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Introduction

This Master’s Thesis (from now on denoted by TFM) is concerned with Scattering Theory. In
particular, it is an introduction to a problem that has received much attention in the last two decades:
the transmission eigenvalue problem.

What is Scattering Theory?

Sometimes, waves depart from their expected path and spread out in multiple directions. This
phenomenon is known as scattering.

It is quite present in our daily lives. For example, it is the reason why the sky appears to be
blue: the white light from the sun hits the molecules in the atmosphere, which causes the shorter
blue wavelengths to scatter out in multiple directions (in fact, the violet wavelengths scatter more,
but our eye is less sensitive to them; see [20]).

Another example is the scattering of the rays of light coming out from traffic lights or car lights
when there is much humidity in the air (see Figure 1). This is due to the scattering of the light rays
when they hit the water molecules in the air.

Figure 1: Scattering of traffic lights in presence of humidity.

For us, roughly speaking, scattering theory deals with how waves behave when they find an
scatterer (object) or inhomogeneous media on their way (see Figure 2).
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Figure 2: Diagram of the scattering phenomenon.

Topic of the TFM

There is a vast literature on scattering theory impossible to cover in an essay of this length. So
we have decided to focus on acoustic/Helmholtz scattering in the case of an isotropic in-
homogeneous medium with an inhomogeneity of compact support. The final objectives
are

e To introduce the transmission eigenvalue problem.

e To prove (under certain conditions) the existence of a discrete set of real transmission
eigenvalues that accumulates at infinity.

But before moving on to the structure of the TFM, let us give a general view of the subject that
we are going to study.

Overview of the topic
Acoustic scattering in an inhomogeneous medium

We begin by describing what is acoustic scattering in an inhomogeneous medium of compact support.
Suppose we have an inhomogeneous bounded region D < R? in an homogeneous space (i.e., R3\ D
is an homogeneous region). We assume that D is connected with C? boundary, and denote by v be
the outward unit normal vector to dD defined on 0D.
Let ¢(z) be the speed of sound at a point z € R3. Then, ¢(z) = ¢y is constant for z € R3\D. We

define the refractive index as )
c
0

n(x) = )

Notice that n = 1 on R*\D, and n(x) > 0 on R?. We assume that n € L®(D).
The propagation of waves in a homogeneous space is modeled by the wave equation

1 02U
SCY A
c? Ot? v

where U denotes the velocity potential, and ¢ = ¢, is the sound speed (constant since we are in a
homogeneous region). When we have a time-harmonic wave, i.e., a wave of the form

U(x,t) = Re [u(:t)e_“t]



for a frequency w > 0, then the wave equation can be reduced to the Helmholtz equation
Au + k*u = 0.

where k = ¢ > 0 is the wave number. Notice that it is proportional to the frequency w.

In brief, Helmholtz equation models the propagation of time-harmonic waves in an homogeneous
region,

Under the above assumptions, the scattering problem for the inhomogeneous media (D,n) that
we are going to consider is the following.

Suppose we have an incident field u‘, that is, a solution of Helmholtz equation in all of' R3:

Aut + E*u' =0 on R3.

This incident field scatters when it finds the inhomogeneity (D,n) on its path, i.e., it generates
another wave u*, and in physical reality we percieve the total field u = u* + u* (u® has no physical
appearance; it is just defined for mathematical reasons). Its behavior can be modeled by the equation

Au(z) + K*n(z)u(r) =0 in R®. (1)

Substituting u = u’ + u® in the previous equation, and using that u’ is a solution on R? of Helmholtz
equation, we have that (1) is equivalent to the following equation in the unknown wu*:

Au®(z) + k*n(2)u®(z) = K*(1 — n(z))u’(z) in R®. (2)

To abbreviate, we sometime use the notation m(x) := 1 —n(z). Notice that, since n(z) = 1 on R3\D,
the previous equation on R*\D becomes Au® + k?nu® = 0, which is Helmholtz equation for «* and
simply states that u® is a time-harmonic wave traveling in the homogeneous region R3\D.

So the scattering problem we are going to consider is to find the total field u that satisfies (1)
from a knowledge of the incident field u’, the wave number k and the inhomogeneous medium (D, n).
Notice that this is equivalent to solving (2) for u® (a knowledge of one of them gives us the other).

The field u* is called the scattered field. As we have said, you cannot perceive/measure it, but
it is defined as u® = u — v’ and it is understood as the wave that generates u* when it scatters. The
supperposition of u’ and u® (i.e. the sum) is the total wave that we perceive physically.

Radiation condition and far field patterns

Because of physical considerations skechted in the essay, and in order to to have uniqueness of the
direct scattering problem, a radiation condition is imposed to u®. In Physics, radiation conditions
are imposed to select which kind of wave we want to obtain as a solution and to exclude the rest of
them.

This condition, known as Sommerfeld’s radiation condition, is the following;:

N0y S
lim 7 (”f‘ - 2ku) —0, (3)
row \ Or
where r = |z| and the limit is assumed to hold uniformly in all directions fa7- The radial derivative
is defined as 2= (z) = Vu*(z) - R

IExcept for possibly a subset of measure zero in the exterior of D; this could be a single point, if we have a point
source, or a surface.



Solutions to Helmholtz equation on an exterior domain (i.e., whose domain of definition contains
the exterior of some sphere) that satisfy Sommerfeld Radiation Condition (3) are called radiating
solutions.

It can be proved that every radiating solution to the Helmholtz equation has the asymptotic
behavior of an outgoing spherical wave, i.e.,

u(z) % [uoo(iz) Lo <ﬁ)] ja] -

uniformly in all directions = = % The function g, defined on the unit sphere S?, is also known as
the far field pattern of u, and 1s given by

1 ae—ikf-y B a_u
oD v(y) v

(y)e_iki'y] ds(y), 2eS% (4)

In the case of the scattered field u®, which is a radiating solution of Helmholtz equation, the far field
pattern can also be expressed as

wald) = [ gty dy 5)

where the last integral can be taken over any measurable set containing supp(m).

This function is truly important. For applications, it is used to recover radiating solutions of the
Helmholtz equation from a knowledge of their far field patterns. In physical reality you can measure
the asymptotic behavior of the wave, which is described by the far field pattern, and you would like
to find out what is the scattered wave or what are the properties of the inhomogeneity (D, n). This
kind of problems are known as inverse problems. A treatment of the subject can be found in
Chapter 5 of [13] and Chapter 7 of [19].

Completeness of far field patterns

In applications, you send several different incident fields, usually plane waves of the form u'(x;d) =
e**dn where d € S? is the direction of propagation of the wave, they scatter and you measure their
respective far field patterns u, (#; d). Now, from the knowledge of these collection of far field patterns
U (-5 dy) for a dense collection of vectors d,, € S* (with n € N for example, although it could be a
finite collection; in reality, a non-countable one does not have much sense), you want to reconstruct
properties of the inhomogeneity (D, n).

There are several reconstruction methods developed to this end. For instance, one of the most
important is the Factorization Method. For a detailed treatment of it, see Section 7.5 of [19] or the
book [20]. There are other methods (see Chapter 2 of [7]), but we will not go into further detail.

In order to apply some the aforementioned methods, it is important that the set of far field
patterns F := {uy(,d,) : n € N} is complete in L*(S?). An important characterization of this
property is the following, which we will prove in this TFM:

Theorem. The orthogonal complement of F in L*(S?) consists of the conjugate of those functions
g € L*(S?) for which there exists w € H*(D) and a Herglotz wave function

v(z) = L2 e~hedg(d)ds(d), xeR?,



such that the pair v,w s a solution to

Aw + E*n(z)w =0, Av+k*v=0inD (6)
satisfying
ow v
w=uv, o= on 0D. (7)

Transmission eigenvalues

In view of the previous Theorem, it seems important to study the problem
Aw+ kE*n(x)w =0, Av+k*v=0 inD

Jw  Ov
w =0, Py on 0D,
which is known as the interior transmission problem. Values? of k > 0 for which this problem
has non-trivial solutions are called (interior) transmission eigenvalues.

If we want F to be dense in L*(S?), its orthogonal complement has to be {0}. So a sufficient
condition for this to occur is that k£ is not a transmission eigenvalue. Therefore, this sufficient
condition is usually imposed in the reconstruction methods such as the factorization method (see,
for example, Theorems 7.38 and 7.39 from Section 7.5 of [19]).

It seems that this problem had not received much attention until the last two decades. In fact,
existence of real transmission eigenvalues for general media was an open problem for about 20 years,
until in 2010 the question was quite completely answered by Cakoni, Gintides and Haddar in [8]. We
will explain the proof of this theorem in Chapter 4.

But, according to [5], appart from that theorem there have not been new results on real trans-
mission eigenvalues, although there has been intense research on complex ones; see chapter 10 of the
book by Colton and Kress [13].

Non-Scattering Inhomogeneities

The transmission eigenvalue problem is closely related to another fundamental and perplexing prob-
lem in scattering theory: the problem of non-scattering inhomogeneities.

The problem is the following: given an inhomogeneity (D,n), does there exist a wave number
k > 0 and an incident wave u’ such that the corresponding far field pattern u,, is identically zero?

Such an incident field is referred to as a non-scattering incident wave and the corresponding
k > 0 as a non-scattering wave number. Again, we consider positive wave numbers k > 0 because
they are the only ones that have physical meaning.

How can we formulate this problem mathematically? Notice that (because of a result that we
will prove in the TFM, as a consequence of Rellich’s lemma) a radiating solution to the Helmhotz
Equation with identically zero far field pattern is identically zero as well. Therefore, since u*® is a
radiating solution of Helmholtz equation outside D, an equivalent formulation of the problem is the
following: an inhomogeneous medium (D, n) is non-scattering if there exists a wave number k > 0
and an incident field u! such that the corresponding scattered field is zero outside the inhomogeneity.

For a given incident field u’, the scattered field u® € H? (R3) satisfies the equation

loc

Au® + E*nu® = k*(1 —n)u’  on R,

20ne can consider complex transmission eigenvalues, but the only one that have physical meaning and are therefore
important for applications are real ones, so we will only deal with these ones.



together with Sommerfeld’s radiation condition.
So, explicitly, an inhomogeneity (D, n) does not scatter if there exits a wave number k& > 0 and
an incident field u’, i.e., a solution of

Au' + E*u' =0 on R3,

such that .
Au® + k*nu® = k*(1 —n)u’  on R?
and
u®=0 on R*D.

This is an overdetermined system of elliptic equations (it has more equations than unknowns).
However, it can be proved that for the simplest case, i.e., spherically stratified media, using separation
of variables, there exists non-scattering media (see minutes 13-18 of [5] for the sketch of a proof).

So it makes sense to consider this problem, i.e., in general we are not talking about the empty
set.

Notice that this problem is physically astonishing: it considers incident fields of specific frequencies
for which the inhomogeneity is invisible, in the sense that the wave does not change its behavior (there
is no nonzero scattered wave). Apparently, this phenomenon is quite rare. See for example the article
by Blasten, Paivarinta and Sylvester [3].

Relation between transmission eigenvalues and non-scattering inhomogeneities

Let us see what is the relationship between transmission eigenvalues and non-scattering inhomo-
geneities

Suppose that u’ and u® satisfy the non-scattering condition for a wave number k > 0 (recall that
supp(n — 1) = D). Restricting u’ to D, we have that it is a solution to Helmholtz equation on the
domain D, that is,

Au' + k*u' =0 on D.

