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Interpolating sequences for H∞

Let D = {|z | < 1} and

H∞ = {f : D → C : f is analytic and bounded}.

Definition

A sequence {zn} in D is interpolating for H∞ if for every sequence
{wn} ∈ ℓ∞, there exists f ∈ H∞ such that

f (zn) = wn, ∀n.

Write {zn} satisfies (IS).
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Carleson’s interpolation theorem

A sequence {zn} in D

(WS) is weakly separated if there exists δ > 0 such that,

d(zn, zm) :=

∣∣∣∣ zn − zm
1− znzm

∣∣∣∣ > δ, for all m ̸= n,

(CM) satisfies the Carleson measure condition if there exists M > 0
such that∑

j

(1− |zj |2)|f (zj)|2 ≤ M

∫
∂D

|f |2dm, ∀f ∈ C[z ],

i.e. µ =
∑

j(1− |zj |2)δzj is a Carleson measure on D.

Theorem (Carleson, 1958)

(IS) ⇔ (WS) + (CM).

Georgios Tsikalas Interpolating sequences for pairs of spaces UAM Complex Analysis Seminar 3 / 23



Carleson’s interpolation theorem

A sequence {zn} in D
(WS) is weakly separated if there exists δ > 0 such that,

d(zn, zm) :=

∣∣∣∣ zn − zm
1− znzm

∣∣∣∣ > δ, for all m ̸= n,

(CM) satisfies the Carleson measure condition if there exists M > 0
such that∑

j

(1− |zj |2)|f (zj)|2 ≤ M

∫
∂D

|f |2dm, ∀f ∈ C[z ],

i.e. µ =
∑

j(1− |zj |2)δzj is a Carleson measure on D.

Theorem (Carleson, 1958)

(IS) ⇔ (WS) + (CM).

Georgios Tsikalas Interpolating sequences for pairs of spaces UAM Complex Analysis Seminar 3 / 23



Carleson’s interpolation theorem

A sequence {zn} in D
(WS) is weakly separated if there exists δ > 0 such that,

d(zn, zm) :=

∣∣∣∣ zn − zm
1− znzm

∣∣∣∣ > δ, for all m ̸= n,

(CM) satisfies the Carleson measure condition if there exists M > 0
such that∑

j

(1− |zj |2)|f (zj)|2 ≤ M

∫
∂D

|f |2dm, ∀f ∈ C[z ],

i.e. µ =
∑

j(1− |zj |2)δzj is a Carleson measure on D.

Theorem (Carleson, 1958)

(IS) ⇔ (WS) + (CM).

Georgios Tsikalas Interpolating sequences for pairs of spaces UAM Complex Analysis Seminar 3 / 23



Carleson’s interpolation theorem

A sequence {zn} in D
(WS) is weakly separated if there exists δ > 0 such that,

d(zn, zm) :=

∣∣∣∣ zn − zm
1− znzm

∣∣∣∣ > δ, for all m ̸= n,

(CM) satisfies the Carleson measure condition if there exists M > 0
such that∑

j

(1− |zj |2)|f (zj)|2 ≤ M

∫
∂D

|f |2dm, ∀f ∈ C[z ],

i.e. µ =
∑

j(1− |zj |2)δzj is a Carleson measure on D.

Theorem (Carleson, 1958)

(IS) ⇔ (WS) + (CM).

Georgios Tsikalas Interpolating sequences for pairs of spaces UAM Complex Analysis Seminar 3 / 23



Reproducing kernel Hilbert spaces

A RKHS Hk on a set X is a Hilbert space of functions f : X → C
such that point evaluations are continuous.
Thus, ∀w ∈ X there exists kw ∈ Hk such that

f (w) = ⟨f , kw⟩Hk
, ∀f ∈ Hk .

The function k : X × X → C defined as k(z ,w) := kw (z) is the
reproducing kernel of Hk .

The multiplier algebra is

Mult(Hk) = {ϕ : X → C | ϕ · f ∈ Hk for all f ∈ Hk}.

Example

Let H2 =
{
f =

∑∞
n=0 anz

n ∈ Hol(D) : ||f ||2 =
∑∞

n=0 |an|2 < ∞
}
.

