
UNIVERSIDAD AUTÓNOMA DE MADRID
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5.1.5 Poincaré’s Inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.1.6 Equivalent norms on H2

0 pDq . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.1.7 Rellich-Kondrachov Compactness Theorem . . . . . . . . . . . . . . . . . . . . 102
5.1.8 Trace Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.1.9 Spectral Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.1.10 More facts from Functional Analysis . . . . . . . . . . . . . . . . . . . . . . . 105

5.2 Normal derivative and radial derivative . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.3 Spherical Harmonics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.4 Bessel functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

Bibliography 111



Introduction

This Master’s Thesis (from now on denoted by TFM) is concerned with Scattering Theory. In
particular, it is an introduction to a problem that has received much attention in the last two decades:
the transmission eigenvalue problem.

What is Scattering Theory?

Sometimes, waves depart from their expected path and spread out in multiple directions. This
phenomenon is known as scattering.

It is quite present in our daily lives. For example, it is the reason why the sky appears to be
blue: the white light from the sun hits the molecules in the atmosphere, which causes the shorter
blue wavelengths to scatter out in multiple directions (in fact, the violet wavelengths scatter more,
but our eye is less sensitive to them; see [26]).

Another example is the scattering of the rays of light coming out from traffic lights or car lights
when there is much humidity in the air (see Figure 1). This is due to the scattering of the light rays
when they hit the water molecules in the air.

Figure 1: Scattering of traffic lights in presence of humidity.

For us, roughly speaking, scattering theory deals with how waves behave when they find an
scatterer (object) or inhomogeneous media on their way (see Figure 2).
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Figure 2: Diagram of the scattering phenomenon.

Topic of the TFM

There is a vast literature on scattering theory impossible to cover in an essay of this length. So
we have decided to focus on acoustic/Helmholtz scattering in the case of an isotropic in-
homogeneous medium with an inhomogeneity of compact support. The final objectives
are

• To introduce the transmission eigenvalue problem.

• To prove (under certain conditions) the existence of a discrete set of real transmission
eigenvalues that accumulates at infinity.

But before moving on to the structure of the TFM, let us give a general view of the subject that
we are going to study.

Overview of the topic

Acoustic scattering in an inhomogeneous medium

We begin by describing what is acoustic scattering in an inhomogeneous medium of compact support.
Suppose we have an inhomogeneous bounded region D Ă R3 in an homogeneous space (i.e., R3zD

is an homogeneous region). We assume that D is connected with C2 boundary, and denote by ν be
the outward unit normal vector to BD defined on BD.

Let cpxq be the speed of sound at a point x P R3. Then, cpxq “ c0 is constant for x P R3zD. We
define the refractive index as

npxq :“
c20

cpxq2
.

Notice that n ” 1 on R3zD, and npxq ą 0 on R3. We assume that n P L8pDq.
The propagation of waves in a homogeneous space is modeled by the wave equation

1

c2
B2U

Bt2
“ ∆U

where U denotes the velocity potential, and c “ c0 is the sound speed (constant since we are in a
homogeneous region). When we have a time-harmonic wave, i.e., a wave of the form

Upx, tq “ Re
”

upxqe´iωt
ı



for a frequency ω ą 0, then the wave equation can be reduced to the Helmholtz equation

∆u ` k2u “ 0.

where k “ ω
c

ą 0 is the wave number. Notice that it is proportional to the frequency ω.
In brief, Helmholtz equation models the propagation of time-harmonic waves in an homogeneous

region,
Under the above assumptions, the scattering problem for the inhomogeneous media pD,nq that

we are going to consider is the following.
Suppose we have an incident field ui, that is, a solution of Helmholtz equation in all of1 R3:

∆ui ` k2ui “ 0 on R3.

This incident field scatters when it finds the inhomogeneity pD,nq on its path, i.e., it generates
another wave us, and in physical reality we percieve the total field u “ ui ` us (us has no physical
appearance; it is just defined for mathematical reasons). Its behavior can be modeled by the equation

∆upxq ` k2npxqupxq “ 0 in R3. (1)

Substituting u “ ui `us in the previous equation, and using that ui is a solution on R3 of Helmholtz
equation, we have that (1) is equivalent to the following equation in the unknown us:

∆uspxq ` k2npxquspxq “ k2p1 ´ npxqquipxq in R3. (2)

To abbreviate, we sometime use the notation mpxq :“ 1´npxq. Notice that, since npxq ” 1 on R3zD,
the previous equation on R3zD becomes ∆us ` k2nus “ 0, which is Helmholtz equation for us and
simply states that us is a time-harmonic wave traveling in the homogeneous region R3zD.

So the scattering problem we are going to consider is to find the total field u that satisfies (1)
from a knowledge of the incident field ui, the wave number k and the inhomogeneous medium pD,nq.
Notice that this is equivalent to solving (2) for us (a knowledge of one of them gives us the other).

The field us is called the scattered field. As we have said, you cannot perceive/measure it, but
it is defined as us “ u´ ui and it is understood as the wave that generates ui when it scatters. The
supperposition of ui and us (i.e. the sum) is the total wave that we perceive physically.

Radiation condition and far field patterns

Because of physical considerations skechted in the essay, and in order to to have uniqueness of the
direct scattering problem, a radiation condition is imposed to us. In Physics, radiation conditions
are imposed to select which kind of wave we want to obtain as a solution and to exclude the rest of
them.

This condition, known as Sommerfeld’s radiation condition, is the following:

lim
rÑ8

r

ˆ

Bus

Br
´ ikus

˙

“ 0, (3)

where r “ |x| and the limit is assumed to hold uniformly in all directions x
|x|
. The radial derivative

is defined as Bus

Br
pxq “ ∇uspxq ¨ x

|x|
.

1Except for possibly a subset of measure zero in the exterior of D; this could be a single point, if we have a point
source, or a surface.



Solutions to Helmholtz equation on an exterior domain (i.e., whose domain of definition contains
the exterior of some sphere) that satisfy Sommerfeld Radiation Condition (3) are called radiating
solutions.

It can be proved that every radiating solution to the Helmholtz equation has the asymptotic
behavior of an outgoing spherical wave, i.e.,

upxq “
eik|x|

|x|

«

u8px̂q ` O

ˆ

1

|x|

˙

ff

, |x| Ñ 8

uniformly in all directions x̂ “ x
|x|
. The function u8, defined on the unit sphere S2, is also known as

the far field pattern of u, and is given by

u8px̂q “
1

4π

ż

BD

«

upyq
Be´ikx̂¨y

Bνpyq
´

Bu

Bν
pyqe´ikx̂¨y

ff

dspyq, x̂ P S2. (4)

In the case of the scattered field us, which is a radiating solution of Helmholtz equation, the far field
pattern can also be expressed as

u8px̂q “ ´
k2

4π

ż

R3

e´ikx̂¨ympyqupyq dy (5)

where the last integral can be taken over any measurable set containing supppmq.
This function is truly important. For applications, it is used to recover radiating solutions of the

Helmholtz equation from a knowledge of their far field patterns. In physical reality you can measure
the asymptotic behavior of the wave, which is described by the far field pattern, and you would like
to find out what is the scattered wave or what are the properties of the inhomogeneity pD,nq. This
kind of problems are known as inverse problems. A treatment of the subject can be found in
Chapter 5 of [13] and Chapter 7 of [19].

Completeness of far field patterns

In applications, you send several different incident fields, usually plane waves of the form uipx; dq “

eikx¨dn where d P S2 is the direction of propagation of the wave, they scatter and you measure their
respective far field patterns u8px̂; dq. Now, from the knowledge of these collection of far field patterns
u8p¨; dnq for a dense collection of vectors dn P S2 (with n P N for example, although it could be a
finite collection; in reality, a non-countable one does not have much sense), you want to reconstruct
properties of the inhomogeneity pD,nq.

There are several reconstruction methods developed to this end. For instance, one of the most
important is the Factorization Method. For a detailed treatment of it, see Section 7.5 of [19] or the
book [20]. There are other methods (see Chapter 2 of [7]), but we will not go into further detail.

In order to apply some the aforementioned methods, it is important that the set of far field
patterns F :“ tu8p¨, dnq : n P Nu is complete in L2pS2q. An important characterization of this
property is the following, which we will prove in this TFM:

Theorem. The orthogonal complement of F in L2pS2q consists of the conjugate of those functions
g P L2pS2q for which there exists w P H2pDq and a Herglotz wave function

vpxq “

ż

S2
e´ikx¨dgpdq dspdq, x P R3,



such that the pair v, w is a solution to

∆w ` k2npxqw “ 0, ∆v ` k2v “ 0 in D (6)

satisfying

w “ v,
Bw

Bν
“

Bv

Bν
on BD. (7)

Transmission eigenvalues

In view of the previous Theorem, it seems important to study the problem

∆w ` k2npxqw “ 0, ∆v ` k2v “ 0 in D

w “ v,
Bw

Bν
“

Bv

Bν
on BD,

which is known as the interior transmission problem. Values2 of k ą 0 for which this problem
has non-trivial solutions are called (interior) transmission eigenvalues.

If we want F to be dense in L2pS2q, its orthogonal complement has to be t0u. So a sufficient
condition for this to occur is that k is not a transmission eigenvalue. Therefore, this sufficient
condition is usually imposed in the reconstruction methods such as the factorization method (see,
for example, Theorems 7.38 and 7.39 from Section 7.5 of [19]).

It seems that this problem had not received much attention until the last two decades. In fact,
existence of real transmission eigenvalues for general media was an open problem for about 20 years,
until in 2010 the question was quite completely answered by Cakoni, Gintides and Haddar in [8]. We
will explain the proof of this theorem in Chapter 4.

But, according to [5], appart from that theorem there have not been new results on real trans-
mission eigenvalues, although there has been intense research on complex ones; see chapter 10 of the
book by Colton and Kress [13].

Non-Scattering Inhomogeneities

The transmission eigenvalue problem is closely related to another fundamental and perplexing prob-
lem in scattering theory: the problem of non-scattering inhomogeneities.

The problem is the following: given an inhomogeneity pD,nq, does there exist a wave number
k ą 0 and an incident wave ui such that the corresponding far field pattern u8 is identically zero?

Such an incident field is referred to as a non-scattering incident wave and the corresponding
k ą 0 as a non-scattering wave number. Again, we consider positive wave numbers k ą 0 because
they are the only ones that have physical meaning.

How can we formulate this problem mathematically? Notice that (because of a result that we
will prove in the TFM, as a consequence of Rellich’s lemma) a radiating solution to the Helmhotz
Equation with identically zero far field pattern is identically zero as well. Therefore, since us is a
radiating solution of Helmholtz equation outside D, an equivalent formulation of the problem is the
following: an inhomogeneous medium pD,nq is non-scattering if there exists a wave number k ą 0
and an incident field ui such that the corresponding scattered field is zero outside the inhomogeneity.

For a given incident field ui, the scattered field us P H2
locpR3q satisfies the equation

∆us ` k2nus “ k2p1 ´ nqui on R3,

2One can consider complex transmission eigenvalues, but the only one that have physical meaning and are therefore
important for applications are real ones, so we will only deal with these ones.



together with Sommerfeld’s radiation condition.
So, explicitly, an inhomogeneity pD,nq does not scatter if there exits a wave number k ą 0 and

an incident field ui, i.e., a solution of

∆ui ` k2ui “ 0 on R3,

such that
∆us ` k2nus “ k2p1 ´ nqui on R3,

and
us ” 0 on R3

zD.

This is an overdetermined system of elliptic equations (it has more equations than unknowns).
However, it can be proved that for the simplest case, i.e., spherically stratified media, using separation
of variables, there exists non-scattering media (see minutes 13-18 of [5] for the sketch of a proof).

So it makes sense to consider this problem, i.e., in general we are not talking about the empty
set.

Notice that this problem is physically astonishing: it considers incident fields of specific frequencies
for which the inhomogeneity is invisible, in the sense that the wave does not change its behavior (there
is no nonzero scattered wave). Apparently, this phenomenon is quite rare. See for example the article
by Blasten, Paivarinta and Sylvester [3].

Relation between transmission eigenvalues and non-scattering inhomogeneities

Let us see what is the relationship between transmission eigenvalues and non-scattering inhomo-
geneities

Suppose that ui and us satisfy the non-scattering condition for a wave number k ą 0 (recall that
supppn ´ 1q “ D). Restricting ui to D, we have that it is a solution to Helmholtz equation on the
domain D, that is,

∆ui ` k2ui “ 0 on D.

Since us ” 0 on R3zD, we have that us “ 0 and Bus

Bν
“ 0 on BD, Therefore, u :“ us and v :“ ui

ˇ

ˇ

D
are solutions to the transmission eigenvalue problem, i.e., the problem of finding u P H2

0 pDq and
v P L2pDq such that

∆u ` k2nu “ k2p1 ´ nqv and ∆v ` k2v “ 0 in D

(where u P H2
0 pDq means u “ 0 and Bu

Bν
“ 0 on BD).

Remark. Notice that u and v are solutions to the transmission eigenvalue problem since taking
w “ u`v (w would be the total field, since u “ us, v “ ui in the above discussion), then v, w P L2pDq

satisfy that v ´ w P H2
0 pDq and

∆v ` k2v “ 0 in D,

∆w ` k2nw “ 0 in D.

Therefore, solutions to the non-scattering problem are solutions to the transmission eigenvalue
problem. Or, equivalently, non-scattering wave numbers are a subset of (positive) trans-
mission eigenvalues.

So a neccesary condition for k being a non-scattering wave number is that k is a transmission
eigenvalue.

It is natural then to ask another important question in scattering theory: when a (real) trans-
mission eigenvalue is a non-scattering wave number? This is a partially open question yet. Many
papers have been published lately regarding this topic.



To attack the problem, it has been related to regularity of the eigenfuctions of the laplacian (i.e.
solutions of Helmholtz equation) and free boundary problems.

Let us give an overview here. Suppose that k ą 0 is a transmission eigenvalue, that is, there
exists u P H2

0 pDq and v P L2pDq such that

∆u ` k2nu “ k2p1 ´ nqv and ∆v ` k2v “ 0 in D

u “ 0 and
Bu

Bν
“ 0 on BD.

We want to see if k is a non-scattering wave number, i.e., if there exists an incident wave v and a
scattered wave v such that

∆v ` k2v “ 0 in R3

∆u ` k2nu “ k2p1 ´ nqv in D

u “ 0 and
Bu

Bν
“ 0 on BD.

Notice that the only difference is that v must exist as a solution to Helmholtz equation in all of R3

and not only on D. Since H1 solutions to Helmholtz equation are analytic (see [28] page 6), the
problem is if it is possible to extend v outside of D in such a way that it is analytic. That is, under
what assumption the function v P L2pDq is a solution to Helmholtz equation in a region including
D? In that case, the eigenfunction v has to be analytic, because H1 solutions to Helmholtz equation
are analytic. So it is a regularity issue of eigenfuctions up to the boundary.

There have been several approaches to this problems, such as the use of free boundary methods
by Cakoni and Vogelius in [10] or by Salo and Shangolian in [28]. For an overview of the recent
advances in this problem, see [5]. The most studied case is that of spherically symmetric media. In
that case, the set of non-scattering wave numbers and the set of transmission eigenvalues coincide.

Motivation to study Transmission Eigenvalues

As explained in the previous section, transmission eigenvalues play a central role in applications: a
sufficient condition to apply some of the reconstruction methods is that the wake number k ą 0 is
not a transmission eigenvalue.

Besides, being a transmission eigenvalue is a necessary condition for a wave number k ą 0 to be a
non-scattering wave number. And non-scattering inhomogeneities are a little known part of scattering
theory and a truly recent area of research, where very modern techniques are being employed.

Therefore, the central motivation of this essay is to give an introduction to the topic, explaining
acoustic scattering in an inhomogeneous medium so that we can define what is a transmission eigen-
value and give one of the first important results that was known for this problem: the existence of
an infinite discrete set of transmission eigenvalues that accumulates at 8 if 1 ´ n does not change
sign in D.

Structure of the TFM

This essay is divided in four chapters:

1. The first one is focused on Helmholtz Equation ∆u ` k2u “ 0. We study several properties of
this equation that will be fundamental for the remaining parts of the essay.



2. The second chapter is a short one. It gathers the theory of dual systems needed in the following
chapter. Specifically, the aim of this chapter is to expose Fredholm’s theorem and a theorem
due to Lax that allows us to generalize mapping properties in a dual system to another bigger
dual system (for example, to generalize properties proved for Hölder spaces to properties for
Sobolev spaces).

3. The third chapter is devoted to the scattering problem in an inhomogeneous medium (2)-(3).
First, we describe the model we are going to work with. Then, we reformulate the scattering
problem as an integral equation, known as the Lippman-Schwinger equation. We prove existence
and uniqueness of a solution via the mapping properties of the volume potential. In order to
do this, we will apply Fredholm’s theorem, so it is enough to prove uniqueness in order to have
existence as well. Uniqueness will be proved via a Unique Continuation Principle.

Then, we move on to the question of completeness of the far field patterns. As we have already
explained, this question is related to the interior transmission problem: a couple of second
order equations linked via their boundary conditions on a bounded domain. Values of the
wave number for which there exist non-trivial solutions to this problem are called transmis-
sion eigenvalues. We state and prove this relation, and define the concept of transmission
eigenvalues.

4. Transmission eigenvalues are the core of the last chapter. The objective of the chapter is to prove
that, under certain conditions for the refractive index of the media, there exists a countable set
of real transmission eigenvalues which accumulate at 8. In order to do this, we reformulate the
transmission eigenvalue problem as a classical eigenvalue problem pK ´ 1

τ
IqU “ 0 for τ ą 0.

The operatorK is not self-adjoint (although it is compact) and therefore non-standard methods
must be used to prove existence of eigenvalues.

The approach then is the following: we will reformulate the problem as finding the values of
τ for which NpAτ ´ τBq ‰ t0u for tAτuτą0 a family of self-adjoint, compact and coercive
(or stricly positive) operators and B a self-adjoint, compact and non-negative operator. This
problem requires a theory to study the spectral decomposition of a compact, self-adjoint and
strictly positive operator A with respect to another compact, self-adjoint, positive operator B,
i.e., a generalization of the spectral theory for A´ λI when I is substituted by a more general
operator B. Then, we apply this theory to prove the existence of transmission eigenvalues
aforementioned.

We include an Appendix with the needed background to understand the content of the essay.

References
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Notation

Given x “ px1, . . . , xnq, y “ py1, . . . , ynq P Rn, we denote by

x ¨ y “

n
ÿ

j“1

xjyj

the Euclidean scalar product of Rn, and by

|x| “
?
x ¨ x “ px21 ` . . . ` x2nq

1{2

the Euclidean norm of Rn.
Let f be a real or complex valued function f defined on an open subset of Rn. We will denote

its (first) partial derivative with respect to the j-th variable xj evaluated at the point x by Bjfpxq,
by Bxj

fpxq or by Bf
Bxj

pxq. We will denote the m-th partial derivative of f with respect to the j-th

variable by Bm
j f .

For a given multi-index α “ pα1, . . . , αnq, we denote by Bαf the derivative B
α1
1 . . . Bαn

n f . The
number |α| indicates the total order of differentiation of Bαf . The space of functions defined on Rn

such that all of its partial derivatives up to order |α| ď N are continuous is denoted by CNpRnq and
the space of functions on Rn which are infinitely differentiable (that is, the functions in CNpRnq for
all N P N) is denoted by C8pRnq.

We denote f P C0pRnq if f is continuous and lim|x|Ñ`8 fpxq “ 0.
We denote that a function f is in CNpRnq (N ě 0) and has compact support by f P CN

c pRnq.
Analogously, f P C8

c means that f P C8pRnq and has compact support.
Given A Ď Rn, we denote by χA : Rn Ñ R the characteristic function of the set A:

χApxq “

#

1, si x P A

0, si x R A
.

Let R ą 0, p P Rn. We denote:

• The open ball of radius R centered at p by

Bpp,Rq :“ tx P R3 : |x ´ p| ă Ru,

• The closed ball of radius R centered at p by

Brp,Rs :“ tx P R3 : |x ´ p| ď Ru,

• The sphere of radius R centered at p by

Spp,Rq :“ tx P R3 : |x ´ p| “ Ru.

xi



xii Notation

In particular, we denote the unit sphere of Rn by

Sn´1 :“ tx P Rn : |x| “ 1u.

Given a surface of class C2, we will denote its surface measure by ds. In general, the surface will
be the boundary of a domain or an sphere Spp,Rq for p P Rn, R ą 0. In the case of a sphere, we
may use dσ instead of ds.

Given a linear a linear operator A : X Ñ Y between vector spaces X and Y , we denote its kernel
by NpAq.



Chapter 1

The Helmholtz equation

In this chapter, we study the Helmholtz equation, establishing some of its basic properties of this
equation. This will be important for the study of scattering of acoustic waves in an inhomogeneous
medium. We follow mainly Chapter 2 of [13] and Chapter 2 of [21]. We will work on R3. For a
development of some parts of the chapter on arbitrary dimension, see [25], Section 7.6.

1.1 Helmholtz’s Equation

The Helmholtz equation models the behavior of time-harmonic acoustic waves travelling in an ho-
mogeneous medium (we will see in a moment what does this means). For a careful deduction of this
model, see [13], Section 2.1. We present here the basic ideas.

To model the propagation of sound waves in a homogeneous isotropic medium in R3, suppose we
view them as an inviscid fluid. This fluid has velocity field v “ vpx, tq, pressure p “ ppx, tq, density
ρ “ ρpx, tq and specific entropy S “ Spx, tq, where x P R3, t ą 0.

When you relate these magnitudes via Euler’s equation, the equation of continuity, the state
equation and the adiabatic hypothesis, you obtain a system of nonlinear partial differential equa-
tions. To simplify the model, it is linearized using small perturbations of the static state v0 “ 0,
p0 “ constant, ρ0 “ constant and S0 “ constant. After making computations with the linearized
equations, eventually you arrive at the fact that there exists a velocity potential U “ Upx, tq such
that

v “
1

ρ0
∇xU

and

p “ ´
BU

Bt
.

This velocity potential satisfies the wave equation

1

c2
B2U

Bt2
“ ∆xU.

We are going to consider solutions which are time-harmonic acoustic waves, i.e., functions of the
form

Upx, tq “ Re
”

upxqe´iωt
ı

where ω ą 0 is the frequency of the wave, and c is the speed of sound (constant, since we are
considering waves in a homogeneous medium). In order for this function to be a solution of the wave

1
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equation, the complex valued space dependent part u has to satisfy the Helmholtz equation (or
reduced wave equation)

∆u ` k2u “ 0

where the wave number k is given by the constant k :“ ω
c

ą 0 (notice that it is proportional to the
frequency ω).

Therefore, to study the propagation of time-harmonic acoustic/sound waves in an homogeneous
medium, we just need to study the equation that satisfies the space-dependent part u: the Helmholtz
equation.

1.2 Fundamental solution

Although the physical interpretation of the Helmholtz equation only has sense for k ą 0, many
results are still true for k P C.

In this section, we introduce the most important function in acoustic scattering theory:

Lemma 1.2.1. For k P C the function Φk :
␣

px, yq P R3 ˆ R3 : x ‰ y
(

Ñ C, defined by

Φkpx, yq “
eik|x´y|

4π|x ´ y|
, x ‰ y,

is a solution to Helmholtz equation on the variable x, that is,

∆xΦkpx, yq ` k2Φkpx, yq “ 0 for x ‰ y.

Remark 1.2.2. It is called the fundamental solution of the Helmholtz equation, because it is a
fundamental solution to Helmholtz equation: see Theorem 7.33 of [25], pages 269-272 for a proof of
this fact. However, we will not use this throughout the essay. We will just use Lemma 1.2.1.

Proof of Lemma 1.2.1. It is enough to show that Φpxq :“ eik|x|

4π|x|
, x ‰ 0, satisfies Helmholtz equation.

We can write

Φpxq “
1

4π

eik|x|

|x|
“

1

4π
fprpxqq

where fprq :“ eikr

r
for r ą 0 and rpxq :“ |x|, x P R3. We then have

BiΦpxq “
1

4π
f 1

prpxqq ¨ Birpxq

“
eikr ¨ ik ¨ r ´ eikr ¨ 1

4πr2
¨
xi
r

“
ik|x| ¨ eik|x|

4π|x|2
¨
xi
|x|

´
eik|x|

4π|x|2
¨
xi
|x|

“ Φpxq ¨
ikxi
|x|

´ Φpxq ¨
xi

|x|2

“ Φpxq ¨
xi
|x|

¨

„

ik ´
1

|x|

ȷ
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So

BiiΦpxq “ Φpxq ¨
xi
|x|

¨

„

ik ´
1

|x|

ȷ

¨
xi
|x|

¨

„

ik ´
1

|x|

ȷ

` Φpxq ¨
1 ¨ |x| ´ xi ¨

xi

|x|

|x|2
¨

„

ik ´
1

|x|

ȷ

` Φpxq ¨
xi
|x|

¨

«

0 ´
0 ¨ |x| ´ 1 ¨

xi

|x|

|x|2

ff

“ Φpxq ¨

«

x2i
|x|2

¨
rik|x| ´ 1s2

|x|2
`

|x|2 ´ x2i
|x|3

¨
ik|x| ´ 1

|x|
`

x2i
|x|4

ff

.

Therefore,

∆Φpxq “

3
ÿ

i“1

BiiΦpxq

“ Φpxq

«

|x|2

|x|2
¨

rik|x| ´ 1s2

|x|2
`

3|x|2 ´ |x|2

|x|3
¨
ik|x| ´ 1

|x|
`

|x|2

|x|4

ff

“ Φpxq

«

´k2|x|2 ´ 2ik|x| ` 1

|x|2
`

2ik|x| ´ 2

|x|2
`

1

|x|2

ff

“ Φpxq

«

´k2|x|2

|x|2

ff

“ ´k2Φpxq.

Remark 1.2.3. In the following, we will not use the subindex k; that is, we will write Φ for Φk.

1.3 Representation formulas on bounded domains

In this section we develop a fundamental tool to treat solutions of the Helmholtz equation: Green’s
representation formula for solutions of the Helmholtz equation on bounded domains. This repre-
sentation formula, when applied to a solution u of the Helmholtz equation, allows us to describe u
in terms of its Dirichlet and Neumann data on the boundary, since the volume integral vanishes in
that case. It is a consequence of the following general theorem, valid for every function u sufficiently
regular.

Theorem 1.3.1. [Green’s Representation Theorem in the Interior of D] Let D be a bounded domain
with C1 boundary BD. For any k P C and u P C2pDq X C1pD̄q we have the representation

ż

BD

„

Bu

Bν
pyqΦpx, yq ´ upyq

BΦpx, yq

Bνpyq

ȷ

dspyq ´

ż

D

“

∆upyq ` k2upyq
‰

Φpx, yq dy “ upxq, x P D.

Proof. The idea of the proof is, given a point x P D, to remove a neighbourhood of it from the domain
so that Φpx, yq is of class C2 in that reduced domain and we can apply Green’s Second Formula (5.5).
Let us explain the details.

Fix x P D and, since D is a bounded domain, let r ą 0 be such that Brx, rs Ď D. Let
Dr :“ DzBrx, rs. Then, BDr “ BDY Spx, rq, with exterior unit normal νpyq for y P BD and x´y

|y´x|
for

y P Spx, rq (since y´x
|y´x|

would be the exterior normal to the domain Brx, rs).
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We apply Green’s second identity (5.5) to u and vpyq :“ Φpx, yq in the domain Dr and obtain

ż

BDr

ˆ

Φpx, yq
Bu

Bν
pyq ´ upyq ¨

BΦpx, ¨q

Bν
pyq

˙

dspyq “

ż

Dr

“

Φpx, yq∆upyq ´ upyq∆yΦpx, yq
‰

dy

“

ż

Dr

Φpx, yq
“

∆upyq ` k2upyq
‰

dy,

where we have used in the last step that Φpx, ¨q is a solution of the Helmholtz equation (Lemma
1.2.1).

Since BDr “ BD Y Spx, rq, we can split the integral over BDr in two integrals: one over BD and
one over Spx, rq.

In order to study the integral over Spx, rq, we have calculate BΦpx,¨q
Bνpyq

knowing that for the domain

Dr, νpyq “
x´y

|y´x|
“

x´y
r

for y P BSpx, rq.

We can write Φpx, yq “ fprpyqq with

fprq :“
eikr

4πr
and rpyq “ |x ´ y| “

a

px1 ´ y1q2 ` px2 ´ y2q2 ` px3 ´ y3q2.

Therefore, we can apply the chain rule to obtain:

∇yΦpx, yq “ fprpyqq ¨ ∇yrpyq

“
ik ¨ eikr4πr ´ eikr ¨ 4π

p4πrq2
¨

ˆ

y1 ´ x1
r

,
y2 ´ x2

r
,
y3 ´ x3

r

˙

“ eikr
„

ik ¨ 4πr ´ 4π

p4πrq2

ȷ

¨
y ´ x

r

“
eikr

4πr

„

ik ¨ 4πr ´ 4π

4πr

ȷ

¨
y ´ x

r

“
eik|x´y|

4π|x ´ y|
¨

„

ik ´
1

|x ´ y|

ȷ

¨
y ´ x

|x ´ y|

“
eik|x´y|

4π|x ´ y|
¨

„

1

|x ´ y|
´ ik

ȷ

¨ νpyq,

(recall that νpyq “
x´y

|y´x|
) where we have used that

Br

Byj
pyq “

1

2
a

px1 ´ y1q2 ` . . .
2pxj ´ yjq ¨ p´1q “

yj ´ xj
r

,

and, in consequence, ∇yrpyq “
y´x
rpyq

. So, for |y ´ x| “ r we have:

Φpx, yq “
exppikrq

4πr
BΦ

Bνpyq
px, yq “ νpyq ¨ ∇yΦpx, yq

“ νpyq ¨
eik|x´y|

4πr

„

1

r
´ ik

ȷ

¨ νpyq

“
eik|x´y|

4πr

„

1

r
´ ik

ȷ
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Therefore, we compute the integral over Spx, rq as

ż

Spx,rq

„

Φpx, yq
Bu

Bν
pyq ´ upyq ¨

BΦpx, ¨q

Bν
pyq

ȷ

dspyq “

ż

Spx,rq

«

eikr

4πr

Bu

Bν
pyq ´ upyq ¨

ˆ

1

r
´ ik

˙

¨
eikr

4πr

ff

dspyq.

We are going to split the last integral into two parts:

ż

Spx,rq

eikr

4πr

Bu

Bν
pyq dspyq and

ż

Spx,rq

upyq ¨

ˆ

1

r
´ ik

˙

¨
eikr

4πr
dspyq.

The first one tends to 0 as r Ñ 0`, since

ż

Spx,rq

ˇ

ˇ

ˇ

ˇ

ˇ

Bu

Bν
pyq ¨

eikr

4πr

ˇ

ˇ

ˇ

ˇ

ˇ

dspyq “
1

4πr

ż

Spx,rq

|∇upyq ¨ νpyq| dspyq

ď
1

4πr
¨ }∇u}L8pDq ¨ σpSpx, rqq

“
4πr2

4πr
¨ }∇u}L8pDq

rÑ0
ÝÝÑ 0, (1.1)

having used that σpSpx, rqq “ 4πr2.
The second one tends to upxq as r Ñ 0`. Let us see why. We have

´
eikr

4πr

ˆ

1

r
´ ik

˙
ż

Spx,rq

upyq dspyq “ ´
eikr

4πr2

ż

Spx,rq

upyq dspyq `
eikr

4πr

ż

Spx,rq

ikupyq dspyq. (1.2)

The first term in the right-hand side of (1.2) tends to upxq as r Ñ 0` because, as σpSpx, rqq “ 4πr2,

ˇ

ˇ

ˇ

ˇ

ˇ

1

4πr2

ż

Spx,rq

upyq dspyq ´ upxq

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

1

4πr2

ż

Spx,rq

rupyq ´ upxqs dspyq

ˇ

ˇ

ˇ

ˇ

ˇ

ď
1

4πr2

ż

Spx,rq

|upyq ´ upxq| dspyq

ď
1

4πr2
σpSpx, rqq ¨ sup

yPSpx,rq

|upyq ´ upxq|

“ sup
yPSpx,rq

|upyq ´ upxq|
rÑ0`

ÝÝÝÑ 0.

Therefore, since 1
4πr2

ş

Spx,rq
upyq dspyq Ñ upxq and ´eikr Ñ ´1 when r Ñ 0`, the product tends to

´upxq.
For the second term of (1.2), we have

ˇ

ˇ

ˇ

ˇ

ˇ

eikr

4πr

ż

Spx,rq

ikupyq dspyq

ˇ

ˇ

ˇ

ˇ

ˇ

ď
k

4πr

ż

Spx,rq

|upyq| dspyq

ď
k

4πr
σpSpx, rqq ¨ }u}L8pDq

“
k

4πr
¨ 4πr2 ¨ }u}L8pDq

“ kr ¨ }u}L8pDq

rÑ0`

ÝÝÝÑ 0
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where we have used that u is bounded on D (since D is a bounded set, so D is compact, and u is
continuous on D by hypothesis, therefore bounded).

So
ż

D

Φpx, yqr∆upyq ` k2upyqs dy “ lim
rÑ0`

ż

Dr

Φpx, yqr∆upyq ` k2upyqs dy

“

ż

BD

ˆ

Φpx, yq
Bupyq

Bνpyq
´ upyq

BΦpx, yq

Bνpyq

˙

dspyq ` lim
rÑ0`

ż

Spx,rq

ˆ

Φpx, yq
Bupyq

Bνpyq
´ upyq

BΦpx, yq

Bνpyq

˙

“

ż

BD

ˆ

Φpx, yq
Bupyq

Bνpyq
´ upyq

BΦpx, yq

Bνpyq

˙

dspyq ´ upxq,

obtaining the desired conclusion.

Remark 1.3.2. - This theorem tells us that, for x P D, any function u can be expressed as a sum
of three potentials:

pS̃φqpxq “

ż

BD

φpyqΦpx, yqdspyq, x R BD

pD̃φqpxq “

ż

BD

φpyq
BΦ

Bνpyq
px, yqdspyq, x R BD

pVφqpxq “

ż

D

φpyqΦpx, yqdy, x P R3

which are called single layer potential, double layer potential, and volume potential, respec-
tively, with density φ.

We note that the volume integral of Green’s representation formula vanishes if u is a solution
of the Helmholtz equation ∆u ` k2u “ 0 in D. In this case the function u can be expressed solely
as a combination of a single and a double layer surface potential. This observation is useful to
solve boundary value problems of Helmholtz equation using integral equation methods. We refer the
reader to Chapter 3 of [13], Chapters 2 and 3 of [12], and Section 3.1 of [21]. We state this fact in
the following theorem.

Corollary 1.3.3. For any k P C and any solution u P C2pDq X C1pD̄q of the Helmholtz equation
∆u ` k2u “ 0, we have the representation

upxq “

ż

BD

„

Bu

Bν
pyqΦpx, yq ´ upyq

BΦpx, yq

Bνpyq

ȷ

dspyq, x P D. (1.3)

1.4 Representation formula for unbounded domains

For solutions of the Helmholtz equation on exterior domains, the following condition is important.

Definition 1.4.1. A solution u to the Helmholtz equation whose domain of definition contains the
complement of some ball is called radiating if it satisfies the Sommerfeld radiation condition

lim
rÑ8

rpxq

ˆ

Bu

Br
pxq ´ ikupxq

˙

“ 0. (1.4)

where rpxq “ |x| and the limit is assumed to hold uniformly in all directions x{|x|.
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Remark 1.4.2. Before going into technical details, let us give some motivation about why is this
radiation condition asked for solutions of Helmholtz equation in exterior domains.

Consider the spherically symmetric solutions

u1pxq “
eik|x|

|x|
and u2pxq “

e´ik|x|

|x|
.

Both satisfy the decay estimate upxq “ Op 1
|x|

q when |x| Ñ 8 (condition known as Sommerfeld’s

finiteness condition: see [13], page 23). Therefore, this decay condition is not enough to have
uniqueness of solutions to the Helmholtz equation on exterior domains.

However, it can be checked that the only of these two functions that satisfies the radiation
condition (1.4) is eik|x|

|x|
. The time-harmonic wave corresponding to this space-dependent part is

Re

˜

eik|x|´iωt

|x|

¸

“
cospk|x| ´ ωtq

|x|
,

which physically corresponds to an outgoing wave (see [13], page 18) This is what we want, since
the Helmholz equation is related to scattering of electromagnetic waves and, in that context, the
scattered waves have to be outgoing (see [21], Section 1.4).

So Sommerfeld’s radiation condition is a way to characterize outgoing waves and exclude the
ingoing ones. In Physics, radiation conditions are usually imposed to select which type of solution
we want (see again [21], page 14).

Although this is the phsyical interpretation, from a mathematical point of view Sommerfeld’s
radiation condition is a sufficient condition to prove existence and uniqueness of many scattering
problems.