Since u® = 0 on R®\D, we have that u* = 0 and %= = 0 on 0D, Therefore, u := u® and v := u|
are solutions to the transmission eigenvalue problem, i.e., the problem of finding u € HZ(D) and
v e L*(D) such that

Au+k*nu=k1—-n)v and Av+k*w=0inD

(where u € H3(D) means u = 0 and 2 = 0 on 0D).
Remark. Notice that v and v are solutions to the transmission eigenvalue problem since taking
w = u+v (w would be the total field, since u = u®, v = u’ in the above discussion), then v, w € L*(D)
satisfy that v —w € HZ(D) and
Av+Kk*v=0 inD,

Aw+ k*nw=0 in D.

Therefore, solutions to the non-scattering problem are solutions to the transmission eigenvalue
problem. Or, equivalently, non-scattering wave numbers are a subset of (positive) trans-
mission eigenvalues.

So a neccesary condition for k being a non-scattering wave number is that k is a transmission
eigenvalue.

It is natural then to ask another important question in scattering theory: when a (real) trans-
mission eigenvalue is a non-scattering wave number? This is a partially open question yet. Many
papers have been published lately regarding this topic.



To attack the problem, it has been related to regularity of the eigenfuctions of the laplacian (i.e.
solutions of Helmholtz equation) and free boundary problems.

Let us give an overview here. Suppose that £ > 0 is a transmission eigenvalue, that is, there
exists u € H2(D) and v € L*(D) such that

Au+ Enu=k*(1—n)v and Av+k*v=0 inD

ou
u=0 and — =0 ondD.
ov
We want to see if k£ is a non-scattering wave number, i.e., if there exists an incident wave v and a
scattered wave v such that

Av + k*v =0 in R?

Au + k*nu = k*(1 —n)v in D

u=0andg—u=()on(3D.

14

Notice that the only difference is that v must exist as a solution to Helmholtz equation in all of R3
and not only on D. Since H' solutions to Helmholtz equation are analytic (see [28] page 6), the
problem is if it is possible to extend v outside of D in such a way that it is analytic. That is, under
what assumption the function v € L?(D) is a solution to Helmholtz equation in a region including
D? In that case, the eigenfunction v has to be analytic, because H! solutions to Helmholtz equation
are analytic. So it is a regularity issue of eigenfuctions up to the boundary.

There have been several approaches to this problems, such as the use of free boundary methods
by Cakoni and Vogelius in [10] or by Salo and Shangolian in [28]. For an overview of the recent
advances in this problem, see [5]. The most studied case is that of spherically symmetric media. In
that case, the set of non-scattering wave numbers and the set of transmission eigenvalues coincide.

Motivation to study Transmission Eigenvalues

As explained in the previous section, transmission eigenvalues play a central role in applications: a
sufficient condition to apply some of the reconstruction methods is that the wake number k > 0 is
not a transmission eigenvalue.

Besides, being a transmission eigenvalue is a necessary condition for a wave number £ > 0 to be a
non-scattering wave number. And non-scattering inhomogeneities are a little known part of scattering
theory and a truly recent area of research, where very modern techniques are being employed.

Therefore, the central motivation of this essay is to give an introduction to the topic, explaining
acoustic scattering in an inhomogeneous medium so that we can define what is a transmission eigen-
value and give one of the first important results that was known for this problem: the existence of
an infinite discrete set of transmission eigenvalues that accumulates at oo if 1 — n does not change
sign in D.

Structure of the TFM

This essay is divided in four chapters:

1. The first one is focused on Helmholtz Equation Au + k*u = 0. We study several properties of
this equation that will be fundamental for the remaining parts of the essay.



2. The second chapter is a short one. It gathers the theory of dual systems needed in the following
chapter. Specifically, the aim of this chapter is to expose Fredholm’s theorem and a theorem
due to Lax that allows us to generalize mapping properties in a dual system to another bigger
dual system (for example, to generalize properties proved for Holder spaces to properties for
Sobolev spaces).

3. The third chapter is devoted to the scattering problem in an inhomogeneous medium (2)-(3).
First, we describe the model we are going to work with. Then, we reformulate the scattering
problem as an integral equation, known as the Lippman-Schwinger equation. We prove existence
and uniqueness of a solution via the mapping properties of the volume potential. In order to
do this, we will apply Fredholm’s theorem, so it is enough to prove uniqueness in order to have
existence as well. Uniqueness will be proved via a Unique Continuation Principle.

Then, we move on to the question of completeness of the far field patterns. As we have already
explained, this question is related to the interior transmission problem: a couple of second
order equations linked via their boundary conditions on a bounded domain. Values of the
wave number for which there exist non-trivial solutions to this problem are called transmis-
sion eigenvalues. We state and prove this relation, and define the concept of transmission
eigenvalues.

4. Transmission eigenvalues are the core of the last chapter. The objective of the chapter is to prove
that, under certain conditions for the refractive index of the media, there exists a countable set
of real transmission eigenvalues which accumulate at co. In order to do this, we reformulate the
transmission eigenvalue problem as a classical eigenvalue problem (K — %I )U =0 for 7 > 0.
The operator K is not self-adjoint (although it is compact) and therefore non-standard methods
must be used to prove existence of eigenvalues.

The approach then is the following: we will reformulate the problem as finding the values of
7 for which N(A, — 7B) # {0} for {A;},~0 a family of self-adjoint, compact and coercive
(or stricly positive) operators and B a self-adjoint, compact and non-negative operator. This
problem requires a theory to study the spectral decomposition of a compact, self-adjoint and
strictly positive operator A with respect to another compact, self-adjoint, positive operator B,
i.e., a generalization of the spectral theory for A — AI when [ is substituted by a more general
operator B. Then, we apply this theory to prove the existence of transmission eigenvalues
aforementioned.

We include an Appendix with the needed background to understand the content of the essay.

References

The main references used for this TFM are the book of Cakoni, Colton and Haddar [7], the book of
Colton and Kress [13], the book of Kirsch [19] and the book of Kirsch and Hettlich [21].



Notation

Given = = (x1,...,2,),y = (Y1, --,Yn) € R", we denote by

T -y= Zl‘jyj
j=1

the Euclidean scalar product of R™, and by
2| = Vo -z = (22 + ... +22)/?

the Euclidean norm of R™.

Let f be a real or complex valued function f defined on an open subset of R". We will denote
its (first) partial derivative with respect to the j-th variable x; evaluated at the point x by ¢, f(z),
by 0, f(x) or by %@) We will denote the m-th partial derivative of f with respect to the j-th
variable by 07" f.

For a given multi-index e = (ay,..., ), we denote by 0%f the derivative of"...0%f. The
number |a| indicates the total order of differentiation of 0 f. The space of functions defined on R™
such that all of its partial derivatives up to order || < N are continuous is denoted by C¥(R™) and
the space of functions on R"™ which are infinitely differentiable (that is, the functions in C¥(R") for
all N € N) is denoted by C*(R™).

We denote f e Co(R") if f is continuous and limyg|_, 4o f(z) = 0.

We denote that a function f is in CV(R") (N > 0) and has compact support by f € CN(R").
Analogously, f € C¥ means that f € C*(R") and has compact support.

Given A < R", we denote by y4: R"™ — R the characteristic function of the set A:

(z) 1, sizeA
x) = :
xa 0, siz¢ A

Let R > 0, p e R". We denote:

e The open ball of radius R centered at p by

B(p,R) = {reR*: |z —p| < R},
e The closed ball of radius R centered at p by

Blp, R] = {z e R*: |z —p| < R},
e The sphere of radius R centered at p by

S(p,R) =={reR’: |z —p| = R}.

x1



xii Notation

In particular, we denote the unit sphere of R" by
St i={reR": |z|=1}.

Given a surface of class C?, we will denote its surface measure by ds. In general, the surface will
be the boundary of a domain or an sphere S(p, R) for p € R", R > 0. In the case of a sphere, we
may use do instead of ds.

Given a linear a linear operator A: X — Y between vector spaces X and Y, we denote its kernel

by N(A).



Chapter 1

The Helmholtz equation

In this chapter, we study the Helmholtz equation, establishing some of its basic properties of this
equation. This will be important for the study of scattering of acoustic waves in an inhomogeneous
medium. We follow mainly Chapter 2 of [13] and Chapter 2 of [21]. We will work on R3. For a
development of some parts of the chapter on arbitrary dimension, see [25], Section 7.6.

1.1 Helmholtz’s Equation

The Helmholtz equation models the behavior of time-harmonic acoustic waves travelling in an ho-
mogeneous medium (we will see in a moment what does this means). For a careful deduction of this
model, see [13], Section 2.1. We present here the basic ideas.

To model the propagation of sound waves in a homogeneous isotropic medium in R3, suppose we
view them as an inviscid fluid. This fluid has velocity field v = v(z,t), pressure p = p(x,t), density
p = p(z,t) and specific entropy S = S(x,t), where z € R, t > 0.

When you relate these magnitudes via Euler’s equation, the equation of continuity, the state
equation and the adiabatic hypothesis, you obtain a system of nonlinear partial differential equa-
tions. To simplify the model, it is linearized using small perturbations of the static state vg = 0,
po = constant, py = constant and Sy = constant. After making computations with the linearized
equations, eventually you arrive at the fact that there exists a wvelocity potential U = U(z,t) such
that

1
v=—V,U
Po
and
_au
P="%
This velocity potential satisfies the wave equation
1 0%°U
Elri ALU.

We are going to consider solutions which are time-harmonic acoustic waves, i.e., functions of the
form

U(z,t) = Re [u(m)e‘i“t]

where w > 0 is the frequency of the wave, and c¢ is the speed of sound (constant, since we are
considering waves in a homogeneous medium). In order for this function to be a solution of the wave

1



2 CHAPTER 1. THE HELMHOLTZ EQUATION

equation, the complex valued space dependent part u has to satisfy the Helmholtz equation (or
reduced wave equation)

Au+Ku=0

where the wave number £ is given by the constant & := 2 > 0 (notice that it is proportional to the
frequency w).

Therefore, to study the propagation of time-harmonic acoustic/sound waves in an homogeneous
medium, we just need to study the equation that satisfies the space-dependent part u: the Helmholtz
equation.

1.2 Fundamental solution

Although the physical interpretation of the Helmholtz equation only has sense for & > 0, many
results are still true for k € C.
In this section, we introduce the most important function in acoustic scattering theory:

Lemma 1.2.1. For k € C the function Py, : {(a:,y) eR3xR3: 2 # y} — C, defined by

ciklz—y]

Pp(z,y) = T # Y,

Arle —y|’
18 a solution to Helmholtz equation on the variable x, that s,
Aw¢k<x7y)+k2@k(xvy) =0 forx;éy.

Remark 1.2.2. It is called the fundamental solution of the Helmholtz equation, because it is a
fundamental solution to Helmholtz equation: see Theorem 7.33 of [25], pages 269-272 for a proof of
this fact. However, we will not use this throughout the essay. We will just use Lemma 1.2.1.

