Interpolating sequences for pairs of spaces

Georgios Tsikalas

Washington University in St. Louis/ Vanderbilt University

UAM Complex Analysis Seminar

June 26, 2024

Georgios Tsikalas

Interpolating sequences for pairs of spaces UAM Complex Analysis Seminar 1/23

Interpolating sequences for H^{∞}

Let $\mathbb{D} = \{|z| < 1\}$ and

 $H^{\infty} = \{ f : \mathbb{D} \to \mathbb{C} : f \text{ is analytic and bounded} \}.$

Georgios Tsikalas

Interpolating sequences for pairs of spaces UAM Complex Analysis Seminar 2/23

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Interpolating sequences for H^{∞}

Let $\mathbb{D} = \{|z| < 1\}$ and

 $H^{\infty} = \{ f : \mathbb{D} \to \mathbb{C} : f \text{ is analytic and bounded} \}.$

Definition

A sequence $\{z_n\}$ in \mathbb{D} is interpolating for H^{∞} if for every sequence $\{w_n\} \in \ell^{\infty}$, there exists $f \in H^{\infty}$ such that

$$f(z_n) = w_n, \quad \forall n.$$

Write $\{z_n\}$ satisfies (IS).

A sequence $\{z_n\}$ in \mathbb{D}

- 4 回 ト 4 ヨ ト 4 ヨ ト

э

A sequence $\{z_n\}$ in \mathbb{D} (WS) is weakly separated if there exists $\delta > 0$ such that,

$$d(z_n, z_m) := \left| rac{z_n - z_m}{1 - \overline{z_n} z_m}
ight| > \delta, \quad ext{for all } m
eq n,$$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

A sequence $\{z_n\}$ in \mathbb{D}

(WS) is weakly separated if there exists $\delta > 0$ such that,

$$d(z_n, z_m) := \left| rac{z_n - z_m}{1 - \overline{z_n} z_m}
ight| > \delta, \quad ext{for all } m
eq n,$$

(CM) satisfies the Carleson measure condition if there exists M > 0 such that

$$\sum_j (1-|z_j|^2) |f(z_j)|^2 \leq M \int_{\partial \mathbb{D}} |f|^2 dm, \quad orall f \in \mathbb{C}[z],$$

i.e. $\mu = \sum_{j} (1 - |z_j|^2) \delta_{z_j}$ is a Carleson measure on \mathbb{D} .

A sequence $\{z_n\}$ in \mathbb{D}

(WS) is weakly separated if there exists $\delta > 0$ such that,

$$d(z_n, z_m) := \left| rac{z_n - z_m}{1 - \overline{z_n} z_m}
ight| > \delta, \quad ext{for all } m
eq n,$$

(CM) satisfies the Carleson measure condition if there exists M > 0 such that

$$\sum_j (1-|z_j|^2)|f(z_j)|^2 \leq M \int_{\partial \mathbb{D}} |f|^2 dm, \quad orall f \in \mathbb{C}[z],$$

i.e. $\mu = \sum_j (1 - |z_j|^2) \delta_{z_j}$ is a Carleson measure on \mathbb{D} .

Theorem (Carleson, 1958) (IS) \Leftrightarrow (WS) + (CM). Georgios Tsikalas Interpolating sequences for pairs of spaces UAM Complex Analysis Seminar 3/23

Reproducing kernel Hilbert spaces

A RKHS \mathcal{H}_k on a set X is a Hilbert space of functions $f : X \to \mathbb{C}$ such that point evaluations are continuous. Thus, $\forall w \in X$ there exists $k \in \mathcal{H}$ such that

Thus, $\forall w \in X$ there exists $k_w \in \mathcal{H}_k$ such that

$$f(w) = \langle f, k_w \rangle_{\mathcal{H}_k}, \quad \forall f \in \mathcal{H}_k.$$

The function $k : X \times X \to \mathbb{C}$ defined as $k(z, w) := k_w(z)$ is the reproducing kernel of \mathcal{H}_k .

Reproducing kernel Hilbert spaces

A RKHS \mathcal{H}_k on a set X is a Hilbert space of functions $f : X \to \mathbb{C}$ such that point evaluations are continuous.

Thus, $\forall w \in X$ there exists $k_w \in \mathcal{H}_k$ such that

$$f(w) = \langle f, k_w \rangle_{\mathcal{H}_k}, \quad \forall f \in \mathcal{H}_k.$$

The function $k : X \times X \to \mathbb{C}$ defined as $k(z, w) := k_w(z)$ is the reproducing kernel of \mathcal{H}_k . The multiplier algebra is

 $\mathsf{Mult}(\mathcal{H}_k) = \{ \phi : X \to \mathbb{C} \mid \phi \cdot f \in \mathcal{H}_k \text{ for all } f \in \mathcal{H}_k \}.$

く 目 ト く ヨ ト く ヨ ト

Reproducing kernel Hilbert spaces

A RKHS \mathcal{H}_k on a set X is a Hilbert space of functions $f : X \to \mathbb{C}$ such that point evaluations are continuous.

Thus, $\forall w \in X$ there exists $k_w \in \mathcal{H}_k$ such that

$$f(w) = \langle f, k_w \rangle_{\mathcal{H}_k}, \quad \forall f \in \mathcal{H}_k.$$

The function $k : X \times X \to \mathbb{C}$ defined as $k(z, w) := k_w(z)$ is the reproducing kernel of \mathcal{H}_k . The multiplier algebra is

$$\mathsf{Mult}(\mathcal{H}_k) = \{ \phi : X \to \mathbb{C} \mid \phi \cdot f \in \mathcal{H}_k \text{ for all } f \in \mathcal{H}_k \}.$$

Example

Let
$$H^2 = \left\{ f = \sum_{n=0}^{\infty} a_n z^n \in \operatorname{Hol}(\mathbb{D}) : ||f||^2 = \sum_{n=0}^{\infty} |a_n|^2 < \infty \right\}.$$

Then, $k(z, w) = \frac{1}{1-z\overline{w}}$ and $Mult(H^2) = H^{\infty}$ with equality of norms.

