RIGIDITY OF COMPOSITION OPERATORS ON H^p -SPACES

Hans-Olav Tylli (Helsinki)

Seminario de Análisis Complejo

Miércoles, 10 de junio de 2015

11:30

Aula 420, Módulo 17, Depto. de Matemáticas, UAM *

I will discuss some structural rigidity properties related to the strict singularity of the composition operators $f \mapsto C_{\phi}(f) = f \circ \phi$ on the Hardy spaces H^p for $p \neq 2$, where $\phi : \mathbb{D} \to \mathbb{D}$ is a given analytic map and \mathbb{D} is the open unit disk in C. In particular, I will outline the background and the proof of the following result, which is part of joint work with Jussi Laitila and Pekka Nieminen (Helsinki).

Theorem. Suppose that $1 \le p < \infty$ and $p \ne 2$. Then for any $\phi : \mathbb{D} \to \mathbb{D}$ one has the following dichotomy: either

(1) C_{ϕ} is compact $H^p \to H^p$, or

(2) there is a subspace $M \subset H^p$ such that $M \approx \ell^p$, the restriction $C_{\phi|M}$ is an isomorphism $M \to C_{\phi}(M)$, and $C_{\phi}(M) \subset H^p$ is complemented (that is, $C_{\phi}: H^p \to H^p$ is not an ℓ^p -singular operator).

Above the case p = 2 is well-known and p = 1 follows from the work of Sarason (1992).