We would like to prove a representation formula for radiating solutions on exterior domains similar
to the one we proved for interior domains (formula (1.3)). In order to do this, we need to study the
asymptotic behavior of the fundamental solution.

Lemma 1.4.3. For any compact set K Ď R3 the fundamental solution Φ satisfies the Sommerfeld
radiation condition (1.4) uniformly with respect to y P K. More precisely,

Φpx, yq “
eik|x|

4π|x|
e´ikx̂¨y

«

1 ` O

ˆ

1

|x|

˙

ff

, |x| Ñ 8 (1.5)

and

∇xΦpx, yq “ ikx̂
eik|x|

4π|x|
e´ikx̂¨y

«

1 ` O

ˆ

1

|x|

˙

ff

, |x| Ñ 8 (1.6)

uniformly with respect to x̂ “ x
|x|

P S2 and y P K.

Proof. Recall from the proof of Lemma 1.2.1 that

Φpx, yq “
eik|x´y|

4π|x ´ y|

and

∇xΦpx, yq “ Φpx, yq ¨
x ´ y

|x ´ y|
¨

„

ik ´
1

|x ´ y|

ȷ

.
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We are going to need the asymptotic formula

|x ´ y| “ |x| ´ y ¨ x{|x| ` Op|x|
´1

q, |x| Ñ 8. (1.7)

uniformly for y on compact sets. This formula is true because

|x ´ y| “
a

px ´ yqpx ´ yq

“
a

|x|2 ` |y|2 ´ 2x ¨ y

“ |x| ¨

d

1 `

ˆ

|y|2

|x|2
´

2x ¨ y

|x|2

˙

“ |x| ¨

¨

˚

˝

1 `

´

|y|2

|x|2
´

2x¨y
|x|2

¯

2
` O

¨

˝

˜

|y|2

|x|2
´

2x ¨ y

|x|2

¸2
˛

‚

˛

‹

‚

“ |x| ´
x ¨ y

|x|
`

|y|2

|x|
` |x| ¨ O

˜

p|y|2 ´ 2x ¨ yq2

|x|4

¸

“ |x| ´
x ¨ y

|x|
` Op|x|

´1
q ` O

˜

|y|2 ´ 4xy|y|2 ` 4pxyq2

|x|3

¸

“ |x| ´
x ¨ y

|x|
` Op|x|

´1
q ` OpOp|x|

´3
q ` Op|x|

´2
q ` Op|x|

´1
qq

“ |x| ´
x ¨ y

|x|
` Op|x|

´1
q ` Op|x|

´1
q

“ |x| ´
x ¨ y

|x|
` Op|x|

´1
q

where we have used that OpOphqq “ Ophq for a function h and the Taylor’s series
?
1 ` t “ 1 `

t
2

` Opt2q when t Ñ 0. Notice that we can apply this series on the fourth equality since, as we are

considering y on a compact set (therefore bounded), |y|2

|x|2
´

2x¨y
|x|2

Ñ 0 when x Ñ 8.

Now, we are ready to prove (1.5) and (1.6).

Proof of (1.5)
We have, using (1.7), that

4π ¨
eik|x´y|

4π|x ´ y|
¨ |x| ¨ e´ik|x|

´ e´ikx̂¨y
“
eikr|x´y|´|x|s

|x ´ y|
¨ |x| ´ e´ikx̂¨y

“
eikr´x̂¨y`Op 1

|x|
qs

|x| ´ x̂ ¨ y ` Op 1
|x|

q
¨ |x| ´ eikx̂¨y

“ e´ikx̂¨y
¨

»

–

eik¨Op 1
|x|

q

1 ´
x̂¨y
|x|

` Op 1
|x|2

q
´ 1

fi

fl

“ e´ikx̂¨y
¨

»

—

–

eik¨Op 1
|x|

q
´

”

1 ´
x̂¨y
|x|

` Op 1
|x|

q

ı

1 ´
x̂¨y
|x|

` Op 1
|x|2

q

fi

ffi

fl

ď C ¨
1

|x|

when |x| Ñ 8 because, as y P K with K compact, the denominator tends to 1 as |x| Ñ 8, and in

the numerator eikOp 1
|x|

q
Ñ 1 when |x| Ñ 8, so the numerator is bounded by ď C ¨ 1

|x|
.
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Proof of (1.6)

Equation (1.6) is equivalent to

∇xΦpx, yq ¨
4π|x|

ik
e´ik|x|`ikx̂¨y

“ x̂ ¨

«

1 ` O

ˆ

1

|x|

˙

ff

, |x| Ñ 8.

So we only need to prove this. Using the value of ∇xΦpx, yq, we have

∇xΦpx, yq ¨
4π|x|

ik
¨ e´ik|x|`ikx̂¨y

“
eik|x´y|

4π|x ´ y|
¨

„

ik ´
1

|x ´ y|

ȷ

¨
x ´ y

|x ´ y|
¨
4π|x|

ik
¨ e´ik|x|`ikx̂¨y

“ eikr|x´y|´|x|`x̂¨ys
¨

„

1 ´
1

|x ´ y|ik

ȷ

¨
x ´ y

|x ´ y|
¨

|x|

|x ´ y|

“ eikOp 1
|x|

q
¨
x ´ y

|x ´ y|
¨

1

|x̂ ´
y

|x|
|

¨

„

1 ´
1

|x ´ y|ik

ȷ

“ x̂ ¨
eikOp 1

|x|
q

|x̂ ´
y

|x|
|2

´ x̂ ¨
1

ik|x ´ y|
¨
eikOp 1

|x|
q

|x̂ ´
y

|x|
|2

´ y ¨
1

|x ´ y|

eikOp 1
|x|

q

|x̂ ´
y

|x|
|

` y ¨
1

ik|x ´ y|2

eikOp 1
|x|

q

|x̂ ´
y

|x|
|

“ x̂ ´ px̂ ` yq ¨
1

|x ´ y|

eikOp 1
|x|

q

|x̂ ´
y

|x|
|

¨ r
1

|x̂ ´
y

|x|
|

` 1s ` y ¨ O

ˆ

1

|x|2

˙

“ x̂ ´ px̂ ` yqO

ˆ

1

|x|

˙

` y ¨ O

ˆ

1

|x|2

˙

.

Corollary 1.4.4. The fundamental solution Φpx, yq, seen as a function of x, satisfies Sommerfeld
Radiation Condition (1.4).

Proof. Using (1.5) and (1.6), we have that (recall that x̂ “ x
|x|

r

ˆ

BΦpx, yq

Brpxq
´ ikΦpx, yq

˙

“ |x|
`

x̂ ¨ ∇xΦpx, yq ´ ikΦpx, yq
˘

“ |x|
`

x̂ ¨ ∇xΦpx, yq ´ ikΦpx, yq
˘

“ |x|

˜

x̂ik ¨ x̂
eik|x|

4π|x|
e´ikx̂¨y

r1 ` Op|x|
´1

qs ´ ik
eik|x|

4π|x|
e´ikx̂¨y

r1 ` Op|x|
´1

qs

¸

“ |x|

˜

ik
eik|x|

4π|x|
e´ikx̂¨yOp|x|

´1
q ´ ik

eik|x|

4π|x|
e´ikx̂¨yOp|x|

´1
q

¸

“ |x| ¨ Op|x|
´2

q “ Op|x|
´1

q, |x| Ñ 8.

Corollary 1.4.5. Let D Ă R3 be a bounded domain of class C2, with exterior unit normal ν. Then
BΦpx,yq

Bνpyq
, as a function of x, is a radiating solution of the Helmholtz equation.
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Proof. We have that

∆x
BΦpx, yq

Bνpyq
“

3
ÿ

i“1

Bxixi

BΦpx, yq

Bνpyq

“

3
ÿ

i“1

Bxixi

¨

˝

3
ÿ

j“1

ByjΦpx, yq ¨ νjpyq

˛

‚

“

3
ÿ

i“1

3
ÿ

j“1

ByjpBxixi
Φpx, yqqνjpyq

“

3
ÿ

j“1

Byj

˜

3
ÿ

i“1

Bxixi
Φpx, yq

¸

νjpyq

“

3
ÿ

j“1

Byjp∆xΦpx, yqqνjpyq

“

3
ÿ

j“1

Byjp´k2Φpx, yqqνjpyq

“ ´k2
3
ÿ

j“1

ByjΦpx, yqνjpyq

“ ´k2
BΦpx, yq

Bνpyq
.

Therefore, ũpxq “
BΦpx,yq

Bνpyq
is a solution to Helmholtz equation.

Now, we want to see that ũ satisfies (1.4). We have that

Bũ

Br
pxq “

3
ÿ

j“1

xj
|x|

Bxj
ũpxq

“

3
ÿ

j“1

xj
|x|

Bxj

BΦpx, yq

Bνpyq

“

3
ÿ

j“1

xj
|x|

Bxj

˜

3
ÿ

i“1

ByiΦpx, yqνipyq

¸

“

3
ÿ

j“1

3
ÿ

i“1

Byi

ˆ

xj
|x|

Bxj
Φpx, yq

˙

νipyq

“

3
ÿ

i“1

Byi

¨

˝

3
ÿ

j“1

xj
|x|

Bxj
Φpx, yq

˛

‚νipyq

“

3
ÿ

i“1

Byi
BΦpx, yq

Brpxq
νipyq

“
B

Bνpyq

BΦpx, yq

Brpxq
.
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Therefore,

r

ˆ

Bũ

Br
pxq ´ ikũpxq

˙

“ r

ˆ

B

Bνpyq

BΦpx, yq

Brpxq
´ ik

BΦpx, yq

Bνpyq

˙

“ r
B

Bνpyq

ˆ

BΦpx, yq

Brpxq
´ ikΦpx, yq

˙

“
B

Bνpyq

˜

r

ˆ

BΦpx, yq

Brpxq
´ ikΦpx, yq

˙

¸

.

Since, by the previous corollary, Φ satisfies Sommerfeld Radiation Condition (1.4), we have that

r ¨

ˆ

BΦpx, yq

Brpxq
´ ikΦpx, yq

˙

rÑ8
ÝÝÝÑ 0

uniformly for x̂ “ x
|x|

P S2. Thus, the radiation condition is also true for ũ, as we wanted to prove.

Now, we can prove the following theorem, which states that the radiation condition is equivalent
to an integral radiation condition and is also equivalent to Green’s representation formula for exterior
domains.

Theorem 1.4.6. Let Ω be an exterior domain, i.e., Ω “ R3zD with D a bounded domain of class
C2. Let u be a solution of Helmholtz equation in Ω such that u P C2pΩq X C1pΩq.

Then, the following conditions are equivalent:

1. (Uniform Sommerfeld Radiation Condition)

Bu

Br
pxq ´ ik ¨ upxq “ opr´1

q

when r “ |x| Ñ 8 uniformly on x̂ “ x
r

P S2.

2. (Sommerfeld Radiation Condition on L2)

lim
RÑ8

ż

Sp0,Rq

ˇ

ˇ

ˇ

ˇ

Bu

Br
´ iku

ˇ

ˇ

ˇ

ˇ

2

dsR “ 0

3. (Green’s representation formula for unbounded domains)

upxq “

ż

BΩ

ˆ

Bu

Bν
pyq ¨ Φpx, yq ´ upyq ¨

BΦpx, ¨q

Bν
pyq

˙

dspyq (1.8)

for all x P Ω, where ν is the interior unit normal of BΩ.

Remark 1.4.7. One needs to be careful with Green’s representation formula on exterior domains.
If we take ν to be the interior unit normal of the exterior domain, then the representation formula
is the same as for interior domains. However, if we take ν to be the exterior unit normal of BΩ (as
is usually the case), we have to change the sign of the right-hand side of (1.8), and therefore the
representation formula is different to that of the interior domain.
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Proof of Theorem 1.4.6. 1 ùñ 2
Suppose that

Bu

Br
pxq ´ ikupxq “ opr´1

q

when r “ |x| Ñ 8 uniformly in x̂ “ x
r

P S2.
That is,

lim
rÑ8

r

ˆ

Bu

Br
pxq ´ ik ¨ upxq

˙

“ 0.

So, for every ε ą 0 there exists R0 ą 0 such that if r ě R0, then

r

ˇ

ˇ

ˇ

ˇ

Bu

Br
pxq ´ ik ¨ upxq

ˇ

ˇ

ˇ

ˇ

ă
?
ε

for every x with |x| “ r.
Therefore

ż

Sp0,rq

ˇ

ˇ

ˇ

ˇ

Bu

Br
´ iku

ˇ

ˇ

ˇ

ˇ

2

dsr ď

ż

Sp0,rq

ε

r2
dsr

“ ε
1

r2
σpSp0, rqq

“ ε
1

r2
r2σpS2

q

“ εσpS2
q

having used that, if we make the change of variables y “ x
r

ùñ r2dy “ dx, we have that

σpSp0, rqq “

ż

Sp0,rq

1 dsrpxq “

ż

Sp0,1q

r2 ds1pyq “ r2σpSp0, 1qq

being Sp0, 1q “ Sn´1.

2 ùñ 3
Let R ą 0 be sufficiently big so that D Ă Bp0, Rq and consider

ΩR :“ Ω X Bp0, Rq.

Fix x P Ω.
Since ΩR is a bounded domain on which u is a solution to Helmholtz equation (by hypothesis of

the theorem), we can apply Theorem 1.4.3 which gives us Green’s representation formula for solutions
of Helmholtz equation on bounded domains

upxq “

˜

ż

BΩ

`

ż

Sp0,Rq

¸

ˆ

Bu

Bν
pyq ¨ Φpx, yq ´ upyq ¨

BΦpx, yq

Bνpyq

˙

dspyq,

where ν is the exterior unit normal of the interior domain ΩR (and therefore, on BΩ is the interior
unit normal with respect to Ω).

To obtain condition 3., it is enough to prove that the integral over the sphere tends to 0 when
R Ñ 8. The radiation condition on L2 given by 2. can be written as

ż

Sp0,Rq

˜

ˇ

ˇ

ˇ

ˇ

Bu

Bν

ˇ

ˇ

ˇ

ˇ

2

` k2|u|
2

¸

ds ` 2k

ż

Sp0,Rq

Im

ˆ

u ¨
Bu

Bν

˙

ds
RÑ8
ÝÝÝÑ 0, (1.9)
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since

ˇ

ˇ

ˇ

ˇ

Bu

Br
´ iku

ˇ

ˇ

ˇ

ˇ

2

“

ˇ

ˇ

ˇ

ˇ

Bu

Bν

ˇ

ˇ

ˇ

ˇ

2

` k2|u|
2

´ 2Re

˜

iku ¨
Bu

Br

¸

“

ˇ

ˇ

ˇ

ˇ

Bu

Bν

ˇ

ˇ

ˇ

ˇ

2

` k2|u|
2

` 2 Im

˜

ku ¨
Bu

Br

¸

“

ˇ

ˇ

ˇ

ˇ

Bu

Bν

ˇ

ˇ

ˇ

ˇ

2

` k2|u|
2

` 2k Im

ˆ

u ¨
Bu

Br

˙

.

having used:

• On the first step, that

|z ´ w|
2

“ pz ´ wqz ´ w “ pz ´ wqpz ´ wq “ z ¨ z ´ z ¨ w ´ w ¨ z ` w ¨ w

“ |z|
2

` |w|
2

´ zw ´ wz “ |z|
2

` |w|
2

´ pzw ` zwq “ |z|
2

` |w|
2

´ 2Repz ¨ wq.

• On the second step, that given z P C, z “ a ` bi with a, b P R, then

iz “ ipa ` biq “ ´b ` ia ùñ Repizq “ ´b “ ´ Impzq.

• On the third step, that k is real, so

Bu

Br
“ k ¨ Im

ˆ

u ¨
Bu

Br

˙

.

We have that

ż

Sp0,Rq

Im

ˆ

u ¨
Bu

Bν

˙

ds “ Im

˜

ż

Sp0,Rq

u ¨
Bu

Bν
ds

¸

“ Im

˜

´

ż

BΩ

u ¨
Bu

Bν
ds `

ż

ΩR

u ¨ ∆u ` ∇u ¨ ∇u

¸

“ Im

˜

´

ż

BΩ

u ¨
Bu

Bν
ds `

ż

ΩR

u ¨ p´k2uq ` |∇u|
2

¸

“ Im

˜

´

ż

BΩ

u ¨
Bu

Bν
ds ´ k2

ż

ΩR

r|u|
2

` |∇u|
2
s dx

¸

“ Im

ˆ

´

ż

BΩ

u ¨
Bu

Bν
ds

˙

“ ´

ż

BΩ

Im

˜

Im

ˆ

u ¨
Bu

Bν

˙

¸

ds

That is,
ż

Sp0,Rq

Im

ˆ

u ¨
Bu

Bν

˙

ds “ ´

ż

BΩ

Im

ˆ

u ¨
Bu

Bν

˙

ds.

That is,
ş

Sp0,Rq
Im

´

u ¨ Bu
Bν

¯

ds does not depend on R (for R sufficiently big so that D Ă Bp0, Rq).
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So (1.9) can be written as

lim
RÑ8

ż

Sp0,Rq

˜

ˇ

ˇ

ˇ

ˇ

Bu

Bν

ˇ

ˇ

ˇ

ˇ

2

` k2 ¨ |u|
2

¸

ds “ 2k ¨

ż

BΩ

Im

ˆ

u ¨
Bu

Bν

˙

ds. (1.10)

Since
ˇ

ˇ

ˇ

Bu
Bν

ˇ

ˇ

ˇ

2

ě 0 y k2 ě 0, the fact that the limit exists and is finite means that limRÑ`8

ş

Sp0,Rq
k2 ¨

|u|2 ds is bounded, that is,
ż

Sp0,Rq

|u|
2 ds “ Op1q when R Ñ 8.

Recall that we wanted to prove that

lim
RÑ8

ż

Sp0,Rq

ˆ

Bu

Bν
pyq ¨ Φpx, yq ´ upyq ¨

BΦpx, yq

Bνpyq

˙

dspyq “ 0.

Let

IR :“

ż

Sp0,Rq

ˆ

Bu

Bν
pyq ¨ Φpx, yq ´ upyq ¨

BΦpx, yq

Bνpyq

˙

dspyq.

Let us write IR as IR “ I1pRq ´ I2pRq where

I1pRq :“

ż

Sp0,Rq

ˆ

Bu

Bν
pyq ´ ik ¨ upyq

˙

¨ Φpx, yq dspyq

and

I2pRq :“

ż

Sp0,Rq

ˆ

BΦpx, yq

Bνpyq
´ ik ¨ Φpx, yq

˙

¨ upyq dspyq.

We are going to check that both integrals tend to 0 as R Ñ 8.

1.

pI1q
2

ď

ż

Sp0,Rq

ˇ

ˇ

ˇ

ˇ

Bu

Br
´ iku

ˇ

ˇ

ˇ

ˇ

2

ds ¨

ż

Sp0,Rq

|Φpx, yq|
2 dspyq “ op1qOp1q when R Ñ 8.

So I1 Ñ 0 when R Ñ 8.

2.

pI2q
2

ď

ż

Sp0,Rq

|upyq|
2 ds ¨

ż

Sp0,Rq

ˇ

ˇ

ˇ

ˇ

BΦpx, yq

Br
´ ik ¨ Φpx, yq

ˇ

ˇ

ˇ

ˇ

2

dspyq “ Op1q ¨ op1q.

So I2 Ñ 0 when R Ñ 8.

Therefore, IR “ I1pRq ´ I2pRq Ñ 0 when R Ñ 8.
So

upxq “ upxq “

ż

BΩ

ˆ

Bu

Bν
pyq ¨ Φpx, yq ´ upyq ¨

BΦpx, ¨q

Bν
pyq

˙

dspyq, x P Ω.

3 ùñ 1
Suppose that

upxq “

ż

BΩ

ˆ

Bu

Bν
pyq ¨ Φpx, yq ´ upyq ¨

BΦpx, yq

Bνpyq

˙

dspyq.
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Differentiating under the integral sign we have that

r

ˆ

Bu

Br
pxq ´ ikupxq

˙

“ r

«

ż

BΩ

ˆ

Bu

Bν
pyq ¨

BΦ

Brpxq
px, yq ´ upyq

B

Brpxq

BΦpx, yq

Bνpyq

˙

dspyq

´ ik

ż

BΩ

ˆ

Bu

Bν
pyqΦpx, yq ´ upyq

BΦpx, yq

Bνpyq

˙

dspyq

ff

“

ż

BΩ

«

Bu

Bν
pyq ¨ r

„

BΦ

Brpxq
px, yq ´ ikΦpx, yq

ȷ

´ upyq ¨ r

„

B

Brpxq

BΦpx, yq

Bνpyq
´ ik

BΦpx, yq

Bνpyq

ȷ

ff

dspyq

We are going to check that

lim
rÑ8

r

ˆ

BΦ

Brpxq
px, yq ´ ikΦpx, yq

˙

“ 0 (1.11)

and

lim
rÑ8

r

„

B

Brpxq

BΦpx, yq

Bνpyq
´ ik

BΦpx, yq

Bνpyq

ȷ

“ 0 (1.12)

uniformly in x̂ “ x
|x|

P S2 for y on compact sets. By the Dominated Convergence Theorem, this will
end the proof.

But (1.11) is true by Corollary 1.4.4, because it states that Φ is a radiating solution and, therefore,
it satisfies Sommerfeld’s Radiation condition

lim
rÑ8

r

ˆ

BΦ

Brpxq
px, yq ´ ikΦpx, yq

˙

“ 0

uniformly in x̂ “ x
|x|

P S2 for y on compact sets.

And (1.12) is true by Corollary 1.4.5, because it asserts that BΦpx,yq

Bνpyq
is a radiating solution to

Helmholtz equation, so it satisfies Sommerfeld’s radiation condition, which is exactly (1.12).
So by the Dominated Convergence Theorem,

lim
rÑ8

r

ˆ

Bu

Br
pxq ´ ik ¨ upxq

˙

“ 0

uniformly in x̂ “ x
|x|

P S2 for y on compact sets.

Definition 1.4.8. A solution u to Helmholtz equation defined in all of R3 is called an entire solution.

Notice that an entire solution to the Helmholtz equation of class C2pR3q which satisfies the
radiation condition must vanish identically, because considering it as a solution on R3zBp0, rq we
have, by (1.8) (which we can apply because the solution is radiating) and (5.5) (taking ν to be the
unit normal vector to the boundary Sp0, rq directed to the exterior of R3zBp0, rq and therefore to
the interior of Bp0, rq), that

upxq “

ż

Sp0,rq

„

upyq ¨
BΦpx, yq

Bνpyq
´

Bu

Bν
pyqΦpx, yq

ȷ

dspyq

“ ´

ż

Bp0,rq

pupyq∆yΦpx, yq ´ Φpx, yq∆upyqq dy

“

ż

Bp0,rq

rupyqp´k2Φpx, yqq ´ Φpx, yqp´k2upyqqs dy “ 0
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for all x P R3zBr0, Rs, where the minus sign on the penultimate expression is due to the fact that ν is
directed into the interior of Bp0, rq (instead of the exterior). Notice that we can apply (5.5) because
u P C2pR3q and Φpx, yq as a function of y is in C2pR3ztxuq, in particular, it is in C2pBr0, Rsq which
is what we need to apply (5.5).

Since we have this for all R ą 0, we have that u ” 0 for all x P R3zt0u. The continuity of u
implies that u ” 0 on R3.

Remark 1.4.9. To make the previous reasoning, we had to apply Green’s representation formula
for exterior domains. If we try to apply Green’s representation formula for interior domains instead,
let us say for x P Bp0, rq, the function Φ does not satisfy the necessary hypothesis to apply Green’s
Second Formula (5.5), since Φpx, yq as a function of y is not even continuous at y “ x, so it is not
C2pBp0, rqq.

1.5 Separation of variables in Helmholtz equation

In this section, we study the series expansion of solutions of the Helmholtz equation ∆u ` k2u “ 0
inside of balls (i.e., for spherically symmetric media). For a comprehensive and clear treatment of
this subject, we refer to Chapter 2 of [21], where a comparative study of the Laplace equation and
the Helmholtz equation is made.

We are more interested in the ideas used in the proof of the following result than in the statement
itself, because we will use them later (specifically, in Rellich’s Lemma 1.7.1).

Theorem 1.5.1. Let k P Czt0u with Impkq ě 0 and R ą 0 and u P C2pBp0, Rqq solve the Helmholtz
equation ∆u ` k2u “ 0 in Bp0, Rq. Then there exist unique αm

n P C, |m| ď n, n “ 0, 1, 2, . . . such
that

upxq “ uprx̂q “

8
ÿ

n“0

n
ÿ

m“´n

αm
n jnpkrqY m

n px̂q, 0 ď r ă R, x̂ P S2.

The series converges uniformly with all of its derivatives in every closed ball Br0, R1s with R1 ă R.

Proof. We have that urpx̂q :“ uprx̂q P L2pS2q since u P C2pBp0, Rqq, so it is bounded. Therefore, we
can use Theorem 5.3.7 to expand ur in a series of spherical harmonics

urpx̂q “ uprx̂q “

8
ÿ

n“0

n
ÿ

m“´n

umn prqY m
n px̂q, x̂ P S2.

where the coefficients umn prq are given by

umn prq “ pur, Y
m
n qL2pS2q

.

Claim: the coefficients umn satisfy the spherical Bessel differential equation. To see this,
we use the Helmholtz equation for u in spherical polar coordinates, and that the functions Y m

n are
eigenfunctions of the self-adjoint Laplace-Beltrami operator with corresponding eigenvalue npn` 1q.

Recall that the laplacian in polar coordinates takes the following expression

B2

Br2
`

2

r
¨

B

Br
`

1

r2
¨ ∆S2 “: ∆r `

1

r2
¨ ∆S2 .
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Since u is solution of the Helmholtz equation, ∆u “ ∆ru` 1
r2
∆S2u “ ´k2u ðñ ∆ru “ ´ 1

r2
∆S2u´

k2u. Therefore, differentiating under the integral, we have

∆ru
m
n prq “ ∆r

ż

S2
uprx̂q ¨ Y m

n px̂q dspx̂q “

“

ż

S2
∆ruprx̂q ¨ Y m

n px̂q ds “

“ ´
1

r2

ż

S2
∆Suprx̂q ¨ Y m

n px̂q ds ´ k2
ż

S2
uprx̂q ¨ Y m

n px̂q ds “

“ ´
1

r2

ż

S2
uprx̂q ¨ ∆S2Y m

n px̂q ds ´ k2umn prq “

“
1

r2

ż

S2
npn ` 1q ¨ uprx̂q ¨ Y m

n px̂q ds ´ k2umn prq “

“ umn prq ¨

„

1

r2
npn ` 1q ´ k2

ȷ

having used in that ∆S2 is self-adjoint in L
2pS2q and that ∆SY

m
n “ ´npn` 1qY m

n (see Theorem 5.3.8
of the Appendix).

That is, umn satisfies Bessel’s spherical differential equation (5.12). Therefore, the general solution
is given by

umn prq “ αm
n jnpkrq ` βm

n ynpkrq

for certain αm
n , β

m
n . Therefore, u has the form

uprx̂q “

8
ÿ

n“0

n
ÿ

m“´n

“

αm
n jnpkrq ` βm

n ynpkrq
‰

Y m
n px̂q, x̂ P S2, r ą 0. (1.13)

The convergence of the series (1.13) is in L2pS2q for each r ą 0 fixed.
We are interested in smooth solutions in the ball Bp0, Rq. Therefore, βm

n “ 0 (because yn has a
pole in 0).

The proof of the uniform convergence requires the use of some properties of the Legendre poly-
nomials. Check Theorem 2.33 of [21], pages 62-64, for a proof.

1.6 The far field pattern

We are now in a position to introduce the definition of the far field pattern (or scattering amplitude)
of a radiating solution. It is a function defined on the unit sphere S2 that gathers the asymptotical
information of the corresponding radiating solution, and it just depends on the values of the solution
on the boundary of the exterior domain, and on the shape of the boundary (because it depends on
the unit normal ν).

The far field pattern, as we will explain in Chapter 3, is quite fundamental in Scattering Theory.

Theorem 1.6.1. Let D de a bounded domain of class C2 and let u be a radiating solution of Helmholtz
equation in the exterior domain R3zD, with u P C2pR3zDq X C1pR3zDq. Then u has the asymptotic
behavior of an outgoing spherical wave

upxq “
eik|x|

|x|

«

u8px̂q ` O

ˆ

1

|x|

˙

ff

, |x| Ñ 8 (1.14)
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uniformly in all directions x̂ “ x{|x| where the function u8 defined on the unit sphere S2 is known
as the far field pattern of u, and is given by

u8px̂q “
1

4π

ż

BD

«

upyq
Be´ikx̂¨y

Bvpyq
´

Bu

Bv
pyqe´ikx̂¨y

ff

dspyq, x̂ P S2, (1.15)

where ν denotes the unit normal vector to the boundary BD directed into the exterior of D.

Proof. From (1.5), we have

Φpx, yq “
eik|x|

4π|x|

«

e´ikx̂¨y
` O

ˆ

1

|x|

˙

ff

(1.16)

and from (1.6), we have

BΦpx, yq

Bνpyq
“ ´r´ike´ikx̂¨yx̂s

eik|x|

4π|x|

«

1 ` O

ˆ

1

|x|

˙

ff

¨ νpyq

“ ∇ye
´ikx̂¨y

¨ νpyq ¨
eik|x|

4π|x|

«

1 ` O

ˆ

1

|x|

˙

ff

“
Be´ikx̂¨y

Bνpyq
¨
eik|x|

4π|x|

«

1 ` O

ˆ

1

|x|

˙

ff

(1.17)

uniformly for all y P BD (since BD is closed and bounded, therefore compact). Inserting (1.16)-(1.17)
into Green’s representation formula for unbounded domains (1.8) (taking ν to be the unit normal
vector to the boundary BD directed into the exterior of D), we obtain

upxq “

ż

BD

„

upyq ¨
BΦpx, yq

Bνpyq
´

Bu

Bν
pyqΦpx, yq

ȷ

dspyq

“

ż

BD

»

–upyq ¨
eik|x|

4π|x|

«

Be´ikx̂¨y

Bνpyq
` O

ˆ

1

|x|

˙

ff

´
Bu

Bν
pyq

eik|x|

4π|x|
e´ikx̂¨y

«

1 ` O

ˆ

1

|x|

˙

ff

fi

fl dspyq

“
eik|x|

|x|
¨
1

4π

ż

BD

«

upyq ¨
Be´ikx̂¨y

Bνpyq
´

Bu

Bν
pyq ¨ e´ikx̂¨y

ff

dspyq

`
eik|x|

|x|
¨
1

4π

ż

BD

«

upyq ¨
Be´ikx̂¨y

Bνpyq
´

Bu

Bν
pyq ¨ e´ikx̂¨y

ff

dspyq ¨ O

ˆ

1

|x|

˙

“
eik|x|

|x|

«

u8px̂q ` O

ˆ

1

|x|

˙

ff

,

as we wanted to prove.

Remark 1.6.2. One of the main problems in scattering theory is to recover radiating solutions of
the Helmholtz equation from a knowledge of their far field patterns. Given the mapping A : u ÞÑ u8

transferring a radiating solution u into its far field pattern u8, an important question is to solve
the equation Au “ u8 for a given u8. The operator A is smoothing, since we can pass as many
derivatives as we want under the integral sign in expression (1.15).

We will not deal with this problem. See Section 7.5 of [19] or the book [20] for a treatment of the
subject.
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1.7 Rellich’s Uniqueness Theorem

In this section we are going to state and prove Rellich’s Uniqueness Lemma and some of its direct
consequences. The most important one of them is that a radiating solution to the Helmholtz equation
is uniquely determined by its far field pattern.

The proof of Rellich’s Lemma uses arguments similar to those in the proof of Theorem 1.5.1
plus some asymptotic properties of the spherical Bessel and Hankel functions which are presented in
section 5.4 of the appendix.

Lemma 1.7.1. [Rellich’s Lemma] Let u P C2
`

R3zB r0, R0s
˘

be a solution of the Helmholtz equation
∆u ` k2u “ 0 for |x| ą R0 and wave number k P Rą0 such that

lim
RÑ8

ż

|x|“R

|u|
2ds “ 0.

Then u vanishes for |x| ą R0.

Proof. The general solution of the Helmholtz equation in the exterior of B p0, R0q is given by (1.13)

(instead of the pair of linearly independent solutions jn and yn, we consider the pair jn and h
p1q
n );

that is,

uprx̂q “

8
ÿ

n“0

n
ÿ

m“´n

”

amn h
p1q
n pkrq ` bmn jnpkrq

ı

Y m
n px̂q, x̂ P S2, r ą R0,

for some amn , b
m
n P C. The spherical harmonics

␣

Y m
n : |m| ď n, n P N0

(

form an orthogonal system of
L2pS2q. Therefore, Parseval’s theorem yields, defining urpx̂q :“ uprx̂q for x̂ P S2,

}ur}L2pSn´1q “

8
ÿ

n“0

n
ÿ

m“´n

|amn h
p1q
n pkrq ` bmn jnpkrq|

2

where

}ur}L2pS2q “

ż

S2
|urpx̂q|

2 dspx̂q “

ż

S2
|uprx̂q|

2 dspx̂q “

ż

Sp0,rq

|upyq|
2

¨
1

r2
dspyq

having done in the last step the change of variables y “ rx̂ that takes x̂ P Sp0, 1q to y P Sp0, rq, being
the determinant of the jacobian of the inverse mapping 1

r2
.

That is,

r2 ¨

8
ÿ

n“0

n
ÿ

m“´n

ˇ

ˇ

ˇ
amn h

p1q
n pkrq ` bmn jnpkrq

ˇ

ˇ

ˇ

2

“

ż

Sp0,rq

|upyq|
2 dspyq.

The assumption of the theorem says precisely that the right-hand side tends to 0 when r Ñ 8.
Therefore, the left-hand side tends to 0 as well when r Ñ 8. In particular, for every fixed n P N0

and m with |m| ď n, we have that

r2
ˇ

ˇ

ˇ
amn h

p1q
n pkrq ` bmn jnpkrq

ˇ

ˇ

ˇ

2
rÑ8
ÝÝÝÑ 0.

Defining cmn “ amn ` bmn and using that h
p1q
n “ jn ` i ¨ yn, we can write it as

r ¨
“

iamn ynpkrq ` cmn jnpkrq
‰ rÑ8

ÝÝÝÑ 0.

Now we use the asymptotic behavior of jnpkrq and ynpkrq as r tends to infinity. By Theorem 5.4.4,

hp1q
n pzq “

exp
`

ipz ´ π
2
pn ` 1qq

˘

z
¨

«

1 ` O

ˆ

1

|z|

˙

ff

|z| Ñ 8,



20 CHAPTER 1. THE HELMHOLTZ EQUATION

uniformly with respect to z
|z|
.

Since jn “ Reph
p1q
n q and yn “ Imph

p1q
n q, we have that

kr ¨ ynpkrq “ kr ¨ Imphp1q
n pkrqq

and
kr ¨ jnpkrq “ kr ¨ Rephp1q

n pkrqq.

Therefore, using the above asymptotic expression from Theorem 5.4.4, we have that

0 “ lim
rÑ8

ri ¨ amn ¨ krynpkrq ` cmn ¨ kr ¨ jnpkrqs

“ i ¨ amn ¨ Im

»

–exp

˜

i

ˆ

kr ´
π

2
pn ` 1q

˙

¸

fi

fl ` cmn ¨ Re

»

–exp

˜

i

ˆ

kr ´
π

2
pn ` 1q

˙

¸

fi

fl ` O

ˆ

1

r

˙

.

Therefore, the only possibility is that

lim
rÑ8

“

iamn ¨ Impexppi ¨ . . .qq ` cmn ¨ Repi ¨ . . .q
‰

“ 0.

Notice that

exp

ˆ

ikr ´ i
π

2
pn ` 1q

˙

“ eikr ¨ e´iπ
2

pn`1q
“ eikr ¨ p´iqn`1.

The values of p´iqn`1 alternate between ˘1 and ˘i. Therefore, we have to consider two cases.

• If p´iqn`1 “ ˘i, then Impeikr ¨ p˘iqq “ ˘ cospkrq and Repeikr ¨ p˘iqq “ ¯ sinpkrq (notice that
they have opposite signs). Therefore, in this case we have

˘riamn cospkrq ´ cmn sinpkrqs
rÑ8
ÝÝÝÑ 0.

• If p´iqn`1 “ ˘1, then Impeikr ¨ p˘iqq “ ˘ sinpkrq and Repeikr ¨ p˘iqq “ ˘ cospkrq (notice that
they have the same sign). Therefore, in this case we have

˘riamn sinpkrq ` cmn cospkrqs
rÑ8
ÝÝÝÑ 0.

In any of the two cases, we can choose sequences trjujPN such that rj Ñ 8 when j Ñ 8 in such
a way that sinpkrjq “ 1 and cospkrjq “ 0 and in such a way that sinpkrjq “ 0 and cospkrjq “ 1.
Therefore, we conclude that amn “ 0 “ cmn . So we also have bmn “ 0.

