Polynomial Approximation Superharmonically Weighted Dirichlet Spaces Approximation in  $\mathcal{D}_{\zeta}$  Approximation in  $\mathcal{D}_{w}$  Abstraction Abstraction

# Summation Theory in Dirichlet Spaces

Javad Mashreghi Université Laval

Complex Analysis Seminar 3 March, 2023 UAM

Summation Theory in Dirichlet Spaces

Superharmonically Weighted Dirichlet Spaces Approximation in  $\mathcal{D}_{\zeta}$  Approximation in  $\mathcal{D}_{w}$  Approximation in  $\mathcal{D}_{w}$  Abstraction

The Main Question A Classical Approximation Method Some Summation Methods

# The Territory



I have lived the greater part of my mathematical life in the unit disk of the complex plane.

D. Sarason

Summation Theory in Dirichlet Spaces

< D > < P > < E >

Superharmonically Weighted Dirichlet Spaces Approximation in  $\mathcal{D}_{\zeta}$  Approximation in  $\mathcal{D}_{w}$  Approximation in  $\mathcal{D}_{w}$  Abstraction

Notations

The Main Question A Classical Approximation Method Some Summation Methods

- **1** Hol $(\mathbb{D})$  is the collection of all analytic functions on  $\mathbb{D}$ .
- **2**  $\mathcal{X} \subset Hol(\mathbb{D})$  is a Banach space.
- 3  $\mathcal{P}$  is the set of all analytic polynomials.

The Main Question A Classical Approximation Method Some Summation Methods

# Some Banach Function Spaces

- 1 Hardy Spaces H<sup>p</sup>
- 2 Dirichlet Space  $\mathcal{D}$
- 3 Harmonically Weighted Dirichlet Spaces  $\mathcal{D}_{\mu}$
- 4 Superharmonically Weighted Dirichlet Spaces  $\mathcal{D}_w$
- 5 Bergman Spaces A<sup>p</sup>
- **6** Model Spaces  $K_{\theta}$
- 7 de Branges–Rovnyak Spaces  $\mathcal{H}(b)$

(4 同 ) 4 ヨ ) 4 ヨ )

Superharmonically Weighted Dirichlet Spaces Approximation in  $\mathcal{D}_{\zeta}$  Approximation in  $\mathcal{D}_{w}$  Approximation in  $\mathcal{D}_{w}$  Abstraction

The Main Question A Classical Approximation Method Some Summation Methods

# Approximation Questions:

**1** Is the set of polynomials dense in  $\mathcal{X}$ ?

2 Given  $f \in \mathcal{X}$ , find a sequence of polynomials  $(p_n)_{n\geq 1}$ such that  $||p_n - f||_{\mathcal{X}} \to 0$  as  $n \to \infty$ .

**3** Given 
$$f \in \mathcal{X}$$
 and  $\varepsilon > 0$ , find  $p \in \mathcal{P}$  such that  $\|f - p\|_{\mathcal{X}} < \varepsilon$ .

Superharmonically Weighted Dirichlet Spaces Approximation in  $\mathcal{D}_{\zeta}$  Approximation in  $\mathcal{D}_{w}$  Approximation in  $\mathcal{D}_{w}$  Abstraction

Easy Solution

The Main Question A Classical Approximation Method Some Summation Methods

# What is the most natural choice for $p_n$ such that $||p_n - f||_{\mathcal{X}} \to 0$ ?

Summation Theory in Dirichlet Spaces

Superharmonically Weighted Dirichlet Spaces Approximation in  $\mathcal{D}_{\zeta}$  Approximation in  $\mathcal{D}_{w}$  Approximation in  $\mathcal{D}_{w}$  Abstraction

The Main Question A Classical Approximation Method Some Summation Methods

# **Taylor Polynomials**

Each  $f \in \mathcal{X} \subset Hol(\mathbb{D})$  has the Taylor series representation

$$f(z)=\sum_{k=0}^{\infty}a_kz^k.$$

Consider its Taylor polynomials

$$S_nf(z)=\sum_{k=0}^n a_k z^k, \qquad (n\geq 0).$$

Then we **expect** that

$$\|S_nf-f\|_{\mathcal{X}} \to 0, \qquad (n \to \infty).$$

Superharmonically Weighted Dirichlet Spaces Approximation in  $\mathcal{D}_{\zeta}$  Approximation in  $\mathcal{D}_{w}$  Approximation in  $\mathcal{D}_{w}$  Abstraction

The Main Question A Classical Approximation Method Some Summation Methods

# The Hardy–Hilbert Space $H^2$

Let

 $H^2 := \{ f \in \mathsf{Hol}(\mathbb{D}) : \|f\|_2 < \infty \},$ 

where

$$\|f\|_2 := \left(\sum_{k=0}^{\infty} |a_k|^2\right)^{\frac{1}{2}}$$

Then, immediately from the definition,

$$\|S_n f - f\|_2 = \left(\sum_{k=n+1}^{\infty} |a_k|^2\right)^{\frac{1}{2}} \to 0.$$

 The Main Question A Classical Approximation Method Some Summation Methods

# The Dirichlet Space $\mathcal{D}$

Let

$$\mathcal{D} := \{ f \in \mathsf{Hol}(\mathbb{D}) : \mathcal{D}(f) < \infty \},\$$

where

$$\mathcal{D}(f) := \left(\sum_{k=0}^{\infty} k |a_k|^2\right)^{rac{1}{2}}.$$

Summation Theory in Dirichlet Spaces

イロト イポト イヨト イヨト

э

Superharmonically Weighted Dirichlet Spaces Approximation in  $\mathcal{D}_{\zeta}$  Approximation in  $\mathcal{D}_{w}$  Approximation in  $\mathcal{D}_{w}$  Abstraction

The Main Question A Classical Approximation Method Some Summation Methods

# The Dirichlet Space $\mathcal{D}$

We define

$$\|f\|_{\mathcal{D}}^2 := \|f\|_2^2 + \mathcal{D}(f) = \sum_{k=0}^{\infty} (k+1)|a_k|^2.$$

Then, again immediately from the definition,

$$\|S_nf-f\|_{\mathcal{D}}=\left(\sum_{k=n+1}^{\infty}(k+1)|a_k|^2\right)^{\frac{1}{2}}\to 0.$$

Superharmonically Weighted Dirichlet Spaces Approximation in  $\mathcal{D}_{\zeta}$  Approximation in  $\mathcal{D}_w$  Approximation in  $\mathcal{D}_w$  Abstraction

The Main Question A Classical Approximation Method Some Summation Methods

# The Hardy Space H<sup>p</sup>

Let 0 and

$$H^p := \{ f \in \mathsf{Hol}(\mathbb{D}) : \|f\|_p < \infty \},\$$

where

$$||f||_{p} := \sup_{0 < r < 1} \left( \frac{1}{2\pi} \int_{0}^{2\pi} |f(re^{i\theta})|^{p} d\theta \right)^{\frac{1}{p}}.$$

Similarly,

$$H^{\infty} := \{ f \in \mathsf{Hol}(\mathbb{D}) : \|f\|_{\infty} < \infty \},\$$

where

$$\|f\|_{\infty} := \sup_{z \in \mathbb{D}} |f(z)|.$$

イロト イポト イヨト イヨト

э

Superharmonically Weighted Dirichlet Spaces Approximation in  $\mathcal{D}_{\zeta}$  Approximation in  $\mathcal{D}_{w}$  Approximation in  $\mathcal{D}_{w}$  Abstraction

The Main Question A Classical Approximation Method Some Summation Methods

# The Hardy Space H<sup>p</sup>

Then, for 1 ,

$$\|S_nf-f\|_p\to 0, \qquad (n\to\infty).$$

Not an immediate result. It follows from the M. Riesz theorem (1928) on the boundedness of projection

$$\begin{array}{rccc} P_+: & L^p(\mathbb{T}) & \longrightarrow & H^p(\mathbb{T}) \\ & & \sum_{n=-\infty}^{\infty} a_n z^n & \longmapsto & \sum_{n=0}^{\infty} a_n z^n \end{array}$$

Superharmonically Weighted Dirichlet Spaces Approximation in  $\mathcal{D}_{\zeta}$  Approximation in  $\mathcal{D}_{w}$  Approximation in  $\mathcal{D}_{w}$  Abstraction

The Main Question A Classical Approximation Method Some Summation Methods

# The Remaining Cases

### What about $H^1$ and $H^\infty$ ?

Summation Theory in Dirichlet Spaces

Superharmonically Weighted Dirichlet Spaces Approximation in  $\mathcal{D}_{\zeta}$  Approximation in  $\mathcal{D}_{w}$  Approximation in  $\mathcal{D}_{w}$  Abstraction

The Main Question A Classical Approximation Method Some Summation Methods

# The Hardy Space $H^{\infty}$

The polynomials are not dense in  $H^{\infty}$ .