Proof of Lemma 1.2.1. It is enough to show that ®(x) = %IZ‘I’ x # 0, satisfies Helmholtz equation.
We can write
b)) = ——F— = —
(@) = =5 = e 0a)

where f(r) = eifr for r > 0 and r(z) := |z|, x € R®. We then have

00(x) = 1 f(r(e)) - dr()

ek ik oy —e*r .1 g

47rr? r
ikfa] Rl gy ey
C 4r|z]? x| Arm|z]? |z
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So
T 1 x; 1
) = - == _
owtte) = o(a)- - [ie= | g [
1 |z| —a; - 1
v af .
o) — 2 [in- g
, 0-|z]—1- %
Li ||
_ () 2 [iklz| =17 |2 —2? diklx| -1 2?
- |z[? |z[? |z[? |z |z|*
Therefore,

AM@ZZ@@m

a2 [ikle] — 1 3lef — 22 ikla] =1 |of
- P . .
S I E A P A ol
k22 — 2ik|z| + 1 2iklz|—2 1
=
(=) 2P T TP
_—k2|x\2
= d(x) PE
= —k*®(z). O

Remark 1.2.3. In the following, we will not use the subindex k; that is, we will write ® for ®.

1.3 Representation formulas on bounded domains

In this section we develop a fundamental tool to treat solutions of the Helmholtz equation: Green’s
representation formula for solutions of the Helmholtz equation on bounded domains. This repre-
sentation formula, when applied to a solution u of the Helmholtz equation, allows us to describe
in terms of its Dirichlet and Neumann data on the boundary, since the volume integral vanishes in
that case. It is a consequence of the following general theorem, valid for every function u sufficiently
regular.

Theorem 1.3.1. [Green’s Representation Theorem in the Interior of D] Let D be a bounded domain
with C* boundary éD. For any k € C and u e C*(D) n CY(D) we have the representation

ou 0P(x,y
[ 1Sttt  asty) — [ [8uty) + Fu)] oG g) dy = u(e). weD.
op LoV ov(y) D

Proof. The idea of the proof is, given a point x € D, to remove a neighbourhood of it from the domain
so that ®(x,y) is of class C* in that reduced domain and we can apply Green’s Second Formula (5.5).
Let us explain the details.

Fix z € D and, since D is a bounded domain, let » > 0 be such that Blx,r] < D. Let
D, = D\B|z,r]. Then, D, = dD u S(z,r), with exterior unit normal v(y) for y € 0D and 7—% for

[y—a|

y e S(x,r) (since 7y~ would be the exterior normal to the domain B [z,7]).
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We apply Green’s second identity (5.5) to u and v(y) := ®(x,y) in the domain D, and obtain

[ (oenGim - ZE0)) st - [ [20806) - un)a,ee )] dy

r

— J ®(z,y) [Au(y) + K*u(y)] dy,

T

where we have used in the last step that ®(z,-) is a solution of the Helmholtz equation (Lemma
1.2.1).

Since 0D, = 0D u S(x,r), we can split the integral over 0D, in two integrals: one over 0D and
one over S(z, 7).

In order to study the integral over S(z,7), we have calculate

D,, v(y) = =% = =Y for y € 0S(z, 7).

oyl

We can write ®(z,y) = f(r(y)) with

0P(z,")
ov(y)

knowing that for the domain

ikr

f(r): and  7(y) = |z —y| = /(21 — y1)2 + (22 — y2)? + (w3 — y3)2.

~ dar
Therefore, we can apply the chain rule to obtain:

V@ (z,y) = f(r(y)) - Vyr(y)
B ik - e*rdmr — et A (y1 — X1 Yy — Ty Y3 — $3)

Y Y

(47r)? r r r
_ ikr ik -dmr —dm) oy —a
(4mr)? r
_e““” tk-dmr —4n | y—=
 dar Amr r
_ etkleyl [k; 1 ] y—1
4l -yl [z —yl] |z -yl
etklz—yl [ 1 ]
= . —ik| - v(y),
eyl [y Y
(recall that v(y) = fy—a7) where we have used that
or 1 Yj — T,
N y — 2 €xT: — y . _1 — —_,
0 = 2w ) =

and, in consequence, V,r(y) = 1) So, for ly — x| = r we have:

exp(ikr)
. O(z,y) = R
d
W(l’,y) =v(y) - qu’(l“,y)

=v(y)- eii;yl l% - @k] v(y)

iklz—yl 1
e
4rr T
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Therefore, we compute the integral over S(z,r) as

[ |5 - 52| aw - [ [ - el (1) M] s(y).

We are going to split the last integral into two parts:

eikr au 1 eikr
—(y)d d ==k |- d .
[ st [ ) (G ) s

The first one tends to 0 as r — 0T, since

ou etkr 1
—(y) - ds(y) = — Vu(y) - v(y)| ds(y)
fS(z,r) 8u( 471'7” ( 471'7” S(z,r) ’ ( ‘ (
1
< Iy IVul oy - o (S(z, 7))
4rr? 0
= 47‘("[" . HVUHLOO(D) —_—> 0, (11)

having used that o(S(x,7)) = 47r?.
The second one tends to u(z) as r — 0%. Let us see why. We have

ikr ikr

e 1 6ik:7" e
— - —k d = — d K d . 1.2
o G [ et =5 [ s+ ] a0

The first term in the right-hand side of (1.2) tends to u(z) as r — 0 because, as o(S(z,r)) = 47712,

1

42

1

42
1

<
= A2

1
< o(S(x,r))- sup |u(y)— u(x
oS ) s fuly) —u(a)

f uly) ds(y) — u(x)
S(z,r)

Joo 1)~ dsty

f fuy) — u(2)] ds(y)
S(z,r)

r—0t

= sup |u(y)—u(z)] 0.

yesS(x,r)

Therefore, since 1= SS(W) u(y) ds(y) — u(z) and —e®* — —1 when r — 0%, the product tends to

—u(x).

For the second term of (1.2), we have

eikr k-
() d _k ]
Anr L(m)z u(y) ds(y) el lu(y)| ds(y)
k
< 7o (8@ ) - ulpe )
k
= dnr Amr? - ul o )

r—07t
= kr - ||U||Loo(5) —0
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where we have used that u is bounded on D (since D is a bounded set, so D is compact, and u is
continuous on D by hypothesis, therefore bounded).
So

| e lau) « Ry = tim [ e+ Puw)dy

= LD <<I>(a:,y) Ouly) _ u(y)M> ds(y) + lim (QI)(%,y)au—(y) - u(y)M)

v(y) v(y) r=0% Js(e.r) ov(y) ov(y)
Ou(y) 0%(z,y) >
= P(z, —u(y)——% ) ds(y) — u(z),
[ (238 2 dsty) - uto
obtaining the desired conclusion. O]

Remark 1.3.2. - This theorem tells us that, for x € D, any function u can be expressed as a sum
of three potentials:

(Sp)(a) = J;D o(y)®(z,y)ds(y), = ¢ oD
Do) = | o)z misly). ¢ 0D
Vo)) = J; o), y)dy, z e R

which are called single layer potential, double layer potential, and volume potential, respec-
tively, with density .

We note that the volume integral of Green’s representation formula vanishes if v is a solution
of the Helmholtz equation Au + k*u = 0 in D. In this case the function u can be expressed solely
as a combination of a single and a double layer surface potential. This observation is useful to
solve boundary value problems of Helmholtz equation using integral equation methods. We refer the
reader to Chapter 3 of [13], Chapters 2 and 3 of [12], and Section 3.1 of [21]. We state this fact in
the following theorem.

Corollary 1.3.3. For any k € C and any solution u € C*(D) n CY(D) of the Helmholtz equation
Au + k*u = 0, we have the representation

— % T —Uu —aé(w?y) S X €
wte) = [ |Gt - un o | ast). aeD. (1)

1.4 Representation formula for unbounded domains
For solutions of the Helmholtz equation on exterior domains, the following condition is important.

Definition 1.4.1. A solution u to the Helmholtz equation whose domain of definition contains the
complement of some ball is called radiating if it satisfies the Sommerfeld radiation condition

lim r(z) (‘;—“(x) - z’ku(:c)) ~ 0. (1.4)

r—00 T

where r(z) = |z| and the limit is assumed to hold uniformly in all directions z/|x|.
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Remark 1.4.2. Before going into technical details, let us give some motivation about why is this
radiation condition asked for solutions of Helmholtz equation in exterior domains.
Consider the spherically symmetric solutions

ezk|x\ efik|:p\

uy () = T and  wug(x) =

]

Both satisfy the decay estimate u(x) = O(ﬁ) when |z| — oo (condition known as Sommerfeld’s
finiteness condition: see [13], page 23). Therefore, this decay condition is not enough to have
uniqueness of solutions to the Helmholtz equation on exterior domains.

However, it can be checked that the only of these two functions that satisfies the radiation
condition (1.4) is <™ The time-harmonic wave corresponding to this space-dependent part is

R eklzl—iwt cos(k|z| — wt)
e = )
] ||

which physically corresponds to an outgoing wave (see [13], page 18) This is what we want, since
the Helmholz equation is related to scattering of electromagnetic waves and, in that context, the
scattered waves have to be outgoing (see [21], Section 1.4).

So Sommerfeld’s radiation condition is a way to characterize outgoing waves and exclude the
ingoing ones. In Physics, radiation conditions are usually imposed to select which type of solution
we want (see again [21], page 14).

Although this is the phsyical interpretation, from a mathematical point of view Sommerfeld’s
radiation condition is a sufficient condition to prove existence and uniqueness of many scattering
problems.

||

We would like to prove a representation formula for radiating solutions on exterior domains similar
to the one we proved for interior domains (formula (1.3)). In order to do this, we need to study the
asymptotic behavior of the fundamental solution.

Lemma 1.4.3. For any compact set K < R3 the fundamental solution ® satisfies the Sommerfeld
radiation condition (1.4) uniformly with respect to y € K. More precisely,

Br.y) = T ik [1 L0 (i)] ja] > (1.5)

" 4nfa] ]

and
V.o ki i |14 o (L 1.6
x (x,y)—zxme + (7‘) , x| =0 (1.6)
uniformly with respect to & = % € S? and y € K.

||
Proof. Recall from the proof of Lemma 1.2.1 that

62k|xfy|

d -

and

T —y . 1
V. ®(z,y) = (z,y) - e [’k_ |x—y|]'
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We are going to need the asymptotic formula
jz =yl = lz| —y - 2/lz] + O] ), |a| — . (1.7)
uniformly for y on compact sets. This formula is true because

[z =yl =+/(z—y)(z—y)

= VT2 + Y2 -2z -y

2 _ 2 2
e = Y L Oo(a ) + 0 (Iy\ dxyly|” + 4(zy) )

|

f?
— |z| - ,—f’ +O(j2] ™) + 0(0(2 ) + O(|2[ %) + O(|=| ™))
— |z| - ,—f’ +O(lz]™Y) + O(lz| ™)
— |z| - ,—f’ +O(|z|™)

where we have used that O(O(h)) = O(h) for a function h and the Taylor’s series /1 +¢ = 1 +
% + O(t?) when t — 0. Notice that we can apply this series on the fourth equality since, as we are
considering y on a compact set (therefore bounded), % — % — 0 when z — o0,

Now, we are ready to prove (1.5) and (1.6).

Proof of (1.5)
We have, using (1.7), that

ik|z—y| ) o ik[|z—y|—|z|] o
47 - 46—_ . |.Z‘| . e—zk|x\ _ e—zkr-y — € — . |$| _ e—zkx-y
|z =yl |z =y
ik[—ﬁ~y+0(ﬁ)] o
= - 5 —~ - |z| - ety
z| -3y + (|m—|)
i ik-O(1
_ e*’iki-y ' ?Z (Ix\) 1

e—ikiy .

when |z| — o0 because, as y € K with K compact, the denominator tends to 1 as || — o0, and in

kO(137) 1

the numerator €’ — 1 when |z| — o0, so the numerator is bounded by < C - R
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Proof of (1.6)
Equation (1.6) is equivalent to

4
qu)(l',y) . % —ik|z|+ikdy _ [1 + 0 (‘ ’)] , ‘1" — 0.

