(z)=(t+z)/(1+tz).$

Proof

This follows from Schwarz-Pick inequality. Let $f : \mathbb{D} \to \mathbb{D}$ be holomorphic. Then

$$
|f'(w)| \leq \frac{1-|f(w)|^2}{1-|w|^2}.
$$

Beneteau and Korenblum solved the case $k = 1$ and $1 \le p \le \infty$ by an interpolating argument.

Theorem (Macintyre–Rogosinski, Havinson and Kabaila)

If $f \in H^p$ is extremal for $\Phi_k(p,t)$, then there are complex numbers $|\lambda_j| \leq 1$ for $j=1,\ldots,k$ and a constant C such that

$$
f(z) = C \prod_{j=1}^l \frac{\lambda_j - z}{1 - \overline{\lambda_j} z} \prod_{j=1}^k (1 - \overline{\lambda_j} z)^{2/p},
$$

for some $0 \leq l \leq k,$ and the strict inequality $|\lambda_j| < 1$ holds for $0 < j \leq l.$

$$
f_0(z) = C(1-\overline{\lambda}z)^{2/\rho} = \frac{(1+\beta z)^{2/\rho}}{(1+\beta^2)^{1/\rho}}, \quad 0 \le \beta \le 1.
$$

$$
f_0(z) = C(1-\overline{\lambda}z)^{2/\rho} = \frac{(1+\beta z)^{2/\rho}}{(1+\beta^2)^{1/\rho}}, \quad 0 \leq \beta \leq 1.
$$

$$
f_1(z)=C\frac{\lambda-z}{1-\overline{\lambda}z}(1-\overline{\lambda}z)^{2/\rho}=\frac{\alpha+z}{1+\alpha z}\frac{(1+\alpha z)^{2/\rho}}{(1+\alpha^2)^{1/\rho}},\quad 0\leq\alpha<1.
$$

$$
f_0(z) = C(1 - \overline{\lambda}z)^{2/\rho} = \frac{(1 + \beta z)^{2/\rho}}{(1 + \beta^2)^{1/\rho}}, \quad 0 \le \beta \le 1.
$$

$$
f_1(z)=C\frac{\lambda-z}{1-\overline{\lambda}z}(1-\overline{\lambda}z)^{2/p}=\frac{\alpha+z}{1+\alpha z}\frac{(1+\alpha z)^{2/p}}{(1+\alpha^2)^{1/p}},\quad 0\leq\alpha<1.
$$

Observe that

$$
f_0(0)=\frac{1}{(1+\beta^2)^{1/\rho}},\quad\text{and}\quad f_1(0)=\frac{\alpha}{(1+\alpha^2)^{1/\rho}}.
$$

We use the structure theorem to find an extremal function for $\Phi_1(p,t)$. The idea is:

- $1.$ We define the functions $\beta \mapsto t(\beta) = (1+\beta^2)^{-1/p}$ and $\alpha \mapsto t(\alpha) = \alpha(1+\alpha^2)^{-1/p}$ for $0 \leq \beta \leq 1$ and $0 \leq \alpha \leq 1$.
- 2. Check which t-values $f_0(0)$ and $f_1(0)$ can obtain, and which α and β obtain these values.

We use the structure theorem to find an extremal function for $\Phi_1(p,t)$. The idea is:

- $1.$ We define the functions $\beta \mapsto t(\beta) = (1+\beta^2)^{-1/p}$ and $\alpha \mapsto t(\alpha) = \alpha(1+\alpha^2)^{-1/p}$ for $0 \leq \beta \leq 1$ and $0 \leq \alpha \leq 1$.
- 2. Check which t-values $f_0(0)$ and $f_1(0)$ can obtain, and which α and β obtain these values.
- $3(a)$. If there is only one candidate for each t we have found the unique extremal function, and can calculate $\Phi_1(p,t)$.

We use the structure theorem to find an extremal function for $\Phi_1(p,t)$. The idea is:

- $1.$ We define the functions $\beta \mapsto t(\beta) = (1+\beta^2)^{-1/p}$ and $\alpha \mapsto t(\alpha) = \alpha(1+\alpha^2)^{-1/p}$ for $0 \leq \beta \leq 1$ and $0 \leq \alpha \leq 1$.
- 2. Check which t-values $f_0(0)$ and $f_1(0)$ can obtain, and which α and β obtain these values.
- $3(a)$. If there is only one candidate for each t we have found the unique extremal function, and can calculate $\Phi_1(p,t)$.
- $3(b)$. If there are several candidates for some t we need to compare the values $f'(0)$.