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

Shapiro-Shields (1962): Different proof of Carleson's theorem, using:

A (B) < A (B) < A (B) </p>

э

Shapiro-Shields (1962): Different proof of Carleson's theorem, using:

Lemma (Shapiro-Shields)

A sequence $\{z_n\}$ in \mathbb{D} is interpolating for H^{∞} if and only if the operator

$$f \mapsto \left\{ f(z_n) \sqrt{1 - |z_n|^2} \right\}_n = \left\{ \frac{f(z_n)}{||k_{z_n}||} \right\}_n$$

maps H^2 onto ℓ^2 .

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Shapiro-Shields (1962): Different proof of Carleson's theorem, using:

Lemma (Shapiro-Shields)

A sequence $\{z_n\}$ in \mathbb{D} is interpolating for H^{∞} if and only if the operator

$$f\mapsto \left\{f(z_n)\sqrt{1-|z_n|^2}\right\}_n = \left\{\frac{f(z_n)}{||k_{z_n}||}\right\}_n$$

maps H^2 onto ℓ^2 .

Bishop, Marshall-Sundberg (1994): Used this idea to characterize interpolating sequences for the multiplier algebra of the Dirichlet space

$$\mathcal{D} = \{ f \in \mathsf{Hol}(\mathbb{D}) : f' \in L^2(\mathbb{D}) \}.$$

Shapiro-Shields (1962): Different proof of Carleson's theorem, using:

Lemma (Shapiro-Shields)

A sequence $\{z_n\}$ in \mathbb{D} is interpolating for H^{∞} if and only if the operator

$$f\mapsto \left\{f(z_n)\sqrt{1-|z_n|^2}\right\}_n = \left\{\frac{f(z_n)}{||k_{z_n}||}\right\}_n$$

maps H^2 onto ℓ^2 .

Bishop, Marshall-Sundberg (1994): Used this idea to characterize interpolating sequences for the multiplier algebra of the Dirichlet space

$$\mathcal{D} = \{ f \in \mathsf{Hol}(\mathbb{D}) : f' \in L^2(\mathbb{D}) \}.$$

Key property

 H^2 and \mathcal{D} are complete Pick spaces.

Nevanlinna-Pick Interpolation

Theorem (Pick 1916, Nevanlinna 1919)

Let $z_1, z_2, \ldots, z_n \in \mathbb{D}$ and $w_1, w_2, \ldots, w_n \in \mathbb{C}$. There exists $\phi \in Mult(H^2) = H^{\infty}$ with

 $\phi(z_i) = w_i ext{ for } 1 \leq i \leq n ext{ and } ||\phi||_{\mathsf{Mult}(H^2)} \leq 1$

if and only if

<日

<</p>

Nevanlinna-Pick Interpolation

Theorem (Pick 1916, Nevanlinna 1919)

Let $z_1, z_2, \ldots, z_n \in \mathbb{D}$ and $w_1, w_2, \ldots, w_n \in \mathbb{C}$. There exists $\phi \in Mult(H^2) = H^{\infty}$ with

 $\phi(z_i) = w_i ext{ for } 1 \leq i \leq n ext{ and } ||\phi||_{\mathsf{Mult}(H^2)} \leq 1$

if and only if the matrix

$$\left[\frac{1-w_i\overline{w_j}}{1-z_i\overline{z_j}}\right]_{i,j=1}^n = \left[(1-w_i\overline{w_j})k(z_i,z_j)\right]_{i,j=1}^n$$

is positive semi-definite.

<日

<</p>

Nevanlinna-Pick Interpolation

Theorem (Pick 1916, Nevanlinna 1919)

Let $z_1, z_2, \ldots, z_n \in \mathbb{D}$ and $w_1, w_2, \ldots, w_n \in \mathbb{C}$. There exists $\phi \in Mult(H^2) = H^{\infty}$ with

 $\phi(z_i) = w_i ext{ for } 1 \leq i \leq n ext{ and } ||\phi||_{\mathsf{Mult}(H^2)} \leq 1$

if and only if the matrix

$$\left[\frac{1-w_i\overline{w_j}}{1-z_i\overline{z_j}}\right]_{i,j=1}^n = \left[(1-w_i\overline{w_j})k(z_i,z_j)\right]_{i,j=1}^n$$

is positive semi-definite. Recall that $k(z, w) = (1 - z\overline{w})^{-1}$ is the reproducing kernel of H^2 .

(人間) トイヨト イヨト ニヨ

Let \mathcal{H}_k be a RKHS on a set X with kernel k.

A D N A B N A B N A B N

Let \mathcal{H}_k be a RKHS on a set X with kernel k. Given $z_1, \ldots, z_n \in X$ and $w_1, \ldots, w_n \in \mathbb{C}$, does there exist $\phi \in Mult(\mathcal{H}_k)$ with

 $\phi(z_i) = w_i \text{ for } 1 \leq i \leq n \text{ and } ||\phi||_{Mult(\mathcal{H}_k)} \leq 1?$

Let \mathcal{H}_k be a RKHS on a set X with kernel k. Given $z_1, \ldots, z_n \in X$ and $w_1, \ldots, w_n \in \mathbb{C}$, does there exist $\phi \in Mult(\mathcal{H}_k)$ with

 $\phi(z_i) = w_i \text{ for } 1 \leq i \leq n \text{ and } ||\phi||_{\mathsf{Mult}(\mathcal{H}_k)} \leq 1?$

A necessary condition is the positivity of the matrix

$$\left[(1-w_i\overline{w}_j)k(z_i,z_j)\right]_{i,j=1}^n.$$

不得 とう ほう とう とう

Let \mathcal{H}_k be a RKHS on a set X with kernel k. Given $z_1, \ldots, z_n \in X$ and $w_1, \ldots, w_n \in \mathbb{C}$, does there exist $\phi \in Mult(\mathcal{H}_k)$ with

 $\phi(z_i) = w_i \text{ for } 1 \leq i \leq n \text{ and } ||\phi||_{\mathsf{Mult}(\mathcal{H}_k)} \leq 1?$

A necessary condition is the positivity of the matrix

$$\left[\left(1-w_i\overline{w}_j\right)k(z_i,z_j)\right]_{i,j=1}^n.$$

Definition

• \mathcal{H}_k is called a Pick space if this condition is also sufficient.