So we only need to prove this. Using the value of V,®(x,y), we have

4 I iklz—yl 1 — 4 o
V., ®(z,y) - % . e—tklal+ikiy _ 46—_ _ [zk S ] x - Yy 7T1|f| ikl +iks-y
i |z =yl o —yl| Je—yl i
:gw%wwwm.b_ 1.].$—y. i
[z —ylik| |z—yl [z—y|
:eiko(ﬁ).x_y. _ 1y .[1—;‘]
lz—yl 12—l |z — ylik
A eikO(ﬁ) A 1 eikO(ﬁ) 1 ez’kO(lil) 1 eikO(‘?l‘)
= 'I . = _— l’ . - . = —_— y . - y . - -
|QZ—%]2 ikle —y| |2 - |gc||2 lz -yl |2 - m’ zk‘\x—y|2\x—m|

1 e 1 1
i (ity)- iy o( )
PRI P EE

=i 00 () +-0 (). -

Corollary 1.4.4. The fundamental solution ®(x,y), seen as a function of x, satisfies Sommerfeld
Radiation Condition (1.4).

Proof. Using (1.5) and (1.6), we have that (recall that & = %

z|

00(z,y) . ) _
r (T(x) - qu)(fﬂ, y)) = |$‘ (ZL‘ ’ qu)(l',y) - qu)(x>y))
(

TV, @(z,y) — ik®(z,y))

(xm 5 L O] )] — ik -““'y[uoﬂw\‘l)])
47| x| Am|z|

( ciklal

47 |x|

= [z - O(|z]™) = O(z[ ), |2] — 0. O

ezk‘\x|

€7lkxy0(‘$‘ 1)—Zk4 ’ | zkiyO(’x|1)>

Corollary 1.4.5. Let D < R? be a bounded domain of class C?, with exterior unit normal v. Then
ag@%’), as a function of x, is a radiating solution of the Helmholtz equation.
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Proof. We have that

amimi (Z ayjq)(x7 y) ’ I/j (y))

j=1

I
Mw

Zay] (/zz .CL’ Y )yj(y)
(2 O, P (2, y ) ’(y)

Oy, (Aa® () ()

@
Il
fu

[
Mw

<.
Il
—

[
Mw

1

<.
Il

I
&Mw

<
Il
—_

a Yj (—/{ZQ(I)(.I, y>>yj(y>

_ _kQZ Oy, @ (z, y)V” (y)
,202(2,y)
)

Therefore, u(x) = ag)l,(f §’) is a solution to Helmholtz equation.

Now, we want to see that @ satisfies (1.4). We have that

ot 3 X 5
5(95) = ; m%u(ﬂf)
3 zj . 09(x,y)
— Z 10,
Sl ov(y)

||
D]
B |8
&
nals
<
&
&
s
t@
=
s
N———

<.
I
_

<
Il
—
-
I
—

I
e
&mw
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Therefore,

(- we) =+ (a5 a6 )

azjy) (afﬁ;) C kel y))

0 . 6@(x,y)_i .
] au<y>( (g o ”))

Since, by the previous corollary, ® satisfies Sommerfeld Radiation Condition (1.4), we have that

=r

(7@(%, y) . r—00
| == —ik® — 0
uniformly for z = % e S%. Thus, the radiation condition is also true for @, as we wanted to prove. [

Now, we can prove the following theorem, which states that the radiation condition is equivalent
to an integral radiation condition and is also equivalent to Green’s representation formula for exterior
domains.

Theorem 1.4.6. Let Q be an exterior domain, i.c., Q = R3\D with D a bounded domain of class

C?. Let u be a solution of Helmholtz equation in Q such that u € C*(Q) n CH(Q).
Then, the following conditions are equivalent:

1. (Uniform Sommerfeld Radiation Condition)

ou

E(w) — ik -u(z) = o(r™)

when r = |x| — o0 uniformly on & = £ € S?.

2. (Sommerfeld Radiation Condition on L?)

R
ou .
— —iku

2
or dSRZO

lim
R=% Js(0,R)

3. (Green’s representation formula for unbounded domains)

ule) = LQ (%(y) (2, y) —uly) - 02, ) (y)> ds(y) (1.8)

ov
for all x € Q), where v is the interior unit normal of 0S2.

Remark 1.4.7. One needs to be careful with Green’s representation formula on exterior domains.
If we take v to be the interior unit normal of the exterior domain, then the representation formula
is the same as for interior domains. However, if we take v to be the exterior unit normal of 02 (as
is usually the case), we have to change the sign of the right-hand side of (1.8), and therefore the
representation formula is different to that of the interior domain.
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Proof of Theorem 1.4.6.

Suppose that
ou

- __ 9 — -1
5 () —iku(x) = o(r—)
when r = |z| — oo uniformly in Z = £ € §*.
That is,
lim r (?;( ) — ik - u(a:)) = 0.

7—00

So, for every € > 0 there exists Ry > 0 such that if r > Ry, then

<+e

ou

r %(aj) — ik - u(x)

for every x with |z| = 7.
Therefore

ou

——zk’u

L(o,r) or

ds, < J % ds,
s, T

= e50(S(0,1)
= 5%27" o (S?)
= co(S?)

T

having used that, if we make the change of variables y = & = r2dy = dx, we have that

a(S(0,r)) = L(o | lds,(x) = L(o N r?dsi(y) = r’c(S(0,1))
being S(0,1) = S" 1.

2 — 3

Let R > 0 be sufficiently big so that D < B(0, R) and consider
Qr =Qn B(0,R).

Fix z € Q).

Since Qg is a bounded domain on which w is a solution to Helmholtz equation (by hypothesis of
the theorem), we can apply Theorem 1.4.3 which gives us Green’s representation formula for solutions
of Helmholtz equation on bounded domains

(Ln L(0R> (au - ®(x,y) —uly) %) ds(y),

where v is the exterior unit normal of the interior domain Qp (and therefore, on € is the interior
unit normal with respect to ).

To obtain condition 3., it is enough to prove that the integral over the sphere tends to 0 when
R — 0. The radiation condition on L? given by 2. can be written as

L(O,R) (

ou

ov

+ K |ul? | ds + Qkf Im (u 6_u> ds =% 0, (1.9)
S(0,R)
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since

ou P ol . Ou

E—zku =13, + k*|u|” — 2 Re zku-g

) _

_ | + k*|u? + 2Im kua—u

ov or

oul> L, ou
=5, + k*|u| +2k1m<u‘g>.

having used:

e On the first step, that

z—wfPf=Cc-wz—w=z-wWEZ-W) =z2-Z—2 W—w-Z+w W

= |2* + |w|? — 2w — wZ = |2* + |w|® — (2w + Zw) = |z]* + |w|* — 2Re(z - W).

e On the second step, that given z € C, z = a + bi with a,b € R, then

iz =1i(a+bi) = —b+ia = Re(iz) = —b = —Im(2).

e On the third step, that £ is real, so

We have that

J Im(ua—u> ds = Im J u-a—uds
5(0,R) ov so.R) OV

=Im| — u-a—uderf u-Au+ Vu-Vu
Jaﬂ (?1/ Qr

=Im | — [ u-a—ﬂds+f u- (—k*u) + |Vul?
Jaﬂ ov Qr

~tm (- u~a—uds—k’2j [l + V] de
o0 ov Qr

- _
=Im (— u-%ds>
Joo ov

z—f Im Im(ua—ﬂ> ds

o0 61/

J Im(ua—ﬂ) dSZ—f Im(ua—ﬂ) ds.
S(0,R) v o0 ov

That is, SS(O’R) Im (u : g—f) ds does not depend on R (for R sufficiently big so that D < B(0, R)).

That is,
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So (1.9) can be written as

ou

ov

2 _
lim + k2 ul? | ds =2k - f Im <u : 6_u) ds. (1.10)
R=% Js(0,R) o9 ov

2
> 0y k% > 0, the fact that the limit exists and is finite means that limp_, SS(O R) 2.

ou

ov
lu|? ds is bounded, that is,

Since ‘

f lu*ds = O(1)  when R — o0.
S(0,R)

Recall that we wanted to prove that

. ou o 0®(z,y) () =
i [ (G0 0 —uin- S ast) -0

R—0

Let

b= [ (G0t — - ) ist)

Let us write I as Ig = I1(R) — Io(R) where

= [ (G i) o) sy

and

= 6’<I>(a:,y)_i - P(x -u(y) ds
pw = [ (Gt - ) ) st

We are going to check that both integrals tend to 0 as R — oo.

1.
2
(I)* < f u_ iku| ds - f |®(x,y)|* ds(y) = o(1)O(1) when R — oo.
5(0,R) or S(0,R)
So I; — 0 when R — oo.
2. ,
e [ s [P i ey dsty) = 00) o).
S(0,R) S(0,R) r

So Is — 0 when R — oo.

Therefore, Ir = I,(R) — I5(R) — 0 when R — 0.
So
u(z) = u(z) = LQ (%(@/) - O(z,y) — uly) - a@(gi, ) (y)> ds(y), x €.

we) = [ (S o) - ul- ) st
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Differentiating under the integral sign we have that

r (Z—:f(x) - iku(x))

- Ju . 0P o) — ikD(x ) 0 6@(;15,3/)_2, 0P(z,y) .
- jm[a,/(y) B ] R P e ”d@

We are going to check that

)
Th_)rrolor <§f(x) (z,y) — ik@(m,y)) =0 (1.11)
and 0 0b(y) . 0D(z,y)
. z,y . T,y
1 — ik =0 1.12
O R T e 12
uniformly in £ = % € S? for y on compact sets. By the Dominated Convergence Theorem, this will

||

end the proof.
But (1.11) is true by Corollary 1.4.4, because it states that ® is a radiating solution and, therefore,
it satisfies Sommerfeld’s Radiation condition

lim 7 (af—(q;)(:c,y) - z'k:@(:c,y)) ~0

uniformly in & = 2 € S? for y on compact sets.
And (1.12) is true by Corollary 1.4.5, because it asserts that ag;(@%;) is a radiating solution to

Helmholtz equation, so it satisfies Sommerfeld’s radiation condition, which is exactly (1.12).
So by the Dominated Convergence Theorem,
ou
li —(x) — ik - =0
lim 7 (67’ (x) —1i u(x))

uniformly in z = ‘%' € §? for y on compact sets. O

Definition 1.4.8. A solution u to Helmholtz equation defined in all of R? is called an entire solution.

Notice that an entire solution to the Helmholtz equation of class C?(R?) which satisfies the
radiation condition must vanish identically, because considering it as a solution on R3\B(0,r) we
have, by (1.8) (which we can apply because the solution is radiating) and (5.5) (taking v to be the
unit normal vector to the boundary S(0,r) directed to the exterior of R3\B(0,r) and therefore to
the interior of B(0,r)), that

= u(y) - 00(x,y)  Cu x s
o) = [ |- TG = St | s

_ L(O ()2 B(a,y) = B, ) Au(y)) dy

- L;(o )[u@)(_k%u’y)) = O(x,y)(—ku(y))] dy = 0
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for all x € R*\ B0, R], where the minus sign on the penultimate expression is due to the fact that v is
directed into the interior of B(0,r) (instead of the exterior). Notice that we can apply (5.5) because
u e C*(R3) and ®(x,y) as a function of y is in C*(R3\{z}), in particular, it is in C?(B[0, R]) which
is what we need to apply (5.5).

