An extremal problem for H”

Sarah May Instanes (NTNU)

Based on joint work with Ole Fredrik Brevig and Sigrid Grepstad.
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The Hardy space HP

For 0 < p < oo the Hardy space of analytic functions on the unit disc HP(ID) consists of all
analytic functions f : D — C such that

_ 2 PPN,
18 = lim [ [f(re) 57 < o0

H®° is the space of bounded analytic functions in D, endowed with the norm

[Fl[ee = sup |£(2)].
<1

|z
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The Hardy space HP

HP is a Banach space for 1 < p < .

HP is a Quasi-Banach space for 0 < p < 1.
HP is strictly convex for 1 < p < oc.

If f € HP for some 0 < p < oo, then

(') = lim f(re')

r—1—

exists for almost every 6 and f* € LP(T).

It follows that ||f”HP(D) = ||f*||Lp(’]I').
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An extremal problem

FK)(0
Wk(p) = sup {Re kl( ) : HfHHP =1

U,(k) =1for 1 < p < 0.

1 ) 2 i .
= e fim [ F(re®)e 0 ds) < |l < [1F]

@ For 1 < p < oo we have the unique extremal function f(z) = z*.

@ For p =1 the extremals are functions of the form f(z) = A]‘L’-‘Zl(z —oj)(1 —@jz).

Sarah May Instanes An extremal problem for HP 02.10.24 4/26



The extremal problem

We want to study the extremal problem

FK(0) |
K

Py (p,t) = sup {Re |flle < 1 and £(0) = t},

forkeN,0<t<land0<p<oo.
@ There always exists at least one function attaining the supremum

@ The norm of the extremal function will always be 1
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®4(2,t) = V1 — t2 and the unique corresponding extremal function is f(z) = t + /1 — t2z*.
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®4(2,t) = V1 — t2 and the unique corresponding extremal function is f(z) = t + /1 — t2z*.

It follows from Parseval's identity that

IFllfe =

n>0

£(n)(0) 2

n!

Thus the extremal function f = 3° -4 ¢,z" must be such that ¢ =t and ¢ = V1 — t2, with
all other coefficients equal to 0.
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Example 2

®1(c0,t) = 1 — 2 and the unique corresponding extremal function is f(z) = (t + z)/(1 + tz).
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Example 2

®1(c0,t) = 1 — 2 and the unique corresponding extremal function is f(z) = (t + z)/(1 + tz).

This follows from Schwarz-Pick inequality. Let f : D — D be holomorphic. Then

/ 1—[f(w)P
[f'(w)] < 1_—|W|2

Beneteau and Korenblum solved the case k =1 and 1 < p < oo by an interpolating argument.
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Structure of extremals

Theorem (Macintyre—-Rogosinski, Havinson and Kabaila)

If f € HP is extremal for P (p,t), then there are complex numbers |\j| <1 forj=1,... k
and a constant C such that

for some 0 < | < k, and the strict inequality |\;| < 1 holds for 0 < j <.
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Structure of extremals for k=1

From the structure theorem we know that there are essentially two candidates for extremal
functions for k = 1, depending on whether / =0 or / = 1.
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Structure of extremals for k=1

From the structure theorem we know that there are essentially two candidates for extremal
functions for k = 1, depending on whether / =0 or / = 1.

T 2/p (1 —I—,Bz)z/P

fo(z) = C(1 — \z) At ) 0<p<1
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Structure of extremals for k=1

From the structure theorem we know that there are essentially two candidates for extremal
functions for k = 1, depending on whether / =0 or / = 1.

T 2/p (1 —I—,Bz)z/P

fo(z) = C(1 — Az) A+ ) 0<p<L
A—z - a+z (1+az)?/r
f — = (1 — 2/p _ < 1.
1(2) Cl—)\z( Az) 14+ az (1+a?)l/p’ o=
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Structure of extremals for k=1

From the structure theorem we know that there are essentially two candidates for extremal
functions for k = 1, depending on whether / =0 or / = 1.

T 2/p (1 —I—,Bz)z/P

fo(z) = C(1 - Az) (L+ B2)/p 0<p<l
A—z - a+z (1+az)?/r
f — = (1 — 2/p _ < 1.
1(2) Cl—)\z( Az) 1+az(1+a?)l/p’ 0sax
Observe that
f(O)—é and f(O)—L
RN DR et

Sarah May Instanes An extremal problem for HP 02.10.24



Solving ®1(p, t) idea

We use the structure theorem to find an extremal function for @1(p, t).
The idea is:

1. We define the functions g — t(8) = (1 + ﬂ2)_1/f’ and o — t(a) = a1 + a2)—1/p for
0<p<land0<a<l.

2. Check which t-values f(0) and f(0) can obtain, and which « and /3 obtain these values.
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Solving ®1(p, t) idea

We use the structure theorem to find an extremal function for @1(p, t).
The idea is:

1. We define the functions g — t(8) = (1 + ﬂ2)_1/f’ and o — t(a) = a1 + a2)—1/p for
0<p<land0<a<l.

2. Check which t-values f(0) and f(0) can obtain, and which « and /3 obtain these values.

3(a). If there is only one candidate for each t we have found the unique extremal function, and
can calculate @1(p, t).

Sarah May Instanes An extremal problem for HP 02.10.24



Solving ®1(p, t) idea

We use the structure theorem to find an extremal function for @1(p, t).
The idea is:

1. We define the functions 3+ t(8) = (14 8%)"Y/P and o+ t(a) = a(1 + a?)~'/P for
0<f<land0<ax<l.

2. Check which t-values f(0) and f(0) can obtain, and which « and /3 obtain these values.

3(a). If there is only one candidate for each t we have found the unique extremal function, and
can calculate @1(p, t).

