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Cesaro and Abel Sums

Infinite series: ag + a1 + ag + as + ...
Partial sums: s,, = ag + air+---+a,
1
n—+1
Abel means: f(z) =ag + ayz + asx? + ...

Cesaro means: Op = (So + 81+ -+ sn)

Thm. s, s = o, - s.
Abel’s Thm. s, s = f(z) — s
as xr — 1.
Frobenius’ Thm. o, — s = f(z) — s.



Examples

DO b=t

DO |

DO bt

1-14+1-1+---=1:
= 1+04+1+0+4+---+s,) —
on n+1( )
1
— 1 — 2 _ 34 ... = .
f(x) T+ x° —x° + e
1-2+43—-4+4...=1:
1
2 3 L 1
1 - 22+ 32° — 4z +-~—-(1_{_$)2 > T
But liminf 0, =0 and limsup o, =
n—oo N — 00
I+ 5+5+1+ =00
1
x+%$2+%$3+~':log > 00



Tauberian Theorems

Tauber’s Theorem (1897).
f(x) = s and na, - 0 — Sy — S.

Hardy’s Theorem (1910).
on, — 8 and na, bounded — Sy, — S.

Littlewood’s Theorem (1911).
f(z) = s and na, bounded = s, — s.

Note. A Tauberian theorem also says a series
1s not summable if its divergence is too slow.

For instance, L’s thm says a divergent series

with a, = O(1/n) can not be Abel summable.
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PREFACE

HARDY in his thirties held the view that the late years of a mathe-
matician’s life were spent most profitably in writing books: I remember a
particular conversation about this; and though we never spoke of the
matter again it remained an understanding. The level below his best at
which a man is prepared to go on working at full stretch is a matter of
‘temperament; Hardy made his decision, and while of course he comn-
tinued to publish papers his last yoears were mostly devoted to books;
- whatever has been lost, mathematical literature has greatly gained. All
his books gave him some degree of pleasure, but this one, his last, was his
favourite. When embarking on it he told me that he believed in its value
(as he well might), and also that he looked forward to the task with
enthusiasm. He had actually given lectures on the subject at intervals
ever since his return to Cambridge in 1931, and had at one time or another
lectured on, everything in the book except Chapter XIII.

The title holds curious echoes of the past, and of Hardy’s past. Abel
wrote in 1828: ‘Divergent series are the invertion of the devil, and it is
shameful to base on them any demonstration whatsoever.” In the
ensuing period of critical revision they were simply rejected. Then came
a time when it was found that something after all could be done about
them. This is now a matter of course, but in the early years of the cen-
tury the subject, while in no way mystical or unrigorous, was regarded
as sensational, and about the present title, now colourless, there hung
an aroma of paradox and audacity.

J. E. LITTLEWOQD
August 1948



‘Puzzles Column

Elwyn R. Berlekamp and Joe P. Buhler

1. One of the charms of writing this column is corresponding with
people who have comments or improvements on the puzzles that
we present. Here is a second order version of this: a reader’s vari-
ation of a puzzle that was itself a reader-proposed variation of an
carlier puzzle.

To facilitate comparison (and provide implicit hints) we recall the
first two versions before giving the new one. Last year we asked
the following:

100 ants on a meter stick begin traveling to the right or left
at one meter per minute. Colliding ants instantaneously re-
verse direction; when an ant reaches either end of the meter
stick it falls off. What is the longest amount of time one
must wait to be sure that no ants remain?

(The origin of this puzzle isn’t clear; it can be found on several web
sites.)

John Guilford (via Stan Wagon) proposed the following variation.
which appeared here last spring:

100 ants are placed uniformly randomly on a one-meter
stick. and an extra ant, Alice, is placed precisely at the
center. Each ant begins moving right or left at | meter
per minute (the direction being chosen randomly), and in-
stantly reverses directions on a collision as in the earlier
problem. But when an ant reaches one of the ends of the
stick. it instantly reverses direction. What is the probability
that after | minute Alice is again exactly at the center of the
meter stick?
Finally. Matthew Hubbard writes as follows {(we paraphrase):

['enjoved working on The Ant Problem in this quarter’s
Emissary from MSRL I also solved a variant where Alice

and the other ants are on a circle of circumference | meter:
the question and conditions are otherwise the same. Is the

solution to this problem well known? A lot of the think-
ing is similar to the solution of the -ic,. oblem. but the
answer is slightly different.