ヘロト 人間ト ヘヨト ヘヨト

Let \mathcal{H}_k be a RKHS on a set X with kernel k. Given $z_1, \ldots, z_n \in X$ and $w_1, \ldots, w_n \in \mathbb{C}$, does there exist $\phi \in Mult(\mathcal{H}_k)$ with

 $\phi(z_i) = w_i \text{ for } 1 \leq i \leq n \text{ and } ||\phi||_{\mathsf{Mult}(\mathcal{H}_k)} \leq 1?$

A necessary condition is the positivity of the matrix

$$\left[\left(1-w_i\overline{w}_j\right)k(z_i,z_j)\right]_{i,j=1}^n.$$

Definition

- \mathcal{H}_k is called a Pick space if this condition is also sufficient.
- \mathcal{H}_k is called a complete Pick space if the analogue of this condition for matrix-valued functions is sufficient.

- ロ ト - (周 ト - (日 ト - (日 ト -)日

• The Hardy space H^2 is a complete Pick space.

イロト イポト イヨト イヨト

э

- The Hardy space H^2 is a complete Pick space.
- The Bergman space $A^2 = Hol(\mathbb{D}) \cap L^2(\mathbb{D})$ is not a Pick space.

- 4 回 ト 4 ヨ ト 4 ヨ ト

- The Hardy space H^2 is a complete Pick space.
- The Bergman space $A^2 = Hol(\mathbb{D}) \cap L^2(\mathbb{D})$ is not a Pick space.
- The Dirichlet space \mathcal{D} is a complete Pick space (Agler).

・ 何 ト ・ ヨ ト ・ ヨ ト

- The Hardy space H^2 is a complete Pick space.
- The Bergman space $A^2 = Hol(\mathbb{D}) \cap L^2(\mathbb{D})$ is not a Pick space.
- The Dirichlet space \mathcal{D} is a complete Pick space (Agler).
- The Drury-Arveson space H_d^2 is the RKHS on \mathbb{B}_d , the open unit ball in \mathbb{C}^d , with kernel

$$k(z,w) = rac{1}{1-\langle z,w
angle} = rac{1}{1-\sum_{i=1}^d z_i \overline{w}_i}$$

 H_d^2 is a complete Pick space and is also universal among all such spaces (McCullough–Quiggin, Agler–McCarthy).

- ロ ト ・ 同 ト ・ 三 ト ・ 三 ト - -

A distance function for RKHS's

Let \mathcal{H}_k be a RKHS on a set X with kernel k. Also, let $\hat{k}_x := \frac{k_x}{||k_x||}$ denote the *normalized* kernel function at x.

A distance function for RKHS's

Let \mathcal{H}_k be a RKHS on a set X with kernel k. Also, let $\hat{k}_x := \frac{k_x}{||k_x||}$ denote the *normalized* kernel function at x.

Definition

Define a metric^{*} on X by

$$d_k(z,w)=\sqrt{1-|\langle \hat{k}_z,\hat{k}_w
angle|^2}, \ \ z,w\in X.$$

A distance function for RKHS's

Let \mathcal{H}_k be a RKHS on a set X with kernel k. Also, let $\hat{k}_x := \frac{\kappa_x}{||k_x||}$ denote the *normalized* kernel function at x.

Definition

Define a metric^{*} on X by

$$d_k(z,w) = \sqrt{1 - |\langle \hat{k}_z, \hat{k}_w \rangle|^2}, \quad z,w \in X.$$

Example

If $\mathcal{H}_k = H^2$, then

$$d_k(z,w) = \left| \frac{z-w}{1-\overline{z}w} \right|$$

is the pseudohyperbolic metric on \mathbb{D} .

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

Let \mathcal{H}_k be a RKHS on a set X with kernel k. A sequence $\{z_n\} \subset X$

< ロ > < 同 > < 回 > < 回 > < 回 > <

э

Let \mathcal{H}_k be a RKHS on a set X with kernel k. A sequence $\{z_n\} \subset X$ (IS) is an interpolating sequence for $\text{Mult}(\mathcal{H}_k)$ if for every $\{w_n\} \subset \ell^{\infty}$, there exists $\phi \in \text{Mult}(\mathcal{H}_k)$ with

$$\phi(z_n) = w_n$$
, for all $n \ge 1$.

・ 何 ト ・ ヨ ト ・ ヨ ト … ヨ

Let \mathcal{H}_k be a RKHS on a set X with kernel k. A sequence $\{z_n\} \subset X$ (IS) is an interpolating sequence for $\text{Mult}(\mathcal{H}_k)$ if for every $\{w_n\} \subset \ell^{\infty}$, there exists $\phi \in \text{Mult}(\mathcal{H}_k)$ with

$$\phi(z_n) = w_n$$
, for all $n \ge 1$.

(WS) is weakly separated by k if there exists $\delta > 0$ such that $d_k(z_n, z_m) > \delta$, for all $n \neq m$.