3(b). If there are several candidates for some t we need to compare the values f'(0).
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Possible t values for f,(0) and £,(0) for p =2

V2/s

1/2 4

1/4 4

: : : : a, B
s Yo /4 1

Figure: Plot of the curves a — t(a) = a(1 + a?)~Y? and B+ t(3) = (1 + p?)1/?
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The analysis in the case k =1and 1 < p < 0

Let 1 < p < oo. Observe that

f(0) = 1/(1+ 5%)/P € 277, 1],
is strictly decreasing in 0 < 8 <1 and that

f(0) = /(1 +a®)P € [0,277/7),

is strictly increasing in 0 < o < 1.

Consequence
There is exactly one candidate for the extremal function for each t, solving the problem
d1(p, t) for 1 < p < 0.
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Theorem (Beneteau—Korenblum)

Fix 1 < p < co. Then the function t — ®1(p, t) is decreasing and takes the values [0,1]. For
0<t<2YP we have a unique extremal function f, and for 2-1/p <t <1 we have a unique
extremal function fy.

For 0 < t < 271/P we define a implicitly by t = a(l+ az)_l/” and the unique extremal
function is

f(2) a+z (14 az)?P
Z)= .
' 1+az (14 q2)VP
For 271/P < t < 1, we define 3 implicitly by t = (14 3?)~1/P and the unique extremal

function is
_ (1+B2)*P

P ey
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The analysis in the case k =1and 0 < p < 1.

Fix 0 < p < 1. We want to find extremal candidates for each 0 < t < 1, so we must study the
functions

(07
t((y):m, 0<a<l,

and )
t(ﬂ)zm> 0<p<1

There is a number 271/P < ¢, < 1/2 such that t(a) takes the values [0, c,) an t(3) takes the
values [2=/P 1]. The function t(c) first increases, and then decreases, whereas 3(t) is strictly
decreasing.
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Possible t values for f,(0) and f,(0) for p = 1/2

p T
Ya

avﬁ

f3‘/3 1

Figure: Plot of the curves o — t(a) = (1 +a?)7? and B+ t(B) = (1 + %) 72
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The analysis in the case k=1and 0 < p <1

There are 3 cases to consider:
(a) For 0 < t < t~'/P there is only one candidate; f;.
(b) For 271/P < t < ¢, there are three candidates; £;**, £** and f,.

(c) For ¢, <t <1 there is only one candidate; f;.

Consequence (Connelly)
This immediately gives the unique extremal function and the value @1(p, t) in the cases (a)

and (c).
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The case (

For 2-Y/P <t < Cp there are three candidates; flo‘l, flo‘2 and fo. We compare the candidates
and find that

Proposition

There is a point t, € (2-1/p, ¢p) such that f** is the unique extremal function for 0 < t < t,
and fy is the unique extremal function for t, < t < 1. Both fy and f; are extremal functions

for @1(p, tp).
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Plot of the curve p — t,

t

1/2 4

: : : : P
Y Yo 2 1

Figure: Plot of the curve p — t,. Points (p, t) above and below the curve correspond to the cases
where fy and f; is the extremal, respectively. The estimates 271/P < tp < Cp are represented by dotted
curves.
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The extremal for 0 < p <1 and k= 1.

If 0 <t <t let a denote the unique real number in the interval 0 < o < \/p/(2 — p) such
that t = a(1 4+ o?)~Y/P. Then

B1(p, t) = (Hiéz)l/” (1+ (2—1) O;),

and an extremal is
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The extremal for 0 < p <1 and k= 1.

If t, <t <1, let 3 denote the unique real number in the interval 0 < 8 <1 such that
t=(1+6%)"Y/P. Then

Qsl(pu t) = %%7
(1+p2)"° P
and an extremal is
2/p
f(z) = LHP2) 7
(1+ 32) /P
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O<p<land k=1

Theorem (Brevig—Grepstad-I.)

Fix 0 < p < 1. The function t — ®1(p, t) is increasing from ¢1(p,0) =1 to
2
&1(p, (1 — p/2)/P) = (1 = p/2)P——2—
( ) p(2 — p)

and then decreasing to ®1(p,1) = 0. There exist a number 0 < t, < 1 such that ¢1(p, t,) has
exactly 2 extremal functions. For all other 0 < t < 1 the extremal function is unique.

v
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D1(p, t) for some p.

@1(p, t)

3v3/4

1/2 4

vi v, i 1

Figure: Plot of the curves t — ®1(p,t) for p=1/2, p =1, p =2 and p = <.
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The Wiener transform

Let wx = exp(27i/k). Then for

we define the Wiener transform as

1 k—1 ) 00
Wi f(z) = P Z f(w,z) = Z Az
j=0 n—0
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F. Wieners trick for k > 2 and 1 < p < o0.

Consider 1 < p < oo and k > 2. Let f be extremal for @, (p, t). Then Wf is also extremal
for @i (p, t). This gives:

Theorem (Beneteau—Korenblum )

Let k > 2 be an integer. Forevery 1 < p < oo and every0 <t <1,

ék(pa t) = él(p7 t)'

Let f; be the extremal function for ®1(p, t), then f(z) = fi(z¥) is an extremal function for
@k(pa t)
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Thecase k>2and0<p<1

F. Wieners trick only gives

D1(p, t) < Di(p, t) < kP10 (p, t)

Let 0 < p < 1. Is it true that the extremal for ®4(p, 1) has at most one zero in D?

Fix k > 2 and 0 < p < 1. Is there some tg such that @,(p, t) = P1(p, t) holds for every
to<t<1?
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Thank you for the attention!
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