Since we have this for all R > 0, we have that u = 0 for all x € R*\{0}. The continuity of u
implies that u = 0 on R3.

Remark 1.4.9. To make the previous reasoning, we had to apply Green’s representation formula
for exterior domains. If we try to apply Green’s representation formula for interior domains instead,
let us say for z € B(0,r), the function ® does not satisfy the necessary hypothesis to apply Green’s
Second Formula (5.5), since ®(z,y) as a function of y is not even continuous at y = z, so it is not

C*(B(0,r)).

1.5 Separation of variables in Helmholtz equation

In this section, we study the series expansion of solutions of the Helmholtz equation Au + k?u = 0
inside of balls (i.e., for spherically symmetric media). For a comprehensive and clear treatment of
this subject, we refer to Chapter 2 of [21], where a comparative study of the Laplace equation and
the Helmholtz equation is made.

We are more interested in the ideas used in the proof of the following result than in the statement
itself, because we will use them later (specifically, in Rellich’s Lemma 1.7.1).

Theorem 1.5.1. Let k € C\{0} with Im(k) =0 and R > 0 and u € C*(B(0, R)) solve the Helmholtz
equation Au + k*u = 0 in B(0, R). Then there exist unique o™ € C, Im| < n, n = 0,1,2,... such
that

o0 n
u(r) =u(ri) = D1 D) g (kr)Y (@), 0<r<RieS
n=0m=—n

The series converges uniformly with all of its derivatives in every closed ball B[0, R'] with R’ < R.

Proof. We have that u,(2) = u(ri) € L*(S?) since u € C?(B(0, R)), so it is bounded. Therefore, we
can use Theorem 5.3.7 to expand u, in a series of spherical harmonics

n

up(8) = u(rd) = Y Y ul(r)Y(&), £eS%

n=0m=—n

where the coefficients u"(r) are given by

m

Uy, (T> = (uT7 Ynm)L2(82) :

Claim: the coefficients u,' satisfy the spherical Bessel differential equation. To see this,

we use the Helmholtz equation for u in spherical polar coordinates, and that the functions Y, are

eigenfunctions of the self-adjoint Laplace-Beltrami operator with corresponding eigenvalue n(n + 1).
Recall that the laplacian in polar coordinates takes the following expression

0? 2 0 1 1
— = — 4+ = Ag = A, + = - Age.
('7’7"2+7“ é’r+r2 . +7’2 S
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Since u is solution of the Helmholtz equation, Au = A,u + T%Agzu = —k*u = Au= —T%Agzu —
k?u. Therefore, differentiating under the integral, we have

A (r) = A, f u(ri) - Yy (@) ds(z) =

= | Awu(rz) Y (z)ds =

S2
1 -
=—— | Asu(ri)- Y;"(2)ds - sz u(rz) - Y, (z)ds =
e Js2 S2
1 -
=—— u(rd) - AgY(2) ds — k*u(r) =
T S2
1
== | nn+1) u(rz)- vm Y(z)ds — k2u™(r) =
T S2

() - lri?n(n - /{;2]

having used in that Ag: is self-adjoint in L?(S?) and that AgY,™ = —n(n+ 1)Y,™ (see Theorem 5.3.8
of the Appendix).
That is, u]’* satisfies Bessel’s spherical differential equation (5.12). Therefore, the general solution
is given by
u?(r) = O‘?:]n(]mn) + Bqun(kT)

for certain ], 8. Therefore, u has the form

. Z 2 ol jn(kr) + Blyn(kr)| Y(2), #e€S%r>0. (1.13)

The convergence of the series (1.13) is in L*(S?) for each r > 0 fixed.

We are interested in smooth solutions in the ball B(0, R). Therefore, 5" = 0 (because y,, has a
pole in 0).

The proof of the uniform convergence requires the use of some properties of the Legendre poly-
nomials. Check Theorem 2.33 of [21], pages 62-64, for a proof. O

1.6 The far field pattern

We are now in a position to introduce the definition of the far field pattern (or scattering amplitude)
of a radiating solution. It is a function defined on the unit sphere S? that gathers the asymptotical
information of the corresponding radiating solution, and it just depends on the values of the solution
on the boundary of the exterior domain, and on the shape of the boundary (because it depends on
the unit normal v).

The far field pattern, as we will explain in Chapter 3, is quite fundamental in Scattering Theory.

Theorem 1.6.1. Let D de a bounded domain of class CQ_and letu be a radiating solution of Helmholtz
equation in the exterior domain R*\D, with u € C*(R3\D) n CY(R*\D). Then u has the asymptotic
behavior of an outgoing spherical wave

ezk\x| R 1
u(z) = T [uw(x) + O (—>] , x| > (1.14)
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uniformly in all directions & = x/|x| where the function uy, defined on the unit sphere S* is known
as the far field pattern of u, and is given by

wol@) = = [ o2t - 2y
R Y ov(y) v Y

el I eiki'y] ds(y), ieS? (1.15)

where v denotes the unit normal vector to the boundary 0D directed into the exterior of D.

Proof. From (1.5), we have

ezk|z| o
O(z,y) = pEp [e_’kx'y + O (%)] (1.16)

and from (1.6), we have

@%ﬁﬂcrﬂ—memmﬂewx[L+O(iJ]-ww

ov(y) drrlz|

—iki- et 1
= Ve " u(y) - el 1+0 (m)

+o<%0] (1.17)

uniformly for all y € 0D (since 0D is closed and bounded, therefore compact). Inserting (1.16)-(1.17)
into Green’s representation formula for unbounded domains (1.8) (taking v to be the unit normal
vector to the boundary 0D directed into the exterior of D), we obtain

o) = [ fut) TFEW - L)t | sty

= [, |0 o [aam];) oo (Eﬂ)] - S [1 ¢ (ﬂ )

6zk\z| 1 ae—ikcﬁ-y ou ikt
—W'ELD [U(y)'ay—(w—g(y)'e ds(y)

etklzl 1 J Oe~ &y oy - ( 1 >
=+ [ u —_— . — .eilx'y dS O N
T [ (v) ) (v) ] (v) 7

= %rl ’uoo(i‘) +0 (%)] ,

as we wanted to prove. O

ﬁe—ik:ic-y ezkz|x|
vy) 4rlal

Remark 1.6.2. One of the main problems in scattering theory is to recover radiating solutions of
the Helmholtz equation from a knowledge of their far field patterns. Given the mapping A: u — uy
transferring a radiating solution w into its far field pattern u.,, an important question is to solve
the equation Au = wu,, for a given uy,. The operator A is smoothing, since we can pass as many
derivatives as we want under the integral sign in expression (1.15).

We will not deal with this problem. See Section 7.5 of [19] or the book [20] for a treatment of the
subject.
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1.7 Rellich’s Uniqueness Theorem

In this section we are going to state and prove Rellich’s Uniqueness Lemma and some of its direct
consequences. The most important one of them is that a radiating solution to the Helmholtz equation
is uniquely determined by its far field pattern.

The proof of Rellich’s Lemma uses arguments similar to those in the proof of Theorem 1.5.1
plus some asymptotic properties of the spherical Bessel and Hankel functions which are presented in
section 5.4 of the appendix.

Lemma 1.7.1. [Rellich’s Lemma] Let u € C? (R*\B [0, Ro)) be a solution of the Helmholtz equation
Au + k*u = 0 for |z| > Ry and wave number k € R~q such that

lim lu|*ds = 0.
R— |1“=R

Then u vanishes for |x| > Ry.

Proof. The general solution of the Helmholtz equation in the exterior of B (0, Ry) is given by (1.13)

(instead of the pair of linearly independent solutions j, and y,, we consider the pair j, and h,(f));
that is,

0 n
— Z Z [ mp O (kr) + bmjn(kr)] Y™(#), #eStr> R,

for some a]', 0" € C. The spherical harmonics {Ynm tm| <n,ne NO} form an orthogonal system of

L*(S?). Therefore, Parseval’s theorem yields, defining u,(Z) := u(rz) for 2 € S,

o]

||| L2 gn-1y = Z Z V(kr) 4 0™, (kr)?

n=0m=—

where

furlozey = | @) ds@) = | utra)l dsa) - f O L dsy)

r2

having done in the last step the change of variables y = r& that takes & € S(0,1) to y € S(0,r), being
the determinant of the jacobian of the inverse mapping T%

That is,
I

n=0m=—n
The assumption of the theorem says precisely that the right-hand side tends to 0 when r — oo.
Therefore, the left-hand side tends to 0 as well when r — co. In particular, for every fixed n € Ny
and m with |m| < n, we have that

)+ 523ahn)| = [ Jut)? dsto)

S(0,r)

2| b (k) +bnmjn(kr)‘ =%,

Defining ¢! = a* 4 0" and using that WY = j, + i yn, we can write it as
7—00

r- [mnmyn(k‘r) + cnmjn(kr)] —0.

Now we use the asymptotic behavior of j,(kr) and y,(kr) as r tends to infinity. By Theorem 5.4.4,

e (i-5m+1) 1+o(ﬁ)] 5] = o0,

z
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Z
£

Since j, = Re(h%l)) and y, = Im(hg)), we have that

uniformly with respect to

kr -y, (kr) = kr- Im(hg)(k‘r))
and
kr - o (kr) = kr - Re(hD (kr)).

Therefore, using the above asymptotic expression from Theorem 5.4.4, we have that

0= lim[i-a) - kryn(kr)+c - kr-jo(kr)]

r—00

=i-a-Im exp(i(k‘r—g(n+1))> +c' - Re exp(i(k;r—g(n—i-l))) +O(%>.

Therefore, the only possibility is that

lim [ia - Im(exp(i - ...)) + ¢ - Re(i-...)| = 0.

n
7—00

Notice that
exp <ik7“ — zg(n + 1)) = ek emis (D) — pikr gyl

The values of (—i)"™! alternate between 1 and +i. Therefore, we have to consider two cases.

o If (—i)"™! = +i, then Im(e™*" - (£i)) = £ cos(kr) and Re(e®" - (i)) = Fsin(kr) (notice that
they have opposite signs). Therefore, in this case we have

+[ia™ cos(kr) — ™ sin(kr)] == 0.

o If (—i)"*t = £1, then Im(e™*" - (£4)) = £sin(kr) and Re(e™*" - (£i)) = + cos(kr) (notice that
they have the same sign). Therefore, in this case we have

+[ia™ sin(kr) + ¢™ cos(kr)] =2 0.

In any of the two cases, we can choose sequences {r;};en such that r; — oo when j — oo in such
a way that sin(kr;) = 1 and cos(kr;) = 0 and in such a way that sin(kr;) = 0 and cos(kr;) = 1.
Therefore, we conclude that a]' = 0 = ¢]'. So we also have 0" = 0.