くほう イヨン イヨン 二日

Let \mathcal{H}_k be a RKHS on a set X with kernel k. A sequence $\{z_n\} \subset X$ (IS) is an interpolating sequence for $\text{Mult}(\mathcal{H}_k)$ if for every $\{w_n\} \subset \ell^{\infty}$, there exists $\phi \in \text{Mult}(\mathcal{H}_k)$ with

$$\phi(z_n) = w_n$$
, for all $n \ge 1$.

(WS) is weakly separated by k if there exists $\delta > 0$ such that $d_k(z_n, z_m) > \delta$, for all $n \neq m$.

(CM) satisfies the Carleson measure condition for k if there exists M > 0 such that

$$\sum_j rac{|f(z_j)|^2}{k(z_j,z_j)} \leq M ||f||^2_{\mathcal{H}_k}, ext{ for all } f \in \mathcal{H}_k,$$

i.e. $\mu := \sum_{j} \frac{1}{k(z_j, z_j)} \delta_{z_j}$ is a Carleson measure for \mathcal{H}_k .

Old and new developments

Lemma

In every RKHS \mathcal{H}_k , (IS) \Rightarrow (WS) + (CM).

The converse assertion (WS) + (CM) \Rightarrow (IS)

Interpolating sequences for pairs of spaces UAM Complex Analysis Seminar 11 / 23

- 4 同 ト 4 三 ト - 4 三 ト - -

3

Old and new developments

Lemma

In every RKHS
$$\mathcal{H}_k$$
, (IS) \Rightarrow (WS) + (CM).

The converse assertion (WS) + (CM) \Rightarrow (IS)

• Carleson '58, Shapiro-Shields '62 holds in the Hardy space H^2 ;

A B M A B M

Old and new developments

Lemma

In every RKHS
$$\mathcal{H}_k$$
, (IS) \Rightarrow (WS) + (CM).

The converse assertion (WS) + (CM) \Rightarrow (IS)

- Carleson '58, Shapiro-Shields '62 holds in the Hardy space H^2 ;
- fails in the Bergman space L_a^2 ;

A B A A B A
Old and new developments

Lemma

In every RKHS
$$\mathcal{H}_k$$
, (IS) \Rightarrow (WS) + (CM).

The converse assertion (WS) + (CM) \Rightarrow (IS)

- Carleson '58, Shapiro-Shields '62 holds in the Hardy space H^2 ;
- fails in the Bergman space L_a^2 ;
- Bishop, Marshall-Sundberg, '94 holds in the Dirichlet space \mathcal{D} ;

Old and new developments

Lemma

In every RKHS
$$\mathcal{H}_k$$
, (IS) \Rightarrow (WS) + (CM).

The converse assertion (WS) + (CM) \Rightarrow (IS)

- Carleson '58, Shapiro-Shields '62 holds in the Hardy space H^2 ;
- fails in the Bergman space L_a^2 ;
- Bishop, Marshall-Sundberg, '94 holds in the Dirichlet space \mathcal{D} ;
- Bøe, 2005 holds in those spaces on the unit ball \mathbb{B}_d with kernel

$$k(z,w) = rac{1}{(1-\langle z,w
angle)^lpha}, \quad ext{where } lpha \in (0,1);$$

Old and new developments

Lemma

In every RKHS
$$\mathcal{H}_k$$
, (IS) \Rightarrow (WS) + (CM).

The converse assertion (WS) + (CM) \Rightarrow (IS)

- Carleson '58, Shapiro-Shields '62 holds in the Hardy space H^2 ;
- fails in the Bergman space L_a^2 ;
- Bishop, Marshall-Sundberg, '94 holds in the Dirichlet space \mathcal{D} ;
- Bøe, 2005 holds in those spaces on the unit ball \mathbb{B}_d with kernel

$$k(z,w)=rac{1}{(1-\langle z,w
angle)^lpha}, \hspace{1em}$$
 where $lpha\in(0,1);$

Theorem (Aleman–Hartz–M^cCarthy–Richter, 2017)

In every complete Pick space, (IS) \Leftrightarrow (WS) + (CM).

Grammians

Let \mathcal{H}_k be a RKHS on X with kernel k, let $\{z_n\} \subset X$. Recall that $\hat{k}_z = k_z/||k_z||$ and define the Grammian

$$G[\{z_n\}] = \left[\left\langle \hat{k}_{z_i}, \hat{k}_{z_j}\right\rangle\right]_{i,j}.$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Grammians

Let \mathcal{H}_k be a RKHS on X with kernel k, let $\{z_n\} \subset X$. Recall that $\hat{k}_z = k_z/||k_z||$ and define the Grammian

$$G[\{z_n\}] = \left[\left\langle \hat{k}_{z_i}, \hat{k}_{z_j}\right\rangle\right]_{i,j}.$$

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Grammians

Let \mathcal{H}_k be a RKHS on X with kernel k, let $\{z_n\} \subset X$. Recall that $\hat{k}_z = k_z/||k_z||$ and define the Grammian

$$G[\{z_n\}] = \left[\left\langle \hat{k}_{z_i}, \hat{k}_{z_j}\right\rangle\right]_{i,j}.$$

Proposition $(CM) \text{ for } k \iff G[\{z_n\}] : \ell^2 \to \ell^2 \text{ bounded}$

Theorem (Marshall-Sundberg, '94)

If \mathcal{H}_k is a complete Pick space, then

$$(\mathsf{IS}) \iff G[\{z_n\}]: \ell^2 \to \ell^2 \text{ bounded and bounded below}$$

イロト 不得 トイヨト イヨト

Two proofs of the A.-H.-M.-R. characterization

Theorem (Aleman–Hartz–M^cCarthy–Richter, 2017)

In every complete Pick space, (IS) \Leftrightarrow (WS) + (CM).