This reasoning is valid for all n,m. Therefore, u ” 0, as we wanted to prove.

Theorem 1.7.2. Let D be a bounded domain with boundary BD of class C2. Let v be the unit normal
directed into the exterior of D, and assume u P C2

`

R3zD̄
˘

XC
`

R3zD
˘

is a radiating solution to the
Helmholtz equation with wave number k ą 0 for which

Im

ż

BD

u
Bū

Bv
ds ě 0.

Then u “ 0 in R3zD̄

Proof. From the identity (1.10) and the assumption of the theorem, we conclude that the hypothesis
of Rellich’s Lemma 1.7.1 is satisfied. Hence, the theorem follows.
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Applying Rellich’s lemma we can now prove that the far field pattern uniquely determines a
radiating solution (the converse is also true because the far field pattern is defined for a given
radiating solution, so Rellich’s lemma establishes the one-to-one correspondence between radiating
waves and their far field patterns).

Theorem 1.7.3. Let D be as in Theorem 1.7.2 and let u P C2
`

R3zD̄
˘

be a radiating solution to the
Helmholtz equation for which the far field pattern vanishes identically. Then u “ 0 in R3zD̄.

Proof. Since from (1.14) we deduce

ż

|x|“r

|upxq|
2ds “

ż

S2

ˇ

ˇu8px̂q
ˇ

ˇ

2
ds ` O

ˆ

1

r

˙

, r Ñ 8

the assumption u8 “ 0 on S2 implies that the assumption of Rellich’s lemma is satisfied, because

ż

|x|“r

|upxq|
2 ds “ O

ˆ

1

R

˙

.

Therefore, the theorem follows.

Remark 1.7.4. Rellich’s Lemma is also important to prove uniqueness of many scattering problems.
For an application of such kind, see for example Theorem 3.23 of [21], pages 131-132.

1.8 Remarks to Chapter 1

Weaker hypothesis

To begin with, we can weaken the hypothesis made in some of the theorems. In the theorems about
representations formulas, we have asked that u is in C2pDq X C1pDq or in C2pR3zDq X C1pR3zDq,
where D is an interior domain. This hypothesis can be relaxed, taking u to be continuous up to
the boundary instead of C1. But then, we need to understand the normal derivative in the sense of
uniform convergence:

Bu

Bν
pxq “ lim

hÑ0`
νpxq ¨ ∇upx ´ hνpxqq, x P BD,

so to make the reasonings of the proofs of the representation theorems one has to integrate over
paralel surfaces instead of directly on the boundary. For a description of this concept, see [22], pages
84-85, or [12], page 37.

Regularity of solutions to Helmholtz equation

It can be proved that any C2 solution to Helmholtz equation is in fact analytic. For a proof, see
Corollary 3.4 of [21].
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Chapter 2

Dual Systems, Fredholm Alternative and
Lax’s Theorem

In this chapter we develop some of the tools that we will need later. More specifically, we give a
brief survey/overview of the theory of dual systems, which tries to generalize Hilbert Space Theory
(Riesz Representation Theorem, Fredholm alternative. . . ). We skip all of the proof except the one
of Lax’s Theorem. Our reference is Chapter 4 of the book of Kress [22].

In this chapter we assume that all vector spaces are complex (the real case can be treated analo-
gously). Unless stated otherwise, in this chapter G Ă Rn denotes a nonempty compact set.

2.1 Dual systems via bilinear forms

Definition 2.1.1. Let X, Y be vector spaces. A mapping

x¨, ¨y : X ˆ Y Ñ C

is called a bilinear form if

xα1φ1 ` α2φ2, ψy “ α1 xφ1, ψy ` α2 xφ2, ψy ,

xφ, β1ψ1 ` β2ψ2y “ β1 xφ, ψ1y ` β2 xφ, ψ2y

for all φ1, φ2, φ P X,ψ1, ψ2, ψ P Y , and α1, α2, β1, β2 P C. The bilinear form is called non-degenerate
if for every φ P X with φ ‰ 0 there exists ψ P Y such that xφ, ψy ‰ 0; and for every ψ P Y with
ψ ‰ 0 there exists φ P X such that xφ, ψy ‰ 0.

Definition 2.1.2. Two normed spaces X and Y equipped with a non-degenerate bilinear form
x¨, ¨y : X ˆ Y Ñ C are called a dual system and it is denoted by xX, Y y.

A classical example of a dual system is the following.

Theorem 2.1.3. Each normed space X together with its dual space X˚ forms the canonical dual
system xX,X˚y with the bilinear form

xφ, F y :“ F pφq, φ P X,F P X˚.

Proof. See Theorem 4.3 of [22], page 46.

Another example is the classical integral of a product xf, gy “
ş

G
fg, which can be considered

over a vector space such as CpGq (the space of continuous functions defined on G) instead of L2pGq.

23
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Theorem 2.1.4. Let G Ă Rn be a nonempty compact set. Then xCpGq, CpGqy is a dual system with
the bilinear form

xφ, ψy :“

ż

G

φpxqψpxqdx, φ, ψ P CpGq.

Proof. See Theorem 4.4 of [22], page 46.

Adjoint of an operator in a dual system

Definition 2.1.5. Let xX1, Y1y and xX2, Y2y be two dual systems. Then two operators A : X1 Ñ

X2, B : Y2 Ñ Y1 are called adjoint (with respect to these dual systems) if

xAφ,ψy2 “ xφ,Bψy1

for all φ P X1, ψ P Y2. (where x¨, ¨y1 denotes the bilinear form of xX1, Y1y and x¨, ¨y2 denotes the
bilinear form of xX2, Y2y).

Theorem 2.1.6. Let xX1, Y1y and xX2, Y2y be two dual systems. If an operator A : X1 Ñ X2 has
an adjoint B : Y2 Ñ Y1, then B is uniquely determined, and A and B are linear.

Proof. See Theorem 4.6 of [22], page 46.

The typical example is an operator given by a continuous or weakly singular kernel (see Definition
5.1.18 of the Appendix).

Theorem 2.1.7. Let K be a continuous or a weakly singular kernel. Then in the dual system
xCpGq, CpGqy the (compact) integral operators defined by

pAφqpxq :“

ż

G

Kpx, yqφpyqdy, x P G,

and

pBψqpxq :“

ż

G

Kpy, xqψpyqdy, x P G,

are adjoint.

Proof. See Theorem 4.7 of [22], page 47.

Remark 2.1.8. Note that not every operator has an adjoint. For example, the operator A : Cr0, 1s Ñ

Cr0, 1s defined by Aφ :“ φp1q is a compact operator that does not have an adjoint operator with
respect to the dual system xCr0, 1s, Cr0, 1sy of Theorem 2.1.4. We can prove it by reductio ad
absurdum: suppose B : Cr0, 1s Ñ Cr0, 1s was an adjoint of A. We can choose a function ψ P Cr0, 1s

with
ş1

0
ψpxq dx “ 1. By the Cauchy-Schwarz inequality,

1 “ |φp1q| “ |xAφ,ψy| “ |xφ,Bψy| ď }φ}2}Bψ}2

for all φ P Cr0, 1s with φp1q “ 1. Considering this inequality for the sequence pφnq with φnpxq :“ xn

we arrive at a contradiction, since the right-hand side tends to zero as n Ñ 8.

The following is a classical result.
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Theorem 2.1.9. Let A : X Ñ Y be a bounded linear operator mapping a normed space X into a
normed space Y . Then the adjoint operator A˚ : Y ˚ Ñ X˚ with respect to the canonical dual systems
xX,X˚y and xY, Y ˚y exists. It is given by

A˚F :“ FA, F P Y ˚,

and is called the dual operator of A. It is bounded with norm }A} “ }A˚}.

Proof. See Theorem 4.8 of [22], pages 47-48.

Remark 2.1.10. It can be shown that under the assumptions of Theorem 2.1.9 and assuming that
Y is a Banach space, the adjoint operator A˚ is compact if and only if A is compact.

2.2 Dual Systems via Sesquilinear Forms

We can develop a similar theory for sesquilinear forms instead of bilinear ones.

Definition 2.2.1. Let X, Y be linear spaces. A mapping p¨, ¨q : X ˆ Y Ñ C is called a sesquilinear
form if

pα1φ1 ` α2φ2, ψq “ α1 pφ1, ψq ` α2 pφ2, ψq ,

pφ, β1ψ1 ` β2ψ2q “ β̄1 pφ, ψ1q ` β̄2 pφ, ψ2q

for all φ1, φ2, φ P X,ψ1, ψ2, ψ P Y , and α1, α2, β1, β2 P C. (Here, the bar indicates the complex
conjugate.)

The definitions and theorems formulated for non-degenerate bilinear forms can be adapted to
non-degenerate sesquilinear forms and are still true.

Remark 2.2.2. Sesquilinear forms differ from bilinear forms by their anti-linearity with respect to
the second space. However, they are closely related: assume there exists a mapping ˚ : Y Ñ Y with
the properties pβ1ψ1 ` β2ψ2q

˚
“ β̄1ψ

˚
1 ` β̄2ψ

˚
2 and pψ˚q

˚
“ ψ for all ψ1, ψ2, ψ P Y and β1, β2 P C.

Such a mapping (called an involution) provides a one-to-one correspondence between bilinear and
sesquilinear forms by pφ, ψq “ xφ, ψ˚y. For example, in the space CpGq the natural involution is
given by ψ˚pxq :“ ψpxq for all x P G and all ψ P CpGq.

Hilbert Spaces

As we have already said in the introduction to this chapter, (pre-)Hilbert spaces are a particular case
of dual systems. Indeed, any scalar product on a linear space X can be seen as a non-degenerate
sesquilinear form that is symmetric, that is, pφ, ψq “ pψ, φq for all φ, ψ P X, and positive definite,
that is, pφ, φq ą 0 for all φ P X with φ ‰ 0. Thus each pre-Hilbert space is a dual system
canonically.

For this special case, we recall some well-known theorems that we will use later:

Theorem 2.2.3 (Riesz Representation Theorem). Let X be a Hilbert space. Then for each bounded
linear functional F : X Ñ C there exists a unique element f P X such that

F pφq “ pφ, fq

for all φ P X. The norms of the element f and the linear function F coincide, i.e.,

}f} “ }F }.
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Proof. See Theorem 4.10 of [22], page 49.

Remark 2.2.4. The Riesz Representation theorem establishes the existence of a bijective anti-linear
mapping J : X Ñ X˚ between a Hilbert space and its dual space, given by

pJpfqqpφq “ pφ, fq

for all φ, f P X, which is isometric in the sense that it preserves the norms.

As opposed to what happened with general dual systems (even for compact operators, as seen in
an Remark 2.1.8), any bounded linear operator on a Hilbert space has an adjoint. This is thanks to
the Riesz Representation Theorem, which is not true in general for dual systems.

Theorem 2.2.5. Let X and Y be Hilbert spaces, and let A : X Ñ Y be a bounded linear operator.
Then there exists a uniquely determined linear operator A˚ : Y Ñ X with the property

pAφ,ψq “ pφ,A˚ψq

for all φ P X and ψ P Y , i.e., A and A˚ are adjoint with respect to the dual systems pX,Xq and
pY, Y q generated by the scalar products on X and Y . The operator A˚ is bounded and }A˚} “ }A}.
(Again we use the same symbol p¨, ¨q for the scalar products on X and Y .)

Proof. See Theorem 4.11 of [22], page 50.

Theorem 2.2.6. Let X and Y be Hilbert spaces and let A : X Ñ Y be a compact linear operator.
Then the adjoint operator A˚ : Y Ñ X is also compact.

Proof. See Theorem 4.12 of [22], page 50.

2.2.1 Lax’s Theorem

The following theorem is due to Lax and provides a usefool tool to extend results on the boundedness
of linear operators from a given norm to a weaker scalar product norm.

Theorem 2.2.7 (Lax). Let pX, } ¨ }Xq and pY, } ¨ }Y q be normed spaces equipped with scalar products1

p¨, ¨qX and p¨, ¨qY respectively and suppose that there exists a positive constant C ą 0 such that

|pφ, ψqX | ď C}φ}X ¨ }ψ}X (2.1)

for all φ, ψ P X. Let U Ă X be a subspace and let A : U Ñ Y y B : Y Ñ X be bounded linear
operators that satisfy

pAφ,ψqY “ pφ,BψqX (2.2)

for all φ P U , ψ P Y .

Then A : U Ñ Y is bounded with respect to the norms induced by the scalar products. We will
denoted these norms by } ¨ }s,X and } ¨ }s,Y .

1These scalar products do not need to induce the norms } ¨ }X and } ¨ }Y .
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Proof. Let M :“ B ˝ A : U Ñ X. Then M is bounded because it is a composition of bounded
operators, and we have }M}UÑX ď }B}Y ÑX ¨ }A}UÑY .

M is self-adjoint, that is:

pMφ,ψqX “ pφ,MψqX (2.3)

for all φ, ψ P U , because when we apply (2.2) we obtain:

pφ,MψqX “ pφ,BAψqX “
Ò

(2.2)

pAφ,AψqY “ pAψ,AφqY “
Ò

(2.2)

pψ,BAφqX “ pψ,MφqX “ pMφ,ψqX .

By Cauchy-Schwarz inequality,

}Mnφ}
2
s,X “ pMnφ,MnφqX “ pφ,M2nφqX ď }φ}s,X ¨ }M2nφ}s,X ď }M2nφ}s,X

for every φ P U with }φ}s ď 1, and every n P N.
From this, by induction, it follows that

}Mφ}s,X ď }M2nφ}
2´n

s,X , (2.4)

for all φ P U with }φ}s,X ď 1, because

}Mφ}s,X ď }M2φ}
1{2
s,X ď p}M4φ}

1{2
s,Xq

1{2
ď . . . ď }M2nφ}

2´n

s,X .

From (2.1) we have that

}φ}s,X “ pφ, φq
1{2
X ď

Ò

(2.1)

pC}φ}X}φ}Xq
1{2

“
?
C ¨ }φ}X .

That is,

}φ}s,X ď
?
C ¨ }φ}X . (2.5)

Therefore, for all n P N,

}Mφ}s,X ď
Ò

(2.4)

}M2nφ}
2´n

s,X ď
Ò

(2.5)

r
?
C ¨ }M2nφ}Xs

2´n

ď
Ò

M bounded

r
?
C ¨ }M}

2n

UÑX ¨ }φ}Xs
2´n

ď r
?
C ¨ }φ}Xs

2´n

¨ }M}UÑX .

Taking limnÑ8, we obtain

}Mφ}s,X ď }M}UÑX ă 8 (2.6)

for all φ P U with }φ}s,X ď 1. By Cauchy-Schwarz inequality, we have that for every φ P U with
}φ}s,X ď 1:

}Aφ}
2
s,Y “ pAφ,AφqY “

Ò

(2.3)

pφ,MφqX ď
Ò

C-S

}φ}s,X}Mφ}s,X ď
Ò

(2.6) and }φ}s,Xď1

}M}UÑX .

Therefore, A is a bounded operator from U to Y with the norms induced by the scalar product.
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2.2.2 Fredholm’s Alternative

The following theorem is Fredholm Alternative for a dual system generated by a bilinear form. The
case of a sesquilinear form is analogous.

Theorem 2.2.8. Let A : X Ñ X, B : Y Ñ Y be compact adjoint operators in a dual system xX, Y y.
Then

1. Either I ´ A and I ´ B are bijective,

2. Or I ´ A and I ´ B have nontrivial nullspaces with finite dimension

dimNpI ´ Aq “ dimNpI ´ Bq P N

and the ranges are given by

pI ´ AqpXq “ tf P X : xf, ψy “ 0, ψ P NpI ´ Bqu

and
pI ´ BqpY q “ tg P Y : xφ, gy “ 0, φ P NpI ´ Aqu.

Proof. See Theorem 4.17 of [22], page 55.

Remark 2.2.9. Note that this theorem implies that one of the four properties I ´ A is injective,
I ´ A is surjective, I ´ B is injective and I ´ B is surjective implies the three other ones.

Usually, this theorem is applied in the following way: we have a partial differential equation
expressed in terms of a compact operator. Then, Fredholm’s Theorem guarantees that if we have
uniqueness of the solution (i.e. injectivity with respect to the initial data), which usually is easier to
prove, then we have existence as well.



Chapter 3

Scattering in an Inhomogeneous medium

For the remaining chapters of this essay, we are going to consider the direct scattering problem of
acoustic waves by an inhomogeneous medium of compact support.

To study the problem, we are going to use the method of integral equations. Since there will not
be boundary conditions, we will only use volume potentials (instead of surface potentials such as the
single- or double-layer potentials).

The structure of the chapter is the following:

• We begin the chapter by deriving the linearized equations governing the propagation of small
amplitude sound waves in an inhomogeneous medium.

• We then reformulate the direct scattering problem for such a medium as an integral equation
known as the Lippmann-Schwinger equation.

• Then, in order to apply Fredholm’s theorem (that is, in order to prove uniqueness of the
homogeneous equation), we prove a Unique Continuation Principle. This allows us to prove
the existence of a unique solution to the Lippmann-Schwinger equation, and therefore the
existence and uniqueness of a solution to the scattering problem.

• Finally, we investigate the set F of far field patterns of the scattered fields corresponding to
incident time-harmonic plane waves moving in arbitrary directions (i.e., waves whose space
dependent part is of the form e´ikx¨d for d P S2 arbitrary). By proving a reciprocity relation for
far field patterns, we show that the completeness of the set F is equivalent to the nonexistence
of an specific type of eigenfunctions (called Herglotz wave functions) for a new type of boundary
value problem for the Helmholtz equation called the interior transmission problem.

• Lastly, we define the concept of non-scattering inhomogeneity and relate it to the transmission
eigenvalue problem.

For this chapter, we follow [13], sections 8.1-8.4, and [19], sections 7.1-7.3.

3.1 Physical model

In this section, we give a brief description of the physical model. For a detailed deduction of the
model, see [19], pages 239-241, or [13], pages 304-306.

By a deduction analogous to that needed in Chapter 1 to deduce Helmholtz equation, making
several assumptions to simplify the model, it can be shown that, if we consider acoustic waves

29
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travelling in a medium such as a fluid and suppose that the linear part of the pressure of the fluid
ppx, tq is time-harmonic, i.e.,

ppx, tq “ p0 ` εp1px, tq ` Opε2q,

with
p1px, tq “ Rerupxqe´iωt

s

for some frequency ω ą 0 and a complex-valued function u which only depends on the spatial variable,
then the wave behavior can be modeled by the following equation for u:

∆upxq `
ω2

cpxq2

ˆ

1 ` i
γ

ω

˙

u “ 0. (3.1)

In free space (that is, outside the inhomogeneity), c “ c0 is constant and γ “ 0. We define the wave
number and the index of refraction by

k :“
ω

c0
ą 0 and npxq :“

c20
cpxq2

ˆ

1 ` i
γ

ω

˙

respectively. Notice that n is a complex-valued function with Renpxq ě 0 and Imnpxq ě 0. Notice
that outside the inhomogeneity, since c “ c0 and γ “ 0, then npxq ” 1. So we assume that the
inhomogeneous region, let us called it D Ă R3, is given by

D “ supppmq

where m is defined as
mpxq :“ 1 ´ npxq, x P R3. (3.2)

Since we are considering inhomogeneities of compact support, D “ supppmq is assumed to be com-
pact.

With these definitions, equation (3.1) takes the form

∆u ` k2nu “ 0.

We assume that there exists a source (outside the inhomogeneity) which generates an incident field
ui that satisfies the unperturbed Helmholtz equation ∆ui`k2ui “ 0 outside the sources (for example,
if a whistle is taking place at a point z in space, it satisfies Helmholtz equation outside this point,
i.e., in R3ztzu). We typically imagine that ui is generated by a point source or that it is a plane
wave; that is, the time-dependent incident fields have the form

pi1px, tq “
1

|x ´ z|
Re

”

eik|x´z|´iωt
ı

; that is, uipxq “
eik|x´z|

|x ´ z|
,

for a point source at z P R3, or

pi1px, tq “ Re
”

eikθ̂¨x´iωt
ı

; that is, uipxq “ eikθ̂¨x,

for plane wave travelling in the direction of a unit vector θ̂ P R3.
In both cases, ui is a solution of the Helmholtz equation ∆ui ` k2ui “ 0 in R3ztzu or R3 respec-

tively. In the first case, the pressure pi1 describes a spherical wave that travels away from the source
with velocity c0 “ ω

k
. In the second case, pi1 describes a plane wave that travels in the direction θ̂

with velocity c0.
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The incident field is disturbed by the inhomogeneous medium pD,nq described by the index
of refraction n and produces a scattered wave us. The total field u “ ui ` us satisfies the equation
∆u`k2nu “ 0 outside the sources; that is, the scattered field us satisfies the inhomogeneous equation

∆us ` k2nus “ k2p1 ´ nqui

where the right-hand side is a function of compact support in D. Furthermore, we assume the
scattered field us to behave as a spherical wave far from the medium (see description (1.14) to
understand what we mean). We describe this, as in Chapter 1, by Sommerfeld Radiation Condition

Buspxq

Br
´ ikuspxq “ O

ˆ

1

r2

˙

as r “ |x| Ñ 8,

uniformly in x
|x|

P S2. The smoothness of the solution us depends on the smoothness of the refractive
index n. We have now described a quite complete model of the direct scattering problem.

Direct Scattering Problem

Let the wave number k ą 0, the index of refraction n P L8pR3q with n ” 1 on R3zD, and the
incident field ui be given. The scattering problem is to determine the scattered field us that satisfies
the equation

∆us ` k2nus “ k2p1 ´ nqui

and the radiation condition

lim
rÑ8

r

ˆ

Bus

Br
´ ikus

˙

“ 0

uniformly for x̂ “ x
|x|

P S2.

3.1.1 Summary of the model

To fix ideas, equation ∆u ` k2npxqu “ 0 governs the propagation of time-harmonic acoustic waves
of small amplitude in an inhomogeneous medium. We shall only consider the simplest case:

• The inhomogeneity pD,nq is determined by the inhomogeneous region D Ă R3 and the refrac-
tive index n, with D “ suppp1 ´ nq. We further assume that:

– The inhomogeneous medium is slowly varying. This translates in the fact that c and γ,
and therefore n, are assumed to be piecewise continuous at least.

– That the inhomogeneity is of compact support, which means that D is bounded or, equiv-
alently, that the support of 1 ´ n is compact.

Later, we will specify some regularity of the boundary BD.

• The region of propagation under consideration is all of R3.

• The wave motion is caused by an incident field ui satisfying Helmholtz equation, which is
scattered by the inhomogeneous medium.

Under these conditions, the scattering problem under consideration is to find u (or, equivalently,
us) such that

∆u ` k2npxqu “ 0 in R3 (3.3)

u “ ui ` us, (3.4)

lim
rÑ8

r

ˆ

Bus

Br
´ ikus

˙

“ 0, (3.5)
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Remark 3.1.1. In general, we will assume that the refractive index n is real and positive. If we want
to include the possibility that the medium is absorbing, then the refractive index has an imaginary
component (see [13], page 306):

npxq “ n1pxq ` i
n2pxq

k
, (3.6)

where n1pxq “ Repnpxqq ě 0 and n2pxq “ Impnpxqq ě 0.

3.2 The Lippmann-Schwinger Equation

The aim of this section is to derive an integral equation that is equivalent to the scattering problem
(3.3)-(3.5) where we assume the refractive index n of the general form (3.6) to be piecewise continuous
in R3 such that

m :“ 1 ´ n

has compact support and
n1pxq ą 0 and n2pxq ě 0

for all x P R3. Throughout this chapter, we shall always assume that these assumptions are valid
and let D :“ supppmq “ tx P R3 : mpxq ‰ 0u (the last equality being true because m is piecewise
continuous).

To derive an integral equation equivalent to (3.3)-(3.5), we shall need to consider the volume
potential

upxq :“

ż

R3

Φpx, yqφpyq dy, x P R3, (3.7)

where

Φpx, yq :“
1

4π

eik|x´y|

|x ´ y|
, x ‰ y,

is the fundamental solution to the Helmholtz equation and φ is a continuous function in R3 with
compact support, i.e., φ P CcpR3q. We do not consider surface potentials (like the single or double
layer) since we do not have boundary conditions.

3.2.1 Mapping properties of the volume potential

The main result about the volume potential is the following:

Theorem 3.2.1. The volume potential u given by (3.7) exists as an improper integral for all x P R3

and has the following properties. If φ P CcpR3q then u P C1,αpR3q and the orders of differentiation
and integration can be interchanged. If φ P CcpR3q X C0,αpR3q then u P C2,αpR3q and

∆u ` k2u “ ´φ in R3. (3.8)

In addition, we have
}u}2,α,R3 ď C}φ}α,R3

for some positive constant C depending only on the support of φ. Furthermore, if φ P CCpR3q X

C1,αpR3q, then u P C3,αpR3q.

Proof. The theorem follows from a slight modification of Theorem 3.9 and Corollary 3.10 of [21],
pages 107-110. We skip the proof since it is quite technical and needs a couple of lemmas. The idea
to prove the Hölder estimates is to bound Φ and its partial derivatives so that, differentiating under
the integral sign, we can bound the volume potential and its partial derivatives.
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Generalizations for H2 functions

Since for piecewise continuous n we cannot expect C2 solutions of (3.4) (because if u P C2 and
∆u ` k2nu “ 0, every term is continuous except for n) we require the solutions to belong to the
Sobolev space H2

locpR3q of functions with locally square integrable weak derivatives. So we want to
generalize the results of Theorem 3.2.1 to Sobolev spaces.

First, we use Lax’s Theorem 2.2.7 to extend the mapping properties for the volume potential for
Hölder spaces given in the previous theorem to the more general setting of Sobolev spaces.

Theorem 3.2.2. Given two bounded domains D and G, the volume potential

pV φqpxq :“

ż

D

Φpx, yqφpyq dy, x P R3,

defines a bounded operator V : L2pDq Ñ H2pGq.

Proof. Let B be an open ball such that G Ă B (there exists such a ball since G is bounded) and let
γ P C2

c pBq be such that
#

γpxq ě 0 @x P B
γpxq “ 1 @x P G

We want to use Lax’s Theorem 2.2.7 to generalize the mapping property of the previous theorem from
Hölder spaces to Sobolev spaces. The previous theorem gives a mapping property for the volume
potential from C0,αpDq to C2,αpDq. Therefore, following the notation of Lax’s theorem, the known
spaces we need to consider are X :“ C0,αpDq e Y :“ C2,αpBq equipped with their respective usual
Hölder norms. Now, we need to introduce a scalar product on each of them:

1. On X, we define the scalar product of L2pDq:

pu, vqX :“

ż

D

u ¨ v.

2. On Y , we define the following weighted Sobolev scalar product:

pu, vqY :“

ż

B

γ

»

–u ¨ v `

3
ÿ

i“1

Bu

Bxi
¨

Bv

Bxi
`

3
ÿ

i,j“1

B2u

BxiBxj
¨

B2v

BxiBxj

fi

fl dx.

Notice that condition (2.1) of Lax’s theorem is satisfied, because

|pu, vqX | “

ˇ

ˇ

ˇ

ˇ

ż

D

uv

ˇ

ˇ

ˇ

ˇ

ď

ż

D

|u| ¨ |v| ď

ż

D

sup
xPD

|upxq| ¨ sup
xPD

|vpxq|

“ volpDq sup
xPD

|upxq| ¨ sup
xPD

|vpxq| ď C}u}C0,αpDq}v}C0,αpDq “ C}u}X}v}X ,

where C :“ volpDq ą 0 is the measure of D with respect to the n-dimensional Lebesgue measure.
Now, let

pV ˚ψqpxq :“

ż

B

ψpyq ¨ Φpx, yq dy, @ψ P Y

(it is the same definition as for V , but we integrate over B instead of over V ).
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To be able to apply Lax’s theorem, we want to choose a vector subspace U Ă X and to find an
operator W : Y Ñ X which is the adjoint of V : U Ñ Y , that is, an operator such that

pV φ, ψqY “ pφ,WψqX @φ P U, ψ P Y.

In order to do so, we need to integrate by parts on the expression

pV φ, ψqY “

ż

B

γ

»

–pV φqv `

3
ÿ

i“1

pBipV φqqpBivq `

3
ÿ

i,j“1

pBiBjpV φqqpBiBjvq

fi

fl dx.

We study this expression term by term.

First term. We begin by studying expressions of the form
ş

B
γ ¨ pV φq ¨ ψ dx. Recall that γ is a

(bump) function (not a scalar).

We have

∇xΦpx, yq “ ´∇yΦpx, yq, (3.9)

since

∇xΦpx, yq “ f 1
prypxqq ¨ ∇rypxq “ f 1

prxpyqq ¨ p´∇rxpyqq “ ´∇yΦpx, yq

where fprq :“ eikr

4πr
, rypxq :“ |x ´ y| for x P R3, and rxpyq :“ |x ´ y| for x P R3, having used that

∇rxpyq “ ´∇rypxq.

Using this and Fubini’s theorem we have that, for φ P X and ψ P Y ,

ż

B

γ ¨ pV φq ¨ ψ dx “

ż

D

φ ¨ V ˚
pγ ¨ ψq dx, (3.10)

since

ż

B

γpV φq ¨ ψ dx “

ż

B

γpxq ¨

ˆ
ż

D

Φpx, yqφpyq dy

˙

¨ ψpxq dx

“

ż

D

ˆ
ż

B

γpxqΦpx, yqφpyqψpxq dx

˙

dy

“

ż

D

ˆ
ż

B

γpxqΦpx, yqψpxq dx

˙

φpyq dy

“

ż

D

V ˚
pγ ¨ ψqpyq ¨ φpyq dy.

Second term. Now we move on to the second term, which is formed by integrals of the form

ż

B

γ ¨ BipV φq ¨ Biv dx.

For φ P X y ψ P Y we have that

ż

B

γ ¨
B

Bxi
V φ ¨

Bψ

Bxi
dx “ ´

ż

D

φ ¨
B

Bxi
V ˚

ˆ

γ ¨
Bψ

Bxi

˙

dx. (3.11)
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because using again (3.9) and Fubini’s theorem we obtain

ż

B

γ ¨
B

Bxi
pV φq ¨

Bψ

Bxi
dx “

ż

B

γpxq ¨
B

Bxi

ˆ
ż

D

Φpx, yqφpyq dy

˙

¨
Bψ

Bxi
pxq dx “

“

ż

B

γpxq ¨

ˆ
ż

D

BΦ

Bxi
px, yqφpyq dy

˙

Bψ

Bxi
pxq dx “

“

ż

B

γpxq ¨

ˆ
ż

D

´
BΦ

Byi
px, yqφpyq dy

˙

Bψ

Bxi
pxq dx “

“

ż

D

ż

B

γpxq ¨

ˆ

´
BΦ

Byi
px, yq

˙

¨ φpyq ¨
Bψ

Bxi
pxq dx dy “

“ ´

ż

D

φpyq ¨

ˆ
ż

B

BΦ

Byi
px, yq ¨ γpxq ¨

Bψ

Bxi
pxq dx

˙

dy “

“ ´

ż

D

φpyq ¨
B

Byi

ˆ
ż

B

Φpx, yq ¨ γpxq ¨
Bψ

Bxi
pxq dx

˙

dy “

“ ´

ż

D

φpyq ¨
B

Byi
V ˚

ˆ

γ ¨
Bψ

Bxi

˙

pyq dy

Third term. Now, we study the third term, which involves integrals of the form

ż

B

pBiBjpV φqq ¨ pBiBjvq dx.

For φ P C1
c pDq, we have

B

Bxi

ż

D

Φpx, yq ¨ φpyq dy “

ż

D

BΦ

Bxi
px, yq ¨ φpyq dy

“

ż

D

´
BΦ

Byi
px, yq ¨ φpyq dy

“

ż

D

Φpx, yq ¨
Bφ

Byi
pyq dy ´

ż

BD

Φpx, yq ¨ φpyq ¨ νipyq dspyq

“

ż

D

Φpx, yq ¨
Bφ

Byi
pyq dy,

having used in the last step that φ has compact support. That is the reason to choose φ P C1
c pDq:

to eliminate the boundary terms after integrating by parts. So,

B

Bxi
V φ “ V

ˆ

Bφ

Bxi

˙

. (3.12)
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By (3.11), for φ P C1
c pDq and ψ P Y , we have that

ż

B

γ

˜

B2

BxiBxj
pV φq

¸

¨

˜

B2ψ

BxiBxj

¸

dx “
Ò

(3.12)

ż

B

γ ¨
B

Bxi
V pBjφq ¨

B2ψ

BxiBxj
dx

“
Ò

(3.11)

´

ż

D

pBjφq ¨
B

Bxi
V ˚

ˆ

γ ¨
B

Bxi
pBjψq

˙

dx

“
Ò

Parts

ż

D

φ ¨
B

Bxj

B

Bxi
V ˚

pγ ¨ BiBjψq dx ´

ż

BD

φ ¨
B

Bxi
V ˚

pγ ¨ BiBjψq ¨ νj ds

“
Ò

φPC1
c pDq

ż

D

φ ¨ BjBipV
˚
pγ ¨ BiBjψqq dx.

That is,
ż

B

γpBiBjpV φqq ¨ pBiBjψq dx “

ż

D

φ ¨ BjBipV
˚
pγ ¨ BiBjψqq dx @φ P C1

c pDq, ψ P Y “ C2,α
pDq. (3.13)

Therefore, the choice of the subspace U must be

U :“ C1
c pDq Ă X.

Using (3.10), (3.11) and (3.13), we want to find W : Y Ñ X the adjoint of V : U Ñ Y , that is, the
operator that satisfies

pV φ, ψqY “ pφ,WψqX @φ P U, ψ P Y.

Let us find it.

pV φ, ψqY “

ż

B

γ

»

–pV φqv `

3
ÿ

i“1

pBipV φqqpBivq `

3
ÿ

i,j“1

pBiBjpV φqqpBiBjvq

fi

fl dx

“

ż

B

γV φ ¨ v dx `

3
ÿ

i“1

ż

B

γ ¨ BiV φ ¨ Biv dx `

3
ÿ

i,j“1

ż

B

γ ¨ pBiBjV φq ¨ pBiBjψq dx

Applying (3.10) to the first term, (3.11) to the second, and (3.13) to the third, we obtain:

pV φ, ψqY “

ż

D

φ ¨ V ˚
pγ ¨ vq dx `

3
ÿ

i“1

´

ż

D

φ ¨ BiV
˚
pγ ¨ Bivq `

3
ÿ

i,j“1

ż

D

φ ¨ BiBjV
˚
pγ ¨ BiBjvq

“

ż

D

φ ¨

»

–V ˚
pγ ¨ vq ´

3
ÿ

i“1

BiV
˚
pγ ¨ Bivq `

3
ÿ

i,j“1

BiBjpV
˚
pγ ¨ BiBjvqq

fi

fl

“

ż

D

φWψ dx

“ pφ,WψqL2pDq

“ pφ,WψqX ,

having defined W as the operator

Wψ :“ V ˚pγ ¨ vq ´

3
ÿ

i“1

BiV ˚pγ ¨ Bivq `

3
ÿ

i,j“1

BiBjpV ˚pγ ¨ BiBjvqq
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That is, the adjoint of V : U Ñ Y is the operator W : Y Ñ X given by

Wψ “ V ˚γ ¨ v ´

3
ÿ

i“1

B

Bxi
V ˚

ˆ

γ ¨
Bv

Bxi

˙

`

3
ÿ

i,j“1

B2

BxiBxj
V ˚

˜

γ ¨
B2v

BxiBxj

¸

.

(Notice that since γ takes only real values, its conjugate is itself).
By Theorem 3.2.1, V and W are bounded with respect to the Hölder norms of their spaces of

definition. Therefore, because of Lax’s Theorem 2.2.7), V : U Ñ Y is bounded with respect to the
norms induced by the scalar products, i.e., there exists a constant C ą 0 such that

}V φ}s,Y ď C ¨ }φ}s,X @φ P U.

Using that } ¨ }s,X “ } ¨ }L2pDq, that U “ C1
c pDq and that the norm of Y (because of how we have

defined γ) dominates the norm of H2pGq (i.e., }u}H2pGq ď }u}s,Y ), we have that there exists a constant
C ą 0 such that

}V φ}H2pGq ď C ¨ }φ}L2pDq @φ P C1
c pDq.

The proof is concluded if we observe that C1
c pDq is dense in L2pDq.

Using this mapping property, we can extend (3.8) to H2 functions.

Proposition 3.2.3. Let φ P L2
cpDq. Then u :“ V φ P H2

locpR3q satisfies (3.8) in the H2 sense (i.e,
almost everywhere in R3).