Then, k(z ,w) = 1
1−zw

and Mult(H2) = H∞ with equality of norms.
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Passing to Hilbert spaces

Shapiro–Shields (1962): Different proof of Carleson’s theorem, using:

Lemma (Shapiro–Shields)

A sequence {zn} in D is interpolating for H∞ if and only if the
operator

f 7→
{
f (zn)

√
1− |zn|2

}
n
=

{
f (zn)

||kzn ||

}
n

maps H2 onto ℓ2.

Bishop, Marshall-Sundberg (1994): Used this idea to characterize
interpolating sequences for the multiplier algebra of the Dirichlet
space

D = {f ∈ Hol(D) : f ′ ∈ L2(D)}.

Key property

H2 and D are complete Pick spaces.
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Nevanlinna-Pick Interpolation

Theorem (Pick 1916, Nevanlinna 1919)

Let z1, z2, . . . , zn ∈ D and w1,w2, . . . ,wn ∈ C. There exists
ϕ ∈ Mult(H2) = H∞ with

ϕ(zi) = wi for 1 ≤ i ≤ n and ||ϕ||Mult(H2) ≤ 1

if and only if

the matrix[
1− wiwj

1− zizj

]n
i ,j=1

=
[
(1− wiw j)k(zi , zj)

]n
i ,j=1

is positive semi-definite. Recall that k(z ,w) = (1− zw)−1 is the
reproducing kernel of H2.
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Complete Pick spaces

Let Hk be a RKHS on a set X with kernel k .

Given z1, . . . , zn ∈ X
and w1, . . . ,wn ∈ C, does there exist ϕ ∈ Mult(Hk) with

ϕ(zi) = wi for 1 ≤ i ≤ n and ||ϕ||Mult(Hk ) ≤ 1?

A necessary condition is the positivity of the matrix[
(1− wiw j)k(zi , zj)

]n
i ,j=1

.

Definition

Hk is called a Pick space if this condition is also sufficient.

Hk is called a complete Pick space if the analogue of this
condition for matrix-valued functions is sufficient.
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Examples

The Hardy space H2 is a complete Pick space.

The Bergman space A2 = Hol(D) ∩ L2(D) is not a Pick space.

The Dirichlet space D is a complete Pick space (Agler).

The Drury-Arveson space H2
d is the RKHS on Bd , the open unit

ball in Cd , with kernel

k(z ,w) =
1

1− ⟨z ,w⟩
=

1

1−
∑d

i=1 ziw i

.

H2
d is a complete Pick space and is also universal among all such

spaces (McCullough–Quiggin, Agler–McCarthy).
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A distance function for RKHS’s

Let Hk be a RKHS on a set X with kernel k . Also, let k̂x :=
kx

||kx ||
denote the normalized kernel function at x .

Definition

Define a metric∗ on X by

dk(z ,w) =

√
1− |⟨k̂z , k̂w⟩|2, z ,w ∈ X .

Example

If Hk = H2, then

dk(z ,w) =
∣∣∣ z − w

1− zw

∣∣∣
is the pseudohyperbolic metric on D.
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Interpolating sequences for Mult(Hk)

Let Hk be a RKHS on a set X with kernel k . A sequence {zn} ⊂ X

(IS) is an interpolating sequence for Mult(Hk) if for every
{wn} ⊂ ℓ∞, there exists ϕ ∈ Mult(Hk) with

ϕ(zn) = wn, for all n ≥ 1.

(WS) is weakly separated by k if there exists δ > 0 such that

dk(zn, zm) > δ, for all n ̸= m.

(CM) satisfies the Carleson measure condition for k if there exists
M > 0 such that∑

j

|f (zj)|2

k(zj , zj)
≤ M ||f ||2Hk

, for all f ∈ Hk ,

i.e. µ :=
∑

j
1

k(zj ,zj )
δzj is a Carleson measure for Hk .
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Old and new developments

Lemma

In every RKHS Hk , (IS) ⇒ (WS) + (CM).