Elementary fact: The uniform limit of continuous functions is continuous.

Infinite Blaschke products, or singular inner functions, are in  $H^{\infty}$  but not continuous on  $\overline{\mathbb{D}}$ . Hence, they cannot be uniformly approximated by polynomials on  $\overline{\mathbb{D}}$ .

イロト イポト イラト イラト

 The Main Question A Classical Approximation Method Some Summation Methods

# The Disk Algebra $\mathcal{A}(\mathbb{D})$

Let

 $\mathcal{A}(\mathbb{D}) := H^{\infty} \cap \mathcal{C}(\overline{\mathbb{D}}) =$  Closure of polynomials in  $H^{\infty}$ .

Then, by definition, polynomials are dense in  $\mathcal{A}(\mathbb{D})$ .

For each  $f \in \mathcal{A}(\mathbb{D})$ , do we have

$$\|S_nf-f\|_{\infty}\to 0?$$

Superharmonically Weighted Dirichlet Spaces Approximation in  $\mathcal{D}_{\zeta}$  Approximation in  $\mathcal{D}_{w}$  Approximation in  $\mathcal{D}_{w}$  Abstraction

The Main Question A Classical Approximation Method Some Summation Methods

# The First Crack

Not necessarily!

There is an

 $f \in \mathcal{A}(\mathbb{D})$ 

such that its Taylor polynomials **do not converge** uniformly to f on  $\mathbb{D}$ .

Justification

Lebesgue's constants are

$$L_n := \|S_n\|_{\mathcal{A}(\mathbb{D}) \to \mathcal{A}(\mathbb{D})} \asymp \log n, \qquad n \ge 1.$$

Thus, in particular,

$$\sup_{n\geq 0} \|S_n\|_{\mathcal{A}(\mathbb{D})\to\mathcal{A}(\mathbb{D})}=\infty.$$

Summation Theory in Dirichlet Spaces

イロト イポト イヨト イヨト

A Classical Approximation Method

Superharmonically Weighted Dirichlet Spaces Approximation in  $\mathcal{D}_{\zeta}$  Approximation in  $\mathcal{D}_{w}$  Approximation in  $\mathcal{D}_{w}$  Abstraction

Justification

The Main Question A Classical Approximation Method Some Summation Methods

Hence, by the Banach–Steinhaus Theorem, there is an  $f\in\mathcal{A}(\mathbb{D})$  such that

$$\sup_{n\geq 0} \|S_n f\|_{\mathcal{A}(\mathbb{D})} = \infty.$$

In particular,

 $S_n f \not\rightarrow f, \quad \text{in } \mathcal{A}(\mathbb{D}).$ 

Superharmonically Weighted Dirichlet Spaces Approximation in  $\mathcal{D}_{\zeta}$  Approximation in  $\mathcal{D}_{w}$  Approximation in  $\mathcal{D}_{w}$  Abstraction

The Main Question A Classical Approximation Method Some Summation Methods

# Historical Note

- Paul du Bois-Reymond (1873) constructed a function whose Fourier series diverges at a point of continuity.
- His construction can be modified to obtain a function f is the disc algebra A(D) whose Taylor polynomials do not converge uniformly on D, i.e.,

 $\|S_nf-f\|_{H^{\infty}}\not\to 0.$ 

There is a similar construction to show that

$$\|S_nf-f\|_{H^1}\not\to 0.$$

・ロト ・同ト ・ヨト ・ヨト

Superharmonically Weighted Dirichlet Spaces Approximation in  $\mathcal{D}_{\zeta}$  Approximation in  $\mathcal{D}_{w}$  Approximation in  $\mathcal{D}_{w}$  Abstraction

The Main Question A Classical Approximation Method Some Summation Methods

# **Divergent Series**

### How can we transform a divergent series to a convergent series?

Summation Theory in Dirichlet Spaces

Superharmonically Weighted Dirichlet Spaces Approximation in  $\mathcal{D}_{\zeta}$  Approximation in  $\mathcal{D}_{w}$  Approximation in  $\mathcal{D}_{w}$  Abstraction

The Main Question A Classical Approximation Method Some Summation Methods

# Cesàro Means

### The series $\sum_{k=0}^{\infty} a_k$ is C-summable to s if

$$\lim_{n\to\infty}\sum_{k=0}^{n-1}\left(1-\frac{k}{n}\right)a_k=s.$$

Summation Theory in Dirichlet Spaces

Superharmonically Weighted Dirichlet Spaces Approximation in  $\mathcal{D}_{\zeta}$  Approximation in  $\mathcal{D}_w$  Approximation in  $\mathcal{D}_w$  Abstraction

The Main Question A Classical Approximation Method Some Summation Methods

# Abel Means

### The series $\sum_{k=0}^{\infty} a_k$ is A-summable to *s* if

$$\lim_{r\to 1^-}\sum_{k=0}^{\infty}r^ka_k=s.$$

Summation Theory in Dirichlet Spaces

イロト イポト イヨト イヨト

э



The Main Question A Classical Approximation Method Some Summation Methods

### Summable

₩

### **C-summable**

∜

### A-summable

Summation Theory in Dirichlet Spaces

æ

Superharmonically Weighted Dirichlet Spaces Approximation in  $\mathcal{D}_{\zeta}$  Approximation in  $\mathcal{D}_{w}$  Approximation in  $\mathcal{D}_{w}$  Abstraction

The Main Question A Classical Approximation Method Some Summation Methods

# Summation Methods



< => < => < => < =>

Superharmonically Weighted Dirichlet Spaces Approximation in  $\mathcal{D}_{\zeta}$  Approximation in  $\mathcal{D}_w$  Approximation in  $\mathcal{D}_w$  Abstraction

The Main Question A Classical Approximation Method Some Summation Methods

# More Summation Methods

The generalized Cesàro means of order  $\alpha$ :

$$\sigma_n^{\alpha}f(z) = \sum_{k=0}^n \frac{\binom{n-k+\alpha}{\alpha}}{\binom{n+\alpha}{\alpha}} a_k z^k,$$

where

$$\binom{n+\alpha}{\alpha} = \frac{\Gamma(n+\alpha+1)}{\Gamma(\alpha+1)\Gamma(n+1)}, \qquad \alpha > -1$$

Note that  $\sigma_n^0 f = S_n f$  and  $\sigma_n^1 f = \sigma_n f$ .