Proof. Let φ P L2
cpR3q. The density of C0,α

c pRnq in L2
cpR3q implies that there exists a sequence

tφnu Ă C0,α
c pRnq such that φn

L2

ÝÑ φ. We can take this sequence with supports contained in Bp0, Rq

for some R ą 0 such that supppφq Ă Bp0, Rq.
By Theorem 3.2.2, V is continuous from L2pBp0, Rqq to H2pDq for any bounded D Ă R3, so

V φn
H2pDq
ÝÝÝÝÑ V φ for every bounded D.

Therefore, fix a bounded domain D. Let un :“ V φn and u :“ V φ. By Theorem 3.2.1,

∆pV φnq ` k2V φn “ ´φn in R3
@n P N.

That is,
∆un ` k2un “ ´φn in R3 n P N.

Since un are bounded inH2pDq (because, since they are a convergent sequence, }un}H2pDq ď C}u}H2pDq),
Theorem 5.1.23 from the Appendix (which we can apply since H2pDq is a separable Hilbert space,
therefore reflexive) gives us that un á u in H2pDq. Besides, by Rellich-Kondrachov’s Compactness

Theorem (see Theorem 5.1.12 of the Appendix), un
L2pDq
ÝÝÝÑ u.

Since }un}H2pDq ď C}u}H2pDq, then }∆un}L2pDq ď C}u}H2pDq, so ∆un is a bounded sequence in
H2pDq. Therefore, again by Theorem 5.1.23, ∆un á f in L2pDq. By theorem 5.1.8, we have that
∆un á ∆u in L2pDq.

Given η P C8
c , fηpψq :“

ş

ψ ¨η for ψ P L2 is a bounded linear functional in L2. Therefore, we have
that

lim
n

ż

p∆un ` k2un ` φnq ¨ η “

ż

p∆u ` k2u ` φnq ¨ η.

The integrand of the left-hand side is 0 for every n P N. Therefore
ż

p∆u ` k2u ` φnq ¨ η “ 0
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for every η P C8
c pR3q.

So by the theorem of convergence of Approximations of the Identity (see Theorem 5.1.3 from the
Appendix), taking η so that the product p∆u`k2u`φnq ¨η is the convolution with an Aproximation
of the Identity, we have that ∆u ` k2u “ ´φ almost everywhere in D. Since this can be done for
every bounded domain D in R3, we have that ∆u`k2u “ ´φ almost everywhere in R3, as we wanted
to prove.

For a bounded domain D Ă R3 with C2 boundary, the Sobolev embedding theorem states that
H2pDq functions are continuous. Moreover, Green’s integral theorem remains valid for functions
u P H2pDq (see Lemma 5.1.7 of the Appendix).

Therefore, the proof of Green’s representation formula for bounded domains (Theorem 1.3.1) can
be carried over to H2 functions, since the only tools used in it are the continuity of the function u
and Green’s second formula (5.5), and we can use them for u P H2 as we have just reasoned. Well,
to be precise, we used in (1.1) one more condition: that the L8 norm of the gradient was bounded.
This can be avoided if we use instead the Cauchy-Schwarz inequality, obtaining

ż

Spx,rq

|∇upyq ¨ νpyq| dspyq ď }∇u}L2pSpx,rqqσpSpx, rqq ď C}∇u}L2pBpx,rqqr
2 rÑ0`

ÝÝÝÑ 0.

having used the trace inequality (Theorem 5.1.13) in the penultimate step because u P H2pDq so
∇u|

BD P H1{2pBDq, and on the last step that ∇u P H1pDq and therefore }∇u}L2pBpx,rqq ď }∇u}L2pDq

for r sufficiently small.

In particular, the formula for a solution of Helmholtz equation (1.3) remains valid for H2 solutions
to the Helmholtz equation. This implies that H2 solutions to the Helmholtz equation automatically
are C2 solutions, since we can differentiate under the integral sign in expression (1.3) using Theorem
5.1.2 of the Appendix. Therfore, the Sommerfeld Radiation Condition is well defined forH2 solutions.

3.2.2 Reformulation of the scattering problem

We now show that the scattering problem (3.3)-(3.5) is equivalent to the problem of solving the
integral equation

upxq “ uipxq ´ k2
ż

R3

Φpx, yqmpyqupyq dy, x P R3, (3.14)

for u which is known as the Lippmann-Schwinger equation.

Theorem 3.2.4. If u P H2
locpR3q is a solution of (3.3)-(3.5), then u is a solution of (3.14). Con-

versely, if u P CpR3q is a solution of (3.14) then u P H2
locpR3q and u is a solution of (3.3)-(3.5).

Proof. Let u P H2
locpR3q be a solution of (3.3)-(3.5). Let x P R3 be an arbitrary point and choose an

open ball B (with unitary exterior normal ν) that contains the support of m and the point x (i.e.,
supppmq Ă B and x P B).

We can apply Green’s representation formula (Theorem 1.3.1) to u on B (since B is compact, so
u P H2pBq and therefore, by the discussion previous to the theorem, Green’s representation formula
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can be applied) to the first integral of the following expression, obtaining that for x P B
ż

BB

„

Bupyq

Bνpyq
Φpx, yq ´ upyq

BΦpx, yq

Bνpyq

ȷ

dspyq ´ k2
ż

B

Φpx, yqmpyqupyq dy

“ upxq `

ż

B

r∆upyq ` k2upyqsΦpx, yq dy ´ k2
ż

B

Φpx, yqmpyqupyq dy

“
Ò

(3.3)

upxq `

ż

B

r´k2npyqupyq ` k2upyqsΦpx, yq dy ´ k2
ż

B

Φpx, yq ¨ mpyqupyq dy

“ upxq `

ż

B

Φpx, yqk2upyqr´npyq ` 1 ´ mpyqs dy

“
Ò

m“1´n

upxq.

That is,
ż

BB

„

Bupyq

Bνpyq
Φpx, yq ´ upyq ¨

BΦpx, yq

Bνpyq

ȷ

dspyq ´ k2
ż

B

Φpx, yq ¨ mpyq ¨ upyq dy “ upxq, x P B. (3.15)

Since ui is an entire solution of Helmholtz equation (i.e., a solution on R3), in particular it is a
solution on B, so we can apply to it Green’s representation formula (1.3) obtaining

uipxq “

ż

BB

«

Buipyq

Bνpyq
Φpx, yq ´ uipyq ¨

BΦpx, yq

Bνpyq

ff

dspyq, x P B. (3.16)

Since us satisfies the radiation condition (3.5), Green’s formula (5.5) and the Sommerfeld Radiation
Condition (3.5) give us

ż

BB

„

Bus

Bν
Φpx, ¨q ´ us ¨

BΦpx, ¨q

Bν

ȷ

ds “ 0, x P B. (3.17)

This is because, if R ą 0 is such that B Ĺ Br0, Rs, then

´

ż

BB

„

Buspyq

Bνpyq
¨ Φpx, yq ´ uspyq ¨

BΦpx, yq

Bνpyq

ȷ

dspyq `

ż

SR

„

Buspyq

Bνpyq
¨ Φpx, yq ´ uspyq ¨

BΦpx, yq

Bνpyq

ȷ

dspyq

“
Ò

(5.5)

ż

BRzB

rΦpx, yq ¨ ∆uspyq ´ us ¨ ∆Φpx, yqs dy

“

ż

BRzB

rΦpx, yq ¨ p´k2usq ´ uspyq ¨ p´k2q ¨ Φpx, yqs dy “ 0

for all R sufficiently big, having used in the second-to-last step that Φ is a solution of Helmholtz
equation (that is, ∆Φ “ ´k2Φ) and that us is a radiating solution of Helmholtz equation on the
exterior domain1 R3zB since supppmq Ă B. Therefore, we can proceed in exactly the same way as
in Theorem 1.4.6 (because us satisfies the exact same hypothesis) in such a way that when we take
limRÑ8 we have

0 “ lim
RÑ8

ż

SR

„

Buspyq

Bνpyq
Φpx, yq ´ uspyq ¨

BΦpx, yq

Bνpyq

ȷ

dspyq ´

ż

BB

psameq “ ´

ż

BB

psameq

1Recall that we already noticed this: when we wrote (3.3) as ∆us ` k2us “ k2p1 ´ nqui, it was clear that us is a
solution to the Helmholtz equation outside the support of m “ 1 ´ n.
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as we wanted to prove.
We combine equations (3.15), (3.16) and (3.17) with (3.4) (i.e., with u “ ui ` us) to obtain that

upxq “
Ò

(3.15)

ż

BB

„

Bupyq

Bνpyq
¨ Φpx, yq ´ upyq ¨

BΦpx, yq

Bνpyq

ȷ

dspyq ´ k2
ż

B

Φpx, yqmpyqupyq dy

“
Ò

(3.4)

ż

BB

«

Buipyq

Bνpyq
Φpx, yq ´ uipyq

BΦpx, yq

Bνpyq

ff

dspyq `

ż

BB

„

Buspyq

Bνpyq
Φpx, yq ´ uspyq

BΦpx, yq

Bνpyq

ȷ

dspyq

´ k2
ż

B

Φpx, yqmpyqupyq dy “
Ò

(3.16) and (3.17)

uipxq ´ k2
ż

B

Φpx, yqmpyqupyq dy,

which is (3.14), as we wanted to prove.
Let us now prove the converse. Let u P CpR3q be a solution of (3.14). Let define us as

uspxq :“ ´k2
ż

R3

Φpx, yq ¨ mpyq ¨ upyq dy, x P R3

(it’s the logical way to define it so that u “ ui ` us)
Since Φ satisfies the S.R.C. (3.5) uniformly with respect to y on compact sets (see Lemma 1.4.3)

and m has compact support, then us also satisfies (3.5), since

lim
rÑ8

r ¨

ˆ

Bus

Br
pxq ´ ikuspxq

˙

“ lim
rÑ8

|x| ¨

˜

∇x

ˆ
ż

R3

´k2Φpx, yqmpyqupyq dy

˙

¨
x

|x|
´ ik

ż

R3

´k2Φpx, yq ¨ mpyqupyq dy

¸

“ lim
rÑ8

|x| ¨

ˆ
ż

R3

´k2∇xΦpx, yqmpyqupyq dy ¨
x

|x|
´ ik ¨

ż

R3

´k2Φpx, yq ¨ mpyqupyq dy

˙

“ lim
rÑ8

|x| ¨

ˆ
ż

R3

´k2∇xΦpx, yq ¨
x

|x|
mpyqupyq dy ´ ik

ż

R3

´k2Φpx, yqmpyqupyq dy

˙

“ lim
rÑ8

|x| ¨

ż

supppmq

´k2mpyqupyq

ˆ

BΦpx, yq

Brpxq
´ ikΦpx, yq

˙

dy

“ ´k2
ż

supppmq

´k2mpyqupyq ¨ lim
rÑ8

|x| ¨

ˆ

BΦ

Brpxq
px, yq ´ ikΦpx, yq

˙

dy “ 0,

where we have used in the last step that mpyqupyq is bounded on the support of m (u because it is
continuous, and m because it is piecewise continuous), and the limit inside the integral is 0 because
of Corollary 1.4.4, because we are considering y P supppmq, which is a compact set.

Since m is piecewise continuous with compact support, then φ :“ ´k2mu P L2pDq with D “

supppmq (since u P CpR3q, so it is bounded on supppmq, thus φ P L8pDq, and since D has finite
measure because it is bounded, φ P L2pDq). So by Theorem 3.2.2, V φ P H2pGq for every bounded
domain G. That is, us “ V φ P H2

locpR3q.
Besides, because of (3.8) from Theorem 3.2.1, us “ V φ satisfies

∆us ` k2u “ k2mu “ ´φ on R3.

Since ui is an entire solution to the Helmholtz equation, i.e., ∆ui ` k2ui “ 0 on R3, then

∆u ` k2u “ p∆ui ` k2uiq ` p∆us ` k2usq “ k2mu,
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that is,
∆u ` k2p1 ´ mqu “ ∆u ` k2nu “ 0

on R3, as we wanted to prove.

Remark 3.2.5. Notice that in (3.14) we can replace the region of integration by any domain G such
that the support of m is contained in G and look for solutions in CpGq. So if we have a solution
u to (3.14) defined on a domain G that contains the support of m, we can extend it for x P R3zG
defining upxq by the right-hand side of (3.14), and we obtain in this way a continuous solution u to
the Lippmann-Schwinger equation (3.14) in all of R3.
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3.3 The Unique Continuation Principle

In order to establish the existence of a unique solution to the scattering problem (3.3)-(3.5) for all
positives values of the wave number k, we see from Theorem 3.2.4 that it is sufficient to establish the
existence of a unique solution to the Lippmann-Schwinger equation (3.14). To this end, we would
like to apply Fredholm’s Theorem.

Define the integral operator2 T : pCpBq, } ¨ }8q Ñ pCpBq, } ¨ }8q by

pTuqpxq :“ ´

ż

B

Φpx, yqmpyqupyq dy, x P B (3.18)

where B is a ball such that supppmq Ă B (notice that, by Remark 3.2.5, it does not matter which
region of integration we choose as long as it contains the support of m). This integral operator has a
weakly singular kernel Φpx, yqmpyq, since mpyq is bounded (it is piecewise continuous and of compact
support) and |Φpx, yq| ď 1

|x´y|
, and therefore, they satisfy Definition 5.1.18 from the Appendix for

α “ 2, n “ 3. Hence, by Theorem 5.1.19 from the Appendix, T : CpBq Ñ CpBq is a compact
operator.

In terms of this operator T , the Lippman-Schwinger equation (3.14) is equivalent to the following:
given an incident field ui, find u P CpBq such that

pI ´ T qu “ ui. (3.19)

Since T is compact, Fredholm’s theorem 2.2.8 asserts that it is enough to prove injectivity3 of I ´ T
in order to prove bijectivity (i.e. existence and uniqueness). Therefore, we must show that the
homogeneous equation has only the trivial solution, which is equivalent to4 prove that the only
solution of

∆u ` k2npxqu “ 0 in R3, (3.20)

lim
rÑ8

r

ˆ

Bu

Br
´ iku

˙

“ 0 (3.21)

is u ” 0
To prove this, we need a unique continuation principle. The tough part is to prove the

following lemma:

Lemma 3.3.1. Let G be a domain in R3 and let u1, . . . , uP P H2pGq be real valued functions satisfying

|∆up| ď c
P
ÿ

q“1

r|uq| ` |∇uq|s in G (3.22)

for p “ 1, . . . , P and some constant c. Assume that up vanishes in a neighborhood of some x0 P G
for p “ 1, . . . , P . Then up is identically zero in G for p “ 1, . . . , P .

Proof. See Section 3.6 for a detailed proof of this lemma.

2Notice that CpBq with the maximum norm } ¨ }8 (maximum, since they are continuous functions on a compact
set) is a Banach Space because it is a closed subspace of pL8pBq, }¨}8q (closed because the uniform limit of continuous
functions on a compact set is continuous).

3That is, the homogeneous equation pI ´ T qu “ 0 has zero as its only solution.
4This is true because the Lippmann-Schwinger equation pI ´ T qu “ ui on CpBq is equivalent by Theorem 3.2.4

to (3.3)-(3.5). Since the homogeneous equation is the one with ui ” 0, equations (3.3)-(3.5) are equivalent to (3.20)-
(3.21), since ui “ 0 if and only if u “ us, and therefore the radiation condition for us is equivalent to the radiation
condition for u.
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Theorem 3.3.2 (Unique continuation principle). Let G be a domain in R3 and suppose u P H2pGq

is a solution of
∆u ` k2npxqu “ 0

in G such that n is piecewise continuous in G and u vanishes in a neighborhood of some x0 P G.
Then u is identically zero in G.

Proof. We can apply Lemma 3.3.1 to u1 :“ Reu and u2 :“ Imu. This is because, by definition of
u1 and u2, u “ u1 ` iu2 and ∆u “ ∆u1 ` i∆u2, and because, by hypothesis, ∆u “ ´k2nu. These
equations imply that

|∆u1| ď |∆u| ď k2}n}8|u| ď k2}u}8r|u1| ` |u2|s.

and the same applies to u2. So u1 and u2 are real valued functions that satisfy (3.22).
If u vanishes in a neighbourhood of some point x0 P G, then u1 “ Reu and u2 “ Imu do vanish

as well in that same neighbourhood. Therefore, by Lemma 3.3.1, u1 and u2 vanish identically on G,
so u “ u1 ` iu2 as well.

We can now show that for all k ą 0 there exists a unique solution to the scattering problem (3.3)
- (3.5).

Theorem 3.3.3. For each k ą 0 there exists a unique solution u P H2
locpR3q to (3.3)-(3.5) and u

depends continuously with respect to the maximum norm on the incident field ui.

Proof. By Theorem 3.2.4, the existence and uniquenes of a solution u P H2
locpR3q to (3.3)-(3.5) is

equivalent to existence and uniqueness of a solution u P CpR3q to the Lippman-Schwinger equation
(3.14).

Notice that this is equivalent to proving existence and uniqueness of a solution u P CpBq to (3.14)
for B a ball or any bounded region that contains supppmq, as reasoned in Remark 3.2.5.

In brief, we just need to prove existence and uniqueness of the Lippmann-Schwinger equation
(3.14) in CpBq for a ball B that contains supppmq. As argued at the beginning of this section, the
Lippmann-Schwinger equation (3.14) can be expressed as: given ui an entire solution to Helmholtz
equation, find u P CpBq such that pI ´ T qu “ ui where T is defined in (3.18). We deduced that
T is a compact operator. Hence, we can apply Fredholm’s theorem, which stablishes that in order
to prove existence and uniqueness, it is enough to prove that the only solution of pI ´ T qu “ 0 is
u “ 0. This, because of the equivalences we have just explained, is equivalent to prove that the only
solution to (3.3)-(3.5) for ui “ 0 is u “ 0, i.e., that if u is a solution of (3.20)-(3.21), then u ” 0.

So suppose u is a solution to (3.20)-(3.21). Let B :“ Bp0, rq be a ball of radius r centered at the
origin such that m vanishes outside of B, i.e., supppmq Ă B. Let ν denote the exterior unit normal
to BB. From Green’s theorem (5.4) and from ∆u ` k2npxqu “ 0 in R3 (which is true because u is a
solution of (3.20)-(3.21)) we have that

ż

|x|“r

u
Bu

Bν
ds “

ż

|x|ăr

ru ¨ ∆u ` ∇u ¨ ∇us “

ż

|x|ăr

r´k2n|u|
2

` |∇u|
2
s dx.

Since Impnq ě 0, Impnq “ ´ Impnq, and Impλzq “ λ Impzq for λ P R, we have

Im

˜

ż

|x|“r

u
Bu

Bν
ds

¸

“

ż

|x|ăr

Im
`

´k2n|u|
2

` |∇u|
2
˘

dx “ k2
ż

|x|ďr

Impnq ¨ |u|
2 dx ě 0. (3.23)

Therefore, Theorem 1.7.2 shows that upxq “ 0 for |x| ě r. So, by the Unique Continuation Principle
3.3.2,

upxq “ 0 for all x P R3.



44 CHAPTER 3. SCATTERING IN AN INHOMOGENEOUS MEDIUM

Therfore, by Fredholm’s Theorem 2.2.8, the operator I ´ T is bijective. Since it is linear and
bounded, Theorem 5.1.22 from the Appendix gives us that its inverse is bounded as well. That is,
the integral equation (3.14) can be inverted in CpBq and the inverse operator is bounded.

From this, the boundedness of pI ´ T q´1 implies that u “ pI ´ T q´1ui depends continuously on
the incident field ui with respect to the maximum norm (i.e., } ¨ }8).
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3.4 The Far Field Pattern

From (3.14) and Theorem 3.2.4 we see that the scattered field is given by

uspxq “ ´k2
ż

R3

Φpx, yqmpyqupyq dy, x P R3.

Remark 3.4.1. In fact, since m has compact support D “ supppmq, the above integral can be taken
over D (or any measurable set that contains it). See Remark 3.2.5.

Hence, letting |x| tend to infinity, we can apply formula (1.5) to obtain

uspxq “ ´k2
ż

R3

Φpx, yqmpyqupyq dy

“
Ò

(1.16)

´k2
ż

R3

1

4π

eik|x|

|x|

«

e´ikx̂¨y
` O

ˆ

1

|x|

˙

ff

mpyqupyq dy

“
eik|x|

|x|

˜

´
k2

4π

¸

ż

R3

«

e´ikx̂¨y
` O

ˆ

1

|x|

˙

ff

mpyqupyq dy.

Defining

u8px̂q :“ ´
k2

4π

ż

R3

e´ikx̂¨ympyqupyq dy (3.24)

for x̂ “ x{|x| on the unit sphere S2, we have that

uspxq “
eik|x|

|x|
¨ u8px̂q `

eik|x|

|x|

˜

´
k2

4π

¸

ż

R3

O

ˆ

1

|x|

˙

mpyqupyq dy

“
eik|x|

|x|
¨ u8px̂q ` O

ˆ

1

|x|2

˙

being the last equality true because eik|x|

|x|
“ O

´

1
|x|

¯

and

ˇ

ˇ

ˇ

ˇ

ˇ

ż

R3

O

ˆ

1

|x|

˙

mpyqupyq dy

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ż

R3

ˇ

ˇ

ˇ

ˇ

ˇ

O

ˆ

1

|x|

˙

mpyqupyq

ˇ

ˇ

ˇ

ˇ

ˇ

dy ď

ż

R3

C

|x|
|mpyqupyq| dy ď

C 1

|x|

where the last step is true because supppmq is compact, m is bounded and u P CpR3q, so it is bounded
on compact sets. In brief,

uspxq “
eik|x|

|x|
u8px̂q ` O

ˆ

1

|x|2

˙

, |x| Ñ 8,

where u8 is called the far field pattern and is given by (3.24) for x̂ “ x{|x| on the unit sphere S2.

Remark 3.4.2. Up to now, we have given two definitions of far field pattern: one in Theorem 1.6.1
for arbitrary radiating solutions of Helmholtz, and the one we have just given for the scattered field
of problem (3.3)-(3.5). However, this scattered field that satisfies (3.3)-(3.5) is a radiating solution
to Helmholtz equation on R3zD: radiating because of (3.5); solution to Helmholtz equation because
(3.3)-(3.4) imply that us ` k2nus “ k2pn ´ 1qui on R3, with n ” 1 on R3zD.
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So for this scattered field we have two definitions of far field pattern: the one in (3.24) and the
one in (1.15).

Let us see that these two definitions coincide. Let ν be the unit normal of BD directed into the
exterior of R3zD (i.e., the interior of D). Then, by definition (1.15), we have

u8px̂q “
1

4π

ż

BD

„

uspyq ¨
B

Bνpyq
e´ikx̂¨y

´ eikx̂¨y
¨

B

Bν
uspyq

ȷ

dspyq

“
1

4π

ż

BD

«

´k2
ż

R3

mpyqΦpy, zqupzq dz ¨
B

Bνpyq
e´ikx̂¨y

´ eikx̂¨y
¨ p´k2q

ż

R3

mpzq
B

Bνpyq
Φpy, zqupzq dz

ff

dspyq

“ ´
k2

4π

«

ż

R3

mpzqupzq ¨

„
ż

BD

Φpy, zq
B

Bνpyq
e´ikx̂¨y

´ eikx̂¨y B

Bνpyq
Φpy, zq dspyq

ȷ

dz

ff

“ ´
k2

4π

ż

R3

mpzqupzqp´e´ikx̂¨z
q dz

where in the last step we have used Green’s representation formula on the bounded domain D “

supppmq applied to the entire solution of Helmholtz equation e´ikx̂¨y as a function of y. Notice that,
as in Remark 3.4.1, the volume integrals can be taken over D “ supppmq, and therefore it is enough
to consider z P D, with D an interior domain of class C2 by hypothesis. Then, for z P D, it is
legitimate to apply Theorem 1.3.1, which is what we have done.

Notice as well that the minus sign obtained in the last step is because ν is the unit normal on
BD directed into the interior of D, so we have to change the sign of the representation formula of
Theorem 1.3.1.

3.4.1 Reciprocity relation

Let us consider the case when the incident field ui is a plane wave, i.e.,

uipxq “ eikx¨d

where d P S2 is a unit vector giving the direction of propagation.
Notation: we denote the dependence of the far field pattern u8 on d by writing u8px̂q “ u8px̂; dq.

Similarly, we write uspxq “ uspx; dq and upxq “ upx; dq for the scattered field an the total field
respectively.

First, we prove a reciprocity principle for u8. u8px̂; dq represents the observation in the direction
x̂ of the scattered wave produced by a plane wave travelling in the direction d. Therefore, the
reciprocity principle states the (physically reasonable) fact that the observation made in the direction
x̂ of an object illuminated from the direction θ̂ is the same as the obervation made in the direction
´θ̂ of the same object but illuminated from ´x̂. Since we are dealing with acoustic waves instead
of electromagnetic ones, change the word “illumination” by “sound emited” (but light is easier to
imagine).

Theorem 3.4.3. The far field pattern satisfies the reciprocity relation

u8px̂; θ̂q “ u8p´θ̂;´x̂q

for all x̂, θ̂ on the unit sphere S2.
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Proof. First, notice that if u P H2
locpR3q is a solution of (3.3)-(3.5) for the incident field uipx; dq :“

eikx¨d, then uspxq “ ´k2
ş

R3 Φpx, yqmpyqupyq dy is a function of class5 C2pR3q, and therefore u “ ui`us

also is C2pR3q (since ui is analytic as well).
Therefore, we can apply Green’s second formula (5.5): since ui is an entire solution of the

Helmholtz equation, applying it on the interior domain Bp0, aq we obtain

ż

|y|“a

„

uipy; θ̂q
B

Bν
uipy;´x̂q ´ uipy;´x̂q

B

Bν
uipy; θ̂q

ȷ

dspyq

“

ż

Bp0,aq

ruipy, θ̂q∆uipy;´x̂q ´ uipy;´x̂q∆uipy; θ̂qs dy

“

ż

Bp0,aq

ˆ

uipy; θ̂q

´

´k2uipy;´x̂q

¯

´ uipy;´x̂q

´

´k2uipy; θ̂q

¯

˙

dy “ 0.

That is,
ż

|y|“a

„

uipy; θ̂q
B

Bν
uipy;´x̂q ´ uipy;´x̂q

B

Bν
uipy; θ̂q

ȷ

dspyq “ 0. (3.25)

On the other hand, us is a solution of the Helmholtz equation on the exterior domain R3zBp0, aq.
Therefore, applying Green’s second formula on (5.5) on DR :“ Bp0, RqzBp0, aq for R ą a, and
denoting by ν the unit exterior normal to DR, we obtain

ż

BDR

„

uspy; θ̂q
B

Bν
uspy;´x̂q ´ uspy;´x̂q

B

Bν
uspy; θ̂q

ȷ

dspyq

“

ż

Bp0,RqzBp0,aq

ruspy; θ̂q∆uspy;´x̂q ´ uspy;´x̂q∆uspy; θ̂qs dy

“

ż

Bp0,RqzBp0,aq

´

uspy; θ̂q
`

´k2uspy;´x̂q
˘

´ uspy;´x̂qp´k2uspy; θ̂qq

¯

dy “ 0.

Since BDR “ Sp0, aq Y Sp0, Rq, we have that

0 “

ż

|y|“a

„

uspy; θ̂q
B

Bν
uspy;´x̂q ´ uspy;´x̂q

B

Bν
uspy; θ̂q

ȷ

dspyq

`

ż

|y|“R

„

uspy; θ̂q
B

Bν
uspy;´x̂q ´ uspy;´x̂q

B

Bν
uspy; θ̂q

ȷ

dspyq.

Since us satisfies the same hypothesis as in Theorem 1.4.6, following its proof we see that the limit
of the second integral as R Ñ 8 is 0. Therefore,

0 “

ż

|y|“a

„

uspy; θ̂q
B

Bν
uspy;´x̂q ´ uspy;´x̂q

B

Bν
uspy; θ̂q

ȷ

dspyq. (3.26)

Of the two expressions that we have for the far field pattern, we now use the one given in (1.15),
replacing the exponentials of that formula by ui, because we are considering uipy,´x̂q “ eiky¨p´x̂q.
We apply it to the far field patterns u8px̂; θ̂q and u8p´θ̂,´x̂q, obtaining that

4πu8px̂; θ̂q “

ż

|y|“a

„

uspy; θ̂q
B

Bν
uipy;´x̂q ´ uipy;´x̂q

B

Bν
uspy; θ̂q

ȷ

dspyq (3.27)

5In fact, C8pR3q; in fact, it is analytic outside of the ball Bp0, aq, but we will just need it to be C2pR3q.
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and

4πu8p´θ̂,´x̂q “

ż

|y|“a

„

uspy;´x̂q
B

Bν
uipy; θ̂q ´ uipy; θ̂q

B

Bν
uspy;´x̂q

ȷ

dspyq. (3.28)

We substract the (3.28) from the sum of (3.25)-(3.27). This yields

4πru8px̂; θ̂q ´ u8p´θ̂,´x̂qs “

ż

|y|“a

„

upy; θ̂q
B

Bν
upy;´x̂q ´ upy;´x̂q

B

Bν
upy; θ̂q

ȷ

dspyq.

To obtain the statement of the theorem, it suffices to show that this expression vanishes. But this
follows directly from Green’s first formula (5.4), since

ż

|y|“a

upy; θ̂q
B

Bν
upy;´x̂q dspyq “

ż

Bp0,aq

rupy; θ̂q∆upy;´x̂q ` ∇upy; θ̂q ¨ ∇upy;´x̂qs dy

and
ż

|y|“a

upy;´x̂q
B

Bν
upy; θ̂q dspyq “

ż

Bp0,aq

rupy;´x̂q∆upy; θ̂q ` ∇upy;´x̂q ¨ ∇upy; θ̂qs dy,

so substracting the first expression from the second we get

ż

|y|“a

„

upy; θ̂q
B

Bν
upy;´x̂q ´ upy;´x̂q

B

Bν
upy; θ̂q

ȷ

dspyq

“

ż

Bp0,aq

”

upy; θ̂q∆upy;´x̂q ´ upy;´x̂q∆upy; θ̂q

ı

dy “ 0

having used in the last step that u is solution of (3.3) and therefore ∆upy;´x̂q “ ´k2npyqupy;´x̂q

and ∆upy; θ̂q “ ´k2npyqupy; θ̂q.
Hence u8px̂; θ̂q ´ u8p´θ̂;´x̂q “ 0, i.e.,

u8px̂; θ̂q “ u8p´θ̂;´x̂q,

as desired.

3.4.2 Completeness of the far field patterns

For applications, it is important to study if the far field patterns corresponding to all incident plane
waves are complete in L2pS2q. We are going to see that the far field patterns are complete provided
k2 is not a transmission eigenvalue having an eigenfunction that is a Herglotz wave function. We will
explain what are these concepts in a moment.

Definition 3.4.4. A Herglotz wave function is a function of the form

vpxq “

ż

S2
eikx¨dgpdq dspdq, x P R3 (3.29)

where g P L2pS2q. The function g is called the Herglotz kernel of v.

Herglotz wave functions are understood as a superposition of plane waves, i.e., a superposition of
waves of the form eikx¨d with d P S2. Because we can differentiate under the integral sign and eikx¨d

is a solution to Helmholtz equation as a function of x, Herglotz wave functions are entire solutions
to the Helmholtz equation.
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Remark 3.4.5. In this TFM, we have only considered scattering by an inhomogeneous medium, but
we have not said anything about the case of obstacle scattering (see Chapter 3 of [13] for a treatment
of this case). However, in the case of obstacle scattering, there is an analogous result to the one we are
going to study here for scattering by an inhomogeneous medium. In obstacle scattering, the set of far
field patterns for this problem is complete in L2pS2q provided that k2 is not a a Dirichlet eigenvalue
having an eigenfunction that is a Herglotz wave function. That is, provided that ∆u “ ´k2u on
D, u “ 0 on BD does not have as a solution a Herglotz wave function. Herglotz wave functions are
already solutions to ∆u “ ´k2u, the set of far field patterns is complete provided that no Herglotz
wave function vanishes on BD. For a complete discussion see [13], pages 75-76, specifically Theorem
3.29.

In the present case of scattering by an inhomogeneous medium we have a similar result except that
the Dirichlet problem is replaced by a new type of boundary value problem: the interior transmission
problem. This name is motivated by the fact that we have two partial differential equations defined
on the same interior domain and linked together by their Cauchy data on the boundary.

We assume that D :“ tx P R3 : mpxq ‰ 0u is connected with a connected C2 boundary BD and
D contains the origin.

Theorem 3.4.6. Let tdn : n P Nu be a countable dense set of vectors on the unit sphere S2 and
define the class F of far field patterns by

F :“ tu8p¨, dnq : n P Nu.

The orthogonal complement of F in L2pS2q consists of the conjugate of those functions g P L2pS2q

for which there exists w P H2pDq and a Herglotz wave function

vpxq “

ż

S2
e´ikx¨dgpdq dspdq, x P R3,

such that the pair v, w is a solution to

∆w ` k2npxqw “ 0, ∆v ` k2v “ 0 in D (3.30)

satisfying

w “ v,
Bw

Bν
“

Bv

Bν
on BD. (3.31)

Proof. Let FK denote the orthogonal complement to F . We will show that g P FK if and only if g
satisfies the assumptions stated in the theorem.

g P FK
ðñ xu8p¨, dnq, gyL2pS2q “ 0 @n P N

ðñ

ż

S2
u8px̂; dnq ¨ gpx̂q dspx̂q “ 0 @n P N

ðñ
Ò

Thm.3.4.3

ż

S2
u8p´dn;´x̂q ¨ gpx̂q dspx̂q “ 0 @n P N

From the continuity of u8 as a function of d (due to the continuity of u8 with respect to x̂ and the
reciprocity principle) and Theorem 3.4.3, we obtain

ż

S2
u8p´dn;´x̂q ¨ gpx̂q dspx̂q “ 0 @n P N ðñ

ż

S2
u8p´d;´x̂q ¨ gpx̂q dspx̂q “ 0 @d P S2

ðñ

ż

S2
u8px̂; dq ¨ gp´dq dspdq “ 0 @x̂ P S2,
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having renamed in the last step ´d ÞÑ x̂ and ´x̂ ÞÑ d.
In brief,

g P FK
ðñ

ż

S2
u8px̂; dq ¨ gp´dq dspdq “ 0 @x̂ P S2. (3.32)

Remark 3.4.7. What the deduction of (3.32) is really telling us is that the density of the directions
tdnunPN and the continuity of u8px̂, dq with respect to the direction of propagation d allow us to pass
from

the orthogonality of g in L2
pS2

q to tu8px̂; dnqun with tdnun a dense set of directions in S2

to

the orthogonality of g in L2
pS2

q to the collection tu8px̂; dq : d P S2
u for every direction d P S2.

That is why in the statement of this theorem we stablish the equality of the orthogonal complement
of F (which depends a priori on the directions dn) and a set of functions where the directions dn
play no role (that is, the conjugate of those functions for which there exist solutions of a specific
kind to the problem (3.30) and (3.31)). So we could substitute the countable dense set tdnunPN by
any dense set of S2 (including S2).

We now continue with the proof. From Theorem 3.2.4, we have that

upx; dq “ uipx; dq ` uspx; dq “ eikxd ` uspx; dq (3.33)

where

uspx; dq “ ´k2
ż

R3

Φpx, yqmpyqupy; dq dy.

Let us prove the equivalence stated in the Theorem.
To begin with, suppose that g P F . As a consequence of (3.32), this is equivalent to

ż

S2
u8px̂, dqgp´dq dspdq “ 0 @x̂ P S2.

We need to find w and v satisfying the conditions of the Theorem. The function v is already given
by the theorem: it has to be

vpxq :“

ż

S2
e´ikx¨dgpdq dspdq, x P R3,

which already satisfies ∆v ` k2v “ 0 in D.
Let us see which function must be w. Multiplying (3.33) by gp´dq and integrating over d P S2

we have that
ż

S2
upx; dqgp´dq dspdq “

ż

S2
eikx¨dgp´dq dspdq `

ż

S2
uspx; dqgp´dq dspdq. (3.34)

Notice that

wpxq :“

ż

S2
upx, dqgp´dq dspdq, x P R3,

wi
pxq :“

ż

S2
eikx¨dgp´dq dspdq, x P R3

and

ws
pxq “

ż

S2
uspx, dqgp´dq dspdq

satisfy (3.3)-(3.5), because
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• Since we can differentiate under the integral sign and eikxd is an entire solution of Helmholtz’s
equation, wi is an entire solution of Helmholtz’s equation.

• Since we can differentiate under the integral sign and up¨, dq is a solution of ∆u` k2nu “ 0 in
R3, we have that w is as well a solution of (3.3).

• Since us satisfies the radiation condition (3.5), we can derivate under the integral sign and apply
the Dominated Convergence Theorem to obtain that ws also satisfies the radiation condition
(3.5).

In brief, if we define an incident field as

wi
pxq :“

ż

S2
eikx¨dgp´dq dspdq,

its scattered field is

ws
pxq “

ż

S2
uspx, dqgp´dq dspdq.