2. Solve the following cryptogram:

MAAAMS 1 v

- e Cmissary

+ MEETING Z 3

- (m s ri /Vé‘hffz.c:"fm’;l {
N /

+ ATLANTA Frpoee 2oo4

+ 01

+ 2005

A solution is of course a one-to-one mapping from the letters that
occur to decimal digits such that the indicated equation is true.
Leading zeroes are not allowed.

3. Aset A of positive integers is said to have density d if the frac-
tion of integers in {1, n] that are in A approaches d as n goes to
infinity, i.e.,

d = lim Alni/n,

L300

where A{n] is the cardinality of the set of elements in A of size at
most .

Find two sets of density one-half whose intersection does not have
a density, i.e., the relevant limit above does not exist.
4. For positive real x less than 1. define

7 4 2 .
fix)=x—x"+x* —x® £ !¢

Does f{x} have a limit as x approaches | from below? If so. what
is the limit?

{We thank Noam Elkies for this question, which he posted to
sci.math.research recently.)

Puzzles on Wheels

From October 2004 through February 2005, San Francisco bus riders will
enjoy puzzling over a mathematical problem displayed among the ads for
health insurance and instant rice. They — and anyone else who wants to par-
ticipate — have a chance to win $100 by submitting the correct answer online.

This city-wide effort to bring fun and challenging mathematics to citizens of
all ages, especially school-age children, is funded as a pilot project by the
National Science Foundation. See www.msri.org/pow/ to look at the current
problem! (The picture shown here is for the one that will 20 up in February.)




‘he
ter
in-
ler
he
ity
he

n—0o0

where A(n) is the cardinality of the set of elements in A of size at
most mn.

Find two sets of density one-half whose intersection does not have
a density, i.e., the relevant limit above does not exist,

4. For positive real x less than |, define
flx) =x—x* 4 x* —x8 £ xT6 _ ...

Does f(x) have a limit as x approaches | from below? If so. what
is the limit?

(We thank Noam Elkies for this question, which he posted to
sci.math.research recently.)
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Preliminary Observations

flr)=x—a® +2 — 28 4216 _ , O<z<1.
Calculation gives
2

liminf 0, = =, limsup o,, = =
n—0o0 3 n— 00

fl@)=(@-2)+@*—2%+...>0.
f(:c)::z;-(xz——a:‘l)—(acS——le)——o-'<.:c.
LO0<fle)<e<l, O0<xz<1.

f(z)=x— f(z%), so IF f(z) — s thenS:—;—.

f(@) =2 -2+ f(a) > f(a?).

Is f(z) increasing in 0 < z < 17






The limit does not exist!

Hardy proved in 1907 that as z — 1, the sum
flz)=a -2+t — 28 4 216 _

undergoes tiny but persistent oscillations.
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Help Browser

i

Inf1]:

Out[1]

In[f2]:

Out[2]=

In[3]:=

Out[3]=

Inf4):=

Out[4 )=

N[(0.99) ~ (2~ (30)) ]
7.6872000637 x 104686675
N[(0.999) ~ (2~ (30)) ]
3.429389170416 x 10466554
N[(0.9999) ~ (2~ (30) )]
4.501203223499 x 1046635
N[2*~ (30)]

1.07374 x10°



More Tauberian Theorems

High-Indices Theorem (H & L, 1926).

oo
n
Let f(x) = Zankmn’“ , where —*1 > qg>1.
k=1 Tk

Then f(zc)~—>s = S, — S.

Hardy-Littlewood Tauberian Thm (1914).

oo

f(a:):Zanmn—%s and s, >0 = o, —s.

n=0
Note that for Hardy’s series
flx) = —2* +a* =28 + 216 —

)

0<s,<1 and {o,} diverges.



Karamata’s Proof

The original proofs of the Tauberian theorems
of Littlewood and Hardy-Littlewood were much
more difficult than those of Tauber and Hardy.
For many years they were considered a real
tour de force. Then in 1930 a young Serbian
mathematician, Jovan Karamata, published a
two-page paper outlining clever but completely
elementary proofs based only on the Weierstrass
approximation theorem. Karamata’s approach
was to prove the H-L theorem and to deduce L’s
theorem from it. In 1952, Wielandt found a
simple refinement of K’s method that avoids the
detour through Cesaro summability and proves

Littlewood’s theorem directly.






Approximation Lemma

Karamata’s method uses the Weierstrass

approximation theorem only to establish the

following lemma.