< D > < P > < E >

Superharmonically Weighted Dirichlet Spaces Approximation in  $\mathcal{D}_{\zeta}$  Approximation in  $\mathcal{D}_{w}$  Approximation in  $\mathcal{D}_{w}$ 

The Main Question A Classical Approximation Method Some Summation Methods



Summation Theory in Dirichlet Spaces

イロト イボト イヨト イヨト

э

Superharmonically Weighted Dirichlet Spaces Approximation in  $\mathcal{D}_{\zeta}$  Approximation in  $\mathcal{D}_{w}$  Approximation in  $\mathcal{D}_{w}$  Abstraction

The Main Question A Classical Approximation Method Some Summation Methods

# **Divergent Series**

### **Summation of Entire Series**

Summation Theory in Dirichlet Spaces

Superharmonically Weighted Dirichlet Spaces Approximation in  $\mathcal{D}_{\zeta}$  Approximation in  $\mathcal{D}_{w}$  Approximation in  $\mathcal{D}_{w}$  Abstraction

The Main Question A Classical Approximation Method Some Summation Methods

# **Divergent Series**

### **Abel Means**

Summation Theory in Dirichlet Spaces

イロト イポト イヨト イヨト

э

Superharmonically Weighted Dirichlet Spaces Approximation in  $\mathcal{D}_{\zeta}$  Approximation in  $\mathcal{D}_w$  Approximation in  $\mathcal{D}_w$  Abstraction

The Main Question A Classical Approximation Method Some Summation Methods

# Making $\mathbb{T}$ a Nice Boundary

The Abel means of

$$f(z) = \sum_{k=0}^{\infty} a_k z^k, \qquad (f \in \operatorname{Hol}(\mathbb{D})),$$

are

$$f_r(z) = \sum_{k=0}^{\infty} r^k \times a_k z^k = f(rz), \qquad (0 < r < 1).$$

Do we have

$$\|f-f_r\|_{\mathcal{X}} \to 0, \qquad (r \to 1^-)?$$

Superharmonically Weighted Dirichlet Spaces Approximation in  $\mathcal{D}_{\zeta}$  Approximation in  $\mathcal{D}_{w}$  Approximation in  $\mathcal{D}_{w}$  Abstraction

The Main Question A Classical Approximation Method Some Summation Methods

# $f_r$ Lives on a Bigger Disc



The main feature of  $f_r$  is that it is defined on the disc |z| < 1/rwhich contains  $\overline{\mathbb{D}}$  as a proper subset. In short,  $f_r$  is analytic at all points of  $\mathbb{T} = \partial \mathbb{D}$ .

Superharmonically Weighted Dirichlet Spaces Approximation in  $\mathcal{D}_{\zeta}$  Approximation in  $\mathcal{D}_{w}$  Approximation in  $\mathcal{D}_{w}$  Abstraction

The Main Question A Classical Approximation Method Some Summation Methods

# Good Features

### In several function spaces $\mathcal{X} \in Hol(\mathbb{D})$ , we have

if  $f_r \in \mathcal{X}$ , if  $\|f - f_r\|_{\mathcal{X}} \to 0$  as  $r \to 1$ ,

for all  $f \in \mathcal{X}$ .

Image: A matched and A matc

Superharmonically Weighted Dirichlet Spaces Approximation in  $\mathcal{D}_{\zeta}$  Approximation in  $\mathcal{D}_{w}$  Approximation in  $\mathcal{D}_{w}$  Abstraction

The Main Question A Classical Approximation Method Some Summation Methods

# Good News

Abel summation works for:

- Hardy Spaces  $H^p$ , 0 .
- **ii** Disc Algebra  $\mathcal{A}(\mathbb{D})$ .
- **III** Dirichlet Spaces  $\mathcal{D}_{\mu}$ .
- ₩ Bergman Spaces A<sup>p</sup>.

(日)

 $\begin{array}{c} \mbox{Polynomial Approximation}\\ \mbox{Superharmonically Weighted Dirichlet Spaces}\\ \mbox{Approximation in } \mathcal{D}_{\zeta}\\ \mbox{Approximation in } \mathcal{D}_w\\ \mbox{Abstraction} \end{array}$ 

The Main Question A Classical Approximation Method Some Summation Methods

# **Bad News**

There are function spaces  $\ensuremath{\mathcal{X}}$  , where the dilation technique does not work.

Two essential reasons:

 $\mathcal{X}$  is not star-shaped, i.e.,  $\exists f \in \mathcal{X}$  but  $f_r \notin \mathcal{X}$ .

 $\mathbf{ii} \ \mathcal{X}$  is star-shaped, i.e.,

$$f \in \mathcal{X} \implies f_r \in \mathcal{X},$$

yet  $f_r \not\rightarrow f$  in the norm of  $\mathcal{X}$ .

 $\begin{array}{c} \mbox{Polynomial Approximation}\\ \mbox{Superharmonically Weighted Dirichlet Spaces}\\ \mbox{Approximation in } \mathcal{D}_{\zeta}\\ \mbox{Approximation in } \mathcal{D}_w\\ \mbox{Abstraction} \end{array}$ 

The Main Question A Classical Approximation Method Some Summation Methods

# **Bad News**

There are function spaces  $\ensuremath{\mathcal{X}}$  , where the dilation technique does not work.

Two essential reasons:

- **1** Model spaces  $K_{\theta}$  are not star-shaped.
- ii de Branges-Rovnyak spaces  $\mathcal{H}(b)$  are star-shaped, yet it is possible that  $f_r \neq f$  in the norm of  $\mathcal{H}(b)$ .

Superharmonically Weighted Dirichlet Spaces Approximation in  $\mathcal{D}_{\zeta}$  Approximation in  $\mathcal{D}_{w}$  Approximation in  $\mathcal{D}_{w}$  Abstraction

The Main Question A Classical Approximation Method Some Summation Methods

# Historical Note

- Sarason (1986): Using a dulaity argument, polynomials are dense in H(b).
- Chevrot-Guillot-Ransford (2010): Dilation fails in  $\mathcal{H}(b)$ . Construction of b and an  $f \in \mathcal{H}(b)$  such that

 $\limsup_{r\to 1} \|f_r\|_{\mathcal{H}(b)} = \infty.$ 

Summation Theory in Dirichlet Spaces

Superharmonically Weighted Dirichlet Spaces Approximation in  $\mathcal{D}_{\zeta}$  Approximation in  $\mathcal{D}_{w}$  Approximation in  $\mathcal{D}_{w}$  Abstraction

richlet SpacesThe Main Questionmation in  $\mathcal{D}_{\zeta}$ A Classical Approximation Ination in  $\mathcal{D}_{W}$ Some Summation Methods

# Historical Note

EIFallah–Fricain–Kellay–JM–Ransford (2016): Construction of b and an  $f \in \mathcal{H}(b)$  such that

 $\lim_{r\to 1} \|f_r\|_{\mathcal{H}(b)} = \infty.$ 

 EIFallah–Fricain–Kellay–JM–Ransford (2016): A semi-constructive solution for polynomial approximation.
Superharmonically Weighted Dirichlet Spaces Approximation in  $\mathcal{D}_{\zeta}$  Approximation in  $\mathcal{D}_{w}$  Approximation in  $\mathcal{D}_{w}$  Abstraction

The Main Question A Classical Approximation Method Some Summation Methods

# Historical Note

**I** JM-Ransford (2017): Construction of an 'outer' symbol b and an  $f \in \mathcal{H}(b)$  such that

$$\lim_{r\to 1} \|f_r\|_{\mathcal{H}(b)} = \infty.$$

■ JM–Parisé–Ransford (2021): Even stronger methods like Borel means and logarithmic means fail for *H*(*b*) spaces.

Superharmonically Weighted Dirichlet Spaces Approximation in  $\mathcal{D}_{\zeta}$  Approximation in  $\mathcal{D}_{w}$  Approximation in  $\mathcal{D}_{w}$  Abstraction

The Main Question A Classical Approximation Method Some Summation Methods

#### **Divergent Series**

#### Cesàro Means

Summation Theory in Dirichlet Spaces

イロト イポト イヨト イヨト

Superharmonically Weighted Dirichlet Spaces Approximation in  $\mathcal{D}_{\zeta}$  Approximation in  $\mathcal{D}_{w}$  Approximation in  $\mathcal{D}_{w}$  Abstraction

The Main Question A Classical Approximation Method Some Summation Methods

## Fejér Polynomials

The Cesàro Means of

$$f(z) = \sum_{k=0}^{\infty} a_k z^k$$

are (the so-called Fejér polynomials)

$$\sigma_n f(z) = \sum_{k=0}^{n-1} \left( 1 - \frac{k}{n} \right) a_k z^k, \qquad (n \ge 1).$$

Do we have

$$\|\sigma_n f - f\|_{\mathcal{X}} \to 0, \qquad (n \to \infty)?$$

Summation Theory in Dirichlet Spaces

Superharmonically Weighted Dirichlet Spaces Approximation in  $\mathcal{D}_{\zeta}$  Approximation in  $\mathcal{D}_{w}$  Approximation in  $\mathcal{D}_{w}$  Abstraction

