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Additional topics from measure and integration (version 2.0)

In these brief notes we review some integration theorems formulated in greater generality than
in the typical undergraduate courses. They are more general in two ways. On the one hand, we for-
mulate them for arbitrary positive measures instead of just for Lebesgue measure on the real line. On
the other hand, we give stronger or more general versions than the ones known from undergraduate
courses.

In all the statements that follow, (X ,M ,µ) will be a measure space and E a measurable set (that
is, E ∈ M ). Convergence almost everywhere (a.e.) is always to be understood with respect to the
measure µ. It is sometimes convenient to formulate the results in these notes for functions integrable
over E , thus generalizing the functions integrable over the entire space X . By a measurable function
on E ∈ M we will always mean the restriction of a measurable function f : X → C (or f : X → R)
to the set E . By an integrable function over E we will mean the restriction of a measurable function
f : X →C (or f : X →R) such that the integral

∫
E f dµ= ∫

X f χE dµ is finite.

On exchanging the limit and Lebesgue integral

We now review several known results and some new ones regarding the exchange of the limit and the
integral, analogous to the well-known one for uniform convergence on a closed bounded interval.
Thanks to the fact that we are now dealing with the Lebesgue integral rather than with the Riemann
integral, we do not need such strong assumption; usually integrability (and something else) is enough
instead of continuity.

The chronological order in which the theorems mentioned here were discovered does not nec-
essarily coincide with the order of exposition in books where the theory is presented. Our first two
results refer to non-negative functions; the first one is the only one that is an inequality rather than
an equality.

Theorem 1. (Fatou’s Lemma, 1906). Let ( fn) be a sequence of non-negative measurable functions on
E. Then ∫

E
liminf

n→∞ fn dµ≤ liminf
n→∞

∫
E

f dµ .

We omit the proof here. Note that the above inequality can actually be strict, as the following
example shows.
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Example 1. Let E ∈ M be such that µ(E) > 0 and µ(E c ) > 0, and define fn = χE for n odd and fn =
χE c = 1−χE for n even. Then

∫
X fn dµ=µ(E) for n odd and

∫
X fn dµ=µ(E c ) for n even, hence

liminf
n→∞

∫
X

fn dµ= min{µ(E),µ(E c } > 0

while liminfn→∞ fn = 0 and, thus,
∫

E liminfn→∞ fn dµ= 0.

Theorem 2. (Monotone Convergence Theorem, Beppo-Levi and Lebesgue). Let ( fn) be a sequence of
measurable functions on E such that 0 ≤ f1(x) ≤ f2(x) ≤ f3(x) ≤ . . .∞ for all x ∈ X and suppose that
also fn(x) → f (x) for all x ∈ X . Then

∫
E fn dµ→ ∫

E f dµ as n →∞.

Observe that we are not assuming integrability of our functions, so technically the limit on the
left-hand side (or even all the terms

∫
E fn dµ) could be ∞. In this case, the correct interpretation of

the result is that then the limit (the term on the right,
∫

E f dµ) is also ∞.
It is worth noting that there is also a version of Theorem 2 for decreasing functions; the assump-

tions are f1(x) ≥ f2(x) ≥ f3(x) ≥ . . .0 for all x ∈ X and we also have to require the integrability of f over
E . Without this additional assumption, the conclusion will not follow. (It is a good exercise to find a
counterexample).

Finally, we should stress that instead of assuming convergence at all points it suffices to assume
convergence µ-a.e.

The following classical result is known as the Lebesgue dominated convergence theorem (typically
abbreviated as LDCT).

Theorem 3. (Lebesgue, 1904). If f and fn are integrable functions on E, fn → f a.e. on E and g is an
integrable function on E such that | fn(x)| ≤ g (x) for a.e. point x ∈ E, then

∫
E fn dµ→ ∫

E f dµ as n →∞.
Actually, a stronger conclusion holds:∫

E
| fn − f |dµ→ 0, n →∞ .

Observation. The second conclusion is stronger thanks to the basic inequality∣∣∣∣∫
E

fn dµ−
∫

E
f dµ

∣∣∣∣≤ ∫
E
| fn − f |dµ .