Let us see what is the far field pattern w8 associated to w.

w8px̂q “ ´
k2

4π

ż

R3

e´ikx̂¨ympyqwpyq dy

“ ´
k2

4π

ż

R3

e´ikx̂¨ympyq

ˆ
ż

S2
upx, dqgp´dq dspdq

˙

dy

“

ż

S2

˜

´
k2

4π

ż

R3

e´ikx̂¨dmpyqupyq dy

¸

gp´dq dspdq

“

ż

S2
u8px̂, dqgp´dq dspdq.

That is,

w8px̂q “

ż

S2
u8px̂, dqgp´dq dspdq,

Therefore, since we are assuming that g P F , then by (3.32) we have that

w8px̂q ” 0 in S2.

To summarize, the far field pattern of the scattered field ws corresponding to the incident field

wi
pxq :“

ż

S2
eikx¨dgp´dq dspdq “

ż

S2
e´ikx¨dgpdq dspdq.

is
ş

S2 u8px̂, dqgp´dq dspdq, which is zero by assumption.
Therefore, by Theorem 1.7.3, ws “ 0 in all of R3zD. So, if we define

v :“ wi and w :“ wi
` ws

then (3.30) is satisfied (as we have already discussed). Moreover, they satisfy (3.31) as well because

w|
BD “ wi

ˇ

ˇ

ˇ

BD
` ws

|
BD “ wi

ˇ

ˇ

ˇ

BD
“ v|

BD
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and
Bw

Bν

ˇ

ˇ

ˇ

ˇ

BD

“
Bwi

Bν

ˇ

ˇ

ˇ

ˇ

ˇ

BD

`
Bws

Bν

ˇ

ˇ

ˇ

ˇ

BD

“
Bwi

Bν

ˇ

ˇ

ˇ

ˇ

ˇ

BD

“
Bv

Bν

ˇ

ˇ

ˇ

ˇ

BD

.

To prove the converse, suppose g P L2pS2q is such that there exists w P H2pDq and a Herglotz wave

function

vpxq “

ż

S2
e´ikx¨dgpdq dspdq “

ż

S2
eikx¨dgp´dq dspdq, x P R3

satisfying (3.30) and (3.31).
The idea is to show that there exists w such that its far field pattern is

ş

S2 u8px̂, dq ¨ gp´dq dspdq

and that its far field pattern is identically zero, therefore proving (3.32) and, consequently, that
g P F .

In order to do so, we extend w, initially defined by hypothesis on D, to all of R3 by setting w :“ v
in R3zD. Notice that v P H2

locpR3q (since v P C8pR3q, because we can derivate under the integral
sign as many times as we want by Theorem 5.1.2 of the Appendix), and w P H2pDq and v “ w and
Bw
Bν

“ Bv
Bν

on BD by hypothesis. So the boundary values of w from the interior and the exterior of BD
coincide. Thus, the extension satisfies w P H2

locpR3q.
Besides, we have that, for any test function ϕ P C2

c pR3q we have
ż

R3

p∆w ` k2nwqϕ dx “

ż

R3

wp∆ϕ ` k2nϕq dx Int. by parts

“

ż

D

wp∆ϕ ` k2nϕq dx `

ż

R3zD

wp∆ϕ ` k2ϕq dx n ” 1 in R3zD

“

ż

D

wp∆ϕ ` k2nϕq dx `

ż

R3zD

vp∆ϕ ` k2ϕq dx. w ” v in R3zD

Applying Green’s formula (5.5) to the first integral, we have
ż

D

wp∆ϕ ` k2nϕq dx “

ż

D

rw∆ϕ ´ p´k2nwqϕs dx

“

ż

D

rw∆ϕ ´ ∆wϕs dx ∆w ` k2nw “ 0 on D

“

ż

BD

„

w
Bϕ

Bν
´ ϕ

Bw

Bν

ȷ

ds (5.5)

“

ż

BD

„

v
Bϕ

Bν
´ ϕ

Bv

Bν

ȷ

ds v “ w, Bv
Bν

“ Bw
Bν

on BD

“

ż

D

rv∆ϕ ´ ∆vϕs dx (5.5)

“

ż

D

vp∆ϕ ` k2ϕq dx. ∆v ` k2v “ 0 on D

So
ż

R3

p∆w ` k2nwqϕ dx “

ż

D

vp∆ϕ ` k2ϕq dx `

ż

R3zD

vp∆ϕ ` k2ϕq dx

“

ż

R3

vp∆ϕ ` k2ϕq dx

“

ż

R3

p∆v ` k2vqϕ dx “ 0,
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where we have used on the last step that v is an entire solution of Helmholtz’s equation, and on the
penultimate step we have integrated by parts over a ball Bp0, Rq that contains the support of ϕ (and,
therefore, with boundary terms that are 0).

Therefore, taking ϕ in such a way that
ş

R3p∆w ` k2nwq ¨ ϕ dx is a convolution with an approxi-
mation of the identity (see Theorem 5.1.3 of the Appendix), we obtain that ∆w ` k2nw “ 0 a.e in
R3. That is, it is a solution in H2

locpR3q of ∆w ` k2nw “ 0.
Since w “ v on R3zD, the difference w´ v vanishes in the exterior of D and therefore it trivially

satisfies the radiation condition. Therefore, if we take as incident field wi “ v (it is an entire solution
of Helmholtz’s equation, so it can be an incident field), and define

ws :“

#

w in D,
0 in R3zD,

we have that w :“ wi ` ws “ v is the unique total field corresponding to the incident field wi “ v;
i.e., it is the unique solution solution of (3.3)-(3.5) for wi “ v (uniqueness follows from Theorem
3.3.3).

Since

ws
pxq “

eik|x|

|x|
w8px̂q ` O

ˆ

1

|x|2

˙

, |x| Ñ 8,

the fact that wspxq ” 0 on R3zD implies that w8 ” 0 on S2.
But, at the same time, from (3.34) we see that

ż

S2
upx, dqgp´dq dspdq

is also a solution of (3.3)-(3.5) for the incident field wi “ v. Therefore, uniqueness gives us that

wpxq “

ż

S2
upx, dqgp´dq dspdq @x P R3.

Since the far field pattern of the right-hand side is, as we have already computed,
ż

S2
u8px, dqgp´dq dspdq,

we have that
ż

S2
u8px, dqgp´dq dspdq,“ w8px̂q “ 0.

3.4.3 The interior transmission problem

Motivated by Theorem 3.4.6 we now define the interior transmission problem.
Interior Transmision Problem Given f P H3{2pBDq and g P H1{2pBDq find two functions

v, w P L2pDq with w ´ v P H2pDq such that

∆w ` k2npxqw “ 0, ∆v ` k2v “ 0 in D (3.35)

and

w ´ v “ f,
Bw

Bν
´

Bv

Bν
“ g on BD (3.36)

where the differential equations for w and v are understood in the distributional sense and the
boundary conditions are well defined for the difference w ´ v.
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Remark 3.4.8. When we say that the equations in (3.35) are understood in the distributional sense,
we mean that

ż

D

w ¨ p∆ϕ ` k2nϕq dx “ 0

and
ż

D

v ¨ p∆ϕ ` k2ϕq dx “ 0

for every ϕ P C8
c pR3q.

Notice that the boundary conditions (3.36) are not written precisely, because w|
BD, v|

BD,
Bw
Bν

and
are not necessarily defined for arbitrary functions of L2pDq such as v and w. What we mean is that
pw ´ vq

ˇ

ˇ

BD
“ f and B

Bν
pw´vq “ g on BD, and in order for this conditions to be well defined we impose

the necessary condition w´ v P H2pDq (so that w ´ v|
BD P H3{2pBDq and B

Bν
pw´ vq P H1{2pBDq and

therefore the boundary conditions (3.36) make sense).

In this TFM, we will only study the homogeneous interior transmission problem, i.e., for f ” 0
and g ” 0. For information on the inhomogeneous interior transmission problem, we refer the reader
to section 3.1 of [7].

In particular, our main concern is going to be the existence of positive values of the wave number k
such that nontrivial solutions exist to the homogeneous interior transmission problem since, according
to Theorem 3.4.6, this is the only case for which there is a possibility that F is not complete in L2pS2q.
Because of this, we make the following definition.

Definition 3.4.9. If k ą 0 is such that the homogeneous interior transmission problem, i.e., the
problem (3.35) and (3.36) with f “ g “ 0 has a nontrivial solution, then k is called a transmission
eigenvalue .

Remark 3.4.10. Complex transmission eigenvalues can also exists, but we will only deal with real,
positive transmission eigenvalues, because they correspond to a positive wave number k, the only
case that has physical meaning.

Remark 3.4.11. We have studied the completeness of the set F of far field patterns relating it to
the existence of a nontrivial solution to the homogeneous interior transmission problem. However,
there is a different approach: one can study the completeness of F by analyzing the far field operator
F : L2pS2q Ñ L2pS2q defined by

pFgqpx̂q :“

ż

S2
u8px̂, dqgpdq dspdq, x̂ P S2. (3.37)

We refer to [13], pages 323-340 for an introduction to this approach in the case of scattering by an
inhomogeneous media, and pages 76-87 for the case of obstacle scattering.

3.5 Introduction to Non-Scattering Inhomogeneities

The transmission eigenvalue problem is closely related to a perplexing question in scattering theory:
the problem of non-scattering inhomogeneities. Given an inhomogeneity pD,nq, does there exist a
wave number k ą 0 and an incident wave ui such that the corresponding far field pattern u8 is
identically zero?

Such an incident field is referred to as a non-scattering incident wave and the corresponding k ą 0
as a non-scattering wave number. Again, we consider positive wave numbers k ą 0 because they are
the only ones that have physical meaning.
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Notice that, by Theorem 1.7.3, a radiating solution of the Helmholtz equation with identically
zero far field pattern is identically zero as well. Therefore, since us is a radiating solution of the
Helmholtz equation outside D, an inhomogeneous media pD,nq is non-scattering if and only if there
exists a wave number k ą 0 and an incident field ui such that the corresponding scattered field is
zero outside the inhomogeneity.

For a given incident field ui, we know that the scattered field us P H2
locpR3q satisfies the equation

∆us ` k2nus “ k2p1 ´ nqui on R3,

together with Sommerfeld’s radiation condition.
So, explicitly, an inhomogeneity pD,nq does not scatter if there exits a wave number k ą 0 and

an incident field ui, i.e., a solution of

∆ui ` k2ui “ 0 on R3,

such that
∆us ` k2nus “ k2p1 ´ nqui on R3,

and
us ” 0 on R3

zD.

This is an overdetermined system of elliptic equations (it has more equations than unknowns),
so it could have no solution. However, it can be proved that for the simplest case, i.e., spherically
stratified media (to which we can apply separation of variables), there exist non-scattering media
(see minutes 13-18 of [5] for the sketch of a proof). So it makes sense to consider this problem,
because in general we are not talking about the empty set.

Notice that this problem is physically astonishing: it considers incident fields of specific frequencies
for which the inhomogeneity is invisible, in the sense that the wave does not change its behavior (there
is no nonzero scattered wave).

Relation between transmission eigenvalues and non-scattering inhomogeneities

Let us see how transmission eigenvalues and non-scattering inhomogeneities relate.
Suppose that ui and us satisfy the non-scattering condition for a wave number k ą 0 (recall that

supppn ´ 1q “ D). Restricting ui to D, we have that it is a solution to Helmholtz equation on the
domain D, that is,

∆ui ` k2ui “ 0 on D.

Since us ” 0 on R3, we have that us “ 0 and Bus

Bν
“ 0 on BD, Therefore, u :“ us and v :“ ui

ˇ

ˇ

D
are solutions to the transmission eigenvalue problem, i.e., the problem of finding u P H2

0 pDq and
v P L2pDq such that

∆u ` k2nu “ k2p1 ´ nqv and ∆v ` k2v “ 0 in D

where u P H2
0 pDq means u “ 0 and Bu

Bν
“ 0 on BD.

Remark. Notice that u and v are solutions to the transmission eigenvalue problem since taking
w “ u`v (w would be the total field, since u “ us, v “ ui in the above discussion), then v, w P L2pDq

satisfy that v ´ w P H2
0 pDq and

∆v ` k2v “ 0 in D,

∆w ` k2nw “ 0 in D.

Therefore, solutions to the non-scattering problem are solutions to the transmission eigenvalue
problem. That is,
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Theorem 3.5.1. Given an inhomogeneous medium pD,nq, non-scattering wave numbers are a subset
of transmission eigenvalues.

So a neccesary condition for k being a non-scattering wave number is that k is a transmission
eigenvalue. It is natural then to ask another important question in scattering theory: when a (real)
transmission eigenvalue is a non-scattering wave number? This is a partially open question yet.
Many papers have been published lately regarding this topic.

This problem is beyond the scope of this TFM. To attack it, it has been related to regularity of
the eigenfuctions of the laplacian (i.e. solutions of Helmholtz equation) and free boundary problems.

Let us give an overview here. Suppose that k ą 0 is a transmission eigenvalue, that is, there
exists u P H2

0 pDq and v P L2pDq such that

∆u ` k2nu “ k2p1 ´ nqv and ∆v ` k2v “ 0 in D

u “ 0 and
Bu

Bν
“ 0 on BD.

We want to see if k is a non-scattering wave number, i.e., if there exists an incident wave v and a
scattered wave v such that

∆v ` k2v “ 0 in R3

∆u ` k2nu “ k2p1 ´ nqv in D

u “ 0 and
Bu

Bν
“ 0 on BD.

Notice that the only difference is that v must exist as a solution to Helmholtz equation in all of
R3 and not only on D. Since H1 solutions to Helmholtz equation are analytic (see [28], page 6),
the problem is if it is possible to extend v outside of D in such a way that it is analytic. That is,
under what assumptions the function v P L2pDq is a H1 solution to Helmholtz equation in a region
including D?. In that case, the eigenfunction v has to be analytic, because H1 solutions to Helmholtz
equation are analytic. So it is a regularity issue of eigenfuctions up to the boundary.

There have been several approaches to this problems, such as the use of free boundary methods by
Cakoni and Vogelius [10] and by Salo and Shangolian in [28]. For an overview of the recent advances
in this problem, see [5].

3.6 Appendix to Chapter 3

In this appendix, we prove Lemma 3.3.1.

Proof of Lemma 3.3.1. For 0 ă R ď 1, let Brx0;Rs be the closed ball of radius R centered at
x0. Choose R such that Brx0;Rs Ă G. We shall show that uppxq “ 0 for x P Brx0;R{2s and
p “ 1, . . . , P . The theorem follows from this fact since any other point x1 P G can be connected to
x0 by a finite number of overlapping balls. Without loss of generality, we shall assume that x0 “ 0
and for convenience we temporarily write u “ up.

For r “ |x| and n an arbitrary positive integer (the refractive index n does not appear in this
proof, so there is no risk of confussion), we define v P H2pGq by

vpxq :“

#

er
´n
upxq, x ‰ 0,
0, x “ 0.

(3.38)

Then:
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Lemma 3.6.1. Given u and v as above, we have

∆u “ e´r´n

«

∆v `
2n

rn`1

Bv

Br
`

n

rn`2

ˆ

n

rn
´ n ` 1

˙

v

ff

. (3.39)

Proof of Lemma 3.6.1. Let us check this. Since

Bv

Br
pxq “ ∇v ¨

x

|x|
“ ∇per

´n

upxqq ¨
x

|x|
,

we need to compute the partial derivatives of er
´n
upxq.

As used repeatedly in Chapter 1, we have that Bir “
xi

r
for i “ 1, 2, 3. Therefore,

Bivpxq “ Bipe
r´n

¨ upxqq “ er
´n

Biupxq ` er
´n

p´nqr´n´2xiupxq. (3.40)

So

∇per
´n

upxqq “ er
´n∇upxq ` er

´n

r´n´2upxqp´nqx⃗

Hence,

Bv

Br
pxq “ ∇vpxq ¨

x

|x|
“ er

´n∇upxq ¨
x

|x|
` er

´n

r´pn`2qupxqp´nqx⃗ ¨
x⃗

|x|

“ er
´n∇upxq ¨

x

r
` vpxqr´pn`2q

p´nrq.

Since ∆v “ B2
1v ` B2

2v ` B2
3v, we have to compute B2

i v for i “ 1, 2, 3. By (3.40), we have

B
2
i vpxq “Bipe

r´n

¨ Biupxqq ` Bipe
r´n

¨ p´nq ¨ r´n´2
¨ xi ¨ upxqq`

` p´nq ¨ rer
´n

¨ p´nq ¨ r´n´1
¨ Bir ¨ r´n´2

¨ xi ¨ upxq ` er
´n

¨ Bipr
´n´2

¨ xi ¨ upxqqs

The last expression is

Bipr
´n´2xiupxqq “ p´n ´ 2qr´n´3xi

r
xi ¨ upxq ` r´n´2

Bipxiupxqq

where Bipxi ¨ upxqq “ 1 ¨ upxq ` xi ¨ Biupxq. Therefore, the above expression results in

B
2
i vpxq “ er

´n

¨ B
2
i upxq

` er
´n

¨ p´nq ¨ r´n´2
¨ xi ¨ Biupxq

` n2
¨ er

´n

¨ r´2n´3
¨ Bir ¨ xi ¨ upxq

` p´nq ¨ er
´n

¨ p´n ´ 2q ¨ r´n´4
¨ x2i ¨ upxq

` p´nq ¨ er
´n

¨ r´n´2
¨ upxq ` p´nq ¨ er

´n

¨ r´n´2
¨ xi ¨ Biupxq.

where, as we have already commented, Bir “
xi

r
. Therefore, we obtain
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e´r´n

¨

«

∆v `
2n

rn`1
¨

Bv

Br
`

n

rn`2 ¨

˜

n
rn

´ n ` 1

¸

¨ v

ff

“ ∆upxq ` p´nq ¨ r´n´2∇upxq ¨ x ` n2
¨ r´2n´3upxq ¨ r ` p´nq ¨ p´n ´ 2q ¨ r´n´4

¨ upxq ¨ r2

` 3p´nq ¨ r´n´2
¨ upxq ` p´nq ¨ r´n´2

¨ ∇upxq ¨ x `
2n

rn`1
¨ ∇upxq ¨

x

r

`
2n

rn`1
¨ r´n´2

¨ upxq ¨ p´nq ¨ r `
n

rn`2
¨
n

rn
¨ upxq ´

n

rn`2
¨ n ¨ upxq `

n

rn`2
¨ upxq

“ ∆upxq ` ∇upxq ¨ x ¨

«

p´nq ¨ r´n´2
` p´nq ¨ r´n´2

`
2n

rn`2

ff

` upxq ¨

«

n2
¨ r´2n´2

` p´nqp´n ´ 2q ¨ r´n´2

` 3p´nq ¨ r´n´2
`

2n

rn`1
¨ r´n´2

¨ p´nq ¨ r `
n2

r2n`2
´

n2

rn`2
`

n

rn`2

ff

“ ∆upxq ` upxq ¨

«

r´2n´2
¨ pn2

´ 2n2
` n2

q ` r´n´2
¨ pn2

` 2n ´ 3n ´ n2
` nq

ff

“ ∆upxq.

This ends the verification of (3.39).

Using the inequality pa ` bq2 ě 2ab and calling b :“ 2n
rn`1 ¨ Bv

Br
and a to the rest of the expression

in brackets of (3.39), we see that

p∆uq
2

“ pe´r´n

q

«

∆v `
n

rn`2

ˆ

n

rn
´ n ` 1

˙

v `
2r

rn`1
¨

Bv

Br

ff2

“ e´r´n

pa ` bq2

ě e´r´n

2ba

“
4ne´2r´n

rn`1
¨

Bv

Br

«

∆v `
n

rn`2

ˆ

n

rn
´ n ` 1

˙

v

ff

.

Now, let φ P C2pR3q be such that

#

φpxq “ 1 for |x| ď R{2
φpxq “ 0 for |x| ě R

and is decreasing with respect to

r “ |x|. Then if we define û :“ φ ¨ u and v̂ :“ φ ¨ v, it can be seen that the above inequality is also
valid for u and v replaced by û and v̂ respectively.

In particular, multiplying by r on both sides, we have the inequality

rn`2e2r
´n

p∆ûq
2

ě 4nr ¨
Bv̂

Br

«

∆v̂ `
n

rn`2

ˆ

n

rn
´ n ` 1

˙

v

ff

.

Integrating over G:

ż

G

rn`2e2r
´n

p∆ûq
2 dx ě 4n

ż

G

r
Bv̂

Br

«

∆v̂ `
n

rn`2

ˆ

n

rn
´ n ` 1

˙

v̂

ff

dx. (3.41)
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Next, we are going to integrate by parts in (3.41).
First notice that, since supppφq Ă Brx0, Rs Ă G with x0 “ 0 (the inclusion due to our choice of

R), we have that all the boundary terms vanish (if it was necessary, we could choose a bit smaller
R), because û “ φ ¨ u and v̂ “ φ ¨ v have compact support contained in G.

We are going to use as well the following vector identity:

2∇px ¨ ∇v̂q ¨ ∇v̂ “ divrx|∇v̂|
2
s ´ |∇v̂|

2. (3.42)

Let us check this: to begin with, recall that if F “ pFx, Fy, Fzq is a differentiable vector field, then

divF “ ∇ ¨ F “
BFx

Bx
`

BFy

By
`

BFz

Bz
.

First, we compute ∇px ¨ ∇v̂q (the left-hand side of (3.42)) :

Bipx ¨ ∇v̂q ¨ Biv̂ “ Bipx1B1v̂ ` x2B2v̂ ` x3B3v̂q ¨ Biv̂

“
`

x1 ¨ B
2
1iv̂ ` x2 ¨ B

2
2iv̂ ` x3 ¨ B

2
3iv̂ ` 1 ¨ Biv̂

˘

¨ Biv̂

“ x1 ¨ Biv̂ ¨ B
2
1iv̂ ` x2 ¨ Biv̂ ¨ B

2
2iv̂ ` x3 ¨ Biv̂ ¨ B

2
3iv̂ ` pBiv̂q

2.

Then,

2∇px ¨ ∇v̂q ¨ ∇v̂ “ 2
3
ÿ

i“1

Bipx ¨ ∇v̂q ¨ Biv̂q

“ 2
3
ÿ

i“1

rx1 ¨ Biv̂ ¨ B
2
1iv̂ ` x2 ¨ Biv̂ ¨ B

2
2iv̂ ` x3 ¨ Biv̂ ¨ B

2
3iv̂ ` pBiv̂q

2
s

“ 2
3
ÿ

i“1

rx1 ¨ Biv̂ ¨ B
2
1iv̂ ` x2 ¨ Biv̂ ¨ B

2
2iv̂ ` x3 ¨ Biv̂ ¨ B

2
3iv̂s ` 2 ¨ |∇v̂|

2.

We now compute the right-hand side of (3.3.1), which is divrx ¨ |∇v̂|2s ´ |∇v̂|2. The divergence is

Bipxi ¨ rpB1v̂q
2

` pB2v̂q
2

` pB3v̂q
2
sq

“ 1 ¨ rpB1v̂q
2

` pB2v̂q
2

` pB3v̂q
2
s ` xi ¨ 2B1v̂ ¨ B

2
1iv̂ ` xi ¨ 2B2v̂ ¨ B

2
2iv̂ ` xi ¨ 2B3v̂ ¨ B

2
3iv̂

“ |∇v̂|
2

` 2xip∇v̂ ¨ ∇pBiv̂qq

So

divrx ¨ |∇v̂|
2
s ´ |∇v̂|

2
“ 3|∇v̂|

2
` 2rx1 ¨ p∇v̂ ¨ ∇pB1v̂q ` x2 ¨ p∇v̂ ¨ ∇pB2v̂q ` x3 ¨ p∇v̂ ¨ ∇pB3v̂qs ´ |∇v̂|

2

“ 2|∇v̂|
2

` 2rx1 ¨ p∇v̂ ¨ ∇pB1v̂q ` x2 ¨ p∇v̂ ¨ ∇pB2v̂q ` x3 ¨ p∇v̂ ¨ ∇pB3v̂qs.

So 2∇px ¨ ∇v̂q ¨ ∇v̂ “ divrx|∇v̂|2s ´ |∇v̂|2, which ends the verification of (3.42).

From (5.4), we have that:

ż

G

r ¨
Bv̂

Br
∆v̂ dx “ ´

ż

G

∇pr
Bv̂

Br
q ¨ ∇v̂ dx `

ż

BG

Bv̂

Bν
¨

ˆ

r
Bv̂

Br

˙

ds.

The boundary integral is 0 since v̂ has compact support contained in G. Using that

r
Bv̂

Br
“ r∇v̂ ¨

x

r
“ ∇v̂ ¨ x,



60 CHAPTER 3. SCATTERING IN AN INHOMOGENEOUS MEDIUM

the volume integral gives

´

ż

G

∇pr ¨
Bv̂

Br
q ¨ ∇v̂ dx “ ´

ż

G

∇px ¨ ∇v̂q ¨ ∇v̂ dx

“ ´

ż

G

1

2
rdivrx ¨ |∇v̂|

2
s ´ |∇v̂|

2
s dx

“ ´

ż

BG

1

2
x ¨ |∇v̂|

2
¨ ν ds `

1

2

ż

G

|∇v̂|
2 dx Divergence thm.

“
1

2

ż

G

|∇v̂|
2 dx.

Therefore, we obtain
ż

G

r
Bv̂

Br
∆v̂ dx “

1

2

ż

G

|∇v̂|
2 dx. (3.43)

For m an integer, we have that:
ż

G

1

rm
¨ v̂ ¨

Bv̂

Br
dx “

ż

G

1

rm
¨ v̂ ¨ ∇v̂ x

r
dx

“

ż

G

1

rm`1
¨ v̂ ¨ pB1v̂ ¨ x1 ` B2v̂ ¨ x2 ` B3v̂ ¨ x3q dx

“ ´

ż

G

«

v̂B1

ˆ

x1 ¨ v̂

rm`1

˙

` v̂B2

ˆ

x2 ¨ v̂

rm`1

˙

` v̂B3

ˆ

x3 ¨ v̂

rm`1

˙

ff

dx. supppx̂q Ă G

Let us compute first the integrand:

Bi

ˆ

xiv̂

rm`1

˙

“ Bi

ˆ

v̂
xi
rm`1

˙

“ Biv̂
xi
rm`1

` v̂Bi

ˆ

xi
rm`1

˙

. (3.44)

We have that

Bi

ˆ

xi
rm`1

˙

“
Bipxiq ¨ rm`1 ´ xi ¨ Bipr

m`1q

r2m`2
“

“
rm`1 ´ xipm ` 1q ¨ rm ¨ Biprq

r2m`2
“

“ r´pm`1q
´ rpm´1q´p2m`2q

¨ x2i ¨ pm ` 1q “

“ r´pm`1q
´ r´pm`3q

¨ x2i ¨ pm ` 1q.

Therefore, (3.44) turns into

(3.44) “ v̂ ¨ r´pm`1q
` Biv̂ ¨

xi
rm`1

´ pm ` 1q ¨ v̂ ¨ x2i ¨ r´pm`3q

Hence,

3
ÿ

i“1

Bi

ˆ

xiv̂

rm`1

˙

“ 3v̂r´pm`1q
`

3
ÿ

i“1

Biv̂ ¨
xi
rm`1

´

3
ÿ

i“1

pm ` 1qv̂ ¨ x2i r
´pm`3q

“ 3v̂ ¨ r´pm`1q
`

1

rm
∇v̂ ¨

x

r
´ pm ` 1qv̂ ¨ r´pm`3q

3
ÿ

i“1

x2i

“ 3v̂r´pm`1q
`

1

rm
Bv̂

Br
´ pm ` 1qv̂r´pm`1q

“ v̂r´pm`1q
p3 ´ pm ` 1qq `

1

rm
¨

Bv̂

Br
.
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So
3
ÿ

i“1

v̂

ˆ

xiv̂

rm`1

˙

“
v̂2

rm`1
¨ p2 ´ mq `

1

rm
v̂

Bv̂

Br
.

Therefore,

ż

G

1

rm
v̂ ¨

Bv̂

Br
dx “ ´

ż

G

«

v̂2

rm`1
p2 ´ mq `

1

rm
v̂ ¨

Bv̂

Br

ff

dx “ ´

ż

G

1

rm
v̂ ¨

Bv̂

Br
dx ` pm ´ 2q ¨

ż

G

v̂

rm`1
dx.

That is,
ż

G

1

rm
¨ v̂ ¨

Bv̂

Br
dx “

1

2
pm ´ 2q ¨

ż

G

v̂2

rm`1
dx. (3.45)

Since
ż

G

v̂2

r2n`2
dx ě

ż

G

v̂2

rn`2
dx (3.46)

(which we will justify in a moment) we obtain

ż

G

rn`2e2r
´n

p∆ûq
2 dx

ě
Ò

(3.41)

4n

ż

G

r
Bv̂

Br
∆v̂ dx ` 4n

ż

G

r
Bv̂

Br
¨
n

rn`2

n

rn
v̂ dx ` 4n

ż

G

r
Bv̂

Br
¨
n

rn`2
p´n ` 1qv̂ dx.

Using (3.43) on the first integral, (3.45) with m “ 2n ` 1 on the second integral and (3.45) with
m “ n ` 1 on the third one, we obtain

4n ¨
1

2

ż

G

|∇v̂|
2 dx ` 4n ¨

1

2
p2n ` 1 ´ 2q ¨

ż

G

v̂2

r2n`1`1
dx ¨ n2

` 4n ¨
1

2
pn ` 1 ´ 2q ¨

ż

G

v̂2

rn`1`1
dx ¨ np´n ` 1q

“ 2n

ż

G

|∇v̂|
2 dx ` 2np2n ´ 1q ¨ n2

ż

G

v̂2

r2n`2
dx ` 2npn ´ 1qnp1 ´ nq

ż

G

v̂2

rn`2
dx

ě 2n

ż

G

|∇v̂|
2 dx ` 2n2

p2n2
´ nq

ż

G

v̂2

r2n`2
dx ` p´2n2

q ¨ pn2
´ 2n ` 1q

ż

G

v̂2

r2n`2
dx

“ 2n

ż

G

|∇v̂|
2 dx `

ż

G

v̂2

r2n`2
dx ¨ 2n2

pn2
` n ´ 1q.

That is,
ż

G

rn`2e2r
´n

p∆ûq
2 dx ě 2n

ż

G

|∇v̂|
2 dx ` 2n2

pn2
` n ´ 1q

ż

G

v̂2

r2n`2
dx. (3.47)

The justification of (3.46) is the following:

• If r ě 1, then r2n`2 ě rn`2 1
r2n`2 ď 1

rn`2 .

• If r ď 1, r2n`2 ď rn`2 ùñ 1
r2n`2 ě 1

rn`2 .

Since v̂pxq “ 0 for r “ |x| ě R and 0 ă R ď 1, we just need to consider the case v̂pxq ‰ 0, i.e.,
r “ |x| ă R. In this case, r ă R ď 1, so 1

r2n`2 ě 1
rn`2 .
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Now, from (3.47), we have

ż

G

rn`2e2r
´n

p∆ûq
2 dx

ě n

«

ż

G

2|∇v̂|
2 dx `

ż

G

2n2

r2n`2
¨ v̂2 dx ´

ż

2n2

r2n`2
¨ v̂2 dx

ff

` 2n2
pn2

` n ´ 1q

ż

G

v̂2

r2n`2

“ n ¨

«

ż

G

2|∇v̂|
2 dx `

ż

G

2n2

r2n`2
¨ v̂2 dx

ff

´ 2n3
¨

ż

G

v̂2

r2n`2
dx ` 2n2

pn2
` n ´ 1q

ż

G

v̂2

r2n`2
dx

“ n ¨

«

ż

G

p2|∇v̂|
2

`
2n2

r2n`2
¨ v̂2q dx

ff

` p2n4
´ 2n2

q

ż

G

v̂2

r2n`2
dx

ě n

ż

G

e2r
´n

|∇û|
2 dx ` n4

ż

G

v̂2

r2n`2
dx

“ n

ż

G

e2r
´n

|∇û|
2 dx ` n4

ż

G

e2r
´n

r2n`2
û2 dx.

That is,
ż

G

rn`2e2r
´n

p∆ûq
2 dx ě n

ż

G

e2r
´n

|∇û|
2 dx ` n4

ż

G

e2r
´n

r2n`2
û2 dx, (3.48)

where in the last inequality we have used that

e2r
´n

|∇û|
2

ď 2|∇v̂|
2

`
2n2

r2n`2
|v̂|

2. (3.49)

Let us see why this is true. To begin with,

∇û “ e´r´n

„

∇v̂ `
n

rn`1
¨
x

r
¨ v̂

ȷ

,

since
∇v̂pxq “ ∇per

´n

¨ ûqpxq

and

Bipe
r´n

¨ ûqpxq “ er
´n

¨ p´nq ¨ r´pn`1q
¨ Biprq ¨ ûpxq ` er

´n

¨ Biûpxq

“ p´nq ¨ r´pn`2q
¨ er

´n

¨ ûpxq ¨ xi ` er
´n

¨ Biûpxq,

so

∇v̂pxq “ ∇per
´n

ûqpxq “ p´nq ¨ r´pn`2q
¨ er

´n

¨ ûpxq ¨ x ` er
´n

¨ ∇ûpxq ùñ

e´r´n

¨ ∇v̂pxq “ p´nq ¨ r´pn`2q
¨ ûpxq ¨ x ` ∇ûpxq ùñ

∇ûpxq “ e´r´n

¨ ∇v̂pxq ` n ¨ r´pn`2q
¨ ûpxq ¨ x “ e´r´n

¨

„

∇v̂pxq `
n

rn`1
¨
x

r
¨ v̂pxq

ȷ

.

Therefore,

|∇û|
2

“ |e´r´n

|
2

¨ |∇v̂ `
n

rn`1

x

r
¨ v̂|

2
ď e´2r´n

¨

«

|∇v̂| `

ˆ

n

rn`1
|v̂|

˙

ff2

ď e´2r´n

¨ 2

«

|∇v̂|
2

`
n2

r2n`2
|v̂|

2

ff
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From here we obtain (3.49), as desired. Now we can continue the proof of the Lemma. We have not
used hypothesis (3.22) yet, which established that

|∆up| ď C
P
ÿ

q“1

sr|uq| ` |∇uq|s on G

for every p “ 1, . . . , P and some constant C ą 0.
Therefore, by (3.22),

|∆uppxq|
2

ď C2

¨

˝

P
ÿ

q“1

r|uq| ` |∇uq|s

˛

‚

2

Cauchy-Schwarz inequality gives us that
ř

aibi ď p
ř

a2i q
1{2p

ř

b2i q
1{2. Using it with ai “ |uq| ` |∇uq|

and bi “ 1 we obtain

C2

¨

˝

P
ÿ

q“1

r|uq| ` |∇uq|s

˛

‚

2

ď C2
¨

¨

˝

P
ÿ

q“1

r|uq| ` |∇uq|s2
˛

‚¨

¨

˝

P
ÿ

1

12

˛

‚

ď P ¨ C2
P
ÿ

q“1

2r|uq| ` |∇uq|2s pa ` bq2 ď 2pa2 ` b2q

“ 2PC2
P
ÿ

q“1

r|uq|
2

` |∇uq|2s

ď 2PC2
P
ÿ

q“1

«

|uq|
2

r3n`4
`

|∇uq|2

rn`2

ff

,

having used on the last step that since R ď 1, we have

• If |x| “ r ď R
2
it holds

1

r
ě

2

R
ě 2 ą 1 ùñ

1

rn`2
ě 2n`2

ą 1 y
1

r3n`4
ě 23n`4

ą 1.

• If r “ |x| P rR
2
, Rs, then 1

r
P r 1

R
, 2
R

s with 1
R

ě 1 because R ď 1. So

1

r3n`4
P

«

1

R3n`4
,
23n`4

R3n`4

ff

with 1
R3n`4 ą 1 since R ď 1.

Thus, in both cases we have

|∆ûppxq|
2

ď
|∆ûppxq|2

r3n`4
.

Since uppxq “ ûppxq for all x satisfying |x| ď R
2
, using (3.48) we obtain

n

ż

|x|ďR
2

e2r
´n

|∇ûp|
2 dx ` n4

ż

|x|ďR
2

e2r
´n

r2n`2
û2p dx ď

Ò

(3.48)

ż

G

rn`2
¨ e2r

´n

|∆ûp|
2 dx

ď 2PC2
P
ÿ

q“1

«

ż

|x|ďR{2

e2r
´n

|∇ûq|2 dx `

ż

|x|ďR{2

e2r
´n

r2n`2
û2q dx

ff

`

ż

R{2ď|x|ďR

e2r
´n

|∆ûppxq|2

r2n`2
dx,

having separated on the last step the integral in two domains: |x| ď R
2
and |x| P rR{2, Rs:
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• On |x| ď R{2 we use that |∆uppxq|2 ď 2PC2 ¨
řP

q“1 . . . and the linearity of the integral.