The Main Question A Classical Approximation Method Some Summation Methods

## Historical Note

Hardy–Littlewood: In the Hardy space  $H^1$ ,

$$\|f - \sigma_n f\|_{H^1} = \left\|f - \sum_{k=0}^{n-1} \left(1 - \frac{k}{n}\right) a_k z^k\right\|_{H^1} \to 0.$$

• Hardy–Littlewood: In the disk algebra  $\mathcal{A}(\mathbb{D})$ ,

$$\|f - \sigma_n f\|_{H^{\infty}} = \left\|f - \sum_{k=0}^{n-1} \left(1 - \frac{k}{n}\right) a_k z^k\right\|_{H^{\infty}} \to 0.$$

 $\begin{array}{c} \textbf{Polynomial Approximation}\\ \text{Superharmonically Weighted Dirichlet Spaces}\\ \text{Approximation in } \mathcal{D}_{\mathcal{G}}\\ \text{Approximation in } \mathcal{D}_{\mathcal{W}}\\ \text{Abstraction} \end{array}$ 

The Main Question A Classical Approximation Method Some Summation Methods

#### Historical Note - Generalized version

Hardy-Littlewood: In the Hardy space  $H^1$ , for each  $\alpha > 0$ ,

$$\|f-\sigma_n^{\alpha}f\|_{H^1}=\left\|f-\sum_{k=0}^{n-1}\frac{\binom{n-k+\alpha}{\alpha}}{\binom{n+\alpha}{\alpha}}a_kz^k\right\|_{H^1}\to 0.$$

Hardy–Littlewood: In the disk algebra  $\mathcal{A}(\mathbb{D})$ , for each  $\alpha > 0$ ,

$$\|f - \sigma_n^{\alpha} f\|_{H^{\infty}} = \left\|f - \sum_{k=0}^{n-1} \frac{\binom{n-k+\alpha}{\alpha}}{\binom{n+\alpha}{\alpha}} a_k z^k\right\|_{H^{\infty}} \to 0.$$

Superharmonically Weighted Dirichlet Spaces Approximation in  $\mathcal{D}_{\zeta}$  Approximation in  $\mathcal{D}_{w}$  Approximation in  $\mathcal{D}_{w}$  Abstraction

The Main Question A Classical Approximation Method Some Summation Methods

# Historical Note

- EIFallah–Fricain–Kellay–JM–Ransford (2016): The Cesàro summation fails in de Branges-Rovnyak spaces H(b).
- JM–Ransford (2018): The Cesàro summation works in superharmonically weighted Dirichlet spaces  $\mathcal{D}_w$ .
- JM-Parisé-Ransford (2020): The Cesàro summation or order > 1/2 work in superharmonically weighted Dirichlet spaces D<sub>w</sub>. Moreover, the order 1/2 is sharp.

Superharmonically Weighted Dirichlet Spaces Approximation in  $\mathcal{D}_{\zeta}$  Approximation in  $\mathcal{D}_{w}$  Approximation in  $\mathcal{D}_{w}$  Abstraction

The Main Question A Classical Approximation Method Some Summation Methods

# Summability in Function Spaces



Summation Theory in Dirichlet Spaces

The Classical Dirichlet Space Superharmonic Weights Douglas Formula

#### The Dirichlet Space $\mathcal{D}$

Recall that

$$\mathcal{D} := \{ f \in \mathsf{Hol}(\mathbb{D}) : \mathcal{D}(f) < \infty \},\$$

where

$$\|f\|_{\mathcal{D}}^2 := \|f\|_2^2 + \mathcal{D}(f) = \sum_{k=0}^{\infty} (k+1)|a_k|^2.$$

Summation Theory in Dirichlet Spaces

イロト イポト イヨト イヨト

 $\begin{array}{c} \mbox{Polynomial Approximation}\\ \mbox{Superharmonically Weighted Dirichlet Spaces}\\ \mbox{Approximation in } \mathcal{D}_{\zeta}\\ \mbox{Approximation in } \mathcal{D}_{with constraint}\\ \mbox{Ap$ 

The Classical Dirichlet Space Superharmonic Weights Douglas Formula

# Another Representation for $\mathcal{D}(f)$

We have

$$\mathcal{D}(f) = rac{1}{\pi} \int_{\mathbb{D}} |f'(z)|^2 \, dA(z),$$

where dA(z) is the two-dimensional Lebesgue (area) measure.

The Classical Dirichlet Space Superharmonic Weights Douglas Formula

# A Generalization

Let w be a positive superharmonic function on  $\mathbb{D}$ . We define

$$\mathcal{D}_w(f) = \frac{1}{\pi} \int_{\mathbb{D}} w(z) |f'(z)|^2 \, dA(z),$$

and

$$\mathcal{D}_w := \{ f \in \mathsf{Hol}(\mathbb{D}) : \mathcal{D}_w(f) < \infty \}.$$

The Classical Dirichlet Space Superharmonic Weights Douglas Formula

# A Generalization

Easy to see that

$$\mathcal{D}_w \subset H^2.$$

We define

$$\|f\|_{\mathcal{D}_w}^2 := \|f\|_{H^2}^2 + \mathcal{D}_w(f).$$

Then  $\mathcal{D}_w$  becomes a reproducing kernel Hilbert Space (RKHS) on the open unit disc  $\mathbb{D}$ .

The Classical Dirichlet Space Superharmonic Weights Douglas Formula

# Historical Note

- The Dirichlet integral appeared in Dirichlet's method for solving the Laplace equation (the so called Dirichlet principle).
- A. Beurling introduced the classical Dirichlet space in his thesis (1933) and its foundation was laid by him and L. Carleson in subsequent years.
- The harmonically weighted Dirichlet spaces were introduced by S. Richter (1991) in his analysis of shift-invariant subspaces of the classical Dirichlet space (Beurling-type theorem).
- The superharmonic weights were introduced by A. Aleman (1993).

The Classical Dirichlet Space Superharmonic Weights Douglas Formula

# A Special Weight

The weights

$$w(z) = (1 - |z|^2)^{\alpha}, \qquad (0 \le \alpha \le 1).$$

have been extensively studies.

They form a scale linking the classical Dirichlet space  $\mathcal{D}$  ( $\alpha = 0$ ) to the Hardy space  $H^2$  ( $\alpha = 1$ ).

The Classical Dirichlet Space Superharmonic Weights Douglas Formula

# A Special Weight

The latter is a consequence of the Littlewood–Paley formula:

$$\|f\|_{H^2}^2 = |f(0)|^2 + rac{2}{\pi} \int_{\mathbb{D}} |f'(z)|^2 \log rac{1}{|z|} dA(z).$$

Note that

$$(1-|z|^2) symp \log rac{1}{|z|} \qquad ext{as } |z| o 1.$$

Summation Theory in Dirichlet Spaces

 $\begin{array}{c} \mbox{Polynomial Approximation}\\ \mbox{Superharmonically Weighted Dirichlet Spaces}\\ \mbox{Approximation in } \mathcal{D}_{\zeta}\\ \mbox{Approximation in } \mathcal{D}_{\rm transformation}\\ \mbox{Approximation$ 

The Classical Dirichlet Space Superharmonic Weights Douglas Formula

#### A Potential Theory Result

To each positive superharmonic function w corresponds a *unique* positive finite Borel measure  $\mu$  on  $\overline{\mathbb{D}}$  such that

$$w(z) = \int_{\mathbb{D}} \log \left| rac{1-ar{\zeta} z}{\zeta-z} 
ight| \, rac{2d\mu(\zeta)}{1-|\zeta|^2} + \int_{\mathbb{T}} rac{1-|z|^2}{|\zeta-z|^2} \, d\mu(\zeta)$$

for all  $z \in \mathbb{D}$ .

< ロ > < 同 > < 三 > .