The converse assertion (WS) + (CM) ⇒ (IS)

Carleson ’58, Shapiro-Shields ’62 holds in the Hardy space H2;

fails in the Bergman space L2a;

Bishop, Marshall-Sundberg, ’94 holds in the Dirichlet space D;

Bøe, 2005 holds in those spaces on the unit ball Bd with kernel

k(z ,w) =
1

(1− ⟨z ,w⟩)α
, where α ∈ (0, 1);

Theorem (Aleman–Hartz–McCarthy–Richter, 2017)

In every complete Pick space, (IS) ⇔ (WS) + (CM).
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Grammians

Let Hk be a RKHS on X with kernel k , let {zn} ⊂ X . Recall that

k̂z = kz/||kz || and define the Grammian

G [{zn}] =
[〈
k̂zi , k̂zj

〉]
i ,j
.

Proposition

(CM) for k ⇐⇒ G [{zn}] : ℓ2 → ℓ2 bounded

Theorem (Marshall-Sundberg, ’94)

If Hk is a complete Pick space, then

(IS) ⇐⇒ G [{zn}] : ℓ2 → ℓ2 bounded and bounded below
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Two proofs of the A.-H.-M.-R. characterization

Theorem (Aleman–Hartz–McCarthy–Richter, 2017)

In every complete Pick space, (IS) ⇔ (WS) + (CM).

Original proof used the solution to the Kadison-Singer problem
by Marcus, Spielman and Srivastava (2013).

New proof uses the column-row property:

Theorem (Hartz, 2020)

Assume Hk is a complete Pick space and {ϕn} ⊂ Mult(Hk). Then,

∣∣∣∣ [Mϕ1 Mϕ2 · · ·
] ∣∣∣∣ ≤ ∣∣∣∣∣∣∣∣

Mϕ1

Mϕ2

...

 ∣∣∣∣∣
∣∣∣∣∣.
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Pairs of spaces

Let Hk , Hℓ be two RKHSs on a set X with kernels k , ℓ, resp. Define

Mult(Hk ,Hℓ) := {ϕ : X → C | ϕ · f ∈ Hℓ, ∀f ∈ Hk}.

Example

Hk = H2 = Hardy space

Hℓ = A2 = Bergman space on D

H2 ⊂ A2 ⇒ Mult(H2) ⊂ Mult(H2,A2) .

Actually, we even have

H2 ⊂ Mult(H2,A2) .
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Interpolating sequences for pairs of kernels

Let Hk and Hℓ be two RKHSs on X with kernels k and ℓ.

Observation

If ϕ ∈ Mult(Hk ,Hℓ), then |ϕ(z)| ≤ ||ϕ||Mult

||ℓz ||
||kz ||

, for all z ∈ X .

Definition

A sequence {zn} in X is interpolating for Mult(Hk ,Hℓ) (write (IS)) if
for all {wn} ∈ ℓ∞, there exists ϕ ∈ Mult(Hk ,Hℓ) such that

ϕ(zn) =
||ℓzn ||
||kzn ||

wn, for all n.

Lemma

(IS) wrt Mult(Hk ,Hℓ) ⇒ (CM) for k + (WS) by ℓ
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Complete Pick factors

Definition

Let k , ℓ be two kernels on X . We say that k is a factor of ℓ if ℓ/k is a
kernel.

Example

Let Hk = H2 and Hℓ = A2. Then, k is a complete Pick factor of ℓ.

Question (Aleman–Hartz–McCarthy–Richter, 2017)

Suppose that k is a complete Pick factor of ℓ. Is it true that

(IS) wrt Mult(Hk ,Hℓ) ⇔ (CM) for k + (WS) by ℓ ?
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Beyond weak separation

Definition

Let ℓ be a kernel on X and {zn} ⊂ X . Given m ≥ 2, we say that {zn}
is m-weakly separated by ℓ (write (m-WS)) if there exists δm > 0
such that for every m-point subset {µ1, . . . , µm} ⊂ {zn} we have

d = dist
(
ℓ̂µ1 , span

{
ℓ̂µ2 , . . . , ℓ̂µm

})
≥ δm.

Observation (2-WS) coincides with (WS).

Example

Let X = {1, 2, 3}, v1 =
[
1 0

]T
, v2 =

[
0 1

]T
, v3 =

[
1√
2

1√
2

]T
.