• On |x| P rR{2, Rs, we use that |∆ûppxq|2 ď
|∆ûppxq|2

r3n`4 .

Substracting the first two terms of the last expression on both sides, we obtain

n

ż

|x|ďR{2

e2r
´n

¨ |∇ûp|
2 dx ´ 2PC2

P
ÿ

q“1

ż

|x|ďR{2

e2r
´n

¨ |∇ûq|2 dx

` n4

ż

|x|ďR{2

e2r
´n

r2n`2
¨ û2p dx ´ 2PC2

P
ÿ

q“1

ż

|x|ďR{2

e2r
´n

r2n`2
û2q dx

ď

ż

R{2ď|x|ďR

e2r
´n

|∆ûppxq|2

r2n`2
dx, n P N.

Taking n sufficiently large, the only non-negligible term of the left-hand side is

n4

ż

|x|ďR{2

e2r
´n

r2n`2
u2p dx

so

n4

ż

|x|ďR{2

e2r
´n

r2n`2
u2p dx ď C

ż

R{2ď|x|ďR

e2r
´n

|∆ûppxq|2

r2n`2
dx

for every p “ 1, . . . , P , with n sufficiently big and C some positive constant.

Since fprq :“ e2r
´n

r2n`2 (r ą 0) is increasing, we have

• If r P r0, R{2s, then

e2r
´n

r2n`2
ě

e2pR{2q´n

pR{2q2n`2
. (3.50)

• If r P rR{2, Rs, then

e2r
´n

r2n`2
ď

e2pR{2q´n

pR{2q2n`2
. (3.51)

Therefore,

n4

ż

|x|ďR{2

e2pR{2q´n

pR{2q2n`2
¨ u2p dx ď

Ò

(3.50)

n4

ż

|x|ďR

e2r
´n

r2n`2
¨ u2p dx

ď C

ż

R{2ď|x|ďR

e2r
´n

r2n`2
¨ |∆ûppxq|

2 dx

ď
Ò

(3.51)

C ¨

ż

R{2ď|x|ďR

e2pR{2q´n

pR{2q2n`2
|∆ûppxq|

2 dx.

Cancelling out the constants e2pR{2q´n

pR{2q2n`2 | on both sides, the remaining expression is

n4

ż

|x|ďR{2

u2p dx ď C

ż

R{2ď|x|ďR

|∆ûppxq|
2 dx @p “ 1, . . . , P.
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Since the right-hand side is constant with respect to n, taking n Ñ 8 we obtain that the only
possibility is that

ż

|x|ďR{2

u2p dx “ 0

which implies that
up “ 0 en |x| ď R{2.

and this completes the proof of the Lemma.
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Chapter 4

Existence of Transmission Eigenvalues

4.1 Introduction

In the previous chapter we have seen that the transmission eigenvalue problem is important for
establishing the completeness of a set of far field patterns in L2pS2q. In this chapter we study the
question of discreteness and existence of transmission eigenvalues.

Particular cases can be considered. For example, there exists a rather complete knowledge of the
radially symetric case. One known result1 is the following:

Theorem 4.1.1. Suppose that n P C2r0, Rs, Impnprqq “ 0, and either

npRq ‰ 1

or

npRq “ 1 and
1

R

ż R

0

a

npρq dρ ‰ 1.

Then, there exists an infinite discrete set of transmission eigenvales with spherically symmetric eigen-
functions.

Proof. See [7], Theorem 4.7, pages 130-131.

However, we are interested in more general results that do not assume any kind of symmetry.
This was an open problem for about twenty years, until in 2008 Päivärinta and Sylvester gave a
proof in [27] for large enough index of refraction. Briefly after that, Cakoni, Gintides and Haddar
gave a quite complete answer in [8] to the question of existence of transmission eigenvalues, under
the only assumption that m “ 1 ´ n (where n is the refractive index) does not change sign in the
inhomogeneity. The objective of this chapter is to state and prove this last result.

We follow sections 4.1-4.2 of [7] and Section 10.1 of [13].

Preliminary concepts

Throughout this chapter, we use the following concepts.

Definition 4.1.2. Let A be a bounded linear operator on a Hilbert space X. A is said to be

• Non-negative if pAu, uq ě 0 for every u P X.

• Coercive or strictly positive if there exists a constant β ą 0 such that pAu, uq ě β}u}2.

1See also [13], Theorem 8.13, pages 321-323.

67
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Structure of the chapter

The structure of the chapter is the following.
First, we reformulate the interior transmission problem as a fourth order equation. Then, we

reformulate the transmission eigenvalue problem as a classical eigenvalue problem pK ´ 1
τ
IqU “ 0

for τ ą 0. The operator K is not self-adjoint (although it is compact) and therefore non-standard
methods must be used to prove existence of eigenvalues. This is the reason why the problem was
open so many years. The approach to overcome this difficulty is the following:

• We will reformulate the problem as finding the values of τ for which NpAτ ´ τBq ‰ t0u for
tAτuτą0 a family of self-adjoint, compact and coercive (or stricly positive) operators and B a
self-adjoint, compact and non-negative operator.

• This problem requires a functional analytic theory to study the spectral decomposition of a
compact, self-adjoint and strictly positive operator A with respect to another compact, self-
adjoint, positive operator B, i.e., a generalization of the spectral theory for A ´ λI when I is
substituted by a more general operator B. This generalization requires several theorems that
are quite technical to prove.

• Lastly, we apply this theory to prove the existence of transmission eigenvalues aforementioned.

4.2 The Transmission Eigenvalue Problem

In this section, we formulate the transmission eigenvalue problem for isotropic non-homogeneous
medium in several ways.

Let D Ă R3 be the support of an isotropic inhomogeneous media with refractive index n P L8pDq

such that Repnq ě n0 ą 0 and Impnq ě 0. Recall the interior transmission problem corresponding to
the scattering problem for this isotropic inhomogeneous media:

Interior transmission problem
Given f P H

3
2 pBDq and h P H

1
2 pBDq, find w P L2pDq, v P L2pDq with w ´ v P H2pDq such that

∆w ` k2nw “ 0 in D
∆v ` k2v “ 0 in D
w ´ v “ f on BD
Bw

Bv
´

Bv

Bv
“ h on BD

(4.1)

where the equations for w and v are understood in the distributional sense and the boundary condi-
tions are well defined for the difference w ´ v.

We were particularly interested in the homogeneous case:

Definition 4.2.1. Values of k P C for which the homogeneous interior transmission problem

∆w ` k2nw “ 0 in D
∆v ` k2v “ 0 in D
w “ v on BD
Bw
Bv

“ Bv
Bv

on BD

(4.2)

has nontrivial solutions w P L2pDq and v P L2pDq, such that w´v P H2
0 pDq, are called transmission

eigenvalues.

Recall that we are going to be interested only in positive transmission eigenvalues: k P R, k ą 0.
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Reformulation of the Interior Transmission Problem as a fourth order equation

One appealing approach, given the structure of the boundary conditions in (4.1), is to take the
difference u :“ w ´ v as a new unknown and try to obtain an equivalent equation for u. Let us see
how to do this.

Subtracting the second equation from the first, we have

∆u ` k2nu “ ´k2pn ´ 1qv in D, (4.3)

together with the other equation
∆v ` k2v “ 0 in D (4.4)

and the boundary conditions

u “ f and
Bu

Bv
“ h on BD.

To eliminate v we need to divide by n ´ 1, and therefore we have to assume that n ´ 1 is bounded
away from zero. This justifies the following assumption.

Assumption: the real part of the constrast n ´ 1 does not change sign in D. More specifically,
we assume that there exists α ą 0 such that

either Repnpxqq ´ 1 ě α ą 0 or 1 ´ Repnpxqq ě α ą 0 for almost all x P D.

. Letting
nmin :“ inf

D
Repnq and nmax :“ sup

D
Repnq, (4.5)

the above assumption means that

either nmin ą 1 or 0 ă nmax ă 1.

Under this assumption, we can divide (4.3) by k2pn ´ 1q to obtain

v “ ´
1

k2pn ´ 1q
r∆u ` k2nus

and substituting this into equation (4.4) we obtain

∆

„

´
1

k2pn ´ 1q
r∆u ` k2nus

ȷ

` k2
„

´
1

k2pn ´ 1q
r∆u ` k2nus

ȷ

“ 0

ðñ ´
1

k2
p∆ ` k2q

1

n ´ 1
r∆u ` k2nus “ 0

ðñ p∆ ` k2q
1

n ´ 1
r∆u ` k2nus “ 0.

Using that n
n´1

“ 1 ` 1
n´1

, the left-hand side of the last expression can be rewritten as

p∆ ` k2q
1

n ´ 1
r∆u ` k2nus “ ∆

„

1

n ´ 1
∆u

ȷ

` ∆

„

1

n ´ 1
k2nu

ȷ

` k2
1

n ´ 1
∆u `

k2

n ´ 1
k2nu

“ ∆

„

1

n ´ 1
∆u

ȷ

` ∆rk2us ` ∆

«

k2u

n ´ 1

ff

` k2
1

n ´ 1
∆u `

k2

n ´ 1
k2nu

“ ∆

„

1

n ´ 1
∆u

ȷ

` k2
n

n ´ 1
∆u ` ∆

«

k2u

n ´ 1

ff

`
k2

n ´ 1
k2nu

“ p∆ ` k2nq
1

n ´ 1
p∆ ` k2qu.
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That is, we have obtained an equivalent formulation of equation (4.1) as a boundary value problem
for a fourth order equation:

p∆ ` k2nq
1

n ´ 1
p∆ ` k2qu “ 0 in D (4.6)

u “ f and
Bu

Bν
“ h on BD (4.7)

where we assume u :“ w ´ v P H2pDq. The functions v and w are related to u through

v “ ´
1

k2pn ´ 1q
p∆u ` k2nuq (4.8)

w “ u ` v “ ´
1

k2pn ´ 1q
p∆u ` k2uq (4.9)

Weak formulation of the Interior Transmission Problem

In this section we are concerned with proving the existence of real transmission eigenvalues, i.e., the
values of k ą 0 for which

∆w ` k2nw “ 0 in D,

∆v ` k2v “ 0 in D,

w ´ v “ 0 on BD, (4.10)

Bw

Bν
´

Bv

Bν
“ 0 on BD

has non-trivial solutions w P L2pDq and v P L2pDq such that w ´ v P H2pDq; that is, the values of
k ą 0 for which

∆w ` k2nw “ 0 in D,

∆v ` k2v “ 0 in D,

has non-trivial solutions w P L2pDq and v P L2pDq such that w ´ v P H2
0 pDq, where

H2
0 pDq “

"

u P H2
pDq : u “

Bu

Bν
“ 0 on BD

*

.

We have been able to write (4.10) as a fourth order equation

p∆ ` k2nq
1

n ´ 1
p∆ ` k2qu “ 0 (4.11)

for u “ w ´ v in H2
0 pDq.

The weak formulation of this fourth order equation becomes, after integrating by parts, the
following: find a function u P H2

0 pDq such that

ż

D

1

n ´ 1
p∆u ` k2uqp∆v ` k2nvq dx “ 0 for all v P H2

0 pDq. (4.12)

A consequence of this formulation is the following:
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Theorem 4.2.2. Suppose n P L8pDq with Imn ą 0 almost everywhere in a region D0 Ă D of
positive measure. Then, there are no transmission eigenvalues k ą 0 for the inhomogeneity pD,nq.
In particular, the set F of far field patterns is complete in L2pS2q for each k ą 0.

Proof. Let v, w be a solution to (3.35) and (3.36) for f “ g “ 0. Then, taking u :“ w ´ v, applying
(4.12) with v “ u we obtain

ż

D

1

n ´ 1
p∆u ` k2nuqp∆u ` k2uq dx “ 0.

We have that

p∆u ` k2nuqp∆u ` k2uq “ |∆u ` k2u|
2

` k2nu∆u ` k4nuu ´ k2u∆u ´ k2uk2u

“ |∆u ` k2u|
2

` k2pn ´ 1qup∆u ` k2uq

Therefore, after integrating by parts, we see that
ż

D

1

n ´ 1
p∆u ` k2nuqp∆u ` k2uq dx “

ż

D

1

n ´ 1
|∆u ` k2u|

2 dx ` k4
ż

D

|u|
2 dx ´ k2

ż

D

|∇u|
2 dx “ 0.

Since Imn ą 0 on a region D0 of positive measure, then Im
´

1
n´1

¯

‰ 0 on this region, and the second

integral is a real number, taking imaginary parts we have that

0 “ Im

ˆ
ż

D

1

n ´ 1
|∆u ` k2u|

2 dx

˙

“

ż

D

Im

ˆ

1

n ´ 1

˙

|∆u ` k2u|
2 dx.

Therefore, |∆u ` k2u|2 ” 0 on D0, a region of positive measure. Since, by (3.35), ∆u ` k2u “

k2p1 ´ nqw, we have that w ” 0 on D0. Therefore, by the Unique Continuation Principle (Theorem
3.3.2) we have that w ” 0 on D. Therefore, its Cauchy data are zero, i.e., w “ 0 and Bw

Bν
“ 0 on BD.

Thus, the Cauchy data of v are 0 as well, which implies2 that v ” 0 on D. So for the inhomogeneous
medium pD,nq there does not exist a transmission eigenvalue k ą 0, since every solution to the
interior transmission problem is the trivial one.

However, when Impnq ” 0, there may exist values of k that are transmission eigenvalues. We
investigate this case in the rest of the TFM.

4.2.1 Non self-adjointness of the transmission eigenvalue problem

So, from now on, we consider the case where n is real and

nmin ą 1 .

The case 0 ă nmax ă 1 is completely analogous and is treated in [7].
We would like to write the transmission eigenvalue problem as an eigenvalue problem.
First, take τ :“ k2 in (4.12) to obtain

ż

D

1

n ´ 1
p∆u ` τuqp∆v ` τnvq dx “ 0 for all v P H2

0 pDq (4.13)

Computing the product of the integrand, this is equivalent to
ż

D

1

n ´ 1
∆u ¨ ∆v dx `

ż

D

1

n ´ 1
p∆u ¨ τnv ` ∆v ¨ τuq dx `

ż

D

1

n ´ 1
τ 2 ¨ nuv dx “ 0 (4.14)

for all v P H2
0 pDq. We can express this in terms of three operators. Let us see how.

2For example, by Green’s Representation Formula on bounded domains (which, as we reasoned in the previous
chapter, is valid for H2pDq functions).
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1. Consider the bounded antilinear functional that, for a fixed u P H2
0 pDq, takes

H2
0 pDq Ñ C
v ÞÑ

ş

D
1

n´1
∆u ¨ ∆v dx.

Therefore, by Riesz Representation Theorem for Hilbert Spaces, there exists a unique Tu P

H2
0 pDq such that

pTu, vqH2pDq “

ż

D

1

n ´ 1
∆u ¨ ∆v dx @v P H2

0 pDq.

Therefore, we have an operator T : H2
0 pDq Ñ H2

0 pDq bounded, strictly positive and self-adjoint
because

(a) Linear: because

pT pu ` λvq, wqH2pDq “

ż

D

1

n ´ 1
∆pu ` λvq ¨ ∆w dx

“ pTu,wq ` λpTv, wq “ pTu ` λTv, wq @w P H2
0 pDq.

(b) Bounded: it is a consequence of Riesz Representation Theorem; or simply because

}Tu}
2
H2pDq “ pTu, TuqH2pDq “

ż

D

1

n ´ 1
∆u ¨ ∆Tu dx ď

Ò

C-S

›

›

›

›

1

n ´ 1

›

›

›

›

8

}∆u}L2pDq}∆Tu}L2pDq

ď

›

›

›

›

1

n ´ 1

›

›

›

›

8

c2}u}H2pDq}Tu}H2pDq “

›

›

›

›

1

n ´ 1

›

›

›

›

8

c2}u}H2pDq}Tu}H2pDq,

being } 1
n´1

}8 ă 8 since nmin ą 1 and having used that, by Theorem 5.1.10, on H2
0 pDq

the H2pDq-norm of a function is equivalent to the L2pDq-norm of its laplacian, so there
exists c ą 0 such that

}∆u}L2pDq ď c}u}H2pDq. (4.15)

for all u P H2
0 pDq.

Therefore, by cancelling the term }Tu}H2pDq on both sides, we have that

}Tu}H2pDq ď

›

›

›

›

1

n ´ 1

›

›

›

›

8

c2 ¨ }u}H2pDq.

We conclude then that T is bounded on H2
0 pDq.

(c) Strictly positive (coercive):

pTu, uqH2pDq “

ż

D

1

n ´ 1
∆u ¨ ∆u dx

“

ż

D

1

n ´ 1
|∆u|

2 dx

ě

ż

D

1

nmax ´ 1
|∆u|

2 dx

“ C ¨ }∆u}
2
L2pDq

ě C 1
¨ }u}

2
H2pDq

having used the hypothesis that npxq ď nmax ă 8 and, in the last step, the H2-norm
equivalence of Theorem 5.1.10 of the Appendix as in (4.15).
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(d) Self-adjoint:

pu, TvqH2pDq “ pTv, uqH2pDq
“

ż

D

1

n ´ 1
∆v ¨ ∆u dx “

ż

D

1

n ´ 1
¨∆v ¨∆u dx “ pTu, vqH2pDq,

having used that n is real-valued.

2. Consider now the bounded antilinear functional that, for a fixed u P H2
0 pDq, takes

H2
0 pDq Ñ C
v ÞÑ ´

ş

D
1

n´1
pnv∆u ` u∆vq dx.

By Riesz Representation Theorem, there exists an operator T1 : H
2
0 pDq Ñ H2

0 pDq such that

pT1u, vqH2pDq “ ´

ż

D

1

n ´ 1
pnv∆u ` u∆vq dx (4.16)

“ ´

ż

D

1

n ´ 1
p∆u ¨ v ` u ¨ ∆vq dx `

ż

D

∇u ¨ ∇v.

This operator is

(a) Self-adjoint:

pT1u, vqH2pDq “ ´

ż

D

1

n ´ 1
pnv∆u ` u∆vq dx

“ ´

ż

D

1

n ´ 1
pv∆u ` nu∆vq dx

“ pT1v, uqH2pDq

“ pu, T1vqH2pDq.

(b) Compact: let T
p1q

1 be the part of the operator T1 given by the second integral of (4.16).
We have that

}T
p1q

1 u}H2 “ sup
0‰vPH2

1

}v}H2

ˇ

ˇ

ˇ

ˇ

ż

D

1

n ´ 1
u∆v dx

ˇ

ˇ

ˇ

ˇ

ď C}u}L2 .

Therefore, for a sequence tunu bounded on H2pDq, thanks to the compact embedding of

H2
0 pDq into L2pDq, we obtain that a subsequence of tT

p1q

1 unu converges strongly on H2pDq.

The second integral of (4.16) gives us the same result (considering the adjoint). So we
can conclude that T1 is compact.

3. Lastly, consider the bounded linear functional that, for a fixed u P H2
0 pDq, takes

H2
0 pDq Ñ C
v ÞÑ

ş

D
n

n´1
u ¨ v dx.

Again, Riesz Representation Theorem gives us the existence of an operator T2 : H
2
0 pDq Ñ

H2
0 pDq that satisfies

pT2u, vqH2pDq “

ż

D

n

n ´ 1
u ¨ v dx

and is
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(a) Self-adjoint:

pT2u, vqH2pDq “

ż

D

n

n ´ 1
u ¨ v dx “

ż

D

n

n ´ 1
u ¨ v “ pT2v, uqH2pDq

“ pu, T2vqH2pDq.

(b) Non-negative:

pT2u, uqH2pDq “

ż

D

n

n ´ 1
u ¨ u dx “

ż

D

n

n ´ 1
|u|

2 dx ě 0

(c) Compact: the reasoning is analogous to that of T1.

With these operators, (4.14) can be written as

pTu, vqH2pDq ´ τpT1u, vqH2pDq ` τ 2pT2u, vqH2pDq “ 0 v P H2
0 pDq.

Since the scalar product is non-degenerate, the above expression means that

Tu ´ τT1u ` τ 2T2u “ 0.

Therefore, we conclude that the transmission eigenvalue problem is equivalent to finding a non-zero
function u P H2

0 pDq such that
pT ´ k2T1u ` k4T2qu “ 0.

Theorem 4.2.3. Assume that n P L8pDq takes real values and nmin ą 1, where nmin is given by
(4.5). Then the set of transmission eigenvalues k P C is discrete (possibly empty) with `8 as the
only possible accumulation point. The multiplicity of the eigenvalues is finite with finite dimensional
eigenspaces.

Proof. As discussed above, k P C is a transmission eigenvalue if and only if there exists a nonzero
solution u P H2

0 pDq of
Tu ´ k2T1u ` k4T2u “ 0,

which, applying T´1, is equivalent to the existence of a nonzero function u P H2
0 pDq such that

`

I ´ k2T´1T1 ` k4T´1T2
˘

u “ 0,

where I denotes de identity operator. Letting τ :“ k2 and setting U :“
`

u, τT´1T2u
˘

, the interior
transmission eigenvalue problem becomes the eigenvalue problem

ˆ

K ´
1

τ
I

˙

U “ 0 U P H2
0 pDq ˆ H2

0 pDq

for the operator K : H2
0 pDq ˆ H2

0 pDq Ñ H2
0 pDq ˆ H2

0 pDq given by

K :“

˜

T´1T1 ´I
T´1T2 0

¸

,

because

0 “

ˆ

K ´
1

τ
I

˙

U “

˜

T´1T1 ´ 1
τ
I ´I

T´1T2 ´ 1
τ
I

¸˜

u
τT´1T2u

¸

“

˜

1
τ
pI ` τ ¨ T´1T1 ´ τ 2T´1T2qu

0

¸

ðñ pI ` τT´1T1 ´ τ 2T´1T2qu “ 0.
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Notice that K is compact because each entry Ki,j is compact. Therefore, each entry is the limit
of a sequence of finite-rank operators tKi,jpnqunPN. So K is the limit of the sequence of finite-rank
operators

Kpnq :“

˜

K1,1pnq K1,2pnq

K2,1pnq K2,2pnq

¸

.

Therefore, we can apply Theorem 5.1.16 from the appendix to conclude that its eigenvalues are either
at most, a countable set that accumulates at 0 (including 0), and Theorem 5.1.14 to deduce that the
multiplicity is finite with finite dimensional generalized eigenspaces.

4.3 Existence of Transmission Eigenvalues

The fact that the eigenvalue problem associated to the transmission eigenvalue problem is not self-
adjoint makes it harder to prove the existence of transmission eigenvalues for media that is not
spherically stratified (that is, radially symmetric). In fact, this problem was open until 2008, when
Päivärinta and Sylvester proved in their article [27] that, for large enough index of refraction n,
there exsits at least one transmission eigenvalue. Later, the existence of transmission eigenvalues was
completely solved in [8], where they proved the existence of an infinite set of transmission eigenvalues
with 8 as the only accumulation point by just assuming that either nmin ą 1 or 0 ă nmin ď nmax ă 1.
We explain this proof in detail.

To clarify the exposition, we are just going to explain the case nmin ą 1 (see [7], Section 4.2,
pages 130-136 for the other one).

We have seen in the previous section that the transmission eigenvalue problem is equivalent to,
given k ą 0, finding a not identically zero function u P H2

0 pDq such that

ż

D

1

n ´ 1
p∆u ` τuqp∆v ` τnvq dx “ 0 @v P H2

0 pDq, (4.17)

where τ “ k2.
To formulate it in terms of operators, we give the following definition.

Definition 4.3.1. Let Aτ ,B : H2
0 pDq ˆ H2

0 pDq Ñ C with τ ą 0 the operators given by

Aτ pu, vq :“

ˆ

1

n ´ 1
p∆u ` τuq, p∆v ` τvq

˙

D

` τ 2pu, vqD

“

ż

D

1

npxq ´ 1
p∆upxq ` τupxqq ¨ p∆vpxq ` τvpxqq dx ` τ 2

ż

D

upxq ¨ vpxq dx,

and

Bpu, vq :“ p∇u,∇vqD “

ż

D

∇upxq ¨ ∇vpxq dx,

where p¨, ¨qD denotes the scalar product of L2pDq.

Proposition 4.3.2. The operators Aτ (τ ą 0) y B are symmetric sesquilinear operators (symmetric
in the sense that Aτ pu, vq “ Aτ pv, uq and the same for B).

Proof. It is a consequence of the fact that we consider npxq real-valued and τ P R, and therefore
n “ n and τ “ τ .
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Applying the Riesz Representation Theorem as we did in the previous section for T , T1 and T2,
we can define the bounded linear operators Aτ : H

2
0 pDq Ñ H2

0 pDq and B : H2
0 pDq Ñ H2

0 pDq as the
only ones that satisfy

pAτu, vqH2pDq “ Aτ pu, vq @u, v P H2
0 pDq

pBu, vqH2pDq “ Bpu, vq @u, v P H2
0 pDq.

In terms of these operators, we can rewrite (4.17) in the following way. The integrand is

p∆u ` τuqp∆v ` τnvq “ ∆u ¨ ∆v ` ∆u ¨ τnv ` τu ¨ ∆v ` τu ¨ τnv.

Since

p∆u ` τuqp∆v ` τvq “ ∆u ¨ ∆v ` ∆u ¨ τv ` τu ¨ ∆v ` τu ¨ τv,

we have that

p∆u ` τuqp∆v ` τnvq “ p∆u ` τuqp∆v ` τvq ´ ∆u ¨ τv ` ∆u ¨ τnv ´ τu ¨ τv ` τu ¨ τnv “

“ p∆u ` τuqp∆v ` τvq ` τ∆u ¨ vpn ´ 1q ` τ 2 ¨ u ¨ vpn ´ 1q.

Therefore
ż

D

1

n ´ 1
p∆u ` τuqp∆v ` τnvq dx

“

ż

D

1

n ´ 1

“

p∆u ` τuqp∆v ` τvq ` τ∆u ¨ vpn ´ 1q ` τ 2uvpn ´ 1q
‰

dx

“

ż

D

1

n ´ 1
p∆u ` τuqp∆v ` τvq dx ` τ 2

ż

uv ` τ

ż

∆uv

“

ż

D

1

n ´ 1
p∆u ` τuqp∆v ` τvq dx ` τ 2

ż

D

uv ´ τ

ż

D

∇u ¨ ∇v

“ Aτ pu, vq ´ τBpu, vq “ pAτu, vqH2pDq ´ τpBu, vqH2pDq “ pAτu ´ τBu, vqH2pDq.

Since k is a transmission eigenvalue if and only if for τ :“ k2 there exists u P H2
0 pDq, u ı 0 such

that
ż

D

1

n ´ 1
p∆u ` τuqp∆v ` τnvq dx “ 0 @v P H2

0 pDq,

we have that k is a transmission eigenvalue if and only if τ :“ k2 is such that

pAτu ´ τBu, vqH2pDq “ 0 for all v P H2
0 pDq

has a non-trivial solution u. That is, k is a transmission eigenvalue if and only if

NpAτ ´ τBq ‰ t0u.

We are going to study some properties of the operators Aτ and B. In order to do so, let λ1pDq

be the first Dirichlet eigenvalue of ´∆ in D (that is, the smallest λ ą 0 such that the problem
´∆u “ λu on D, u “ 0 on BD has a non-trivial solution).

Lemma 4.3.3. The operators Aτ , B : H2
0 pDq Ñ H2

0 pDq (τ ą 0) are self-adjoint, and B is non-
negative and compact. Besides, if nmin ą 1, then Aτ is strictly positive (i.e. coercive).
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Proof. The self-adjointness is a consequence of Proposition 4.3.2. Indeed,

pAτu, vqH2pDq “ Aτ pu, vq “ Aτ pv, uq “ pAτv, uqH2pDq “ pu,AτvqH2pDq.

and

pBu, vqH2pDq “ Bpu, vq “ p∇u,∇vqL2pDq “ p∇v,∇uqL2pDq “ Bpv, uq “ pBv, uqH2pDq “ pu,BvqH2pDq.

Now, we check that Aτ is strictly positive if nmin ą 1. To begin with,

1

npxq ´ 1
ě

1

nmax ´ 1
“: γ ą 0

almost everywhere x P D. Therefore

pAτu, uqH2pDq “ Aτ pu, uq “

ˆ

1

n ´ 1
p∆u ` τuq, p∆u ` τuq

˙

L2pDq

` τ 2pu, uqL2pDq

“

ż

D

1

n ´ 1
|∆u ` τu|

2 dx ` τ 2
ż

D

|u|
2

ě γ}∆u ` τu}
2
L2pDq ` τ 2}u}

2
L2pDq

“ γp∆u ` τu,∆u ` τuqL2pDq ` τ 2}u}
2
L2pDq

“ γ
”

}∆u}
2
L2pDq ` τ 2}u}

2
L2pDq ` 2τ rpu,∆uq ` p∆u, uqs

ı

` τ 2}u}
2
L2pDq

ě γ}∆u}
2
L2pDq ` τ 2pγ ` 1q}u}

2
L2pDq ´ 2γτ}u}L2pDq ¨ }∆u}L2pDq

“

˜

γ ´
γ2

ε

¸

}∆u}
2
L2pDq `

γ2

ε
}∆u}

2
L2pDq ´ 2γτ}∆u}L2pDq}u}L2pDq

` ετ 2}u}
2
L2pDq ` p1 ` γ ´ εqτ 2}u}

2
L2pDq

“

˜

γ ´
γ2

ε

¸

}∆u}
2
L2pDq ` ε

ˆ

τ}u}L2pDq ´
γ

ε
}∆u}L2pDq

˙2

` p1 ` γ ´ εqτ 2}u}
2
L2pDq

ě

˜

γ ´
γ2

ε

¸

}∆u}
2
L2pDq ` p1 ` γ ´ εqτ 2}u}

2
L2pDq ε P pγ, γ ` 1q.

In brief, for all ε P pγ, γ ` 1q with γ :“ 1
nmax´1

(positive because nmin ą 1), we have

pAτu, uqH2pDq “ Aτ pu, uq “

˜

γ ´
γ2

ε

¸

¨ }∆u}
2
L2pDq ` p1 ` γ ´ εqτ 2 ¨ }u}

2
L2pDq (4.18)

Notice that we choose ε P pγ, γ ` 1q so that γ ´
γ2

ε
ą 0 and 1 ` γ ´ ε ą 0. So we can fix any

ε P pγ, γ ` 1q (for example, ε “ γ ` 1
2
).

Besides, as u P H2
0 pDq, then ∇u P H1

0 pDq, so by Poincaré’s inequality (Theorem 5.1.9 of the
Appendix)

}∇u}
2
L2pDq ď

1

λ1pDq
}∆u}

2
L2pDq.
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Therefore

pAτu, uqH2pDq ě

˜

γ ´
γ2

ε

¸

}∆u}
2
L2pDq ` p1 ` γ ´ εqτ 2}u}

2
L2

“
1

2

˜

γ ´
γ2

ε

¸

}∆u}
2
L2pDq `

1

2

˜

γ ´
γ2

ε

¸

}∆u}
2
L2pDq ` p1 ` γ ´ εqτ 2}u}

2
L2

ě
1

2

˜

γ ´
γ2

ε

¸

}∆u}
2
L2pDq `

1

2

˜

γ ´
γ2

ε

¸

λ1pDq}∇u}
2
L2pDq ` p1 ` γ ´ εqτ 2}u}

2
L2

ě Cτ ¨ r}u}
2
L2pDq ` }∇u}

2
L2pDq ` }∆u}

2
L2pDqs

with

Cτ :“ min

$

&

%

1

2

˜

γ ´
γ2

ε

¸

,
1

2

˜

γ ´
γ2

ε

¸

λ1pDq, 1 ` γ ´ ε

,

.

-

.

Since u P H2
0 pDq, its H2-norm is equivalent to the L2-norm of its laplacian (see Proposition 5.1.10

of the Appendix). Therefore

Cτ ¨ r}u}
2
L2pDq ` }∇u}

2
L2pDq ` }∆u}

2
L2pDqs ě Cτ}∆u}

2
L2pDq ě Cτ}u}

2
H2pDq.

So
pAτu, uqH2pDq ě Cτ ¨ }u}

2
H2pDq

with Cτ ą 0 constant.
Finally, B is

• Non-negative:

pBu, uqH2pDq “ Bpu, uq “ p∇u,∇uqL2pDq “ }∇u}
2
L2pDq ě 0.

• Compact: let punq be a bounded sequence in H2
0 pDq. We want to see that pBunqn has a

convergent subsequence in H2
0 pDq.

Since punq is bouned in H2
0 pDq, then p∇unq is bounded in H1

0 pDq, so by the compact embedding
of H1

0 pDq into L2pDq (Theorem 5.1.12) , there exists a subsequence of p∇unq that converges in
L2pDq, say p∇unk

q. That is, there exists u P H1
0 pDq such that ∇unk

Ñ ∇u in L2pDq.

Let us see that Bunk
Ñ Bu in H2

0 pDq. We have

}Bunk
´ Bu}H2

0 pDq “ sup
φPH2

0 ,}φ}
H2
0 pDq

“1

pBpunk
´ uq, φqH2

0 pDq

“

ż

D

∇punk
´ uq ¨ ∇φdx Definition of B

ď

ˆ
ż

D

|∇unk
´ ∇u|

2 dx

˙1{2ˆż

D

|∇φ|
2

˙1{2

C-S

“ }∇unk
´ ∇u}L2pDq ¨ }∇φ}L2pDq

ď }∇unk
´ ∇u}L2pDq, }φ}H2

0 pDq “ 1.

which tends to zero when k Ñ 8 because ∇unk
Ñ ∇u in L2pDq. Notice that the first step of

the above deduction follows from the characterization of a norm in a Hilbert Space in terms of
the scalar product. In brief, Bunk

Ñ Bu in H2
0 pDq, completing the proof.
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Remark 4.3.4. Notice that the condition nmin ą 1 is used in this Lemma and in the following one
to prove the coercivity of certain operators. More specifically, this condition is asked so that the
bounds 1

n´1
ě 1

nmax´1
ą 0 are true.

Theorem 4.3.5. If nmin ą 1, then Aτ ´ τB is coercive for 0 ă τ ă
λ1pDq

nmax
. That is, for every

0 ă τ ă
λ1pDq

nmax
, there exists a constant α ą 0 (that only depends on τ and nmax) such that

pAτu ´ τBu, uqH2 ě α}u}
2
H2 ą 0 for all u P H2

0 pDq,

where λ1pDq is the first Dirichlet eigenvalue for the negative Laplacian.

Proof. Let γ :“ 1
nmax´1

ą 0 as in the proof of Lemma 4.3.3. We then have

pAτu ´ τBu, uqH2
0

“ Aτ pu, uq ´ τ}∇u}
2
L2

ě

˜

γ ´
γ2

ε

¸

}∆u}
2
L2pDq ` p1 ` γ ´ εqτ 2}u}

2
L2pDq ´ τ}∇u}

2
L2 (4.19)

for γ ă ε ă γ ` 1. Since ∇u P H1
0 pDq, the Poincaré inequality gives us

}∇u}
2
L2pDq ď

1

λ1pDq
}∆u}

2
L2pDq.

Therefore, apllying it to the above expresison we obtain

pAτu ´ τBu, uq ě

˜

γ ´
γ2

ε

¸

¨ }∆u}
2
L2pDq ` p1 ` γ ´ εqτ 2 ¨ }u}

2
L2pDq ´ τ ¨

1

λ1pDq
}∆u}

2
L2pDq

“

˜

γ ´
γ2

ε
´

τ

λ1pDq

¸

¨ }∆u}
2
L2pDq ` p1 ` γ ´ εqτ 2 ¨ }u}

2
L2pDq.

Hence, since the norm of H2pDq is equivalent to the L2pDq-norm of the Laplacian for functions in
H2

0 pDq (see Section 5.1.10 of the Appendix), Aτ ´ τB is strictly positive if

τ ă

˜

γ ´
γ2

ε

¸

λ1pDq.

In particular, taking ε arbitrary closed to γ ` 1, the latter becomes

τ ă lim
εÑpγ`1q´

˜

γ ´
γ2

ε

¸

λ1pDq “ γ ´
γ2

γ ` 1
λ1pDq “

γpγ ` 1q ´ γ2

γ ` 1
λ1pDq “

γ

γ ` 1
λ1pDq.

Since γ “ n 1
nmax´1

, then γ
γ`1

“ 1
nmax

and the condition becomes

τ ă
λ1pDq

nmax

.

As a corollary, we have:

Corollary 4.3.6. Assume that nmin ą 1. Then

k20 ě
λ1pDq

nmax

, (4.20)

where k0 is the smallest transmission eigenvalue and λ1pDq is the first Dirichlet eigenvalue of ´∆
on D.

Proof. For τ “ k2 ă
λ1pDq

nmax
, Aτ ´ τB is strictly positive, and therefore its kernel is t0u. Therefore, k

cannot be a transmission eigenvalue.
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4.3.1 Spectral decomposition with respect to an operator

Remember that we are interested in studying the kernel of Aτ ´ τB. That is, we are concerned
with the spectral properties of Aτ with respect to B. The following step is to establish some general
spectral properties for operators in the conditions of Theorem 4.3.3.