The Classical Dirichlet Space Superharmonic Weights Douglas Formula



# Recall that $\mathcal{D}_w(f) = rac{1}{\pi} \int_{\mathbb{D}} w(z) \, |f'(z)|^2 \, dA(z).$

Summation Theory in Dirichlet Spaces

イロト イボト イヨト イヨト

The Classical Dirichlet Space Superharmonic Weights Douglas Formula



#### Hence,

$$\mathcal{D}_{\mu}(f) = \int_{\mathbb{D}} \left[ \int_{\mathbb{D}} \log \left| \frac{1 - \overline{\zeta} z}{\zeta - z} \right| \frac{2d\mu(\zeta)}{1 - |\zeta|^2} + \int_{\mathbb{T}} \frac{1 - |z|^2}{|\zeta - z|^2} d\mu(\zeta) \right] \\ |f'(z)|^2 dA(z).$$

Summation Theory in Dirichlet Spaces

< ロ > < 回 > < 回 > < 回 > < 回 >

æ

The Classical Dirichlet Space Superharmonic Weights Douglas Formula

#### **Dirac Measures**

If 
$$\mu = \delta_{\zeta}$$
, then

$$\mathcal{D}_{\zeta}(f) = \int_{\mathbb{D}} \left[ \log \left| \frac{1 - \overline{\zeta}z}{\zeta - z} \right| \, \frac{2}{1 - |\zeta|^2} 
ight] |f'(z)|^2 \, dA(z), \qquad (\zeta \in \mathbb{D}),$$

or

$$\mathcal{D}_{\zeta}(f) = \int_{\mathbb{D}} \left[ rac{1-|z|^2}{|\zeta-z|^2} 
ight] |f'(z)|^2 \, dA(z), \qquad (\zeta \in \mathbb{T}).$$

Summation Theory in Dirichlet Spaces

æ

The Classical Dirichlet Space Superharmonic Weights Douglas Formula

## Superposition

By Fubini, we thus have

$$\mathcal{D}_{\mu}(f) = \int_{\overline{\mathbb{D}}} \mathcal{D}_{\zeta}(f) \, d\mu(\zeta).$$

Summation Theory in Dirichlet Spaces

イロト イポト イヨト イヨト

The Classical Dirichlet Space Superharmonic Weights Douglas Formula

# J. Douglas Formula (1931)

We also have

$$\mathcal{D}_{\zeta}(f) = rac{1}{2\pi} \int_{\mathbb{T}} \left| rac{f(\lambda) - f(\zeta)}{\lambda - \zeta} 
ight|^2 \, |d\lambda|,$$

where

$$f(\zeta) := \lim_{r \to 1^-} f(r\zeta).$$

#### (J. Douglas and L. Ahlfors are the first Fields Medalists in 1936.)

 $\begin{array}{c} \mbox{Polynomial Approximation}\\ \mbox{Superharmonically Weighted Dirichlet Spaces}\\ \mbox{Approximation in } \mathcal{D}_{\zeta}\\ \mbox{Approximation in } \mathcal{D}_{\rm transformation}\\ \mbox{Approximation$ 

The Classical Dirichlet Space Superharmonic Weights Douglas Formula

#### An Important Application

Define

$$Q_{\zeta}f(z):=rac{f(z)-f(\zeta)}{z-\zeta}.$$

Then, by Douglas formula,

$$\|f\|_{\mathcal{D}_{\zeta}}^{2} = \|f\|_{H^{2}}^{2} + \|Q_{\zeta}f\|_{H^{2}}^{2}.$$

Summation Theory in Dirichlet Spaces

Lebesgue-type Constants The Last Harmonic

#### Approximation in Local Dirichlet Spaces Negative Results

Summation Theory in Dirichlet Spaces

Polynomial Approximation Superharmonically Weighted Dirichlet Spaces Approximation in  $\mathcal{D}_{\mathcal{G}}$ Approximation in  $\mathcal{D}_{W}$ Abstraction

Lebesgue-type Constants The Last Harmonic

#### Taylor Polynomials Fail

lf

$$f(z) := \sum_{k=0}^{\infty} a_k z^k \in \mathcal{D}_{\zeta}$$

then we **cannot** conclude that

$$\|S_nf-f\|_{\mathcal{D}_{\zeta}}\to 0.$$

Summation Theory in Dirichlet Spaces

イロト イボト イヨト イヨト

Lebesgue-type Constants The Last Harmonic

#### Taylor Polynomials Fail

There is a function

$$f(z):=\sum_{k=0}^\infty a_k z^k\in \mathcal{D}_1$$

#### such that

$$\sup_{n\geq 1} \|S_n f\|_{\mathcal{D}_1} = \sup_{n\geq 1} \left\|\sum_{k=0}^n a_k z^k\right\|_{\mathcal{D}_1} = \infty.$$

In particular,

$$\|S_nf-f\|_{\mathcal{D}_1}\not\to 0, \qquad (n\to\infty).$$

イロト イボト イヨト イヨト

 $\begin{array}{c} \mbox{Polynomial Approximation}\\ \mbox{Superharmonically Weighted Dirichlet Spaces}\\ \mbox{Approximation in } \mathcal{D}_{\boldsymbol{\zeta}}\\ \mbox{Approximation in } \mathcal{D}_{\rm transformation}\\ \mbox{Approximation in } \mathcal{D}_{\rm transformation}\\ \mbox{Abstraction}\\ \mbox{Abstractio$ 

Lebesgue-type Constants The Last Harmonic

# Justification

Consider

$$h(z):=z^n-z^{n+1},\qquad (z\in\mathbb{D}).$$

Then  $h \in \mathcal{D}_1$  and

$$(S_nh)(z)=z^n,\qquad (z\in\mathbb{D}).$$

Summation Theory in Dirichlet Spaces

æ

Polynomial Approximation Superharmonically Weighted Dirichlet Spaces Approximation in  $\mathcal{D}_{\zeta}$ Approximation in  $\mathcal{D}_w$ Abstraction

Lebesgue-type Constants The Last Harmonic

## Justification

Then  $\|h\|_{\mathcal{D}_1}^2 = 3$  and  $\|S_n h\|_{\mathcal{D}_1}^2 = n+1$  and, by Douglas formula,

$$\|S_n\|_{\mathcal{D}_1\to\mathcal{D}_1}\geq \left(\frac{n+1}{3}\right)^{\frac{1}{2}},\qquad (n\geq 0).$$

In particular,

$$\sup_{n\geq 0} \|S_n\|_{\mathcal{D}_1\to\mathcal{D}_1}=\infty.$$

Lebesgue-type Constants The Last Harmonic

# Justification

Therefore, by the Banach-Steinhaus theorem, there is an  $f \in \mathcal{D}_1$  such that

$$\sup_{n\geq 0} \|S_n f\|_{\mathcal{D}_1} = \infty.$$

In particular, for this specific  $f \in \mathcal{D}_1$ ,

 $\|S_nf-f\|_{\mathcal{D}_1}\not\to 0.$ 

Summation Theory in Dirichlet Spaces

Polynomial Approximation Superharmonically Weighted Dirichlet Spaces Approximation in  $\mathcal{D}_{\zeta}$ Approximation in  $\mathcal{D}_w$ Abstraction

Lebesgue-type Constants The Last Harmonic

#### Lebesgue-type Constants

As in the classical setting, we define

$$L_n := \|S_n\|_{\mathcal{D}_1 \to \mathcal{D}_1} = \sup_{f \in \mathcal{D}_1} \frac{\|S_n f\|_{\mathcal{D}_1}}{\|f\|_{\mathcal{D}_1}}.$$

A maximizing function  $f \in \mathcal{D}_1$ ,  $f \neq 0$ , satisfies

$$L_n = \|S_n\|_{\mathcal{D}_1 \to \mathcal{D}_1} = \frac{\|S_n f\|_{\mathcal{D}_1}}{\|f\|_{\mathcal{D}_1}}$$

Lebesgue-type Constants The Last Harmonic

#### The Norms

Recall that  $\mathcal{D}_1(f)$  is a semi-norm. We need to add an extra term to count the constant term. Here are three popular ways:

$$\begin{split} \|f\|_{\mathcal{D}_{1}}^{2} &= |f(0)|^{2} + \mathcal{D}_{1}(f), \\ \|f\|_{\mathcal{D}_{1}}^{2} &= |f(1)|^{2} + \mathcal{D}_{1}(f), \\ \|f\|_{\mathcal{D}_{1}}^{2} &= \|f\|_{H^{2}}^{2} + \mathcal{D}_{1}(f). \end{split}$$

There are three corresponding Theorems by JM-Withanachchi-Shirazi, 2022.