Define ℓ : X × X → C by

ℓ(i , j) = ⟨vi , vj⟩C2 .

Then, {1, 2, 3} will be (2-WS) but not (3-WS) by ℓ.
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The characterization

Definition

Let ℓ be a kernel on X and {zn} ⊂ X . Given m ≥ 2, we say that {zn}
is m-weakly separated by ℓ (write (m-WS)) if there exists δm > 0
such that for every m-point subset {µ1, . . . , µm} ⊂ {zn} we have

d = dist
(
ℓ̂µ1 , span

{
ℓ̂µ2 , . . . , ℓ̂µm

})
≥ δm.

Let Hk ,Hℓ be two RKHSs on X such that k is a complete Pick
factor of ℓ. Recall: (IS)=interpolating for Mult(Hk ,Hℓ).

Theorem (T., 2022)

(IS) ⇔ (CM) for k + (m-WS) by ℓ, ∀m ≥ 2

Moreover, the separation condition cannot, in general, be relaxed.
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The automatic separation property

Definition

Let ℓ be a kernel on X . ℓ is said to have the automatic separation
property if every {zn} that is (WS) by ℓ must also be (m-WS) by ℓ,
for all m ≥ 3.

This is equivalent to:
for any fixed m ≥ 2, a kernel ℓ̂z can be “close” to the span of m other
kernels ℓ̂w1 , ℓ̂w2 , . . . , ℓ̂wm if and only if it is “close” to one of them.

Example

Let X = {1, 2, 3}, v1 =
[
1 0

]T
, v2 =

[
0 1

]T
, v3 =

[
1√
2

1√
2

]T
.

Define ℓ : X × X → C by

ℓ(i , j) = ⟨vi , vj⟩C2 .

Then, ℓ does not have the automatic separation property.
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The missing link

Let Hk ,Hℓ be two RKHSs on X such that k is a complete Pick
factor of ℓ. Recall: (IS)=interpolating for Mult(Hk ,Hℓ).

Question (Aleman–Hartz–McCarthy–Richter, 2017)

Is it true that (IS) ⇔ (CM) for k + (WS) by ℓ ?

Theorem (T., 2022)

For “regular” kernels, the answer is yes IFF ℓ has the automatic
separation property.
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Examples

Definition

ℓ is said to have the automatic separation property if every {zn} that
is (WS) by ℓ must also be (m-WS) by ℓ, for all m ≥ 3.

Examples of such kernels ℓ include:

products of powers of complete Pick kernels (includes Bergman
spaces with polynomially decaying weights);

kernels of Hardy spaces on finitely-connected planar domains
(Arcozzi–Rochberg–Sawyer);

kernels of Bergman spaces on D with exponentially decaying
weights (Borichev–Dhuez–Kellay);

kernels of weighted Bargmann-Fock spaces on Cn, e.g.
ℓ(z ,w) = eα·zw (Massaneda–Thomas).
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A counterexample

Theorem (T., 2022)

Assume, in addition, that k , ℓ are “regular” kernels. TFAE:

(IS) wrt Mult(Hk ,Hℓ) ⇔ (CM) for k + (WS) by ℓ

ℓ has the automatic separation property.

Example

Let ρ be the kernel corresp. to the Bergman space on D with weight

e
− 1

1−|z|2 .For z = (z1, z2),w = (w1,w2) ∈ D2, define

ℓ(z ,w) =
ρ(z1,w1) + ρ(z2,w2)

(1− z1w 1)(1− z2w 2)
.

ℓ is “regular”, but doesn’t have the automatic sep. property.
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A “metric” description of (m-WS)

Let ℓ be a kernel on X and assume that {zn} ⊂ X is (WS). Then,
given m ≥ 3, {zn} will be (m-WS) if and only if there exists δ > 0
(depending on m) such that

dℓ(z ,w ;µ1, µ2, . . . , µm−2) > δ,

for all z ̸= w and for any m− 2 point subset {µ1, . . . , µm−2} of {zn}
that does not contain either z or w , where dℓ(·, · ;µ1, µ2, . . . , µm−2)
is the metric associated with the subspace of Hℓ given by

{f ∈ Hℓ : f (µ1) = · · · = f (µm−2) = 0}.
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