Throughout this section, let X be a Hilbert space with scalar product p¨, ¨q and associated norm
} ¨ }.

Recall that if A : X Ñ X is a bounded, self-adjoint, and stricly positive definite operator, then
we can define the operators A˘1{2 by

A˘1{2
“

ż 8

0

λ˘1{2 dEλ

where dEλ is the spectral measure associated with A. In particular, A˘1{2 are also bounded,
self-adjoint, and stricly positive definite operators on X satisfying

A´1{2A1{2
“ I and A1{2A1{2

“ A

What we are going to do now is to describe the spectral decomposition of the operator
A with respect to self-adjoint nonnegative compact operators B. That is, we are going to
generalize the known properties of the eigenvalue problem

A ´ λI

when the identity operator I is replaced by an arbitrary operator B (which has to satisfy some
properties).

Specifically, we want to generalize the spectral decomposition and the min-max principle.

Generalized Spectral Decomposition

Theorem 4.3.7. Let A : X Ñ X be a bounded, self-adjoint, and stricly positive definite operator on
a Hilbert space X and let B : X Ñ X be a nonnegative, self-adjoint, and compact linear operator with
null space NpBq. There exists an increasing sequence of positive real numbers pλjq and a sequence
pujq of elements of X satisfying

Auj “ λjBuj (4.21)

and

pBuj, ulq “ δjl (4.22)

such that each u P rApNpBqqsK can be expanded in a series

u “

8
ÿ

j“1

γjuj. (4.23)

If NpBqK has infinite dimension then λj Ñ 8 as j Ñ 8.

Remark 4.3.8. Notice that this theorem gives us a spectral decomposition because the λj are the
eigenvalues of the operator A with respect to the operator B, with the eigenfunctions uj being
orthonormal with respect to the scalar product ru, vsB :“ pBu, vq defined for u, v P XzNpBq (see the
end of Remark 4.3.14). In the case where B is the identity, we have the classical result.
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Proof of Theorem 4.3.7. The idea of the proof is to apply the well-known spectral theorem for com-
pact self-adjoint operators, and then derive the stated properties from it.

The operator B̃ “ A´1{2BA´1{2 is

• Nonnegative, because A1{2, A´1{2 are positive, and B is non-negative.

• Self-adjoint: in general if we denote the adjoint of an operator A by A˚, then pABq˚ “ B˚A˚.
So

pA´1{2BA´1{2
q

˚
“ pA´1{2

q
˚B˚

pA´1{2
q

˚
“ A´1{2BA´1{2,

being the last step true because A´1{2 and B are self-adjoint.

• Compact, because it is a composition of B, which is compact, with bounded operators, namely
A1{2 and A´1{2.

Therefore, we can apply the spectral decomposition (5.10) and (5.11). Let pµjq be the decreasing
sequence of positive eigenvalues of B̃ and pvjq the corresponding orthonormal eigenelements of B̃

that are complete in A´1{2BA´1{2pXq. Then

v “

8
ÿ

j“1

pv, vjqvj (4.24)

for all v P A´1{2BA´1{2pXq. Note that, because of the spectral theorem, zero is the only possible
accumulation point for the sequence pµjq.

We have that

µjvj “ B̃vj ðñ µjvj “ A´1{2BA´1{2vj

Proof of (4.21) and (4.22).
To obtain (4.21), we want an equation with the operator A on the left-hand side acting on a

vector, and the operator B on the right-hand side acting on that same vector and multiplied by an
scalar. Therefore, we divide by µj (which is positive, thus non-zero) and apply on both sides the
operator A1{2 “ pA´1{2q´1, thus obtaining

A1{2vj “
1

µj

BA´1{2vj

Since we want to have operator A on the left-hand side acting on the same vector as B on the
right-hand side, we express A1{2 “ AA´1{2, getting

AA´1{2vj “
1

µj

BA´1{2vj

Therefore, our candidate for λj is
1
µj

and our candidate for uj is A
´1{2vj. However, notice that

pBpA´1{2vjq, A
´1{2vlq “

Ò

A´1{2 self-adjoint

pA´1{2BA´1{2vj, vlq “ pB̃vj, vlq “
Ò

B̃vj“µjvj

µjpvj, vlq

“
Ò

tvjuj orthonormal

µj ¨ δj,l “

#

µj if j “ l
0 if j ‰ l.
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So, in order to have pBuj, ulq “ δj,l, the right choice for uj is not A
´1{2vj but

1
?
µj
A´1{2vj.

Therefore, what we have proved is that if we define

λj :“
1

µj

and uj :“
a

λjA
´1{2vj ,

for j “ 1, 2, . . ., then they satisfy (4.21) and (4.22).

Proof of (4.23)
Let us check (4.23). The only tool we have to obtain it is equation (4.24) (i.e., the fact that

tvjujPN is an orthonormal basis of A´1{2BA´1{2pXq), so we are going to apply it.
Let

u P A´1BA´1{2pXq.

Then, there exists a sequence twnu Ă A´1BA´1{2pXq such that u “ limnwn. Therefore, since A
`1{2

is bounded (i.e. continuous) we have

A1{2u “ A1{2
plim

n
wnq “ lim

n
A1{2wn,

where A1{2wn P A1{2A´1BA´1{2pXq “ A´1{2BA´1{2pXq for all n P N. So

A`1{2u P A´1{2BA´1{2pXq.

Therefore, we can write A`1{2u using the orthonormal basis tvjujPN (that is, we can apply (4.24)),
obtaining

A`1{2u “

8
ÿ

j“1

pA`1{2u, vjqvj.

Applying A´1{2 “ pA1{2q´1 and using its continuity and linearity, we have

u “ A´1{2

¨

˝

8
ÿ

j“1

pA1{2u, vjqvj

˛

‚ “
Ò

A´1{2 lin. and cont.

8
ÿ

j“1

A´1{2
ppA1{2u, vjqvjq

“
Ò

A´1{2 linear

8
ÿ

j“1

pA1{2u, vjq ¨ A´1{2vj “
Ò

Multiply by 1“

?
λj?
λj

8
ÿ

j“1

1
a

λj
pA1{2u, vjq ¨

a

λjA
´1{2vj “

8
ÿ

j“1

γjuj,

where

γj :“
1

a

λj
pA1{2u, vjq.

We have thus obtained (4.23) for u P A´1BA´1{2pXq. Nevertheless, the statement asserts that (4.23)
is true for all u P rApNpBqqsK. If we prove that

A´1BA´1{2pXq “ rApNpBqqs
K,

then we will have finished. This is true since

A´1BA´1{2pXq “ A´1BpXq “ rNpBA´1
s

K
“ rApNpBqqs

K

having used
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• On the first equality, that A´1{2 is bijective from X toX (since it is invertible being pA´1{2q´1 “

A1{2), so A´1{2pXq “ X. Therefore, A´1BA´1{2pXq “ A´1BpXq.

• On the second equality, we use Theorem 5.1.20, which gives us NpA˚qK “ ApXq for A an
operator defined on X. We use that pA´1Bq˚ “ B˚pA´1q˚ “ BA´1 where the last step is true
because A (and therefore A´1) and B are self-adjoint.

• On the third equality, we have used that NpAB´1q “ ApNpBqq.

Proof of the last statement
The only thing left to prove is that if NpBqK has infinite dimension, then λj Ñ 8 when j Ñ 8.
If NpBqK has infinite dimension, then, since A˘1{2 are bijective and striclty positive and B̃ “

A´1{2BA´1{2, then NpB̃qK has infinite dimension as well. Since NpB̃qK is an (at most countable)
orthogonal direct sum of eigenspaces associated to different non-zero eigenvalues, and (because of the
spectral theorem) the eigenspace associated to one eigenvalue is finite-dimensional, then NpB̃qK being
infinite-dimensional implies that there must be an infinite number of distinct eigenvalues.
Therefore the eigenvalues form a non-negative decreasing sequence, with 0 as the only accumulation
point: tµju

8
j“1 with µj Œ 0. Therefore, λj “ 1

µj
Ñ 8 when j Ñ 8, as we wanted to prove.

Generalized Min-Max Principle

The next important result is a generalized min-max principle. Before proceeding with it, we make
some remarks that will be useful in the following.

Lemma 4.3.9. Let X be a Hilbert space with scalar product p¨, ¨qX , and let A : X Ñ X be a bounded
linear operator, which is self-adjoint and stricly positive. Then the mapping r¨, ¨sA : X ˆ X Ñ K
given by

ru, vsA :“ pAu, vqX

is an scalar product.

Proof. For simplicity, we denote by p¨, ¨q the scalar product of X. Let u, v, w P X, α, β P K. We
have that:

1. Conjugate symmetry :

ru, vsA “ pAu, vq “
Ò

A self-adjoint

pu,Avq “ pAv, uq “ rv, usA.

2. Sesquilinearity :

rαu ` βv, wsA “ pApαu ` βvq, wq “ αpAu,wq ` βpAv,wq “ αru,wsA ` βrv, wsA

3. Positive-definiteness : ru, usA “ pAu, uq ě c ¨ }u}2X for some constant c ą 0 because A is strictly
positive. So ru, usA ě 0 and the equality is reached if and only if u “ 0.

The fact that r¨, ¨sA is an scalar product is useful to prove that the vectors tuju given in the
previous theorem are linearly independent.

Corollary 4.3.10. Let A and B be as in Theorem 4.3.7. Then, the vectors tujujPN are orthogonal
with respect to the scalar product r¨, ¨sA and, therefore, they are linearly independent.
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Proof. We have that

ruj, uksA “ pAuj, ukq “
Ò

(4.21)

pλjBuj, ukq “ λjpBuj, ukq “
Ò

(4.22)

λj ¨ δj,k.

Since they are orthogonal with respect to r¨, ¨sA, they are linearly independent.

Corollary 4.3.11. Let A and B be as before, Then, X can be decomposed in the following direct
sum:

X “ NpBq ‘ rApNpBqqs
K

Proof. Since NpBq is a closed subspace of X, we can decompose X as an orthogonal direct sum of
NpBq and its orthogonal complement with respecto to the scalar product r¨, ¨sA. This gives us

X “ NpBq ‘ rNpBqs
KA .

We have that
rNpBqs

KA “ rApNpBqqs
K,

since

u P rApNpBqqs
K

ðñ pu, vq “ 0 @v P ApNpBqq ðñ pu,Awq “ 0 @w P NpBq ðñ
Ò

A self-adjoint

ðñ pAu,wq “ 0 @w P NpBq ðñ
Ò

Def. of r¨,¨sA

ru,wsA “ 0 @w P NpBq ðñ u P rNpBqs
KA .

Therefore, we have the following decomposition of X as a direct sum:

X “ NpBq ‘ rApNpBqqs
K.

Remark 4.3.12. Because of the direct sum given by Lemma 4.3.11, u R NpBq implies that u “ b`v
with v P NpBq and v P rApNpBqqsKzt0u.

Theorem 4.3.13. Let A,B, and pλjq be as in Theorem 4.3.7 and define the Rayleigh quotient as

Rpuq “
pAu, uq

pBu, uq

for u R NpBq, where p¨, ¨q is the scalar product in X. Then the following min-max principles hold

λj “ min
WPUA

j

ˆ

max
uPW zt0u

Rpuq

˙

“ max
WPUA

j´1

˜

min
uPrApW`NpBqqsKzt0u

Rpuq

¸

, (4.25)

where UA
j denotes the set of all j-dimensional subspaces of rApNpBqqsK.

Remark 4.3.14. Rpuq “
pAu,uq

pBu,uq
is well defined for u R NpBq. To check this, it is enough to see

that pBu, uq ‰ 0 for u R NpBq.
By Theorem 4.3.7, for every u P rApNpBqqsK, there exist scalars γj such that

u “

8
ÿ

j“1

γjuj
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with pBuj, ulq “ δj,l. So, if ũ R NpBq, i.e., ũq “ b ` u with b P NpBq, u P rApNpBqqsKzt0u (see
Remark 4.3.12), then

pBũ, ũq “ pBpb ` uq, b ` uq “ pBu, b ` uq “ pBu, uq ` pBu, bq “ pBu, uq ` pu,Bbq “ pBu, uq

“

¨

˚

˝

B

¨

˝

8
ÿ

j“1

γjuj

˛

‚,
8
ÿ

l“1

γlul

˛

‹

‚

“

8
ÿ

j“1

8
ÿ

l“1

γjγlpBuj, ulq “

8
ÿ

j“1

8
ÿ

l“1

γjγlδj,l “
ÿ

|γj|
2

‰ 0,

since u R NpBq, so in particular u ‰ 0, so γj ‰ 0 for some j. In the above formula we have used that
B is continuous and that the scalar product is continuous in each of its variables.

Notice as well that a consequence of the fact that pBu, uq ‰ 0 for u R NpBq is that ru, vsB :“
pBu, vq defines a scalar product on XzNpBq (as can be checked in a similar way to what we did
with r¨, ¨sA in Lemma 4.3.9).

Proof of Theorem 4.3.13. The proof is based on the fact that if u P rApNpBqqsK, then from Theorem
4.3.7 we can write

u “

8
ÿ

j“k

γjuj (4.26)

for some coefficients γj, where the uj are defined in Theorem 4.3.7. Using this expression of u, we
can calculate Rpuq in the following way3:

Rpuq “
1

ř8

j“1 |γj|2

8
ÿ

j“1

λj|γj|
2. (4.27)

This is because

Rpuq “
pAu, uq

pBu, uq

“

´

A
`
ř8

1 γjuj
˘

,
ř8

1 γkuk

¯

´

B
`
ř8

1 γjuj
˘

,
ř8

1 γkuk

¯

“

`
ř8

1 γjAuj,
ř8

1 γkuk
˘

`
ř8

1 γjBuj,
ř8

1 γkuk
˘ (A,B lin. and cont.)

“

ř8

j,k“1 γjγkpAuj, ukq
ř8

j,k“1 γjγkpBuj, ukq
p¨, ¨q lin. and cont. in 1st var.

“

ř8

j,k“1 γjγkλjpBuj, ukq
ř8

j,k“1 γjγkpBuj, ukq
(4.21): Auj “ λjBuj

“

ř8

j,k“1 γjγkλjδj,k
ř8

j,k“1 γjγkδj,k
(4.22): pBuj, ulq “ δjl

“

ř8

j“1 |γj|
2 ¨ λj

ř8

j“1 |γj|2
.

3Notice that, given u P rApNpBqqsK, a priori the expression (4.26) may not be unique. But this is not important:
(4.27) is the formula for Rpuq for every expression of the form (4.26). That is, given u P rApNpBqqsK in the form
(4.26), Rpuq can be computed with formula (4.27).
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We have to prove (4.25).

Proof of the first equality of (4.25) Let Wj “ spantu1, . . . , uju. We have that Wj P UA
j

because

• Wj Ă rApNpBqqsK since uk P rApNpBqqsK for every k “ 1, . . . , j. This is because given
v P ApNpBqq, that is, v “ Aw with w P X such that Bw “ 0, we have that

puk, vq “ puk, Awq “
Ò

A self-adjoint

pAuk, wq “ pλkBuk, wq “
Ò

B self-adjoint

λkpuk, Bwq “ λkpuk, 0q “ 0.

• Wj “ spantu1, . . . , uju has dimension j because tujujPN are linearly independent because of
Lemma 4.3.10.

First step: Let us prove that

λj “ max
uPWjzt0u

Rpuq “ min
uPrApWj´1`NpBqqsKzt0u

Rpuq. (4.28)

1. First equality of (4.28): if u P Wjzt0u, i.e., u P spantu1, . . . , uju, then u “
řj

k“1 γkuk, which is
an expression of the form (4.26). So by (4.27),

Rpuq “
Ò

γk“0 for kěj`1 in (4.26)

řj
k“1 |γk|2λk
řj

k“1 |γk|2
ď
Ò

λją0,tλju increasing

řj
k“1 |γk|2 ¨ λj
řj

k“1 |γk|2
“ λj ¨ 1 “ λj.

So λj ě maxujPWjzt0u Rpuq. To see the equality, it is enough that the bound is reached for some
vector. That is, it is enough that Rpuq “ λj for some u P Wjzt0u. Let us see that uj P Wjzt0u

satisfies that. To begin with, uj P Wjzt0u since uj ‰ 0 because of condition (4.22) and because
uj P Wj by definition Wj. Since uj “ 1 ¨ uj is an expression of the form (4.26), by (4.27) we

have that Rpujq “
12¨λj

12
“ λj.

Therefore λj “ maxuPWjzt0u Rpuq, thus obtaining the first equality.

2. Second equality of (4.28): let u P ApWj´1 ` NpBqqKzt0u.

Notice that ApWj´1 ` NpBqqK Ă rApNpBqqsK because ApNpBqq Ă ApWj´1 ` NpBqq, so it
makes sense to apply formula (4.26) to elements of ApWj´1 ` NpBqqK.

That is, since u P rApNpBqqsK, Theorem 4.3.7 gives us that u can be expressed in the form
(4.26):

u “

8
ÿ

k“1

γk ¨ uk.
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Let j P t1, . . . , j ´ 1u. Then

0 “ pu,Auj0q “

“

˜

8
ÿ

k“1

γkuk, Auj0

¸

“

8
ÿ

k“1

γkpuk, Auj0q p¨, ¨q lin. and cont. on 1st var.

“

8
ÿ

k“1

γkpuk, λj0Buj0q (4.21)

“

8
ÿ

k“1

γk ¨ λj0puk, Buj0q p¨, ¨q sesquilinear; λj P R

“

8
ÿ

k“1

γkλj0pBuk, uj0q B self-adjoint

“ λj0

8
ÿ

k“1

γkδk,j0 “ γj0λj0 . (4.22)

Then, since λj0 ą 0 (by Theorem 4.3.7), it has to be γj0 “ 0.

Since this is valid for all j0 “ 1, . . . , j ´ 1, we have that u “
ř8

k“j γkuk, so applying (4.27) we
have that

Rpuq “

ř8

k“j |γk|2 ¨ λk
ř8

k“j |γk|2
ě

ř8

k“j |γk|2 ¨ λj
ř8

k“j |γk|2
“ λj ¨ 1 “ λj.

Therefore
λj ď min

uPrApWj´1`NpBqqsKzt0u
Rpuq.

To see the equality, it is enough to find u P rApWj´1 ` NpBqqsKzt0u such that Rpuq “ λj. We
have seen when checking the first equality that Rpujq “ λj (and that uj ‰ 0). So it is enough
to see that uj P rApWj´1 ` NpBqqsKzt0u.

Lemma 4.3.15. Under the conditions of the theorem, if Wj´1 :“ spantu1, . . . , uj´1u, then

ul P rApWj´1 ` NpBqqs
K

zt0u @l ě j.

Proof. Let v P ApWj´1 ` NpBqq, i.e., v “ Aw with w P Wj´1 ` NpBq. Then

pul, vq “ pul, Awq “
Ò

A self-adjoint

pAul, wq “
Ò

(4.21)

pλlBul, wq

Since w P Wj´1 ` NpBq, w “
řj´1

k“1 akuk ` b for some ak P C, b P NpBq. So

λlpBul, wq “ λl

¨

˝Bul,
j´1
ÿ

k“1

akuk ` b

˛

‚“ λj ¨

»

–

j´1
ÿ

k“1

akpBul, ukq ` pBul, bq

fi

fl .

The sum is 0 because, by (4.22), pBul, ukq “ δl,k “ 0 for k “ 1, . . . , j ´ 1 and in this case l ě j.
So what remains is

pul, vq “ λlpBul, bq “
Ò

B self-adjoint

λlpul, Bbq “
Ò

bPNpBq

λlpul, 0q “ 0.
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Then, since this is true for all v P ApWj´1 ` NpBqq, we have that

ul P rApWj´1 ` NpBqqs
K

zt0u @l ě j.

So, applying Lemma 4.3.15, we end the proof of the second equality of (4.28).

Next, let W be any element of UA
j , that is, W has dimension j and W Ă rApNpBqqsK. Therefore,

W X rAWj´1 ` ApNpBqqs
K

‰ t0u. (4.29)

By Lemma 4.3.15 we have that

spantukukěj Ă rAWj´1 ` ApNpBqqs
K,

so to prove (4.29) it is enough to see that W X spantukukěj ‰ t0u. Let us check this.
Since W is a subspace of dimension j of rApNpBqqsK, there exists a basis tv1, . . . , vju. As

rApNpBqqsK “ spantuku8
k“1, there exist scalars γ

pkq

l , l P N, k “ 1, . . . , n such that

vk “

8
ÿ

l“1

γ
pkq

l ul.

We can thus consider the matrix of dimension jˆpj´1q whose k-th row is composed of the coefficients

γ
pkq

1 , . . . , γ
pkq

j´1. We can then make Gaussian elimination (i.e., row reduction) to obtain matrix whose
last row is composed by zeros.

This means that, from the basis tv1, . . . , vju of W , we can obtain another basis tw1, . . . , wju such
that wj P spantukukěj. In particular, since it is a basis, we have that wj ‰ 0 and Wj P W , so

W X spantukukěj ‰ 0.

Therefore, we obtain (4.29).
So

max
uPW zt0u

Rpuq ě min
uPWXrApWj´1`NpBqqsKzt0u

Rpuq ě min
uPrApWj´1`NpBqqsKzt0u

Rpuq “ λj

where

• The first inequality is true because that maximum over W zt0u is ě that the minimum over
any subset of W zW zt0u and W X rApWj´1 ` NpBqqsKzt0u is a subset of W zt0u.

• The second inequality is true because that set on the left-hand side is smaller, so the minimum
over the set on the left is greater or equal to the one over the set on the right.

• The last equality is true because of (4.28).

Since maxuPW zt0u Rpuq ě λj for every w P UA
j , with maxuPWjzt0u Rpuq “ λj withWj P UA

j (because
u1, . . . , uj are linearly independent due to Lemma 4.3.10) we have that

λj “ min
wPUA

j

ˆ

max
uPW zt0u

Rpuq

˙

,

which is the first equality of the statement of the theorem that we wanted to prove.

Proof of the second equality of (4.25)
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To prove the second equality of the theorem, we reason in a similar way to what we have done
for W P UA

j before.

LetW P UA
j´1 be a subspace of rApNpBqqsK of dimension j´1. Reasoning as before,WjXpAW qK ‰

t0u . So

min
uPrApW q`ApNpBqqsKzt0u

Rpuq ď min
uPWjXpAW qKzt0u

Rpuq ď max
uPWjXpAW qKzt0u

Rpuq ď max
uPWjzt0u

Rpuq “ λj,

having used on the first equality that4 Wj X pAW qK Ă rAW ` ApNpBqqsK.

Since minuPrApW q`ApNpBqqsKzt0u Rpuq ď λj for everyW P UA
j´1 and minuPrApWj´1q`ApNpBqqsKzt0u Rpuq “

λj because of the second equality of (4.28) with Wj´1 P UA
j´1, then

λj “ max
wPUA

j´1

˜

min
uPrApW`NpBqqsKzt0u

Rpuq

¸

,

proving thus the second equality of the theorem.

The following corollary shows that it is possible to remove the dependence on A in the choice of
the subspaces in the min-max principle for the eigenvalues λj.

Corollary 4.3.16. Let A,B, λj and R be as in Theorem 4.3.13. Then

λj “ min
WĂUj

ˆ

max
uPW zt0u

Rpuq

˙

, (4.30)

where Uj denotes the set of all j-dimensional subspaces W of X such that W X NpBq “ t0u.

Proof. To clarify the notation, recall that

• Uj is the set of all the W vector subspaces of X of dimension j such that W X NpBq “ t0u.

• UA
j is the set of all the subspaces of dimension j of rApNpBqqsK.

Let us see that UA
j Ă Uj. Let W P UA

j , i.e., a subspace of rApNpBqqsK Ă X of dimension j. To
check that W P Uj, we just have to see that W X NpBq “ t0u.

Let v P W X NpBq.

• Since v P W , then v P rApNpBqqsK. So pv, wq “ 0 for every w P pApNpBqq.

• Since v P NpBq, then Av P ApNpBqq.

4This is true because, in general, given A,B vector subspaces of X, and given A1 Ă AK a vector subspace, we have
that

A1 X BK Ď rA ` BsK,

because if v P A1 X BK, given w “ wA ` wB P A ` B, we have that

pv, wq “ pv, wAq ` pv, wBq “ 0

where the first term of the sum is 0 because v P A1 Ă AK and wA P A; and the second is 0 because v P BK and
wA P B. So it is enough to take A “ ApNpBqq, A1 “ Wj y B “ AW .
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So pv, Avq “ 0. Since pv,Avq “ pAv, vq “ rv, vsA “ 0, and r¨, ¨sA is a scalar product (because of
Lemma 4.3.9), then v “ 0. So W X NpBq “ t0u and, therefore, W P Uj.

In brief,
UA
j Ă Uj.

From Theorem 4.3.13 and the fact that UA
j Ă Uj, we have that

λj “
Ò

Thm. 4.3.13

min
WPUA

j

ˆ

max
uPW zt0u

Rpuq

˙

ě
Ò

UA
j ĂUj

min
WPUj

ˆ

max
uPW zt0u

Rpuq

˙

.

So to prove (4.30), it is enough to prove the other inequality, that is, it is enough to see that

λj ď min
WĂUk

ˆ

max
uPW zt0u

Rpuq

˙

. (4.31)

Proof of (4.31)
Let W P Uj and let v1, . . . , vj a basis of W .
We want to prove the previous theorem, and in order to do it we need to work with j-dimensional

vector subspaces of rApNpBqqsK, that is, elements of UA
j . To do so, we are going to try to obtain a

subspace ĂW P UA
j from the given subspace W .

Because of the direct sum, every vl pl “ 1, . . . , jq of the basis of W can be decomposed as a sum

vl “ v0l ` ṽl

with ṽl P rApNpBqqsK y v0l P NpBq.
The vectors tṽlu

j
l“1 are linearly independent, since W P Uj ùñ W X NpBq “ t0u, so, if

řj
1 alṽl “ 0, we have that

W Q

j
ÿ

1

alvl “
Ò

vl“v0l `ṽl

j
ÿ

1

alpv
0
l ` ṽlq “

l
ÿ

1

alv
0
l `

l
ÿ

1

alṽl “
Ò

Hypothesis

j
ÿ

1

alv
0
l P NpBq ùñ

Ò

WXNpBq“t0u

j
ÿ

1

alvl “ 0 ùñ
Ò

v1,...,vj lin. indep.

a1 “ . . . “ aj “ 0

Therefore, the space ĂW :“ spantṽ1, . . . , ṽju has dimension j. Besides, ĂW Ă rApNpBqqsK (since

ṽ1, . . . , ṽj P rApNpBqqsK by definition). So ĂW P UA
j .

Let ũ P ũ P ĂW zt0u. Then, there exist scalars a1, . . . , aj such that

ũ “

j
ÿ

1

alṽl “

j
ÿ

1

alpvl ´ v0l q “

j
ÿ

1

alvl ´

j
ÿ

1

alv
0
l .

Denoting u :“
řj

1 alvl P W , u0 :“
řj

1 alv
0
l P NpBq, we have that every ũ P ĂW can be written as

ũ “ u ´ u0

for some u P W , u0 P NpBq.
We have that:
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• Since u0 P NpBq, Bu0 “ 0.

• Since u0 P NpBq, then Au0 P ApNpBqq. Since ũ P rApNpBqqsK, then pAu0, ũq “ 0.

So

Rpuq “
Ò

Def.

pAu, uq

pBu, uq
“
Ò

u“u0`ũ; pAu0,ũq“0

pAũ, ũq ` pAu0, u0q

pBũ, ũq ` pBu0, u0q
“
Ò

Bu0“0

pAũ, ũq

pBũ, ũq
`

pAu0, u0q

pBũ, ũq
“
Ò

Def.

Rpũq `
pAu0, u0q

pBũ, ũq
.

Since A is stricly positive and B is non-negative, i.e., pAu0, u0q ě c}u0}2, pBũ, ũq ě 0 (and ‰ 0
because ũ ‰ 0 and because of Remark 4.3.14) then

Rpuq “ Rpũq `
pAu0, u0q

pBũ, ũq
ě Rpũq.

So for every ũ P ĂW zt0u there exists u P W zt0u such that Rpũq ď Rpuq. Therefore,

max
ũPĂW

Rpũq ď max
uPW zt0u

Rpuq. (4.32)

Besides, by Theorem 4.3.13 we also have that

max
ũPĂW

Rpũq ě
Ò

ĂWPUA
j

min
ĂWPUA

j

ˆ

max
ũPĂW

Rpuq

˙

“
Ò

Thm. 4.3.13

λj. (4.33)

So, combining (4.32) and (4.33), we have

λj ď max
uPW zt0u

Rpuq.

This is true for every W P Uj (because that one we have chosen is arbitrary), so

λj ď min
WPUj

ˆ

max
uPW zt0u

Rpuq

˙

,

as we wanted to prove.

Until now, we have stablished general results about the spectral decomposition of an operator
A (bounded, self-adjoint and stricly positive definite) with respect to a self-adjoint nonnegative
compact operator. The following theorem is a corollary of all the results we have proved in this
sections, and it is exactly what we will use to prove the existence of transmission eigenvalues. The
two hypothesis enumerated in it may look a little bit rare at first sight, but they are used to apply
Bolzano’s Theorem.

Theorem 4.3.17. Let τ ÞÑ Aτ be a continuous mapping from p0,8q to the set of bounded, self-
adjoint, and strictly positive definite operators on the Hilbert space X and let B be a self-adjoint and
nonnegative compact linear operator on X. We assume that there exist two positive constants τ0 ą 0
and τ1 ą 0 such that

1. Aτ0 ´ τ0B is strictly positive on X.

2. Aτ1 ´ τ1B is non-positive on an l-dimensional subspace Wl of X.
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Then each of the equations λjpτq “ τ for j “ 1, . . . , l has at least one solution in rτ0, τ1s where λjpτq

is the jth eigenvalue (counting multiplicity) of Aτ with respect to B, that is, NpAτ ´ λjpτqBq ‰ t0u.

Proof. The idea of the proof is to apply Bolzano’s Theorem on the closed and bounded interval
rτ0, τ1s to the continuous function λjpτq ´ τ . So the proof is divided in two steps: first, we prove the
continuity using Corollary 4.3.16. It will be important to use it instead of Theorem 4.3.13, because
we will use that the subspaces over which we take the minimum do not depend on Aτ . The second
part of the proof is to check that λjpτ0q ´ τ0 ą 0 and that λjpτ1q ´ τ1 ă 0, so that we can apply
Bolzano’s Theorem.

First step: λjpτq is a continuous function of τ .
Let us see the continuity in τ0 P p0,8q. From Lemma 5.1.1 and the fact that infpfq “ ´ supp´fq

we have that | infpfq ´ infpgq| ď infp|f ´ g|q, so

|λjpτq ´ λjpτ0q| “

ˇ

ˇ

ˇ

ˇ

ˇ

min
WPUj

ˆ

max
uPW zt0u

Rτ puq

˙

´ min
WPUj

ˆ

max
uPW zt0u

Rτ0puq

˙

ˇ

ˇ

ˇ

ˇ

ˇ

ď min
WPUj

˜

ˇ

ˇ

ˇ

ˇ

max
uPW zt0u

Rτ puq ´ max
uPW zt0u

Rτ0puq

ˇ

ˇ

ˇ

ˇ

¸

ď min
WPUj

p max
uPW zt0u

|Rτ puq ´ Rτ0puq|q

We have that

|Rτ puq ´ Rτ0puq| “

ˇ

ˇ

ˇ

ˇ

pAτu, uq

pBu, uq
´

pAτ0u, uq

pBu, uq

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

pAτ ´ Aτ0qu, uq

pBu, uq

ˇ

ˇ

ˇ

ˇ

ď
}pAτ ´ Aτ0quq} ¨ }u}

pBu, uq

ď
}Aτ ´ Aτ0} ¨ }u}2

pBu, uq

Given ε ą 0, we want to choose δ ą 0 independent of u in such a way that the last expression is ă ε
for every u P W zt0u, and this for every W P Uj. However, this turns out to be complicated, so we
take a different path. We have that

|λjpτq ´ λjpτ0q| ď min
WPUj

p max
uPW zt0u

|Rτ puq ´ Rτ0puq|q ď max
uPW0zt0u

|Rτ puq ´ Rτ0puq|q

for any subspace W0 P Uj. We are interested in chooosing one in which we can bound
}Aτ´Aτ0}¨}u}2

pBu,uq

independently of u, so it is convenient to choose a subspace in which we can work explicitly.
So let pukqkě1 be the sequence of vectors given by Theorem 4.3.7 associated to the operators Aτ0

and B. LetW0 :“ spantu1, . . . , uju. Then, every u P W0 can be written as u “
řj

k“1 αkuk. Therefore

pBu, uq “

j
ÿ

k“1

|αk|
2.

We are interested in obtaining a lower bound for this which has the form of a constant multiplied by

}u}2 so that, when we take the inverse, we can obtain an upper bound for
}Aτ´Aτ0}¨}u}2

pBu,uq
and the terms
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}u}2 in the numerator and denominator simplify, leaving just a constant multiplied by }Aτ ´ Aτ0}.
We have that

}u}
2

“

›

›

›

›

›

›

j
ÿ

1

αkuk

›

›

›

›

›

›

2

ď

´

ÿ

|αk| ¨ }uk}

¯2

ď Cpjq ¨
ÿ

|αk|
2

¨ }uk}
2

ď Cpjq ¨ sup
k“1,...,j

}uk}
2

¨

j
ÿ

1

|αk|
2

where Cpjq ą 0 is a constant that depends on j.
So

1

pBu, uq
“

1
řj

1 |αk|2
ď

1

Cpjq
¨

1

supk“1,...,j }uk}2

1

}u}2
.

Therefore,
}Aτ ´ Aτ0} ¨ }u}2

pBu, uq
ď

}Aτ ´ Aτ0} ¨ }u}2

supk“1,...,j }uk}2

1

}u}2
“ Cpτ0, jq ¨ }Aτ ´ Aτ0}

for every u P W0zt0u, with Cpτ0, jq ą 0 a constant that depends on τ0 and j (it depends on τ0 because
the sequence pukqkě1 is associated to the operator Aτ0).

So, given ε ą 0, since τ ÞÑ Aτ is continuous, there exists δ ą 0 such that if |τ ´ τ0| ă δ, then
}Aτ ´ Aτ0} ď ε

C
, and therefore |λjpτq ´ λjpτ0q| ď C ¨ ε

C
“ ε.

In brief, λjpτq is a continuous function of τ for every j ě 1.

Second step: to apply Bolzano’s theorem.
Since λjpτq is continuous, we can apply to it the well-known theorems of analysis of one real

variable about continuous functions on compact intervals (more specifically, we are going to use
Bolzano’s theorem).

Hypothesis 1. tells us that Aτ0 ´ τ0B is stricly positive on X. Since B is non-negative, we have
that5 Aτ0 ´ τB is positive for every τ ď τ0, so NpAτ0 ´ τBq “ t0u for every τ ď τ0. Therefore,
in order to have τ “ λjpτ0q (that is, in order for τ to be an eigenvalue of Aτ0 in the sense that
NpAτ0 ´ τBq ‰ t0u) a necessary condition is that

λjpτ0q ą τ0. (4.34)

Hypotesis 2. gives us that Aτ1 ´ τ1B is non-positive in a l-dimensional subspace of X, namely
Wl.

That is,

ppAτ1 ´ τ1Bqu, uq ď 0 @u P Wl ðñ pAτ1u, uq ď τ1pBu, uq @u P Wl. (4.35)

Since Aτ1 is strictly positive, pAτ1u, uq ě C}u}2 for every u P X, in particular for every u P Wl.
So τ1pBu, uq ą 0 for every u P Wl, which implies that

• pAτ1u,uq

pBu,uq
ď τ1 para todo u P Wl.

• Bu ‰ 0 for every u P Wl, that is,

Wl X NpBq “ t0u.

5In detail, the explanation is the following:

C}u}2 ď pAτ0u ´ τ0Bu, uq “ pAτ0u, uq ´ τ0pBu, uq ď pAτ0u, uq ´ τpBu, uq

for every τ ď τ0, since Aτ0 ´ τ0B is stricly positive and B is non-negative.
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From the second item we deduce that Wl P Ul and, in particular, any j-dimensional subspace of Wl

(with 1 ď j ď l) is in Uj.

The min-max principle (equation (4.30)) gave us that

λjpτq “ min
WPUj

ˆ

max
uPW zt0u

pAτu, uq

pBu, uq

˙

.

So given Wj P Uj a j-dimensional subspace of Wl and using (4.35), we have that

λjpτ1q “ min
WPUj

ˆ

max
uPW zt0u

pAτ1u, uq

pBu, uq

˙

ď max
uPWjzt0u

pAτ1u, uq

pBu, uq
ď max

uPWjzt0u
τ1 “ τ1.