Lebesgue-type Constants The Last Harmonic

#### The Norm

#### Theorem (MWS 2022)

Assume that  $\mathcal{D}_1$  is equipped with the norm

$$||f||_{\mathcal{D}_1}^2 = |f(0)|^2 + \mathcal{D}_1(f).$$

#### Then

$$\|S_n\|_{\mathcal{D}_1\to\mathcal{D}_1}=\sqrt{n+1},\quad n\geq 0.$$

Moreover, the unique maximizing function is

$$f(z)=(n+1)z^n-nz^{n+1}, \quad n\geq 0.$$

イロト イポト イヨト イヨト

Lebesgue-type Constants The Last Harmonic

#### The Norm

#### Theorem (MWS 2022)

Assume that  $\mathcal{D}_1$  is equipped with the norm

$$||f||_{\mathcal{D}_1}^2 = |f(1)|^2 + \mathcal{D}_1(f).$$

#### Then

$$\|S_n\|_{\mathcal{D}_1\to\mathcal{D}_1}=\sqrt{n+2},\quad n\geq 0.$$

Moreover, the unique maximizing function is

$$f(z) = (n+2)z^n - (n+1)z^{n+1}, \quad n \ge 0.$$

イロト イポト イヨト イヨト

Lebesgue-type Constants The Last Harmonic

#### The Norm

Theorem (MWS 2022)

Let  $\rho = \frac{3+\sqrt{5}}{2}$ . Assume that  $\mathcal{D}_1$  is equipped with the norm

$$\|f\|_{\mathcal{D}_1}^2 = \|f\|_{H^2}^2 + \mathcal{D}_1(f).$$

Then there are three cases.

- If 
$$n = 0$$
,

$$\|S_0\|_{\mathcal{D}_1\to\mathcal{D}_1}=1,$$

with the unique maximizing function f(z) = 1.

Lebesgue-type Constants The Last Harmonic

#### The Norm

#### Theorem (Continued)

If  $1 \le n \le 4$ ,

$$\|S_n\|_{\mathcal{D}_1\to\mathcal{D}_1}=\sqrt{rac{4(n+1)}{n+3+
ho}},$$

with the unique maximizing function

$$f(z) = \frac{(1-1/\rho)z^{n+1}}{1-z/\rho}.$$

Summation Theory in Dirichlet Spaces

イロト イポト イヨト イヨト

Lebesgue-type Constants The Last Harmonic

#### The Norm

#### Theorem (Continued)

• If  $n \ge 5$ ,

$$\|S_n\|_{\mathcal{D}_1\to\mathcal{D}_1}=\sqrt{\frac{n+1}{\rho}},$$

with the unique maximizing function

$$f(z) = \frac{z^n(1-z)}{1-z/\rho}$$

Summation Theory in Dirichlet Spaces

イロト イポト イヨト イヨト

Lebesgue-type Constants The Last Harmonic

#### **Open Question**

Recall that  $S_n = \sigma_n^0$ .

Using the new techniques developed for the proof of the above results, can we evaluate

$$\|\sigma_n^{\alpha}\|_{\mathcal{D}_1\to\mathcal{D}_1}$$
?

Summation Theory in Dirichlet Spaces

Lebesgue-type Constants The Last Harmonic

#### Approximation in Local Dirichlet Spaces Positive Results

Summation Theory in Dirichlet Spaces

イロト イボト イヨト イヨト
Lebesgue-type Constants The Last Harmonic

# The 'Last' Coefficient

Despite the (possible) unpleasant situation

$$\|S_nf-f\|_{\mathcal{D}_{\zeta}} \not\to 0,$$

if we properly modify just the last term in the Taylor polynomial  $S_n f$ , then the new polynomial sequence becomes convergent.

- 4 同 ト 4 ヨ ト

Lebesgue-type Constants The Last Harmonic

# The Modified Taylor Polynomial

#### Theorem (JM-Ransford, 2018)

Let

$$f(z) := \sum_{k=0}^{\infty} a_k z^k \in \mathcal{D}_{\zeta}.$$

Then there is  $a'_n \in \mathbb{C}$  such that, with

$$p_n(z) := \sum_{k=0}^{n-1} a_k z^k + a'_n z^n,$$

we have

$$\|p_n-f\|_{\mathcal{D}_{\zeta}}\to 0.$$

Summation Theory in Dirichlet Spaces

イロト イポト イヨト イヨト

э

Lebesgue-type Constants The Last Harmonic

# A Convergence Result

For each

$$f(z):=\sum_{k=0}^\infty a_k z^k\in \mathcal{D}_\zeta$$

the (numerical) series

$$\sum_{k=0}^{\infty} a_k \zeta^k$$

is convergent.

Lebesgue-type Constants The Last Harmonic

## The Modified Taylor Polynomial

#### Theorem (Explicit Version)

Let

$$f(z) := \sum_{k=0}^{\infty} a_k z^k \in \mathcal{D}_{\zeta}.$$

Put

$$p_n(z) := \sum_{k=0}^{n-1} a_k z^k + \left(\sum_{k=n}^{\infty} a_k \zeta^{k-n}\right) z^n.$$

Then

 $\|p_n-f\|_{\mathcal{D}_{\zeta}}\to 0.$ 

Polynomial Kernels General Kernels



#### Is there a constructive method for $\mathcal{D}_{\mu}$ ?

Summation Theory in Dirichlet Spaces

イロト イボト イヨト イヨト

Polynomial Kernels General Kernels

# Hadamard Product

lf

$$f(z)=\sum_{k=0}^{\infty}a_kz^k$$

and

$$g(z)=\sum_{k=0}^{\infty}b_kz^k,$$

then their Hadamard product is

$$(f * g)(z) = \sum_{k=0}^{\infty} a_k b_k z^k.$$

In our applications,  $f, g \in Hol(\mathbb{D})$  and thus  $f * g \in Hol(\mathbb{D})$ .

Polynomial Kernels General Kernels

## Dirichlet Kernel

The Dirichlet kernel is

$$D_n(z) := \sum_{k=0}^n z^k.$$

Summation Theory in Dirichlet Spaces

Polynomial Kernels General Kernels



The Dirichlet Kernel

Summation Theory in Dirichlet Spaces

Polynomial Kernels General Kernels

## Dirichlet Kernel

Then

$$(D_n * f)(z) := \sum_{k=0}^n a_k z^k.$$

Hence,

$$S_n f = D_n * f.$$

Summation Theory in Dirichlet Spaces

Polynomial Kernels General Kernels

## Fejér Kernel

The Fejér kernel is

$$F_n(z) := \sum_{k=0}^{n-1} \left(1 - \frac{k}{n}\right) z^k.$$

Summation Theory in Dirichlet Spaces

Polynomial Kernels General Kernels



The Fejér Kernel

Summation Theory in Dirichlet Spaces

Polynomial Kernels General Kernels

# Fejér Kernel

Then

$$(F_n * f)(z) := \sum_{k=0}^{n-1} \left(1 - \frac{k}{n}\right) a_k z^k.$$

Hence,

$$\sigma_n f = F_n * f.$$

Summation Theory in Dirichlet Spaces

Polynomial Kernels General Kernels

### de la Vallée Poussin Kernel

The de la Vallée Poussin kernel is

$$V_n(z) := 2F_{2n}(z) - F_n(z).$$

Summation Theory in Dirichlet Spaces

イロト イボト イヨト イヨト

э

Polynomial Kernels General Kernels



The de la Vallée Poussin Kernel

Summation Theory in Dirichlet Spaces

Polynomial Kernels General Kernels

### The Crucial Estimation

#### Theorem (JM-Ransford 2018)

Let K be a polynomial of degree d, say

$$K(z) := \sum_{k=0}^d c_k z^k.$$

If  $f \in \mathcal{D}_{\mu}$ , then K \* f is (a polynomial in  $\mathcal{D}_{\mu}$ ) such that

$$\mathcal{D}_{\mu}(\mathcal{K}*f) \leq \left((d+1)\sum_{k=1}^{d}|c_{k}-c_{k+1}|^{2}
ight)\mathcal{D}_{\mu}(f)$$

Polynomial Kernels General Kernels

## Fejér Kernel

Let

$$F_n(z) := \sum_{k=0}^n \left(1 - \frac{k}{n+1}\right) z^k.$$

#### Corollary

If  $f \in \mathcal{D}_{\mu}$ , then  $F_n * f$  is (a polynomial in  $\mathcal{D}_{\mu}$ ) such that

$$\mathcal{D}_{\mu}(F_n * f) \leq \frac{n}{n+1} \mathcal{D}_{\mu}(f).$$

Summation Theory in Dirichlet Spaces

イロト イポト イヨト イヨト

э

Polynomial Kernels General Kernels

# Fejér Kernel

Taking

$$f(z) = n - (n+1)z + z^{n+1},$$

we have

$$\mathcal{D}_1(f) = n(n+1)$$
 and  $\mathcal{D}_1(F_n * f) = n^2$ .