Lemma. Let g(x) be continuous on the
interval |0, 1] except for a jump-discontinuity
at a point in (0,1). Then for each £ > 0 there
exist polynomials P and () such that

P(r) < g(x) < Q(z) for all z € [0,1] and

/0 [g(a:) — P($)] der < €,
/O [Q(az) — g(az)] dr < ¢.



Hardy-Littlewood Tauberian Theorem.

::Za,nat”—%s and s, >0 — o, — s.
n=0

Karamata’s Proof. By hypothesis,

Zana: (1—x) anaz — s asx — 1.

n=0
This 1mphes, more generally, that

oo

(1—2x) Z s p(a™) — S/O p(t) dt

n=0
for every polynomial p. By lemma, it follows that

(1— SIS‘)T;S” z" g(z") — 5/0 g(t)dt

if g is continuous in [0, 1] except for a jump.
It 1s here that the hypothesis s,, > 0 is needed.



Now choose

0, 0<t<1/e
g(t) =
1/t, 1/e<t<1,

1
and note that / g(t)dt =1.
0

Let z,, = e_l/m, so that z;, > 1/eiff n < m.

Therefore,

0@ m
Z Sn Ty g(ar ) = Z sp=(m+1)o,,.
n=0 n=0

But (1 —xm)ZSnxﬁ%g(:ch) — 8 as m — 00,
n=0

since ,, — 1, so it follows that
(m+1)(1—2m)om = s asm — 0.
Finally, because (m +1)(1 —z,,) = 1,

we conclude that o,,, — s as m — oo.



Another Proof that f(z) Has No Limit

Recall that
flx)=z—a* +a*t — 28+ 216 — |
has the property f(z) =z — f(2?),

1
which implies that if limit exists, it must be = .

Also implies  f(z*) < f(z) for O0<z <1.
In other words,

f(z) < flzl/%) < f@'/) <. for0 <z < 1,

1
so suffices to show f(z) > 5 for some x € (0,1).

Guided by Mathematica graph, calculate

1
£(0.995) = 0.50088 - > .

Hardy (1907) mentions idea without calculation.



Amplitude of Oscillation

J.P. Keating and J.B. Reade (2000) used the
Poisson summation formula to analyze
Hardy’s sum and other alternating gap series.

Poisson Summation Formula.

For o € L'(R) continuous, etc.,

oo oo

> o)=Y F2mm),

where @(u):/ et p(t) di

18 Fourier transform. Apply PSF in form

o0

> FDMem) = > B(2n+ 1)7);

n=-—oo n=—oo

3((2n + 1)) = / 2t et )] at.

—

oo



Application to Hardy’s Sum

To apply the PSF to Hardy’s sum, choose

o(t) = 22"

flz) =) (-1)"z*"

for fixed x € (0,1). Then



Calculation of Fourier Transform o(u)

Write z = e™*, 0 < X\ < o0o. Then

@(u):__/ ezut —\2lt dt

— OO

= 2Re {/ eluto=A2" dt}
0

— 2 Re{/\"(fé%ﬁ)/ 5(13§2)"16_8d8},
log 2 A\

where s = \ 2¢, Asxz —1,oras A =0,

1t turns out that

20 = g Re { A (@) 1 ()} o




By PSF, can now write Hardy’s sum f () as

1 - 2 Re A\~ (Enmiy (2n 4+ 1)mi |
2 log 2 —~ log 2

With A = 27#, the sum becomes

i T (277’ + 1)7”’ e(Zn—}—l)uﬂ'?}
log 2 ’

n=0
which is periodic with period 2 in
_ loglog(1/x)
H= log2

The first term (n = 0) is dominant and

contributes an oscillation with amplitude

2 . 1T |
log 2

log 2
Conclude via relation |T'(iy)|* = 7/(y sinh y)

that f(z) oscillates about %— with approximate

amplitude 0.00275... as z — 1. Error is < 10~2.



Another Example

The function f(x) = Z(—l)”x”z does

n=0

converge as x — 1. In fact, it is not hard to

see that liminf o, = limsup o,, = —;— :
n—00 n— 00

so that Z a, is Cesaro summable to —%— .
Hence it is Abel summable and f(z) — 1
as x — 1. Keating and Reade illustrate use
of PSF by showing this directly. Details
are much easier. Calculations related to
proof of Jacobi’s inversion formula for the

theta function by Poisson summation.
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