Exercise 1. Compute the integral

lim
n→∞

∫ n

0

(
1+ x

n

)n
e−2x d x

in more than one way. Justify your answer.
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SOLUTION. □ First of all, writing fn(x) =χ[0,n](x)
(
1+ x

n

)n e−2x , note that∫ n

0

(
1+ x

n

)n
e−2x d x =

∫ ∞

0
fn(x)d x .

Clearly, for each fixed x ≥ 0, we have x ∈ [0,n] for all large enough n, say for n ≥ [x]+1. From here and
by elementary Calculus, it follows that fn(x) → exe−2x = e−x = f (x) for all x ≥ 0. Since

∫ ∞
0 f (x)d x = 1

(this happens because the value of the Lebesgue integral of a continuous function on [0,∞) coincides
with improper Riemann integral, a good exercise for you to work out), all we have to do is justify the
exchange of the limit and the integral to conclude that the limit in question equals one. This can be
done in at least two different ways.

(1) One way of doing this is using the LDCT (our Theorem 3). For this, we need an integrable
dominant. To find one, it suffices to see that for each x ≥ 0 we have

fn(x) ≤
(
1+ x

n

)n
e−2x ≤ e−x .

The first inequality is obvious. Thus, we need only prove the second one, which is equivalent to(
1+ x

n

)n
e−x ≤ 1, ∀x ≥ 0.

To this end, consider the function ϕ(x) = (
1+ x

n

)n e−x . Note that

ϕ′(x) =
(
1+ x

n

)n−1
e−x −

(
1+ x

n

)n
e−x =− x

n

(
1+ x

n

)n−1
e−x ≤ 0

for all x ≥ 0. This shows that ϕ is non-increasing, hence ϕ(x) ≤ϕ(0) = 1 for all x ≥ 0, and we are done.

(2) Another solution exists using Theorem 2. To this end, we need to show that 0 ≤ fn(x) ≤ fn+1(x)
for all x ≥ 0. The first inequality is obvious and it is the second one that requires some work. The
statement is trivially true for x ∈ (n,n +1] since fn(x) = 0 there and for x > n +1 since both functions
are zero for such values. Thus, we only have to check that the inequality holds in [0,n]. In this interval,
both characteristic functions are equal to 1 so the inequality fn(x) ≤ fn+1(x) becomes(

1+ x

n

)n
≤

(
1+ x

n +1

)n+1
,

which is further equivalent to

ψ(x) = (n +1)log
(
1+ x

n +1

)
−n log

(
1+ x

n

)
≥ 0.

The derivative of this function is

ψ′(x) = n +1

x +n +1
− n

x +n
= x

(x +n)(x +n +1)
≥ 0.

Hence ϕ is increasing and since ϕ(0) = 0, it follows that the function is non-negative in [0,n], which
is what we wanted to prove. Now we can apply the Monotone Convergence Theorem to justify the
exchange of limit and the integral in another way. ■

The following result is of a different nature and allows us to deduce the convergence of integrals
from pointwise convergence and convergence of L1-norms of the functions involved.
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Theorem 4. (Littlewood, 1925). If f and fn are integrable functions on E, fn → f a.e. on E and∫
E
| fn |dµ→

∫
E
| f |dµ , n →∞ ,

then
∫

E fn dµ→ ∫
E f dµ as n →∞. Actually, a stronger conclusion holds:∫

E
| fn − f |dµ→ 0, n →∞ .

Observation. In general (without any hypothesis on convergence a.e.), none of the conditions that
appear in the statement: ∫

E
| fn |dµ→

∫
E
| f |dµ ,

∫
E

fn dµ→
∫

E
f dµ

implies the other. This is where the interest in the theorem comes from. It is convenient to look for
simple examples to convince yourself that this is so.

Theorem 5. (Pratt, 1960). If f and fn , n ∈N, are measurable real-valued functions on E and g and gn ,
n ∈ N, are integrable functions on E such that fn → f a.e on E, gn → g a.e. on E, | fn(x)| ≤ gn(x) a.e.
on E and

∫
E gn dµ→ ∫

E g dµ as n →∞, then f es integrable over E and
∫

E fn dµ→ ∫
E f dµ as n →∞.