In brief, we have seen that
#

λjpτ0q ą τ0
λjpτ1q ď τ1

for every 1 ď j ď l. So, if we define the continuous function fpτq :“ λjpτq ´ τ , we have that
fpτ0q ą 0 y fpτ1q ď 0. So, by Bolzano’s theorem, there exists τ P rτ0, τ1s (or rτ1, τ0s if τ1 ă τ0) such
that fpτq “ 0, that is, such that λjpτq “ τ .

We are now ready to prove the main theorem of this chapter:

Theorem 4.3.18. If n P L8pDq with 1 ă nmin ď npxq ď nmax ă 8, the there exists an infinit set of
transmission eigenvalues with `8 as its only accumulation point.

Proof. We have that

0 ă
1

nmax ´ 1
ď

1

npxq ´ 1
ď

1

nmin ´ 1
ă 8.

By Proposition 4.3.3, Aτ is self-adjoint and stricly positive (as well as bounded), and B is self-adjoint,
non-negative and compact. Therefore, they satisfy the first necessary conditions to apply Theorem
4.3.17.

By Lemma 4.3.5, Aτ ´ τB is strictly positive on X “ H2
0 pDq for 0 ă τ ă

λ1pDq

nmax
. So hypothesis 1.

of Theorem 4.3.17 is satisfied if we take τ0 ă
λ1pDq

nmax
.

So the only thing left to check is hypothesis 2. of Theorem 4.3.17.

In order to do so, let k1,nmin
be the smallest transmission eigenvalue for the ball B of radius R “ 1

and let npxq :“ nmin (constant). Notice that this transmission eigenvalue exists because of Theorem
4.1.1, and there is a minimum eigenvalue because of Theorem 4.2.3.

Then kε,nmin
:“

k1,nmin

ε
is the least transmission eigenvalue corresponding to the ball of radius ε

with refractive index nmin. This is due to the following scaling argument:

ż

B1

1

nmin ´ 1
p∆u ` k2uqp∆v ` k2nminvq dx “ 0 @v P H2

0 pDq ðñ

ż

Bε

1

nmin ´ 1

˜

∆u

ˆ

y

ε

˙

` k2u

ˆ

y

ε

˙

¸˜

∆v

ˆ

y

ε

˙

` k2nminv

ˆ

y

ε

˙

¸

¨
1

ε3
dy “ 0 @v P H2

0 pDq ðñ

ż

Bε

1

nmin ´ 1

˜

1

ε2
∆u

ˆ

y

ε

˙

`
k2

ε2
u

ˆ

y

ε

˙

¸

¨

˜

1

ε2
∆v

ˆ

y

ε

˙

`
k2

ε2
v

ˆ

y

ε

˙

¸

dy “ 0 @v P H2
0 pDq
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and since the laplacian of wpxq “ upx
ε
q is ∆wpxq “ 1

ε2
∆upx

ε
q, we have that w is a non-trivial6 solution

of the interior transmission problem on the ball Bε with npxq “ nmin, so
k
ε
is a transmission eigenvalue

for this medium.
Therefore,

k is trans. eig. of the media B1, nmin ðñ
k

ε
is trans. eig. of the media Bε, nmin.

Therefore kε,nmin
:“

k1,nmin

ε
is the smallest transmission eigenvalue corresponding to the ball of

radius ε and index of refraction nmin.
Given ε ą 0 (sufficiently small), let m :“ mpεq ě 1 be the maximum number of disjoint balls

B1
ε , . . . , B

m
ε of radius ε that are contained in D. That is,

Bj
ε Ă D @j “ 1, . . . ,m and Bj

ε X Bi
ε “ ∅ if j ‰ i.

Then kε,nmin
:“

k1,nmin

ε
is the smallest transmission eigenvalue for each one of these balls with index

of refraction nmin and let uB
j
ε,nmin P H2

0 pBj
εq pj “ 1, . . . ,mq the corresponding eigenfunctions.

The extension of ũj from uB
j
ε,nmin to all D by zero is on H2

0 pDq since uB
j
ε,nmin P H2

0 pBj
εq (see

Theorem 5.1.21 of the appendix).
Besides, the vectors tũ1, . . . , ũmu are orthogonal in H2

0 pDq because they have disjoint supports.
In particular, they are linearly independent.

By (4.17), as they are a solution of the interior transmission problem for n ” nmin, they satisfy

0 “

ż

D

1

nmin ´ 1
p∆ũj ` k2ε,nmin

ũjqp∆ũj ` k2ε,nmin
¨ nminũjq dx

“

ż

D

1

nmin ´ 1
|∆ũj ` k2ε,nmin

ũj|2 dx ` k2ε,nmin

ż

D

|ũj|2 dx ´ k2ε,nmin

ż

D

|∇ũj| dx (4.36)

for each j “ 1, . . . ,m, where the second equality comes from the calculation made before to see that
(4.17) is equivalent to pAτu ´ τBu, vq “ 0 for all v P H2

0 pDq.
Let U :“ spantũ1, . . . , ũmu a m-dimensional subspace of H2

0 pDq.
Since every ũj, j “ 1, . . . ,m satisfies (4.36) and they have disjoint supports, for τ1 :“ k2ε,nmin

and
for every ũ P U it is true that

pAτ1ũ ´ τ1Bũ, ũqH2pDq “

ż

D

1

n ´ 1
|∆ũ ` τ1ũ|

2 dx ` τ 21

ż

D

|ũ|
2 dx ´ τ1

ż

D

|∇ũ|
2 dx

ď

ż

D

1

nmin ´ 1
|∆ũ ` τ1ũ|

2 dx ` τ 21

ż

D

|ũ|
2 dx ´ τ1

ż

D

|∇ũ|
2 dx “ 0.

Hence, hypothesis 2 of Theorem 4.3.17 is also satisfied.
Therefore, we can apply it to conclude that there are mpεq transmission eigenvalues (counting

multiplicity) in rτ0, kε,nmin
s. Notice thatmpεq and kε,nmin

go to `8 when ε Ñ 0. Since the multiplicity
of each eigenvalue is finite (because of Theorem 4.2.3) taking ε Ñ 0 we see that there exists an infinte
set (countable, because of Theorem 4.2.3) of transmission eigenvalues that accumulates at `8 (that
is, they can be ordered in an increasing sequence that goes to infinity).

In a similar way (see Theorem 4.12.2 of [7], pages 135-136) it is possible to prove the following
theorem:

Theorem 4.3.19. Assume that 0 ă nmin ď nmax ă 1. Then there exist an infinite number of
transmission eigenvalues with 8 as the only accumulation point.

6Non-trivial because u ‰ 0.
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Chapter 5

Appendix

5.1 Results from Analysis

5.1.1 Technical lemma: supremum of the difference of two functions

Lemma 5.1.1. Let f, g : A Ñ R be two real-valued functions. Then

sup
xPA

pfpxq ´ gpxqq ě sup
xPA

fpxq ´ sup
xPA

gpxq.

Proof. First proof: we begin by proving that

sup
xPA

pfpxq ` gpxqq ď sup
xPA

fpxq ` sup
xPA

gpxq. (5.1)

This is a particular case of the fact that the supremum over a set is greater or equal to the supremum
over a subset. The left-hand side of (5.1) is

sup
x,yPA;x“y

pfpxq ` gpyqq (5.2)

whilst the right-hand side of (5.1) is

sup
x,yPA

pfpxq ` gpyqq. (5.3)

The set of the x, y considered in (5.2) is a subset of the x and y considered in (5.3), so (5.1) follows.
Using (5.1), we have that supppf ´ gq ` gq ď suppf ´ gq ` suppgq. That is,

suppf ´ gq ě suppfq ´ suppgq.

Second proof: we want to prove

suppf ´ gq ě suppfq ´ suppgq.

To express everything in terms of addition, we can write the minus sign inside the supremum by
changing it to an infimum, i.e., using that

´ suppgq “ ` infp´gq.

Let us define hpxq “ ´gpxq. The problem then reduces to prove that

suppf ` hq ě suppfq ` infphq.

This is simple, because for every x we have that hpxq ě infphq, so

suppf ` hq ě suppf ` infphqq “ suppfq ` infphq.

97
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5.1.2 Basic results from Measure Theory

Differentiation under the integral sign

Theorem 5.1.2. Suppose that f : X ˆ ra, bs Ñ C, with ´8 ă a ă b ă 8 and that fp¨, tq : X Ñ C is
integrable for every t P ra, bs. Let F ptq “

ş

X
fpx, yq dµpxq.

1. Suppose that there exists g P L1pµq such that |fpx, tq| ď gpxq for every x, t. If limtÑt0 fpx, yq “

fpx, t0q for every x, then limtÑt0 F ptq “ F pt0q; in particular, if fpx, ¨q is continuous for every
x, then F is continuous.

2. Suppose that Bf
Bt

exists and there is g P L1pµq such that
ˇ

ˇ

ˇ

Bf
Bt

px, tq
ˇ

ˇ

ˇ
ď gpxq for every x, t. Then F

is differentiable and F 1pxq “
ş

X
Bf
Bt

px, tq dµpxq.

Proof. See Theorem 2.27 of [18], page 56.

Approximations of the identity

Theorem 5.1.3. Suppose |ϕpxq| ď Cp1`|x|q´n´ε for some C, ε ą 0 and
ş

ϕpxq dx “ a. If f P LppRnq

(1 ď p ď 8) and ϕtpxq :“ t´nϕpt´1xq, then f ˚ ϕtpxq Ñ afpxq as t Ñ 0` for every x in the Lebesgue
set of f (in particular for almost every x, and for every x at which f is continuous).

Proof. See Theorem 8.15 of [18], pages 243-245.

5.1.3 Integration by parts

In this section, we assume that D is a bounded, open subset of Rn and BD is C1.

Theorem 5.1.4 (Gauss-Green Theorem). 1. Suppose u P C1pDq. Then

ż

D

Bxi
u dx “

ż

BD

uνi ds pi “ 1, . . . , nq.

2. We have
ż

D

divu dx “

ż

BD

u ¨ ν ds

for each vector field u P C1pD;Rnq.

Proof. See Theorem 1 of Section C.2 of [16], pages 711-712.

The second assertion is called the Divergence Theorem and follows from the first one applied to
each component of u “ pu1, . . . , unq.

Theorem 5.1.5 (Integration by parts formula). Let u, v P C1pDq. Then

ż

D

Bxi
uv dx “ ´

ż

D

uBxi
v dx `

ż

BD

uvνi ds pi “ 1, . . . , nq.

Proof. It follows from applying the first item of the previous theorem to uv.
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Green’s Formulas

To begin with, we recall Green’s formulas, which will be used repeatedly throughout the essay. First,
we have the classical result for C2 functions up to the boundary (see [13], page 19).

Lemma 5.1.6 (Green’s Formulas). Let D be a bounded domain with boudnary of class C1, and let
ν be its unitary exterior normal. Let v P C2pDq.

1. If u P C1pDq, then
ż

D

pu∆v ` ∇u ¨ ∇vq dx “

ż

BD

u ¨
Bv

Bν
ds. (5.4)

2. If we make the stronger assumption that u P C2pDq, then

ż

D

pu∆v ´ v∆uq dx “

ż

BD

ˆ

u
Bv

Bν
´ v

Bu

Bν

˙

ds. (5.5)

Proof. To prove (5.4), use the theorem of integration by parts replacing Bxi
by v. To obtain (5.5),

apply (5.4) to u and v, then apply it again interchanging them, and the substract them.

This theorem can be generalized to the setting of Sobolev spaces.

Lemma 5.1.7. Let D be a bounded domain with boundary of class C1, and let ν be its unitary
exterior normal. Let v P H2pDq.

1. If u P H1pDq, then
ż

D

pu∆v ` ∇u ¨ ∇vq dx “

ż

BD

u
Bv

Bν
ds. (5.6)

2. If u P H2pDq, then
ż

D

pu∆v ´ v∆uq dx “

ż

BD

ˆ

u
Bv

Bν
´ v

Bu

Bv

˙

ds. (5.7)

Proof. In this TFM we will only use the second one, so we only prove this one. We will use that
C2pDq is dense in H2pDq and apply the classical Lemma 5.1.6.

Since C2pDq is dense in H2pDq, given u, v P H2pDq, we can approximate them by a sequence of

C2pDq functions. Let tunun, tvnun Ă C2pDq be two sequences such that un
H2pDq
ÝÝÝÝÑ u and vn

H2pDq
ÝÝÝÝÑ v.

By (5.5), we have

ż

D

pun∆vn ´ vn∆unq dx “

ż

BD

ˆ

un
Bvn
Bν

´ vn
Bun
Bν

˙

ds

for every n P N.
We would like to see that the left-hand side tends to

ş

D
u∆v ´ v∆uq dx when n Ñ 8 and that

the right-hand side tends to
ş

BD

´

u Bv
Bν

´ v Bu
Bν

¯

ds, obtaining thus (5.7).

Let us check this. We have that

pun∆vn ´ vn∆unq ´ pu∆v ´ v∆uq “ pun∆vn ´ u∆vq ´ pvn∆un ´ v∆uq

“ run∆v ´ u∆vn ` u∆vn ´ u∆vs ` rvn∆un ´ v∆un ` v∆un ´ v∆us

“ pun ´ uq∆v ` up∆vn ´ ∆vq ` ∆unpvn ´ vq ` vp∆un ´ ∆uq.
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Therefore
ˇ

ˇ

ˇ

ˇ

ż

D

rpun∆vn ´ vn∆unq ´ pu∆v ´ v∆uqs dx

ˇ

ˇ

ˇ

ˇ

ď

ż

D

“

|un ´ u||∆v| ` |u||∆vn ´ ∆v| ` |∆un||vn ´ v| ` |v||∆un ´ ∆u|
‰

dx

ď

ˆ
ż

D

|un ´ u|
2

˙ˆ
ż

|∆vn|
2

˙

`

ˆ
ż

D

|∆vn ´ ∆v|
2

˙ˆ
ż

|u|
2

˙

`

ˆ
ż

D

|vn ´ v|
2

˙ˆ
ż

|∆un|
2

˙

`

ˆ
ż

D

|∆un ´ ∆u|
2

˙ˆ
ż

|v|
2

˙

“ }un ´ u}
2
L2pDq}∆vn}

2
L2pDq ` }∆vn ´ ∆v}

2
L2pDq}u}

2
L2pDq

` }vn ´ v}
2
L2pDq}∆un}

2
L2pDq ` }∆un ´ ∆u}

2
L2pDq}v}

2
L2pDq

Since un
H2pDq
ÝÝÝÝÑ u and vn

H2pDq
ÝÝÝÝÑ, we have that un

L2pDq
ÝÝÝÑ u, vn

L2pDq
ÝÝÝÑ v, ∆un

L2pDq
ÝÝÝÑ ∆u and

∆vn
L2pDq
ÝÝÝÑ ∆v. So the above expression tends to 0 as n Ñ 8. Therefore,

lim
nÑ8

ż

D

run∆vn ´ vn∆uns dx “

ż

D

ru∆v ´ v∆us dx.

It remains to see that

lim
nÑ8

ż

BD

ˆ

un
Bvn
Bν

´ vn
Bun
Bν

˙

ds “

ż

BD

ˆ

u
Bv

Bν
´ v

Bu

Bν

˙

ds. (5.8)

We have
ˆ

un
Bvn
Bν

´ vn
Bun
Bν

˙

´

ˆ

u
Bv

Bν
´ v

Bu

Bν

˙

“

ˆ

un
Bvn
Bν

´ u
Bv

Bν

˙

´

ˆ

vn
Bun
Bν

´ v
Bu

Bν

˙

“

ˆ

un
Bvn
Bν

´ un
Bv

Bν
` un

Bv

Bν
´ u

Bv

Bν

˙

´

ˆ

vn
Bun
Bν

´ vn
Bu

Bν
` vn

Bu

Bν
´ v

Bu

Bν

˙

So, reasoning as before, we have
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ż

BD

«

ˆ

un
Bvn
Bν

´ vn
Bun
Bν

˙

´

ˆ

u
Bv

Bν
´ v

Bu

Bν

˙

ff

ds

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ˆ
ż

BD

|un|
2

˙1{2
˜

ż

BD

ˇ

ˇ

ˇ

ˇ

Bvn
Bν

´
Bv

Bν

ˇ

ˇ

ˇ

ˇ

2
¸1{2

`

˜

ż

BD

ˇ

ˇ

ˇ

ˇ

Bv

Bν

ˇ

ˇ

ˇ

ˇ

2
¸1{2

ˆ
ż

BD

|un ´ u|
2

˙1{2

`

ˆ
ż

BD

|vn|
2

˙1{2
˜

ż

BD

ˇ

ˇ

ˇ

ˇ

Bun
Bν

´
Bu

Bν

ˇ

ˇ

ˇ

ˇ

2
¸1{2

`

˜

ż

BD

ˇ

ˇ

ˇ

ˇ

Bu

Bν

ˇ

ˇ

ˇ

ˇ

2
¸1{2

ˆ
ż

BD

|vn ´ v|
2

˙1{2

Because the trace operator is continuous, the fact that un
H2pDq
ÝÝÝÝÑ u and vn

H2pDq
ÝÝÝÝÑ v imply that

}un ´ u}L2pBDq Ñ 0, }vn ´ v}L2pBDq Ñ 0, }Bun

Bν
´ Bu

Bν
}L2pBDq Ñ 0 and }Bvn

Bν
´ Bv

Bν
}L2pBDq Ñ 0. So the above

expression tends to 0 when n Ñ 8, obtaining thus (5.8).
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5.1.4 Convergence of the derivatives

Proposition 5.1.8. Let pfnq be a sequence of functions in H1pRnq, and let f P H1pRnq and g P

L2pRnq. If fn á f in L2pRnq and f 1
n á g in L2pRnq, then g “ f 1.

Proof. Let η P C8
c pRnq. Then

ż

ηpg ´ f 1
q “

ż

ηg `

ż

η1f Int. by Parts

“ lim
n

ż

ηf 1
n ` lim

n

ż

η1fn f 1
n á g, fn á f in L2

“ lim
n

´

ż

η1fn ` lim
n

ż

η1fn Int. by Parts

“ lim
n

ż

η1
pfn ´ fnq “ lim

n
0 “ 0.

Therefore, by Theorem 5.1.3, taking η so that the product is a convolution with an approximation
of the identity we obtain that g ´ f 1 “ 0 almost everywhere. So g “ f 1 in L2pRnq.

5.1.5 Poincaré’s Inequality

Theorem 5.1.9. Assume D is a bounded open subset of Rn. Suppose u P W 1,p
0 pDq for some 1 ď

p ă n. Then we have the estimate

}u}LqpDq ď C}∇u}LppDq

for each q P r1, pn
n´p

s, the constant C depending only on p, q, n and D. Notice that }∇u}LppDq means
›

›|∇u|
›

›

LppDq
where

|∇u| “

¨

˝

n
ÿ

j“1

|Bxj
u|

2

˛

‚

1{2

.

In particular, for all 1 ď p ď 8,

}u}LppDq ď C}∇u}LppDq. (5.9)

In fact, for p “ 2, the greatest possible value of the constant 1
C2 is

inf
uPH1

0 pDq:}u}L2pDq
“1

}∇u}2L2pDq

}u}2L2pDq

“ inf
uPH1

0 pDq:}u}L2pDq
“1

}∇u}
2
L2pDq “ λ1pDq,

where λ1pDq denotes the smallest Dirichlet eigenvalue of the negative Laplacian. That is, the smallest
constant C for which (5.9) is true for p “ 2 is C “ 1?

λ1pDq

Proof. For a proof of (5.9), see Theorem 3 of Section 5.6 of [16], page 279. The value of the sharpest
constant is a consequence of Theorem 2 of Section 6.5 of [16], page 356, using that the bilinear form
associated to the negative Laplacian is Bru, us “ }∇u}2L2pDq

for u P H1
0 pDq.
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5.1.6 Equivalent norms on H2
0pDq

Proposition 5.1.10. Let D be an open bounded set of Rn. Then, the H2pDq-norm of a function
u P H2

0 pDq and the L2pDq-norm of its Laplacian are equivalent.

Proof. Note that u P H2
0 pDq implies that ∇u P H1

0 pDq, so Poincaré inequality (Theorem 5.1.9) gives
us :

}u}
2
H2

0 pDq
ď C

›

›D2u
›

›

2

L2pDq

Besides, by definition of the H2 norm, we trivially have

}D2u}
2
L2pDq ď }u}H2

0 pDq.

So, if we define the norm

}u}
2
˚ :“

›

›D2u
›

›

2

L2pDq

on H2
0 pDq, it is equivalent to the to the standard H2

0 pDq norm. We now claim that

}∆u}L2pDq “
›

›D2u
›

›

L2pDq
“ }u}˚

for any u P H2
0 pDq. If we check this, we end the proof of the proposition. To see this, first consider

u P C8
c pDq. Then integration by parts and commutativity of partial derivatives for smooth functions

implies
ż

D

uxixi
uxjxj

dx “ ´

ż

D

uxi
uxjxjxi

dx “ ´

ż

D

uxi
uxjxixj

dx “

ż

D

uxixj
uxixj

dx

for every 1 ď i, j ď n. Since

|∆u|
2

“

n
ÿ

i“1

Bxixi
u ` 2

ÿ

1ďiăjďn

Bxixj
u

and
|D2u|

2
“

ÿ

1ďi,jďn

|Bxixj
u|

2,

we have that
}∆u}L2pDq “

›

›D2u
›

›

L2pDq

for all u P C8
c pDq. Since C8

c pDq is dense in H2
0 pDq, passing to limits we find that

}∆u}L2pDq “
›

›D2u
›

›

L2pDq
for all u P H2

0 pDq

5.1.7 Rellich-Kondrachov Compactness Theorem

Definition 5.1.11. Let X and Y be two Banach spaces, X Ă Y . We say that X is compactly
embedded in Y , written

X ĂĂ Y,

provided that

1. }u}Y ď C}u}X (u P X) for some constant C.

2. Each bounded sequence in X is precompact in Y .

Theorem 5.1.12 (Rellich-Kondrachov Compactness Theorem). Assume U is a bounded open subset
of Rn and BU is C1. Suppose 1 ď p ă n. Then

W 1,p
pUq ĂĂ Lq

pUq

for each 1 ď q ă
pn
n´p

.

Proof. See Theorem 1 of Section 5.7 of [16], pages 286-289.
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5.1.8 Trace Theorems

For a definition of Sobolev Spaces of arbitrary order, see [24], page 76. We use them in the following
result.

Theorem 5.1.13. Define the trace operator γ : C8
c pDq Ñ C8

c pBDq by

γu “ u|
BD .

If D is a Ck´1,1 domain, and if 1
2

ă s ď k, then γ has a unique extension to a bounded linear operator

γ : Hs
pDq Ñ Hs´ 1

2 pBDq,

and this extension has a continuous right inverse.

Proof. See Theorem 3.37 of [24], page 102.

5.1.9 Spectral Theory

Relation between the spectrum and the eigenvalues

We state here the fact that, when the operator is compact, its spectrum is composed only by eigen-
values.

In what follows, given a Hilbert space X over a field F (with F “ R or C) and a linear operator
T : X Ñ X, let ρpT q denote its spectrum. We collect here the ones needed in the essay.

The first one says that nonzero eigenvalues of compact operators have finite multiplicity.

Theorem 5.1.14. Suppose T is a compact operator on a Hilbert space and α P F with α ‰ 0. Then
NpT ´ αIq is finite-dimensional.

Proof. See Theorem 10.82 of [1], page 318.

Theorem 5.1.15. Suppose T is a compact operator on a Hilbert space and α P F with α ‰ 0. Then
the following are equivalent:

1. α P ρpT q.

2. α is an eigenvalue of T .

3. T ´ αI is not surjective.

Proof. See Theorem 10.85 of [1], page 319.

The next theorem states that the eigenvalues of an operator form at most a discrete set that
accumulates only at 0.

Theorem 5.1.16. Suppose T is a compact operator on a Hilbert space X. Then

tα P ρpT q : |α| ě δu

is a finite set for every δ ą 0.

Proof. See Theorem 10.93 of [1], page 322.
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Spectral decomposition

Theorem 5.1.17. Let X be a Hilbert Space and let A : X Ñ X be a compact self-adjoint operator,
A ‰ 0. Then, every eigenvalue of A is real. A has at least one eigenvalue different from 0 and at
most a countable set of eigenvalues that accumulate only at 0. All eigenspaces NpλI´Aq for nonzero
eigenvalues λ have finite dimension and eigenspaces to different eigenvalues are orthogonal. Assume
the sequence pλnq of the nonzero eigenvalues to be ordered such that

|λ1| ě |λ2| ě . . .

and denote by Pn : X Ñ NpλnI ´ Aq the orthogonal projection operator onto the eigenspace for the
eigenvalue λn. Then

A “

8
ÿ

n“1

λnPn (5.10)

in the sense of norm convergence. Let Q : X Ñ NpAq denote the orthogonal projection operator onto
the nullspace NpAq. Then

φ “

8
ÿ

n“1

Pnφ ` Qφ (5.11)

for all φ P X. (When there are only finitely many eigenvalues, the series (5.10) and (5.11) degenerate
into finite sums).

Proof. See Theorem 15.12 of [22], pages 305-306.

Integral operators with weakly singular kernels

Definition 5.1.18. Let G Ă Rm be a nonempty compact Lebesgue measurable set. We say that a
function K : GˆGztpx, xq : x P Gu Ñ R is a weakly singular kernel if K is defined and continuous
for all x, y P G Ă Rm, x ‰ y, and there exist positive constants M and α P p0,ms such that

|Kpx, yq| ď M |x ´ y|
α´m, x, y P G, x ‰ y.

Theorem 5.1.19. Integral operators

pAφqpxq :“

ż

G

Kpx, yqφpyq dy

with weakly singular kernel K are compact linear operators on CpGq, where CpGq denotes the Banach
space of continuous functions with the maximum norm }u} “ maxxPG |upxq| for u P CpGq.

Proof. See Theorem 2.29 of [22], page 29.

Properties of the adjoint operator

Recall that for every bounded linear operator A : X Ñ Y between Hilbert Spaces X and Y there
exists a unique bounded linear operator A˚ : Y Ñ X called the adjoint operator of A, given by the
relation pAφ,ψq “ pφ,A˚ψq for every φ P X and ψ P Y . In the TFM, we make use of the following
basic connection between the kernels and ranges of A and A˚.

Theorem 5.1.20. Let A : X Ñ Y be a bounded linear operator between Hilbert Spaces X and Y .
Then

ApXq
K

“ NpA˚
q y NpA˚

q
K

“ ApXq.
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Proof. g P ApXqK means pAφ, gq “ 0 for every φ P X. This is equivalent to pφ,A˚gq “ 0 para todo
φ P X, which is equivalent to A˚g “ 0, that is, g P NpA˚q. So

ApXq
K

“ NpA˚
q.

Let us call U :“ ApXq. We have U Ă pUKqK. Denote by P : Y Ñ U the orthogonal projection
operator. Then, for φ P pUKqK arbitrary, we have the orthogonality relation Pφ ´ φ K U . We also
have Pφ ´ φ K UK, because we now that U Ă pUKqK. Therefore, it follows that φ “ Pφ P U , so
U “ pUKqK; that is,

ApXq “ NpA˚
q

K.

Theorem 5.1.21. Let Ω Ă R3 be a bounded Lipschitz domain. Then

H2
0 pΩq “ tu|Ω : u P H2

pR3
q, u “ 0 in R3

zΩu.

Proof. See Lemma 7.4 of [19], page 245.

5.1.10 More facts from Functional Analysis

Theorem 5.1.22. Let E and F be two Banach spaces and let T be a continuous linear operator from
E into F that is bijective. Then T´1 is also continuous from F to E.

Proof. See Corollary 2.7 of [4], page 35.

Theorem 5.1.23. Assume that E is a reflexive Banach space and let pxnq be a bounded sequence in
E. Then there exists a subsequence pxnk

q that converges in the weak topology.

Proof. See Theorem 3.18 of [4], page 69.
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5.2 Normal derivative and radial derivative

Suppose we have two vectors v⃗ and n⃗, forming an angle α. Let a be the length (i.e. the module) of
the projection of the vector v⃗ over the vector n⃗.

We then have that cosα “ a
}v⃗}

. So a “ cosα ¨ }v⃗}.

Therefore v⃗ ¨ n⃗ “ }v⃗} ¨ }n⃗} ¨ cosα “ a ¨ }n⃗}. So

a “
v⃗ ¨ n⃗

}n⃗}
.

If n⃗ is unitary, then the previous formula reduces to

a “ v⃗ ¨ n⃗.

That is, the scalar product v⃗ ¨ n⃗ gives the lenth of the projection of the vector v⃗ over the unitary
vector n⃗

Hence, if we define
Bu

Bν
:“ ∇u ¨ ν,

what we obtain is the module of the projection of the vector ∇u over the unit exterior normal vector
ν. That is, it gives how much the function u grows in the direction of ν. That is why Bu

Bν
is called

the normal derivative.
On the other hand, we have the radial derivative

Bu

Br
pxq :“ ∇upxq ¨

x

|x|

which can be understood as the normal derivative when the surface is a sphere Sp0, Rq.
In this way, Bu

Br
gives us the module of the projection fo u over x

|x|
, that is, over the radial unit

exterior vector. I.e., it gives how much u grows in the radial direction.
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5.3 Spherical Harmonics

Spherical harmonics can appear when we separate variables in polar coordinates, taking x “ rx̂ with
r “ |x| ě 0 and x̂ P Sn´1.

For a detailed treatment of the subject, we refer to Chapter 2 of [17], pages 98-110, or Chapter
5 of [2], pages 73-109. See also Section 2.3 of [21], pages 36-48, for an explicit approach on S2 using
Legendre polynomials.

We present here just the basic results that we need for our purposes.

Definition 5.3.1. Let Pk be the space of homogeneous polynomials of degree k on Rn and let

Hk “ tP P Pk : ∆P “ 0u

be the space of homogeneous harmonic polynomials of degree k and

Hk “ tP |Sn´1 : P P Hku

be the space of their restriction to the unit sphere.

The elements of Hk are called spherical harmonics of degree k.

Remark 5.3.2. The restriction map from Hk to Hk is an isomorphism, its inverse map being
Y P Hk ÞÑ P P Hk, P pxq “ |x|kY p|x|´1xq.

Proposition 5.3.3. Pk “ Hk ‘ r2Pk´2, where r
2Pk´2 “ tr2P : P P Pk´2u.

Proof. See Proposition 2.49 of [17], page 98, or Proposition 5.5 of [2], page 76.

Corollary 5.3.4. Pk “ Hk ‘ r2Hk´2 ‘ r4 ‘ Hk´4 ‘ . . .

Corollary 5.3.5. The restriction to the unit sphere of any element of Pk is a sum of spherical
harmonics of degree at most k.

Theorem 5.3.6. L2pSn´1q “ ‘8
0 Hk, the expression of the right being an orthogonal direct sum with

respect to the scalar product on L2ppSn´1q.

Proof. See Theorem 2.53 of [17], page 99, or Theorem 5.12 of [2], page 81.

Explicit bases of Hm and Hm in R3

For explicit bases of Hm and Hm in the n-dimensional case we refer to pages 92-94 of [2].

For the 3-dimensional case, we have an explicit basis, which we can define as

Y m
n pθ, φq :“

d

p2n ` 1qpn ´ |m|q!

4πpn ` |m|q!
P |m|
n pcospθqqeimφ

with ´n ď m ď n and n “ 0, 1, . . . and where P
|m|
n are the Legendre Polynomials (see Section 2.3 of

[13] for a description of them). They form an orthonormal system in L2pS2q. We will identify Y m
n pxq

with Y m
n pθ, φq for x “ psin θ cosφ, sin θ sinφ, cos θqT P S2.

The result that we will use is the following:
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Theorem 5.3.7. The functions
␣

Y m
n : ´n ď m ď n, n P N Y t0u

(

are complete in L2
`

S2
˘

; that is,
every function f P L2

`

S2
˘

can be expanded into a generalized Fourier series in the form

f “

8
ÿ

n“0

n
ÿ

m“´n

pf, Y m
n qL2pS2q Y

m
n

The series can also be written as

fpxq “
1

4π

8
ÿ

n“0

p2n ` 1q

ż

S2
fpyqPnpy ¨ xqdspyq, x P S2

The convergence of these series is in the L2-sense. Furthermore, on bounded sets in C1
`

S2
˘

the
series converge even uniformly; that is, for every M ą 0 and ε ą 0 there exists N0 P N, depending
only on M and ε, such that

›

›

›

›

›

›

N
ÿ

n“0

n
ÿ

m“´n

pf, Y m
n qL2pS2q Y

m
n ´ f

›

›

›

›

›

›

8

“ max
x̂PS2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

N
ÿ

n“0

n
ÿ

m“´n

pf, Y m
n qL2pS2q Y

m
n px̂q ´ fpx̂q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď ε

for all N ě N0 and all f P C1
`

S2
˘

with }f}1,8 ď M , and, analogously for (2.19b).
Here, the space C1

`

S2
˘

consists of those functions f such that (with respect to spherical coordi-
nates θ and φq the functions f, Bf{Bθ, and 1

sin θ
Bf{Bφ are continuous and periodic with respect to φ

with the norm defined by }f}1,8 “ max
!

}f}8, }Bf{Bθ}8,
›

›

1
sin θ

Bf{Bφ
›

›

8

)

Proof. See Theorem 2.19 of [21], pages 44-47.

Eigenfunctions of the Laplace-Beltrami operator

One important property about spherical harmonics is that they are eigenfunctions of the Laplace-
Beltrami operator:

Theorem 5.3.8. If Y P Hk, then ∆Sn´1Y “ ´kpk`n´ 2qY . In particular, for dimension 3 and the
normalized spherical harmonics defined above, we have

∆S2Y
m
n ` npn ` 1qY m

n “ 0

for all |m| ď n (n now denotes the degree of the spherical harmonic; above, the degree is k, and the
dimension is n).

Proof. See Lemma 2.62 [17], pages 104-105, or page 41 of [21].
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5.4 Bessel functions

The spherical Bessel differential equation is the following

z2v̂2
pzq ` 2zv̂1

pzq `
“

z2 ´ npn ` 1q
‰

v̂pzq “ 0. (5.12)

We consider this linear differential equation of second order for arbitrary z P C. For z ‰ 0 the
differential equation is equivalent to

v̂2
pzq `

2

z
v̂1

pzq `

ˆ

1 ´
npn ` 1q

z2

˙

v̂pzq “ 0 in Czt0u.

The coefficients of this differential equation are holomorphic in Czt0u and have poles of first and
second order at 0 . As in the case of real z one can show that in every simply connected domain
Ω Ď Czt0u there exist at most two linearly independent solutions of (5.12). See Theorem 2.25 of [21]
for a proof.

It can be deduced that a pair of linearly independent solutions is the following:

Definition 5.4.1. For all z P C the spherical Bessel functions of first and second kind and order
n P N0 are defined by

jnpzq “ p2zq
n

8
ÿ

ℓ“0

p´1qℓ

ℓ!

pn ` ℓq!

p2n ` 2ℓ ` 1q!
z2ℓ, z P C,

ynpzq “
2p´1qn`1

p2zqn`1

8
ÿ

ℓ“0

p´1qℓ

ℓ!

pℓ ´ nq!

p2ℓ ´ 2nq!
z2ℓ, z P C,

where - in the definition of yn-a quantity p´kq!
p´2kq!

for positive integers k is defined by

p´kq!

p´2kq!
“ p´1q

k p2kq!

k!
, k P N

The functions
hp1q
n “ jn ` iyn,

hp2q
n “ jn ´ iyn,

are called Hankel functions of first and second kind and order n P N0.

For many applications the Wronskian of these functions is important.

Theorem 5.4.2. For all n P N0 and z P Czt0u we have

W pjn, ynq pzq :“ jnpzqy1
npzq ´ j1

npzqynpzq “
1

z2
.

Proof. See Theorem 2.27 of [21].

Remark 5.4.3. From this theorem the linear independence of tjn, ynu follows immediately and thus

also the linear independence of
!

jn, h
p1q
n

)

. Therefore, they span the solution space of the differential

equation (2.27).

In the TFM we need the asymptotic behavior of h
p1q
n .
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Theorem 5.4.4. For every n P N and z P C we have

hp1q
n pzq “

exp
”

i
`

z ´ π
2
pn ` 1q

˘

ı

z

«

1 ` O
ˆ

1

|z|

˙

ff

for |z| Ñ 8

d

dz
hp1q
n pzq “

exp
”

i
`

z ´ π
2
n
˘

ı

z

«

1 ` O
ˆ

1

|z|

˙

ff

for |z| Ñ 8

uniformly with respect to z{|z|. The corresponding formulas for jn and yn are derived by replacing
exprip. . .qs by cosp. . .q and sinp. . .q, respectively.

Proof. See Theorem 2.30 of [21], pages 59-61.
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