This reasoning is valid for all n, m. Therefore, u = 0, as we wanted to prove. n

Theorem 1.7.2. Let D be a bounded domain with boundary 0D of class C?. Let v be the unit normal
directed into the exterior of D, and assume u € C? (R3\D) nC (R3\D) 15 a radiating solution to the
Helmholtz equation with wave number k > 0 for which

Then u = 0 in R3\D

Proof. From the identity (1.10) and the assumption of the theorem, we conclude that the hypothesis
of Rellich’s Lemma 1.7.1 is satisfied. Hence, the theorem follows. n
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Applying Rellich’s lemma we can now prove that the far field pattern uniquely determines a
radiating solution (the converse is also true because the far field pattern is defined for a given
radiating solution, so Rellich’s lemma establishes the one-to-one correspondence between radiating
waves and their far field patterns).

Theorem 1.7.3. Let D be as in Theorem 1.7.2 and let u € C? (R3\D) be a radiating solution to the
Helmholtz equation for which the far field pattern vanishes identically. Then u = 0 in R3\D.

Proof. Since from (1.14) we deduce

1
J lu(x)|?ds = f |t () “ds+ 0 (;) , T — 0
|x|=r S2

the assumption u, = 0 on S? implies that the assumption of Rellich’s lemma is satisfied, because

LH lu(2)[2ds = O (}%) .

Therefore, the theorem follows. O

Remark 1.7.4. Rellich’s Lemma is also important to prove uniqueness of many scattering problems.
For an application of such kind, see for example Theorem 3.23 of [21], pages 131-132.

1.8 Remarks to Chapter 1

Weaker hypothesis

To begin with, we can weaken the hypothesis made in some of the theorems. In the theorems about
representations formulas, we have asked that u is in C?(D) n C'(D) or in C?(R3\D) n C*(R*\D),
where D is an interior domain. This hypothesis can be relaxed, taking u to be continuous up to
the boundary instead of C'. But then, we need to understand the normal derivative in the sense of
uniform convergence:

Z—Z(x) = lim v(z) - Vu(zr — hv(r)), x€dD,

h—0*t

so to make the reasonings of the proofs of the representation theorems one has to integrate over
paralel surfaces instead of directly on the boundary. For a description of this concept, see [22], pages
84-85, or [12], page 37.

Regularity of solutions to Helmholtz equation

It can be proved that any C? solution to Helmholtz equation is in fact analytic. For a proof, see
Corollary 3.4 of [21].
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Chapter 2

Dual Systems, Fredholm Alternative and
Lax’s Theorem

In this chapter we develop some of the tools that we will need later. More specifically, we give a
brief survey/overview of the theory of dual systems, which tries to generalize Hilbert Space Theory
(Riesz Representation Theorem, Fredholm alternative...). We skip all of the proof except the one
of Lax’s Theorem. Our reference is Chapter 4 of the book of Kress [22].

In this chapter we assume that all vector spaces are complex (the real case can be treated analo-
gously). Unless stated otherwise, in this chapter G < R™ denotes a nonempty compact set.

2.1 Dual systems via bilinear forms
Definition 2.1.1. Let X, Y be vector spaces. A mapping

(X xY —>C
is called a bilinear form if

{arpr + a2, ) = oy {1, ¢) + az {pa, V),
<§0a 61¢1 + 52¢2> = 61 <§0a 77Z)1> + /62 <§07 ¢2>

for all 1,9, 0 € X, U1, 09,1 € Y, and ay, ag, 1, B2 € C. The bilinear form is called non-degenerate
if for every ¢ € X with ¢ # 0 there exists ¢ € Y such that {¢,1¢) # 0; and for every ¢ € Y with
1 # 0 there exists ¢ € X such that {p,v) # 0.

Definition 2.1.2. Two normed spaces X and Y equipped with a non-degenerate bilinear form
(,): X xY — C are called a dual system and it is denoted by (X,Y").

A classical example of a dual system is the following.

Theorem 2.1.3. Fach normed space X together with its dual space X* forms the canonical dual
system (X, X*) with the bilinear form

{p,F):=F(p), peX,FeX*
Proof. See Theorem 4.3 of [22], page 46. 0

Another example is the classical integral of a product {f,g) = SG fg, which can be considered
over a vector space such as C'(G) (the space of continuous functions defined on G) instead of L?(G).

23
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Theorem 2.1.4. Let G < R™ be a nonempty compact set. Then {(C(G),C(Q)) is a dual system with
the bilinear form

(o) = f p@yp(x)dz, o< C(G).

G

Proof. See Theorem 4.4 of [22], page 46. O

Adjoint of an operator in a dual system

Definition 2.1.5. Let (X;,Y7) and (X5,Y5) be two dual systems. Then two operators A : X; —
Xo, B : Yy — Y] are called adjoint (with respect to these dual systems) if

(Ap, 1)y = (@, B)

for all p € Xy,v € Y3. (where {-,-); denotes the bilinear form of (X;,Y;) and {:,-)s denotes the
bilinear form of (X3, Y3)).

Theorem 2.1.6. Let (X;,Y7) and (X5,Y3) be two dual systems. If an operator A : X1 — Xy has
an adjoint B : Yo — Y7, then B is uniquely determined, and A and B are linear.

Proof. See Theorem 4.6 of [22], page 46. O

The typical example is an operator given by a continuous or weakly singular kernel (see Definition
5.1.18 of the Appendix).

Theorem 2.1.7. Let K be a continuous or a weakly singular kernel. Then in the dual system
(C(@),C(Q)) the (compact) integral operators defined by

Jny y)dy, z€G,

and

JKy, y)dy, z€G,

are adjoint.
Proof. See Theorem 4.7 of [22], page 47. O

Remark 2.1.8. Note that not every operator has an adjoint. For example, the operator A : C[0, 1] —
C'0, 1] defined by Ay := ¢(1) is a compact operator that does not have an adjoint operator with
respect to the dual system (C[0,1],C[0,1]) of Theorem 2.1.4. We can prove it by reductio ad
absurdum: suppose B : C[0,1] — C[0,1] was an adjoint of A. We can choose a function ¢ € C[0, 1]

with So x)dz = 1. By the Cauchy-Schwarz inequality,

= lp()| = [CAp, )] = [{p, BY)| <[] B2

n

for all p € C[0, 1] with ¢(1) = 1. Considering this inequality for the sequence (¢,) with ¢, (x) := x
we arrive at a contradiction, since the right-hand side tends to zero as n — co.

The following is a classical result.
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Theorem 2.1.9. Let A : X — Y be a bounded linear operator mapping a normed space X into a
normed space Y. Then the adjoint operator A* : Y* — X* with respect to the canonical dual systems
(X, X*) and (Y, Y*) exists. It is given by

A*F = FA, FeY*
and is called the dual operator of A. It is bounded with norm ||A| = | A*|.

Proof. See Theorem 4.8 of [22], pages 47-48.
[

Remark 2.1.10. It can be shown that under the assumptions of Theorem 2.1.9 and assuming that
Y is a Banach space, the adjoint operator A* is compact if and only if A is compact.

2.2 Dual Systems via Sesquilinear Forms

We can develop a similar theory for sesquilinear forms instead of bilinear ones.

Definition 2.2.1. Let X, Y be linear spaces. A mapping (+,-) : X x Y — C is called a sesquilinear
form if
(o1 + o, ¥) = i (p1,9) + az (92, 1),

(@, By + Parps) = B (@, 1) + Bo (@, 12)

for all ¢1,¢2, 0 € X,91,199,% € Y, and oy, a9, 81,52 € C. (Here, the bar indicates the complex
conjugate.)

The definitions and theorems formulated for non-degenerate bilinear forms can be adapted to
non-degenerate sesquilinear forms and are still true.

Remark 2.2.2. Sesquilinear forms differ from bilinear forms by their anti-linearity with respect to
the second space. However, they are closely related: assume there exists a mapping = : ¥ — Y with
the properties (813 + 521/12)* = Bﬁﬁf + BQ¢; and (@/’*)* = ¢ for all P1,99,9 € Y and p1, 52 € C.
Such a mapping (called an involution) provides a one-to-one correspondence between bilinear and
sesquilinear forms by (p, 1) = {(p,¢*). For example, in the space C(G) the natural involution is

given by ¢*(z) := ¢(z) for all z € G and all ¢ € C(G).

Hilbert Spaces

As we have already said in the introduction to this chapter, (pre-)Hilbert spaces are a particular case
of dual systems. Indeed, any scalar product on a linear space X can be seen as a non-degenerate
sesquilinear form that is symmetric, that is, (¢,v) = (¢, ¢) for all ¢,1 € X, and positive definite,
that is, (¢, ) > 0 for all ¢ € X with ¢ # 0. Thus each pre-Hilbert space is a dual system
canonically.

For this special case, we recall some well-known theorems that we will use later:

Theorem 2.2.3 (Riesz Representation Theorem). Let X be a Hilbert space. Then for each bounded
linear functional F': X — C there exists a unique element f € X such that

F(o) = (p, f)

for all ¢ € X. The norms of the element f and the linear function F' coincide, i.e.,

I = 1£1-
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Proof. See Theorem 4.10 of [22], page 49. O

Remark 2.2.4. The Riesz Representation theorem establishes the existence of a bijective anti-linear
mapping J : X — X* between a Hilbert space and its dual space, given by

(J(Ne) = (. f)
for all ¢, f € X, which is isometric in the sense that it preserves the norms.

As opposed to what happened with general dual systems (even for compact operators, as seen in
an Remark 2.1.8), any bounded linear operator on a Hilbert space has an adjoint. This is thanks to
the Riesz Representation Theorem, which is not true in general for dual systems.

Theorem 2.2.5. Let X and Y be Hilbert spaces, and let A : X — Y be a bounded linear operator.
Then there exists a uniquely determined linear operator A* :' Y — X with the property

(Ap, ) = (@, A™Y)

for all p € X and ¢ €Y, i.e., A and A* are adjoint with respect to the dual systems (X, X) and
(YY) generated by the scalar products on X and Y. The operator A* is bounded and |A*| = | A]|.
(Again we use the same symbol (-,-) for the scalar products on X and Y'.)

Proof. See Theorem 4.11 of [22], page 50.
O]

Theorem 2.2.6. Let X and Y be Hilbert spaces and let A : X — Y be a compact linear operator.
Then the adjoint operator A* 1Y — X 1is also compact.

Proof. See Theorem 4.12 of [22], page 50.

2.2.1 Lax’s Theorem

The following theorem is due to Lax and provides a usefool tool to extend results on the boundedness
of linear operators from a given norm to a weaker scalar product norm.

Theorem 2.2.7 (Lax). Let (X, |- |x) and (Y, |- |y) be normed spaces equipped with scalar products'
(-, )x and (-, ")y respectively and suppose that there exists a positive constant C' > 0 such that

(0, ¥)x[ < Clleolx - 9] x (2.1)

for all p,9p € X. Let U < X be a subspace and let A: U — Y y B:' Y — X be bounded linear
operators that satisfy

(Ap, )y = (¢, BY)x (2.2)

forallpeU,veY.
Then A: U — 'Y is bounded with respect to the norms induced by the scalar products. We will
denoted these norms by || - |s.x and | - ||sy-

!These scalar products do not need to induce the norms || - | x and | - ||y
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Proof. Let M == Bo A: U — X. Then M is bounded because it is a composition of bounded
operators, and we have |M|y_x < |B|y-x - |A|v-y-
M is self-adjoint, that is:
(Mo, v)x = (¢, MY)x (2.3)

for all ¢, € U, because when we apply (2.2) we obtain:

(2.2) (2.2)

(907 Mw>X = (907BA¢)X (lpoASO)X = (vaSO)X = (M()va>X

By Cauchy-Schwarz inequality,
Mol x = (M"p, M™p)x = (¢, M*"0)x < [lglsx - [M*plsx < [M*"p|lsx

for every ¢ € U with |¢||s < 1, and every n € N.
From this, by induction, it follows that

[Melsx < IM* ol x, (2.4)

for all ¢ € U with [|p]s x < 1, because

n

1/2 1/2 n -
Mol x < [M20]Y% < (IM*]Y3)? < ... < |MP g%y

From (2.1) we have that

1/2
[elsx = ()% < (Clelxlelx)? = VT - lolx.