Again, we also have ∫
E
| fn − f |dµ→ 0, n →∞ .

PROOF. Before embarking on the proof, we note that the hypotheses on the comparison between fn

and gn automatically imply that gn and g are non-negative a.e. They also imply integrability of fn

(formally not assumed in the statement).
We split the proof into three steps.

Step 1. We will first show the weaker statement:
∫

E fn dµ→ ∫
E f dµ as n →∞. This will be helpful

later in proving the rest.
To this end, observe that the assumption | fn | ≤ gn (that is, −gn ≤ fn ≤ gn ; note that it is here

where we are using explicitly the fact that our functions are real-valued) implies both gn − fn ≥ 0 and
gn + fn ≥ 0 almost everywhere. The first inequality, together with Fatou’s Lemma and the assumption
on convergence:

∫
E gn dµ→ ∫

E g dµ, n →∞, allows us to conclude that∫
E

(g − f )dµ≤ liminf
n→∞

∫
E

(gn − fn)dµ= lim
n→∞

∫
E

gn dµ− limsup
n→∞

∫
E

fn dµ=
∫

E
g dµ− limsup

n→∞

∫
E

fn dµ .

Note that we have just used two basic properties known from Calculus:

lim an = a =⇒ liminf
n→∞ (an +bn) = a + liminf

n→∞ bn , liminf
n→∞ (−cn) =− limsup

n→∞
cn .
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It follows from the inequality obtained that limsupn→∞
∫

E fn dµ≤ ∫
E f dµ.

In a completely analogous fashion, we get∫
E

(g + f )dµ≤ liminf
n→∞

∫
E

(gn + fn)dµ= lim
n→∞

∫
E

gn dµ+ liminf
n→∞

∫
E

fn dµ=
∫

E
g dµ+ liminf

n→∞

∫
E

fn dµ .

Thus,
∫

E f dµ≤ liminfn→∞
∫

E fn dµ.
It follows from the above inequalities that limn→∞

∫
E fn dµ exists and is equal to

∫
E f dµ.

Step 2. Assume that the functions f and fn , n ∈N, satisfy the conditions of the Theorem for some
g , gn , n ∈N. It is clear that then | f | and | fn |, n ∈N, satisfy the same conditions (with the same g , gn ,
n ∈ N) since | fn | → | f | a.e., due to the inequality

∣∣| fn |− | f |∣∣ ≤ | fn − f |. Also,
∣∣| fn |

∣∣ = | fn | ≤ gn . Hence
we can apply the conclusions derived in Step 1 to the functions | fn | instead of fn and | f | instead of f .
This shows that the hypotheses of the Theorem imply that

∫
E | fn |dµ→ ∫

E | f |dµ as n →∞.

Step 3. To complete the proof, suppose that the functions f and fn , n ∈N, satisfy the conditions

of the Theorem for certain g and gn , n ∈N. Thanks to Step 2, we know that then
∫

E | fn |dµ→ ∫
E | f |dµ

as n →∞.
Now, instead of the functions fn , f , gn and g , consider respectively the functions

Fn = | fn − f | , F = 0, Gn = | fn |+ | f | , G = 2| f | .

It turns out that they also satisfy the conditions of the Theorem since Fn → F and Gn → G almost
everywhere in E , |Fn | ≤Gn almost everywhere in E , and∫

E
Gn dµ=

∫
E

(| fn |+ | f |)dµ→ 2
∫

E
| f |dµ=

∫
E

G dµ , n →∞ .

By Step 1, it follows that
∫

E Fn dµ→ ∫
E F dµ; in other words,

∫
E | fn − f |dµ→ 0, as n →∞. ■

Observation. First, it is clear that Pratt’s theorem is a generalization of LDCT, for it suffices to choose
gn = g for all n ∈N to deduce LDCT from Pratt.

Secondly, Pratt’s theorem also implies that of Littlewood. To this end, assume that the functions f
and fn , n ∈N, satisfy the conditions of Littlewood’s theorem. By choosing gn = | fn | and g = | f |, se see
that the conditions of Pratt’s theorem are all fulfilled, hence we deduce that∫

E
| fn − f |dµ→ 0, n →∞ .
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