Georgios Tsikalas

Interpolating sequences for pairs of spaces UAM Complex Analysis Seminar 13 / 23

< 同 > < 三 > < 三 >

Two proofs of the A.-H.-M.-R. characterization

Theorem (Aleman–Hartz–M^cCarthy–Richter, 2017)

In every complete Pick space, (IS) \Leftrightarrow (WS) + (CM).

• Original proof used the solution to the Kadison-Singer problem by Marcus, Spielman and Srivastava (2013).

< 回 > < 回 > < 回 > <

Two proofs of the A.-H.-M.-R. characterization

Theorem (Aleman–Hartz–M^cCarthy–Richter, 2017)

In every complete Pick space, (IS) \Leftrightarrow (WS) + (CM).

- Original proof used the solution to the Kadison-Singer problem by Marcus, Spielman and Srivastava (2013).
- New proof uses the column-row property:

Theorem (Hartz, 2020)

Assume \mathcal{H}_k is a complete Pick space and $\{\phi_n\} \subset \mathsf{Mult}(\mathcal{H}_k)$. Then,

$$\left| \left| \begin{bmatrix} M_{\phi_1} & M_{\phi_2} & \cdots \end{bmatrix} \right| \right| \leq \left| \left| \begin{bmatrix} M_{\phi_1} \\ M_{\phi_2} \\ \vdots \end{bmatrix} \right|$$

Pairs of spaces

Let \mathcal{H}_k , \mathcal{H}_ℓ be two RKHSs on a set X with kernels k, ℓ , resp. Define $Mult(\mathcal{H}_k, \mathcal{H}_\ell) := \{ \phi : X \to \mathbb{C} \mid \phi \cdot f \in \mathcal{H}_\ell, \forall f \in \mathcal{H}_k \}.$

Interpolating sequences for pairs of spaces UAM Complex Analysis Seminar 14 / 23

Pairs of spaces

Let \mathcal{H}_k , \mathcal{H}_ℓ be two RKHSs on a set X with kernels k, ℓ , resp. Define $Mult(\mathcal{H}_k, \mathcal{H}_\ell) := \{\phi : X \to \mathbb{C} \mid \phi \cdot f \in \mathcal{H}_\ell, \forall f \in \mathcal{H}_k\}.$

Example

Interpolating sequences for pairs of spaces UAM Complex Analysis Seminar 14 / 23

(日)

э

Pairs of spaces

Let \mathcal{H}_k , \mathcal{H}_ℓ be two RKHSs on a set X with kernels k, ℓ , resp. Define $Mult(\mathcal{H}_k, \mathcal{H}_\ell) := \{\phi : X \to \mathbb{C} \mid \phi \cdot f \in \mathcal{H}_\ell, \forall f \in \mathcal{H}_k\}.$

Example

•
$$\mathcal{H}_k = H^2 = \text{Hardy space}$$

• $\mathcal{H}_\ell = A^2 = \text{Bergman space on } \mathbb{D}$
 $\boxed{H^2 \subset A^2} \Rightarrow \boxed{\text{Mult}(H^2) \subset \text{Mult}(H^2, A^2)}.$

Actually, we even have

$$H^2 \subset \operatorname{Mult}(H^2, A^2)$$
.

э

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Interpolating sequences for pairs of kernels

Let \mathcal{H}_k and \mathcal{H}_ℓ be two RKHSs on X with kernels k and ℓ .

Observation

If
$$\phi \in \mathsf{Mult}(\mathcal{H}_k, \mathcal{H}_\ell)$$
, then $|\phi(z)| \leq ||\phi||_{\mathsf{Mult}} \frac{||\ell_z||}{||k_z||}$, for all $z \in X$.

Interpolating sequences for pairs of spaces UAM Complex Analysis Seminar 15 / 23

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Interpolating sequences for pairs of kernels

Let \mathcal{H}_k and \mathcal{H}_ℓ be two RKHSs on X with kernels k and ℓ .

Observation

$$\mathsf{If} \ \phi \in \mathsf{Mult}(\mathcal{H}_k, \mathcal{H}_\ell), \ \mathsf{then} \ |\phi(z)| \leq ||\phi||_{\mathsf{Mult}} \frac{||\ell_z||}{||k_z||}, \ \ \mathsf{for \ all} \ z \in X.$$

Definition

A sequence $\{z_n\}$ in X is interpolating for $Mult(\mathcal{H}_k, \mathcal{H}_\ell)$ (write (IS)) if for all $\{w_n\} \in \ell^{\infty}$, there exists $\phi \in Mult(\mathcal{H}_k, \mathcal{H}_\ell)$ such that

$$\phi(z_n) = \frac{||\ell_{z_n}||}{||k_{z_n}||} w_n, \text{ for all } n.$$

Georgios Tsikalas

< 回 > < 回 > < 回 >

Interpolating sequences for pairs of kernels

Let \mathcal{H}_k and \mathcal{H}_ℓ be two RKHSs on X with kernels k and ℓ .

Observation

$$\mathsf{If} \ \phi \in \mathsf{Mult}(\mathcal{H}_k, \mathcal{H}_\ell), \ \mathsf{then} \ |\phi(z)| \leq ||\phi||_{\mathsf{Mult}} \frac{||\ell_z||}{||k_z||}, \ \ \mathsf{for \ all} \ z \in X.$$

Definition

A sequence $\{z_n\}$ in X is interpolating for $Mult(\mathcal{H}_k, \mathcal{H}_\ell)$ (write (IS)) if for all $\{w_n\} \in \ell^{\infty}$, there exists $\phi \in Mult(\mathcal{H}_k, \mathcal{H}_\ell)$ such that

$$\phi(z_n) = \frac{||\ell_{z_n}||}{||k_{z_n}||} w_n, \text{ for all } n.$$

Lemma

(IS) wrt
$$\operatorname{Mult}(\mathcal{H}_k, \mathcal{H}_\ell) \Rightarrow (CM)$$
 for $k + (WS)$

Georgios Tsikalas

by ℓ

Complete Pick factors

Definition

Let k, ℓ be two kernels on X. We say that k is a factor of ℓ if ℓ/k is a kernel.