Thus the constant n/n + 1 in the corollary is sharp.

Fejér Kernel

Polynomial Kernels General Kernels

Recall  $F_n * f = \sigma_n f$ . Since  $\mathcal{D}_{\mu}(F_n * f) \leq \mathcal{D}_{\mu}(f)$ , we conclude:

#### Corollary

Let  $f \in \mathcal{D}_{\mu}$ . Then

 $\mathcal{D}_{\mu}(\sigma_n f - f) \rightarrow 0.$ 

Summation Theory in Dirichlet Spaces

イロト イポト イヨト イヨト

э

Polynomial Kernels General Kernels

### de la Vallée Poussin Kernel

Let

$$V_n(z) := 2F_{2n}(z) - F_n(z).$$

#### Corollary

#### If $f \in \mathcal{D}_{\mu}$ , then $V_n * f$ is (a polynomial in $\mathcal{D}_{\mu}$ ) such that

 $\mathcal{D}_{\mu}(V_n * f) \leq 2 \mathcal{D}_{\mu}(f).$ 

Summation Theory in Dirichlet Spaces

イロト イポト イヨト イヨト

э

Polynomial Kernels General Kernels

### de la Vallée Poussin Kernel

Taking

$$f(z)=1-2z^n+z^{2n},$$

we have

$$\mathcal{D}_1(f) = 2n$$
 and  $\mathcal{D}_1(V_n * f) = 4n$ .

#### Thus the constant 2 in the corollary is sharp.

Polynomial Kernels General Kernels

#### The Estimation Parameter

Let K be a polynomial of degree d, say

$$\mathcal{K}(z) := \sum_{k=0}^d c_k z^k.$$

In the light of Estimation Theorem, we define

$$\delta({\mathcal K}) := \left( (d+1) \sum_{k=1}^d |c_k - c_{k+1}|^2 
ight)^{rac{1}{2}}.$$

.⊒ →

Polynomial Kernels General Kernels

## Recall - The Crucial Estimation

#### Theorem

Let K be a polynomial of degree d, say

$$\mathcal{K}(z) := \sum_{k=0}^d c_k z^k.$$

If  $f \in D_{\mu}$ , then K \* f is (a polynomial in  $D_{\mu}$ ) such that

 $\mathcal{D}_{\mu}(K * f) \leq \delta^{2}(K) \mathcal{D}_{\mu}(f).$ 

Polynomial Kernels General Kernels

# Superposition

Given the polynomials  $K_n$ , the idea is to form

$$K(z) := \sum_{n=1}^{\infty} \lambda_n K_n(z)$$

such that K behaves like a kernel.

Polynomial Kernels General Kernels

# Superposition

#### Theorem

Let  $K_n$  be a sequence of polynomial kernels, and let  $(\lambda_n)_{n\geq 1}$  be any sequence of complex numbers such that

$$\delta(\mathcal{K}) := \sum_{k=1}^{\infty} |\lambda_n| \, \delta(\mathcal{K}_n) < \infty.$$

Then the (formal) power series

$$K(z) := \sum_{n=1}^{\infty} \lambda_n K_n(z)$$

is well-defined.

(口) (同) (日) (日)

Polynomial Kernels General Kernels

# Superposition

#### Theorem (continued)

Moreover, for each  $f \in D_{\mu}$ , the series

$$K * f = \sum_{n=1}^{\infty} \lambda_n K_n * f$$

converges in  $\mathcal{D}_{\mu}$  and

 $\mathcal{D}_{\mu}(K * f) \leq \delta^{2}(K) \mathcal{D}_{\mu}(f).$ 

Summation Theory in Dirichlet Spaces

Polynomial Kernels General Kernels

### An Application

Take

$$K_n(z) = \sum_{k=0}^{n-1} \left(1 - \frac{k}{n}\right) z^k.$$

Suppose that  $c_k$ ,  $k\geq 0$ , are such that  $\lim_{k
ightarrow\infty}c_k=0$  and

$$\delta := \sum_{k=2}^{\infty} \sqrt{k(k-1)} |c_{k+1} - 2c_k + c_{k-1}| < \infty.$$

Put

$$\lambda_k = k(c_{k+1} - 2c_k + c_{k-1}), \qquad (k \ge 1).$$

イロト イボト イヨト イヨト

э

Polynomial Kernels General Kernels

## An Application

Then

$$K(z) = \sum_{n=1}^{\infty} \lambda_n K_n(z) = \sum_{k=0}^{\infty} c_k z^k.$$

Moreover,

$$f\in\mathcal{D}_{\mu} \quad \Longrightarrow \quad K*f\in\mathcal{D}_{\mu}$$

and

$$\mathcal{D}_{\mu}(K * f) \leq \delta^2 \mathcal{D}_{\mu}(f).$$

Summation Theory in Dirichlet Spaces

Polynomial Kernels General Kernels

# An Application

#### Hence, whenever $\delta \leq 1,$ we conclude that

 $\mathcal{D}_{\mu}(K*f-f) 
ightarrow 0$ 

for all  $f \in \mathcal{D}_{\mu}$ .

Polynomial Kernels General Kernels

# An Application

As a special case, take

$$c_k = r^k, \qquad (k \ge 0),$$

we obtain  $\delta^2 = r^2(2-r)$ . Thus, if  $f \in \mathcal{D}_\mu$ , then  $f_r \in \mathcal{D}_\mu$  and

 $\mathcal{D}_{\mu}(f_r) \leq r^2(2-r) \, \mathcal{D}_{\mu}(f).$ 

Summation Theory in Dirichlet Spaces

Polynomial Kernels General Kernels

# Historical Note

Richter–Sundberg (1991), for harmonic weights,

 $\mathcal{D}_{\mu}(f_r) \leq 4 \mathcal{D}_{\mu}(f).$ 

Aleman (1993), for superharmonic weights,

$$\mathcal{D}_{\mu}(f_r) \leq rac{5}{2} \mathcal{D}_{\mu}(f).$$

Sarason (1997), for harmonic weights,

$$\mathcal{D}_{\mu}(f_r) \leq \frac{2r}{1+r}\mathcal{D}_{\mu}(f).$$

・ロト ・同ト ・ヨト ・ヨト

Polynomial Kernels General Kernels

# Historical Note

 EIFallah–Kellay–Klaja–JM–Ransford (2016), for superharmonic weights,

$$\mathcal{D}_{\mu}(f_r) \leq rac{2r}{1+r}\mathcal{D}_{\mu}(f).$$

JM-Ransford (2018), for superharmonic weights,

$$\mathcal{D}_{\mu}(f_r) \leq r^2(2-r)\mathcal{D}_{\mu}(f).$$

Polynomial Kernels General Kernels

#### Question

Find

$$\phi(r) := \sup_{\mu,f} rac{\mathcal{D}_{\mu}(f_r)}{\mathcal{D}_{\mu}(f)}, \qquad (0 \leq r \leq 1).$$

#### By now (2021), we just know that

$$r^2 \le \phi(r) \le r^2(2-r), \qquad (0 \le r \le 1).$$

イロト イボト イヨト イヨト

Polynomial Kernels General Kernels

#### **Recent Progress**

The generalized Cesàro means of order  $\alpha$ :

$$\sigma_n^{\alpha}f(z) = \sum_{k=0}^n \frac{\binom{n-k+\alpha}{\alpha}}{\binom{n+\alpha}{\alpha}} a_k z^k,$$

where

$$\binom{n+\alpha}{\alpha} = \frac{\Gamma(n+\alpha+1)}{\Gamma(\alpha+1)\Gamma(n+1)}, \qquad \alpha > -1$$

Note that  $\sigma_n^0 f = S_n f$  and  $\sigma_n^1 f = \sigma_n f$ .