(2.1)

That is,
lolls,x < VO lelx. (2.5)

Therefore, for all n € N,
IMelox < 1M < VO M7 gl
(2.4) (2:5)
< VO M - Lol

M bounded

<V Jelx]*" - [ Mu-x-

Taking lim,,_,,, we obtain
IMelsx < |[Myox < o0 (2.6)

for all ¢ € U with [|¢]s x < 1. By Cauchy-Schwarz inequality, we have that for every ¢ € U with
leplls,x < 1:

[A¢liy = (Ap, A)y = (. Mop)x < el x Ml x < [ M x-

(2.3) C-s (2.6) and |¢ls,x <1

Therefore, A is a bounded operator from U to Y with the norms induced by the scalar product. [J
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2.2.2 Fredholm’s Alternative

The following theorem is Fredholm Alternative for a dual system generated by a bilinear form. The
case of a sesquilinear form is analogous.

Theorem 2.2.8. Let A: X — X, B: Y — Y be compact adjoint operators in a dual system (X,Y).
Then

1. FEither I — A and I — B are bijective,

2. Or I — A and I — B have nontrivial nullspaces with finite dimension
dimN(I —A)=dimN(I — B)eN
and the ranges are given by
(I —A)X) ={feX:{f,1)=0,4eNI-B)}

and
(I=B)Y)={geY :{p,9)=0,0e NI - A)}.

Proof. See Theorem 4.17 of [22], page 55. ]

Remark 2.2.9. Note that this theorem implies that one of the four properties I — A is injective,
I — A is surjective, I — B is injective and [ — B is surjective implies the three other ones.

Usually, this theorem is applied in the following way: we have a partial differential equation
expressed in terms of a compact operator. Then, Fredholm’s Theorem guarantees that if we have
uniqueness of the solution (i.e. injectivity with respect to the initial data), which usually is easier to
prove, then we have existence as well.



Chapter 3

Scattering in an Inhomogeneous medium

For the remaining chapters of this essay, we are going to consider the direct scattering problem of
acoustic waves by an inhomogeneous medium of compact support.

To study the problem, we are going to use the method of integral equations. Since there will not
be boundary conditions, we will only use volume potentials (instead of surface potentials such as the
single- or double-layer potentials).

The structure of the chapter is the following;:

We begin the chapter by deriving the linearized equations governing the propagation of small
amplitude sound waves in an inhomogeneous medium.

We then reformulate the direct scattering problem for such a medium as an integral equation
known as the Lippmann-Schwinger equation.

Then, in order to apply Fredholm’s theorem (that is, in order to prove uniqueness of the
homogeneous equation), we prove a Unique Continuation Principle. This allows us to prove
the existence of a unique solution to the Lippmann-Schwinger equation, and therefore the
existence and uniqueness of a solution to the scattering problem.

Finally, we investigate the set F of far field patterns of the scattered fields corresponding to
incident time-harmonic plane waves moving in arbitrary directions (i.e., waves whose space
dependent part is of the form e~**? for d € S? arbitrary). By proving a reciprocity relation for
far field patterns, we show that the completeness of the set F is equivalent to the nonexistence
of an specific type of eigenfunctions (called Herglotz wave functions) for a new type of boundary
value problem for the Helmholtz equation called the interior transmission problem.

Lastly, we define the concept of non-scattering inhomogeneity and relate it to the transmission
eigenvalue problem.

For this chapter, we follow [13], sections 8.1-8.4, and [19], sections 7.1-7.3.

3.1 Physical model

In this section, we give a brief description of the physical model. For a detailed deduction of the
model, see [19], pages 239-241, or [13], pages 304-306.

By a deduction analogous to that needed in Chapter 1 to deduce Helmholtz equation, making
several assumptions to simplify the model, it can be shown that, if we consider acoustic waves

29
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travelling in a medium such as a fluid and suppose that the linear part of the pressure of the fluid
p(z,t) is time-harmonic, i.e.,
p(z,t) = po + epi(z,t) + O(e?),
with
pi(z,t) = Re[u(z)e ]
for some frequency w > 0 and a complex-valued function u which only depends on the spatial variable,
then the wave behavior can be modeled by the following equation for u:

Au(z) + C(“’T; (1 + @%) w=0. (3.1)

In free space (that is, outside the inhomogeneity), ¢ = ¢¢ is constant and y = 0. We define the wave
number and the index of refraction by

2
k=250 and n(x) = % <1+2’1)

Co c(x)? w

respectively. Notice that n is a complex-valued function with Ren(z) = 0 and Imn(z) > 0. Notice
that outside the inhomogeneity, since ¢ = ¢y and v = 0, then n(x) = 1. So we assume that the
inhomogeneous region, let us called it D = R?, is given by

D = supp(m)

where m is defined as
m(z) =1-n(x), zelR’ (3.2)

Since we are considering inhomogeneities of compact support, D = supp(m) is assumed to be com-
pact.
With these definitions, equation (3.1) takes the form

Au + kE*nu = 0.

We assume that there exists a source (outside the inhomogeneity) which generates an incident field
u’ that satisfies the unperturbed Helmholtz equation Au’+ k?u’ = 0 outside the sources (for example,
if a whistle is taking place at a point z in space, it satisfies Helmholtz equation outside this point,
i.e., in R*\{z}). We typically imagine that u’ is generated by a point source or that it is a plane
wave; that is, the time-dependent incident fields have the form

ezk\x—z\

pi(z,t) = Re [e’klx_z‘_’m] ;  thatis, u'(x)

I :|a:—z|’

for a point source at z € R3, or

pi(z,t) = Re [eiké’x_m] ; thatis, u'(x) = eiké'fﬁ,

for plane wave travelling in the direction of a unit vector 6 e R3.

In both cases, u® is a solution of the Helmholtz equation Au’ + k?u’ = 0 in R3\{z} or R? respec-
tively. In the first case, the pressure p¢ describes a spherical wave that travels away from the source
with velocity ¢p = %. In the second case, p? describes a plane wave that travels in the direction 9
with velocity cp.
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The incident field is disturbed by the inhomogeneous medium (D,n) described by the index
of refraction n and produces a scattered wave u®. The total field u = u’ + u® satisfies the equation
Au+Ek*nu = 0 outside the sources; that is, the scattered field u* satisfies the inhomogeneous equation

Au® + E*nu® = k(1 — n)u’

where the right-hand side is a function of compact support in D. Furthermore, we assume the
scattered field u® to behave as a spherical wave far from the medium (see description (1.14) to
understand what we mean). We describe this, as in Chapter 1, by Sommerfeld Radiation Condition

ou(x) . 1
T—Zku(x)zO(ﬁ) as r = |z| — oo,

uniformly in o] € S?. The smoothness of the solution u* depends on the smoothness of the refractive
index n. We Lave now described a quite complete model of the direct scattering problem.

Direct Scattering Problem

Let the wave number k > 0, the index of refraction n € L*(R3) with n = 1 on R*\D, and the
incident field 4’ be given. The scattering problem is to determine the scattered field u* that satisfies

the equation '
Au® + E*nu® = E*(1 — n)u’

lim r (6u — ikus) =0
- or

and the radiation condition

uniformly for z = |;”—| e S%

3.1.1 Summary of the model
To fix ideas, equation Au + k*n(x)u = 0 governs the propagation of time-harmonic acoustic waves
of small amplitude in an inhomogeneous medium. We shall only consider the simplest case:
e The inhomogeneity (D,n) is determined by the inhomogeneous region D < R? and the refrac-
tive index n, with D = supp(1 — n). We further assume that:
— The inhomogeneous medium is slowly varying. This translates in the fact that ¢ and ~,
and therefore n, are assumed to be piecewise continuous at least.
— That the inhomogeneity is of compact support, which means that D is bounded or, equiv-
alently, that the support of 1 — n is compact.
Later, we will specify some regularity of the boundary ¢D.
e The region of propagation under consideration is all of R3.
e The wave motion is caused by an incident field u’ satisfying Helmholtz equation, which is
scattered by the inhomogeneous medium.

Under these conditions, the scattering problem under consideration is to find u (or, equivalently,
u®) such that
Au+ k*n(z)u = 0 in R? (3.3)

u=u"+u’,

lim r <8u - ikus) =0, (3.5)

T~ or
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Remark 3.1.1. In general, we will assume that the refractive index n is real and positive. If we want
to include the possibility that the medium is absorbing, then the refractive index has an imaginary
component (see [13], page 306):

) = mi(x) + 125,

(3.6)

where ni(x) = Re(n(x)) = 0 and ny(z) = Im(n(z)) = 0.

3.2 The Lippmann-Schwinger Equation

The aim of this section is to derive an integral equation that is equivalent to the scattering problem
(3.3)-(3.5) where we assume the refractive index n of the general form (3.6) to be piecewise continuous
in R? such that

m=1—n

has compact support and
ni(z) >0 and no(z) =0

for all x € R®. Throughout this chapter, we shall always assume that these assumptions are valid
and let D = supp(m) = {x € R® : m(x) # 0} (the last equality being true because m is piecewise
continuous).

To derive an integral equation equivalent to (3.3)-(3.5), we shall need to consider the volume
potential

ue) = | o)y, e R (3.7
R
where oy
1 ey
d -_—
($?y) 47T |x_y|7 x¢y?

is the fundamental solution to the Helmholtz equation and ¢ is a continuous function in R3 with
compact support, i.e., ¢ € C.(R?). We do not consider surface potentials (like the single or double
layer) since we do not have boundary conditions.

3.2.1 Mapping properties of the volume potential
The main result about the volume potential is the following:

Theorem 3.2.1. The volume potential u given by (3.7) exists as an improper integral for all x € R3
and has the following properties. If p € C.(R3) then u € CY*(R3) and the orders of differentiation
and integration can be interchanged. If p € C.(R?) n C%*(R?) then u € C**(R?) and

Au + K*u = —p in R (3.8)

In addition, we have
[ull2,02 < Clplars

for some positive constant C' depending only on the support of ¢. Furthermore, if ¢ € Co(R?) n
C12(R3), then u e C>*(R3).

Proof. The theorem follows from a slight modification of Theorem 3.9 and Corollary 3.10 of [21],
pages 107-110. We skip the proof since it is quite technical and needs a couple of lemmas. The idea
to prove the Holder estimates is to bound ® and its partial derivatives so that, differentiating under
the integral sign, we can bound the volume potential and its partial derivatives. O
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Generalizations for H? functions

Since for piecewise continuous n we cannot expect C? solutions of (3.4) (because if v € C? and
Au + k*nu = 0, every term is continuous except for n) we require the solutions to belong to the
Sobolev space H7 .(R?) of functions with locally square integrable weak derivatives. So we want to
generalize the results of Theorem 3.2.1 to Sobolev spaces.

First, we use Lax’s Theorem 2.2.7 to extend the mapping properties for the volume potential for
Holder spaces given in the previous theorem to the more general setting of Sobolev spaces.