Georgios Tsikalas

Interpolating sequences for pairs of spaces UAM Complex Ana

UAM Complex Analysis Seminar 16 / 23

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Complete Pick factors

Definition

Let k, ℓ be two kernels on X. We say that k is a factor of ℓ if ℓ/k is a kernel.

Example

Let $\mathcal{H}_k = H^2$ and $\mathcal{H}_\ell = A^2$. Then, k is a complete Pick factor of ℓ .

Georgios Tsikalas

Interpolating sequences for pairs of spaces UAM Complex Analysis Seminar 16 / 23

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Complete Pick factors

Definition

Let k, ℓ be two kernels on X. We say that k is a factor of ℓ if ℓ/k is a kernel.

Example

Let $\mathcal{H}_k = H^2$ and $\mathcal{H}_\ell = A^2$. Then, k is a complete Pick factor of ℓ .

Question (Aleman–Hartz–M^cCarthy–Richter, 2017)

Suppose that k is a complete Pick factor of ℓ . Is it true that

(IS) wrt
$$\operatorname{Mult}(\mathcal{H}_k, \mathcal{H}_\ell) \Leftrightarrow (CM)$$
 for $k + (WS)$ by ℓ ?

・ 何 ト ・ ヨ ト ・ ヨ ト

Definition

Let ℓ be a kernel on X and $\{z_n\} \subset X$. Given $m \ge 2$, we say that $\{z_n\}$ is *m*-weakly separated by ℓ (write (*m*-WS)) if there exists $\delta_m > 0$ such that for every *m*-point subset $\{\mu_1, \ldots, \mu_m\} \subset \{z_n\}$ we have

$$d = {
m dist}ig(\hat{\ell}_{\mu_1}, \ {
m span}ig\{ \hat{\ell}_{\mu_2}, \dots, \hat{\ell}_{\mu_m} ig\} ig) \geq \delta_m.$$

<日

<</p>

Definition

Let ℓ be a kernel on X and $\{z_n\} \subset X$. Given $m \ge 2$, we say that $\{z_n\}$ is *m*-weakly separated by ℓ (write (*m*-WS)) if there exists $\delta_m > 0$ such that for every *m*-point subset $\{\mu_1, \ldots, \mu_m\} \subset \{z_n\}$ we have

$$d = {\sf dist}ig(\hat{\ell}_{\mu_1}, \; {\sf span}ig\{ \hat{\ell}_{\mu_2}, \dots, \hat{\ell}_{\mu_m} ig\} ig) \geq \delta_m.$$

Observation (2-WS) coincides with (WS).

く 何 ト く ヨ ト く ヨ ト

Definition

Let ℓ be a kernel on X and $\{z_n\} \subset X$. Given $m \ge 2$, we say that $\{z_n\}$ is *m*-weakly separated by ℓ (write (*m*-WS)) if there exists $\delta_m > 0$ such that for every *m*-point subset $\{\mu_1, \ldots, \mu_m\} \subset \{z_n\}$ we have

$$d = \mathsf{dist}ig(\hat{\ell}_{\mu_1}, \ \mathsf{span}ig\{ \hat{\ell}_{\mu_2}, \dots, \hat{\ell}_{\mu_m} ig\} ig) \geq \delta_{m_1}$$

Observation (2-WS) coincides with (WS).

Example

Let
$$X = \{1, 2, 3\}, v_1 = \begin{bmatrix} 1 & 0 \end{bmatrix}^T, v_2 = \begin{bmatrix} 0 & 1 \end{bmatrix}^T, v_3 = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}$$

т

Definition

Let ℓ be a kernel on X and $\{z_n\} \subset X$. Given $m \ge 2$, we say that $\{z_n\}$ is *m*-weakly separated by ℓ (write (*m*-WS)) if there exists $\delta_m > 0$ such that for every *m*-point subset $\{\mu_1, \ldots, \mu_m\} \subset \{z_n\}$ we have

$$d = \mathsf{dist}ig(\hat{\ell}_{\mu_1}, \ \mathsf{span}ig\{ \hat{\ell}_{\mu_2}, \dots, \hat{\ell}_{\mu_m} ig\} ig) \geq \delta_{m_1}$$

Observation (2-WS) coincides with (WS).

Example

Let
$$X = \{1, 2, 3\}, v_1 = \begin{bmatrix} 1 & 0 \end{bmatrix}^T, v_2 = \begin{bmatrix} 0 & 1 \end{bmatrix}^T, v_3 = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}$$

Define $\ell : X \times X \to \mathbb{C}$ by

$$\ell(i,j) = \langle \mathbf{v}_i, \mathbf{v}_j \rangle_{\mathbb{C}^2}.$$

Definition

Let ℓ be a kernel on X and $\{z_n\} \subset X$. Given $m \ge 2$, we say that $\{z_n\}$ is *m*-weakly separated by ℓ (write (*m*-WS)) if there exists $\delta_m > 0$ such that for every *m*-point subset $\{\mu_1, \ldots, \mu_m\} \subset \{z_n\}$ we have

$$d = \mathsf{dist}ig(\hat{\ell}_{\mu_1}, \; \mathsf{span}ig\{ \hat{\ell}_{\mu_2}, \dots, \hat{\ell}_{\mu_m} ig\} ig) \geq \delta_{m_1}$$

Observation (2-WS) coincides with (WS).