Possible t values for $f_0(0)$ and $f_1(0)$ for $p = 2$

Figure: Plot of the curves $\alpha \mapsto t(\alpha) = \alpha(1 + \alpha^2)^{-1/2}$ and $\beta \mapsto t(\beta) = (1 + \beta^2)^{-1/2}$

02.10.24 11 / 26

 299

The analysis in the case $k = 1$ and $1 \leq p \leq \infty$

Let $1 \leq p \leq \infty$. Observe that

$$
f_0(0)=1/(1+\beta^2)^{1/p}\in[2^{-1/p},1],
$$

is strictly decreasing in $0 \leq \beta \leq 1$ and that

$$
f_1(0) = \alpha/(1+\alpha^2)^{1/p} \in [0, 2^{-1/p}),
$$

is strictly increasing in 0 ≤ *α <* 1.

Consequence

There is exactly one candidate for the extremal function for each t , solving the problem $\Phi_1(p,t)$ for $1 \leq p \leq \infty$.

Theorem (Beneteau–Korenblum)

Fix $1 \le p \le \infty$. Then the function $t \mapsto \Phi_1(p, t)$ is decreasing and takes the values [0, 1]. For $0 \leq t < 2^{-1/p}$ we have a unique extremal function f_1 , and for $2^{-1/p} \leq t \leq 1$ we have a unique extremal function f_0 .

For $0 \leq t < 2^{-1/p}$ we define α implicitly by $t = \alpha(1+\alpha^2)^{-1/p}$ and the unique extremal function is

$$
f_1(z)=\frac{\alpha+z}{1+\alpha z}\frac{(1+\alpha z)^{2/p}}{(1+\alpha^2)^{1/p}}.
$$

For $2^{-1/p} \leq t \leq 1$, we define β implicitly by $t = (1 + \beta^2)^{-1/p}$ and the unique extremal function is

$$
f_0(z) = \frac{(1+\beta z)^{2/p}}{(1+\beta^2)^{1/p}}.
$$

Fix $0 < p < 1$. We want to find extremal candidates for each $0 \le t \le 1$, so we must study the functions

$$
t(\alpha)=\frac{\alpha}{(1+\alpha^2)^{1/p}},\quad 0\leq\alpha<1,
$$

and

$$
t(\beta)=\frac{1}{(1+\beta^2)^{1/\rho}},\quad 0\leq \beta\leq 1.
$$

Fact

There is a number $2^{-1/p} \le c_p \le 1/2$ such that $t(\alpha)$ takes the values $[0, c_p)$ an $t(\beta)$ takes the values [2 −1*/*p *,* 1]. The function t(*α*) first increases, and then decreases, whereas *β*(t) is strictly decreasing.

Possible *t* values for $f_0(0)$ and $f_1(0)$ for $p = 1/2$

Figure: Plot of the curves $\alpha \mapsto t(\alpha) = \alpha(1 + \alpha^2)^{-2}$ and $\beta \mapsto t(\beta) = (1 + \beta^2)^{-2}$

02.10.24 15 / 26

 \triangleright \rightarrow \exists \rightarrow

There are 3 cases to consider:

- (a) For $0 < t < t^{-1/p}$ there is only one candidate; f_1 .
- (b) For $2^{-1/p}$ ≤ $t < c_p$ there are three candidates; $f_1^{\alpha_1}$, $f_1^{\alpha_2}$ and f_0 .
- (c) For $c_p < t < 1$ there is only one candidate; f_0 .

Consequence (Connelly)

This immediately gives the unique extremal function and the value $\Phi_1(p, t)$ in the cases (a) and (c) .

For $2^{-1/p}\leq t< c_p$ there are three candidates; $f_1^{\alpha_1}$, $f_1^{\alpha_2}$ and f_0 . We compare the candidates and find that

Proposition

There is a point $t_p\in (2^{-1/p},c_p)$ such that $f_1^{\alpha_1}$ is the unique extremal function for $0\leq t < t_p$ and f_0 is the unique extremal function for $t_p < t \le 1$. Both f_0 and f_1 are extremal functions for $\Phi_1(p, t_n)$.