(日)

.⊒ →

Polynomial Kernels General Kernels

### **Recent Progress**

#### Theorem (Parisé-JM-Ransford 2020)

If  $\omega$  is a superharmonic weight on  $\mathbb{D}$ , if  $f \in \mathcal{D}_{\omega}$  and if  $\alpha > \frac{1}{2}$ , then

 $\sigma_n^{\alpha} f \to f$ 

in  $\mathcal{D}_{\omega}$ . Moreover, there exist  $\omega$  and an  $f \in \mathcal{D}_{\omega}$  such that

 $\sigma_n^{1/2}f \not\to f.$ 

Summation Theory in Dirichlet Spaces

Linear Polynomial Approximation Schemes Strange Banach Spaces

#### LPAS

Let  $\mathcal{X}$  be a Banach space in Hol( $\mathbb{D}$ ). A linear polynomial approximation scheme for  $\mathcal{X}$  is a sequence of bounded operators

$$T_n: \mathcal{X} \to \mathcal{X}, \qquad (n \ge 1),$$

such that  $T_n \mathcal{X} \subset \mathcal{P}$  and

$$\|T_nf-f\|_{\mathcal{X}}\to 0, \qquad (n\to\infty),$$

for all  $f \in \mathcal{X}$ .

Linear Polynomial Approximation Schemes Strange Banach Spaces

#### Example

For 
$$\mathcal{X} = H^p$$
,  $1 , and  $\mathcal{X} = \mathcal{D}$ ,$ 

$$T_n f = S_n f := \sum_{k=0}^n a_k z^k, \qquad (n \ge 0),$$

is a linear polynomial approximation scheme.
Linear Polynomial Approximation Schemes Strange Banach Spaces

## Example

For 
$$\mathcal{X} = \mathcal{D}_{\mu}$$
,  $\mathcal{X} = \mathcal{A}$  and  $\mathcal{X} = H^1$ ,

$$T_n f = \sigma_n f := \sum_{k=0}^n \left( 1 - \frac{k}{n+1} \right) a_k z^k, \qquad (n \ge 0),$$

is a linear polynomial approximation scheme.

イロト イボト イヨト イヨト

э

Question

Linear Polynomial Approximation Schemes Strange Banach Spaces

# Which Banach spaces on $\ensuremath{\mathbb{D}}$ admit a linear polynomial approximation scheme?

Summation Theory in Dirichlet Spaces

Linear Polynomial Approximation Schemes Strange Banach Spaces

A Banach space  $\mathcal{X}$  has the *approximation property* (AP) if, given any compact subset  $K \in \mathcal{X}$  and  $\varepsilon > 0$ , there is a finite-rank operator  $T : \mathcal{X} \to \mathcal{X}$  such that

$$||Tx-x|| \leq \varepsilon, \qquad (x \in K).$$

Linear Polynomial Approximation Schemes Strange Banach Spaces

## BAP

If in addition, there is a constant M, independent of K and  $\varepsilon$ , so that  $T = T_{K,\varepsilon}$  can be chosen such that

$$\|T_{K,\varepsilon}\| \leq M, \qquad (\forall K, \forall \varepsilon),$$

then we say that  $\mathcal{X}$  has the bounded approximation property (BAP).

Linear Polynomial Approximation Schemes Strange Banach Spaces

## The Characterization

#### $\mathsf{LPAS} \Longleftrightarrow \mathsf{BAP}$

#### Proposition

A Banach space  $\mathcal{X} \subset Hol(\mathbb{D})$  admits a linear polynomial approximation scheme if and only if

- $\mathcal{X}$  contains a dense subspace of polynomials
- and has the BAP.

・ロト ・同ト ・ヨト ・ヨト

Linear Polynomial Approximation Schemes Strange Banach Spaces

## Schauder basis

If a Banach space has a Schauder basis, then it has the BAP.

In particular, every separable Hilbert space has the BAP.

Linear Polynomial Approximation Schemes Strange Banach Spaces

# Hilbert Space Setting

#### Corollary

Let  $\mathcal{H}$  be a Hilbert space of analytic functions on  $\mathbb{D}$ . Then  $\mathcal{H}$  admits a linear polynomial approximation scheme if and only if it contains a dense subspace of polynomials.

< ロ > < 同 > < 三 > .

Linear Polynomial Approximation Schemes Strange Banach Spaces

# **Open Question**

The de Branges-Rovnyak space  $\mathcal{H}(b)$ , *b* non-extreme, has a linear polynomial approximation scheme.

Find it, explicitly!

Summation Theory in Dirichlet Spaces

Linear Polynomial Approximation Schemes Strange Banach Spaces

## Another Question

Is there a Banach space  $\mathcal{X}$  in which polynomials are dense, but it does not admit *any* linear polynomial scheme?

Linear Polynomial Approximation Schemes Strange Banach Spaces

# Main Ingredient

There exist separable Banach spaces without BAP (Enflo 1973).

Certain closed subspaces of  $c_0$  and  $\ell^p$ ,  $p \neq 2$ , do not have the BAP.

Linear Polynomial Approximation Schemes Strange Banach Spaces

# A Construction

#### Theorem (JM-Ransford 2019, Bonet 2020)

Let  $\mathcal{Y}$  be a separable, infinite-dimensional, complex Banach space, and let  $(\alpha_n)_{n\geq 0}$  be a strictly positive sequence such that

$$\lim_{n\to\infty}\alpha_n^{1/n}=1.$$

Then there is  $\mathcal{X} \subset Hol(\mathbb{D})$  such that:

- $\mathbf{I} \ \mathcal{X}$  is isometrically isomorphic to  $\mathcal{Y}$ ,
- $\blacksquare Hol(\overline{\mathbb{D}}) \subset \mathcal{X} \text{ and } \overline{\mathcal{P}} = \mathcal{X},$
- $\blacksquare ||z^n||_{\mathcal{X}} = \alpha_n, \text{ for all } n \ge 0.$

・ロト ・同ト ・ヨト ・ヨト

Linear Polynomial Approximation Schemes Strange Banach Spaces

# Strange Phenomenon!

#### Corollary

There exists a Hilbert holomorphic function space  ${\mathcal H}$  on  ${\mathbb D}$  such that:

- H contains the polynomials,
- the polynomials are dense in H,
- **III** the odd polynomials are not dense in the odd functions in  $\mathcal{H}$ .

Linear Polynomial Approximation Schemes Strange Banach Spaces

# Strange Phenomenon!

#### Corollary

Despite the fact that polynomials are dense in  $\mathcal{H}$ , there exists  $f \in \mathcal{H}$  lying outside the closed linear span of  $S_n f : n \ge 0$ . Hence for any sequence of linear maps  $T_n : \mathcal{H} \to \mathcal{H}$  of the form

$$T_n f := \sum_{k=0}^n \alpha_{nk} S_n f$$

we have

 $T_n f \not\rightarrow f$ .

・ロト ・同ト ・ヨト ・ヨト

 $\begin{array}{c} \mbox{Polynomial Approximation}\\ \mbox{Superharmonically Weighted Dirichlet Spaces}\\ \mbox{Approximation in } \mathcal{D}_{\zeta}\\ \mbox{Approximation in } \mathcal{D}_{W}\\ \mbox{Abstraction} \end{array}$ 

Linear Polynomial Approximation Schemes Strange Banach Spaces

### Thank You

Summation Theory in Dirichlet Spaces

< ロト < 部 > < 注 > < 注 > < </p>

æ