Example

Let
$$X = \{1, 2, 3\}, v_1 = \begin{bmatrix} 1 & 0 \end{bmatrix}^T, v_2 = \begin{bmatrix} 0 & 1 \end{bmatrix}^T, v_3 = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}$$

Define $\ell : X \times X \to \mathbb{C}$ by

$$\ell(i,j) = \langle \mathbf{v}_i, \mathbf{v}_j \rangle_{\mathbb{C}^2}.$$

Then, $\{1, 2, 3\}$ will be (2-WS) but not (3-WS) by ℓ .

The characterization

Definition

Let ℓ be a kernel on X and $\{z_n\} \subset X$. Given $m \ge 2$, we say that $\{z_n\}$ is *m*-weakly separated by ℓ (write (*m*-WS)) if there exists $\delta_m > 0$ such that for every *m*-point subset $\{\mu_1, \ldots, \mu_m\} \subset \{z_n\}$ we have

$$d = \operatorname{dist} \left(\hat{\ell}_{\mu_1}, \operatorname{span} \left\{ \hat{\ell}_{\mu_2}, \dots, \hat{\ell}_{\mu_m} \right\} \right) \geq \delta_m.$$

Let $\mathcal{H}_k, \mathcal{H}_\ell$ be two RKHSs on X such that k is a complete Pick factor of ℓ . Recall: (IS)=interpolating for Mult $(\mathcal{H}_k, \mathcal{H}_\ell)$.

く 何 ト く ヨ ト く ヨ ト

The characterization

Definition

Let ℓ be a kernel on X and $\{z_n\} \subset X$. Given $m \ge 2$, we say that $\{z_n\}$ is *m*-weakly separated by ℓ (write (*m*-WS)) if there exists $\delta_m > 0$ such that for every *m*-point subset $\{\mu_1, \ldots, \mu_m\} \subset \{z_n\}$ we have

$$d = \operatorname{dist}(\hat{\ell}_{\mu_1}, \operatorname{span}\{\hat{\ell}_{\mu_2}, \dots, \hat{\ell}_{\mu_m}\}) \geq \delta_m.$$

Let $\mathcal{H}_k, \mathcal{H}_\ell$ be two RKHSs on X such that k is a complete Pick factor of ℓ . Recall: (IS)=interpolating for Mult $(\mathcal{H}_k, \mathcal{H}_\ell)$.

Theorem (T., 2022)

(IS)
$$\Leftrightarrow$$
 (CM) for k + (*m*-WS) by ℓ , $\forall m \geq 2$

Moreover, the separation condition cannot, in general, be relaxed.

イロト 不得 トイヨト イヨト

Definition

Let ℓ be a kernel on X. ℓ is said to have the automatic separation property if every $\{z_n\}$ that is (WS) by ℓ must also be (*m*-WS) by ℓ , for all $m \geq 3$.

Definition

Let ℓ be a kernel on X. ℓ is said to have the automatic separation property if every $\{z_n\}$ that is (WS) by ℓ must also be (*m*-WS) by ℓ , for all $m \geq 3$.

This is equivalent to: for any fixed $m \ge 2$, a kernel $\hat{\ell}_z$ can be "close" to the span of m other kernels $\hat{\ell}_{w_1}, \hat{\ell}_{w_2}, \ldots, \hat{\ell}_{w_m}$ if and only if it is "close" to one of them.

Definition

Let ℓ be a kernel on X. ℓ is said to have the automatic separation property if every $\{z_n\}$ that is (WS) by ℓ must also be (*m*-WS) by ℓ , for all $m \geq 3$.

This is equivalent to: for any fixed $m \ge 2$, a kernel $\hat{\ell}_z$ can be "close" to the span of m other kernels $\hat{\ell}_{w_1}, \hat{\ell}_{w_2}, \ldots, \hat{\ell}_{w_m}$ if and only if it is "close" to one of them.

Example

Let
$$X = \{1, 2, 3\}, v_1 = \begin{bmatrix} 1 & 0 \end{bmatrix}^T, v_2 = \begin{bmatrix} 0 & 1 \end{bmatrix}^T, v_3 = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}^T$$

Define $\ell : X \times X \to \mathbb{C}$ by

$$\ell(i,j) = \langle \mathbf{v}_i, \mathbf{v}_j \rangle_{\mathbb{C}^2}.$$

Definition

Let ℓ be a kernel on X. ℓ is said to have the automatic separation property if every $\{z_n\}$ that is (WS) by ℓ must also be (*m*-WS) by ℓ , for all $m \geq 3$.

This is equivalent to: for any fixed $m \ge 2$, a kernel $\hat{\ell}_z$ can be "close" to the span of m other kernels $\hat{\ell}_{w_1}, \hat{\ell}_{w_2}, \ldots, \hat{\ell}_{w_m}$ if and only if it is "close" to one of them.

Example

Let
$$X = \{1, 2, 3\}, v_1 = \begin{bmatrix} 1 & 0 \end{bmatrix}^T, v_2 = \begin{bmatrix} 0 & 1 \end{bmatrix}^T, v_3 = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}^T$$

Define $\ell : X \times X \to \mathbb{C}$ by

$$\ell(i,j) = \langle \mathbf{v}_i, \mathbf{v}_j \rangle_{\mathbb{C}^2}.$$

Then, ℓ does not have the automatic separation property.

Let $\mathcal{H}_k, \mathcal{H}_\ell$ be two RKHSs on X such that k is a complete Pick factor of ℓ . Recall: (IS)=interpolating for Mult $(\mathcal{H}_k, \mathcal{H}_\ell)$.

Question (Aleman–Hartz–M^cCarthy–Richter, 2017)

Is it true that $(IS) \Leftrightarrow (CM)$ for k + (WS) by ℓ ?

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Let $\mathcal{H}_k, \mathcal{H}_\ell$ be two RKHSs on X such that k is a complete Pick factor of ℓ . Recall: (IS)=interpolating for Mult $(\mathcal{H}_k, \mathcal{H}_\ell)$.