Plot of the curve $p \mapsto t_p$

Figure: Plot of the curve $p \mapsto t_p$. Points (p, t) above and below the curve correspond to the cases where f_0 and f_1 is the extremal, respectively. The estimates $2^{-1/p} < t_p < c_p$ are represented by dotted curves. 290 If $0\leq t\leq t_{\bm{\rho}},$ let α denote the unique real number in the interval $0\leq \alpha<\sqrt{{\bm{\rho}}/{(2-\bm{\rho})}}$ such that $t=\alpha(1+\alpha^2)^{-1/p}.$ Then

$$
\varPhi_1(\rho,t)=\frac{1}{\left(1+\alpha^2\right)^{1/\rho}}\left(1+\left(\frac{2}{\rho}-1\right)\alpha^2\right),
$$

and an extremal is

$$
f(z) = \frac{\alpha + z}{1 + \alpha z} \frac{(1 + \alpha z)^{2/p}}{(1 + \alpha^2)^{1/p}}.
$$

If $t_p \le t \le 1$, let β denote the unique real number in the interval $0 \le \beta \le 1$ such that $t = (1 + \beta^2)^{-1/p}$. Then

$$
\varPhi_1(\rho,t)=\frac{1}{\left(1+\beta^2\right)^{1/\rho}}\frac{2\beta}{\rho},
$$

and an extremal is

$$
f(z) = \frac{(1+\beta z)^{2/\rho}}{(1+\beta^2)^{1/\rho}}.
$$

メイヨメ

∍

Theorem (Brevig–Grepstad–I.)

Fix $0 < p < 1$. The function $t \mapsto \Phi_1(p, t)$ is increasing from $\Phi_1(p, 0) = 1$ to

$$
\varPhi_{1}(\rho,(1-\rho/2)^{1/\rho})=(1-\rho/2)^{1/\rho}\frac{2}{\sqrt{\rho(2-\rho)}}
$$

and then decreasing to $\Phi_1(p,1) = 0$. There exist a number $0 \le t_p \le 1$ such that $\Phi_1(p,t_p)$ has exactly 2 extremal functions. For all other $0 \le t \le 1$ the extremal function is unique.

$\Phi_1(p,t)$ for some p.

Figure: Plot of the curves $t \mapsto \Phi_1(p, t)$ for $p = 1/2$, $p = 1$, $p = 2$ and $p = \infty$.

$$
02.10.24
$$

K ロ > K 個 > K 差 > K 差 > → 差 → の Q Q →

Let
$$
\omega_k = \exp(2\pi i/k)
$$
. Then for

$$
f(z)=\sum_{n=0}^{\infty}a_nz^n,
$$

we define the Wiener transform as

$$
W_k f(z) = \frac{1}{k} \sum_{j=0}^{k-1} f(\omega_k^j z) = \sum_{n=0}^{\infty} a_{kn} z^{kn}
$$

02.10.24 23 / 26

おす 高下

K ロ ▶ K 倒 ▶

造

Consider $1 \leq p \leq \infty$ and $k \geq 2$. Let f be extremal for $\Phi_k(p, t)$. Then $W_k f$ is also extremal for $\Phi_k(p, t)$. This gives:

Theorem (Beneteau–Korenblum)

Let $k > 2$ be an integer. For every $1 \le p \le \infty$ and every $0 \le t \le 1$,

$$
\Phi_k(p,t)=\Phi_1(p,t).
$$

Let f_1 be the extremal function for $\Phi_1(\rho,t)$, then $f_k(z)=f_1(z^k)$ is an extremal function for $\Phi_k(p,t)$

F. Wieners trick only gives

$$
\varPhi_1(\rho,t) \leq \varPhi_k(\rho,t) \leq k^{1/p-1}\varPhi_1(\rho,t)
$$

Question

Let $0 < p < 1$. Is it true that the extremal for $\Phi_k(p,1)$ has at most one zero in \mathbb{D} ?

Question

Fix $k \ge 2$ and $0 < p < 1$. Is there some t_0 such that $\Phi_k(p, t) = \Phi_1(p, t)$ holds for every $t_0 < t < 1?$

Thank you for the attention!

おす 高下

K ロ ▶ K 御 ▶ K 毛

重