Question (Aleman–Hartz–M^cCarthy–Richter, 2017)

Is it true that $(IS) \Leftrightarrow (CM)$ for k + (WS) by ℓ ?

Theorem (T., 2022)

For "regular" kernels, the answer is yes IFF ℓ has the automatic separation property.

く 白 ト く ヨ ト く ヨ ト

Definition

 ℓ is said to have the automatic separation property if every $\{z_n\}$ that is (WS) by ℓ must also be (*m*-WS) by ℓ , for all $m \ge 3$.

< 日 > < 同 > < 三 > < 三 > <

Definition

 ℓ is said to have the automatic separation property if every $\{z_n\}$ that is (WS) by ℓ must also be (*m*-WS) by ℓ , for all $m \ge 3$.

Examples of such kernels ℓ include:

< 日 > < 同 > < 三 > < 三 > <

Definition

 ℓ is said to have the automatic separation property if every $\{z_n\}$ that is (WS) by ℓ must also be (*m*-WS) by ℓ , for all $m \ge 3$.

Examples of such kernels ℓ include:

 products of powers of complete Pick kernels (includes Bergman spaces with polynomially decaying weights);

Definition

 ℓ is said to have the automatic separation property if every $\{z_n\}$ that is (WS) by ℓ must also be (*m*-WS) by ℓ , for all $m \ge 3$.

Examples of such kernels ℓ include:

- products of powers of complete Pick kernels (includes Bergman spaces with polynomially decaying weights);
- kernels of Hardy spaces on finitely-connected planar domains (Arcozzi–Rochberg–Sawyer);

Definition

 ℓ is said to have the automatic separation property if every $\{z_n\}$ that is (WS) by ℓ must also be (*m*-WS) by ℓ , for all $m \ge 3$.

Examples of such kernels ℓ include:

- products of powers of complete Pick kernels (includes Bergman spaces with polynomially decaying weights);
- kernels of Hardy spaces on finitely-connected planar domains (Arcozzi–Rochberg–Sawyer);
- kernels of Bergman spaces on D with exponentially decaying weights (Borichev–Dhuez–Kellay);

A B A B A B A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
Examples

Definition

 ℓ is said to have the automatic separation property if every $\{z_n\}$ that is (WS) by ℓ must also be (*m*-WS) by ℓ , for all $m \ge 3$.

Examples of such kernels ℓ include:

- products of powers of complete Pick kernels (includes Bergman spaces with polynomially decaying weights);
- kernels of Hardy spaces on finitely-connected planar domains (Arcozzi–Rochberg–Sawyer);
- kernels of Bergman spaces on D with exponentially decaying weights (Borichev–Dhuez–Kellay);
- kernels of weighted Bargmann-Fock spaces on \mathbb{C}^n , e.g. $\ell(z, w) = e^{\alpha \cdot z \overline{w}}$ (Massaneda–Thomas).

A counterexample

Theorem (T., 2022)

Assume, in addition, that k, ℓ are "regular" kernels. TFAE:

(IS) wrt
$$\operatorname{Mult}(\mathcal{H}_k, \mathcal{H}_\ell) \Leftrightarrow (\operatorname{CM})$$
 for $k + (\operatorname{WS})$ by ℓ

• ℓ has the automatic separation property.

Interpolating sequences for pairs of spaces UAM Complex Analysis Seminar 22 / 23

• • = • • = •

A counterexample

Theorem (T., 2022)

Assume, in addition, that k, ℓ are "regular" kernels. TFAE:

(IS) wrt
$$\operatorname{Mult}(\mathcal{H}_k, \mathcal{H}_\ell) \Leftrightarrow (\operatorname{CM})$$
 for $k + (\operatorname{WS})$ by ℓ

 $\bullet~\ell$ has the automatic separation property.

Example

Let ρ be the kernel corresp. to the Bergman space on \mathbb{D} with weight $e^{-\frac{1}{1-|z|^2}}$.

・ロト ・ 同ト ・ ヨト ・ ヨト

э

A counterexample

Theorem (T., 2022)

Assume, in addition, that k, ℓ are "regular" kernels. TFAE:

(IS) wrt
$$\operatorname{Mult}(\mathcal{H}_k, \mathcal{H}_\ell) \Leftrightarrow (\operatorname{CM})$$
 for $k + (\operatorname{WS})$ by ℓ

• ℓ has the automatic separation property.

Example

Let ρ be the kernel corresp. to the Bergman space on \mathbb{D} with weight $e^{-\frac{1}{1-|z|^2}}$. For $z = (z_1, z_2), w = (w_1, w_2) \in \mathbb{D}^2$, define

$$\ell(z,w) = \frac{\rho(z_1,w_1) + \rho(z_2,w_2)}{(1-z_1\overline{w}_1)(1-z_2\overline{w}_2)}$$

 ℓ is "regular", but doesn't have the automatic sep. property.

ヘロト 不得 トイヨト イヨト 二日

Let ℓ be a kernel on X and assume that $\{z_n\} \subset X$ is (WS). Then, given $m \geq 3$, $\{z_n\}$ will be (*m*-WS) if and only if there exists $\delta > 0$ (depending on *m*) such that

$$d_{\ell}(z,w;\mu_1,\mu_2,\ldots,\mu_{m-2})>\delta,$$

for all $z \neq w$ and for any m-2 point subset $\{\mu_1, \ldots, \mu_{m-2}\}$ of $\{z_n\}$ that does not contain either z or w, where $d_{\ell}(\cdot, \cdot; \mu_1, \mu_2, \ldots, \mu_{m-2})$ is the metric associated with the subspace of \mathcal{H}_{ℓ} given by

$$\{f \in \mathcal{H}_{\ell} : f(\mu_1) = \cdots = f(\mu_{m-2}) = 0\}.$$