Theorem 3.2.2. Given two bounded domains D and G, the volume potential

(V) (z) = L Oz, y)ely) dy, xeR’,

defines a bounded operator V: L*(D) — H*(G).

Proof. Let B be an open ball such that G = B (there exists such a ball since G is bounded) and let
v € C?(B) be such that

v(z) >0 VreB
v(x)=1 Vred

We want to use Lax’s Theorem 2.2.7 to generalize the mapping property of the previous theorem from
Holder spaces to Sobolev spaces. The previous theorem gives a mapping property for the volume
potential from C%*(D) to C**(D). Therefore, following the notation of Lax’s theorem, the known
spaces we need to consider are X = C%*(D) e Y = C**(B) equipped with their respective usual
Holder norms. Now, we need to introduce a scalar product on each of them:

1. On X, we define the scalar product of L*(D):

(u,v)x = JDu-E.

2. On Y, we define the following weighted Sobolev scalar product:

3 _ 3 _
du v *u 0*v
= - —_— . — . d .
(w,v)y JBV wev 12 ox; 0x; * 132— 0x;0x; 0x;0%; v
Notice that condition (2.1) of Lax’s theorem is satisfied, because

fui
D

= vol(D) sup [u(z)| - sup [v(z)| < Cllulcop)|vleonp) = Clulx|vlx,
xe e

[(u, 0)x| =

< f ] - Jo] < j sup [u(z)] - sup [v(x)
D D

xeD xeD

where C' = vol(D) > 0 is the measure of D with respect to the n-dimensional Lebesgue measure.
Now, let

(V) (x) = j b(y) - Ble.y)dy, VpeY

(it is the same definition as for V', but we integrate over B instead of over V).
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To be able to apply Lax’s theorem, we want to choose a vector subspace U < X and to find an
operator W:Y — X which is the adjoint of V: U — Y, that is, an operator such that

Ve, )y = (o, Wip)x VYeoeUpeY.

In order to do so, we need to integrate by parts on the expression

3 3
(chb)y:fv Z (V))(00) + Z 0:0;(V0))(6:0;0) | du.

B

We study this expression term by term.

First term. We begin by studying expressions of the form §,~ - (V) - ¢ dz. Recall that v is a
(bump) function (not a scalar).
We have

vw®($’y) = —qu)<5(],y), (39)

since

Vo®(2,y) = f'(ry(z)) - Vry(z) = f(ra(y) - (=Vra(y)) = =V, (2, y)

ikr

where f(r) = <, ry(z) == |z —y| for € R3, and r,(y) == |v — y| for € R?, having used that
Vra(y) = —Vry(2).
Using this and Fubini’s theorem we have that, for p € X and ¢y € Y,

Lwaw»wmzL¢WWwwMa (3.10)
[ e vie= [+ ([m W) dy) (o) do
= L( Bv )@ (2, y)p(y)Y (v )drr> dy
=L<Bv w@mﬂ¢@my
- | v st an

Second term. Now we move on to the second term, which is formed by integrals of the form

f v-0;(Vp) - 0ivde.
B

For p € X y 9 € Y we have that

0 o 0 oY
va-axngo'&xidx— JDQO é’xzv <7 5!13@) . (3.11)
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because using again (3.9) and Fubini’s theorem we obtain

va. ai:i(W) : SZ dr = | y(z) - a‘; <JD<I)(x,y)gp(y) dy) . S;P () dz =

- [ 2@ ([ S neti) o

- [ 2@ ([ S nem ) 2w -
[ [ 2w (<5 v ey -
[ et ([ S o) @) dy -

JD B oy; ox;

[ o ([ 2o o) ) dy -

JD 0y
[ O

) aw)
R v : d
], o <7 o, (y) dy

.
Sy

—
sy

-

Third term. Now, we study the third term, which involves integrals of the form
| @awen- @ as
B

For ¢ € C1(D), we have

aii L x,y) - ply) dy = fD 2—2@, y) - ely) dy
= ; —g—i(fﬂ,y) ~o(y) dy
= | ®ly) 2;; (y) dy — LD O(z,y) - p(y) - v'(y) ds(y)
- [ e Fway

having used in the last step that ¢ has compact support. That is the reason to choose ¢ € C}(D):
to eliminate the boundary terms after integrating by parts. So,

0 dp
VeV <8xi) . (3.12)
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y (3.11), for p € C}(D) and ¢ € Y, we have that

B
0 0% 0 0%
J,ﬂ (axiaxj (W)> ' (axiax) @ 3 L”a_xiwaj@”) Gman, @
1

0 0 ‘
— * j
T JD © - 690] o V*(y-0:i0,0)d f - 0;0;9) - vV ds

L - 0,0V (v - o)) da

That is,

f W6:d,(Vg)) - (6:0,0) da = f - 50 (V*(v-6,0,0)) de Ve CAD), b eY = C*(D). (3.13)
B D
Therefore, the choice of the subspace U must be
U:=CYD)c X.

Using (3.10), (3.11) and (3.13), we want to find W: Y — X the adjoint of V': U — Y, that is, the
operator that satisfies

Ve, )y = (p, Wih)x  VpelUpeY.
Let us find it.

Ve, ¥)y = J

B

7[( Z (0;(V))(0;0) Z (0:0; Vgp))((?(?v)] dx

f’ngo vda:—ka’y o;V - ovdr + EJ (0;0;,V ) - (0id)) dx

2,7=1

Applying (3.10) to the first term, (3.11) to the second, and (3.13) to the third, we obtain:

Vo, )y = fcp V*(v - 7) dm+2 J OV (- 0) + ngp 0:0;V*(v - 0:0,7)

4,7=1

3 3
- [ [v*w—m D NAMCEORY aiajW*(v-aiaﬁ))]
JD i=1 i,7=1
= f oW dx
JD
= (0, W) r2(py
= ((107 Ww)Xa

having defined W as the operator

3 3

Wip = V*(y-v) - Z oiV*(y - 0iv) + 2 0;0;(V*(v - 0:00))

i=1 i,j=1
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That is, the adjoint of V': U — Y is the operator W: Y — X given by

3 /T A=\ 3 —
—_ o . ov o . 0%

(Notice that since v takes only real values, its conjugate is itself).

By Theorem 3.2.1, V and W are bounded with respect to the Holder norms of their spaces of
definition. Therefore, because of Lax’s Theorem 2.2.7), V: U — Y is bounded with respect to the
norms induced by the scalar products, i.e., there exists a constant C' > 0 such that

[Velsy <C-lelsx Veoel.

Using that |- [sx = | - |z2(p), that U = C}(D) and that the norm of ¥ (because of how we have
defined ) dominates the norm of H*(G) (i.e., |u|g2(q) < |uls,y ), we have that there exists a constant
C' > 0 such that

Velnae < C - lelzw)y Yo e Co(D).

The proof is concluded if we observe that C!(D) is dense in L*(D). O
Using this mapping property, we can extend (3.8) to H? functions.

Proposition 3.2.3. Let ¢ € L2(D). Then u = Vo € H}

2 (R3) satisfies (3.8) in the H? sense (i.e,
almost everywhere in R?).

Proof. Let ¢ € L*(R®). The density of C%*(R") in L?(R?) implies that there exists a sequence

{¢n} = C¥*(R™) such that ¢, z, . We can take this sequence with supports contained in B(0, R)
for some R > 0 such that supp(p) < B(0, R).

By Theorem 3.2.2, V is continuous from L?(B(0, R)) to H?*(D) for any bounded D < R3, so

Vn H1D), Vi for every bounded D.

Therefore, fix a bounded domain D. Let u, := V¢, and u = V. By Theorem 3.2.1,
AV, +k* Ve, =—p, inR® VYneN.

That is,
Au, + k*u,, = —p, In R® neN.

Since u,, are bounded in H?(D) (because, since they are a convergent sequence, |u,| g2(py < Clu|m2(p)),
Theorem 5.1.23 from the Appendix (which we can apply since H?(D) is a separable Hilbert space,

therefore reflexive) gives us that u, — u in H?(D). Besides, by Rellich-Kondrachov’s Compactness

2
Theorem (see Theorem 5.1.12 of the Appendix), u, LD

Since ||[un| m2(p) < Cllu| g2y, then |Auy|2py < Clullp2(p), so Auy, is a bounded sequence in
H?(D). Therefore, again by Theorem 5.1.23, Au, — f in L*(D). By theorem 5.1.8, we have that
Au, — Au in L*(D).

Given ne CF, f,(¢) = (¢ -n for ¢ € L? is a bounded linear functional in L?. Therefore, we have
that

lim J(Aun + K u, 4+ 0n) o = J(Au + Eu+ o) .

The integrand of the left-hand side is 0 for every n € N. Therefore

J(Au+k2u+gpn)-n—0
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for every n € C*(R3).

So by the theorem of convergence of Approximations of the Identity (see Theorem 5.1.3 from the
Appendix), taking 7 so that the product (Au+ k*u+ ¢,) -7 is the convolution with an Aproximation
of the Identity, we have that Au + k?u = —¢ almost everywhere in D. Since this can be done for
every bounded domain D in R?, we have that Au+ k?u = —¢ almost everywhere in R3, as we wanted
to prove. ]

For a bounded domain D < R? with C? boundary, the Sobolev embedding theorem states that
H?(D) functions are continuous. Moreover, Green’s integral theorem remains valid for functions
u € H?(D) (see Lemma 5.1.7 of the Appendix).

Therefore, the proof of Green’s representation formula for bounded domains (Theorem 1.3.1) can
be carried over to H? functions, since the only tools used in it are the continuity of the function u
and Green’s second formula (5.5), and we can use them for u € H? as we have just reasoned. Well,
to be precise, we used in (1.1) one more condition: that the L* norm of the gradient was bounded.
This can be avoided if we use instead the Cauchy-Schwarz inequality, obtaining

r—0t

L( ) (Vu(y) - v(y)|ds(y) < |Vulresemno (S, r) < C|\Vu|rzpem)r’ —— 0.

having used the trace inequality (Theorem 5.1.13) in the penultimate step because v € H?*(D) so
V|, € HY?(0D), and on the last step that Vu € H'(D) and therefore | Vul|z2(p@.ry) < |[Vulz2(p)
for r sufficiently small.

In particular, the formula for a solution of Helmholtz equation (1.3) remains valid for H? solutions
to the Helmholtz equation. This implies that H? solutions to the Helmholtz equation automatically
are C? solutions, since we can differentiate under the integral sign in expression (1.3) using Theorem
5.1.2 of the Appendix. Therfore, the Sommerfeld Radiation Condition is well defined for H? solutions.

3.2.2 Reformulation of the scattering problem

We now show that the scattering problem (3.3)-(3.5) is equivalent to the problem of solving the
integral equation

u(z) = u'(z) — k* JR?) O(x, y)m(y)u(y)dy, =xeR? (3.14)

for v which is known as the Lippmann-Schwinger equation.

Theorem 3.2.4. If u € H (R?) is a solution of (3.3)-(3.5), then u is a solution of (3.14). Con-
versely, if u € C(R?) is a solution of (3.14) then v e HZ (R?) and u is a solution of (3.3)-(3.5).

Proof. Let uw € H? (R?) be a solution of (3.3)-(3.5). Let z € R3 be an arbitrary point and choose an
open ball B (with unitary exterior normal v) that contains the support of m and the point = (i.e.,
supp(m) < B and = € B).

We can apply Green’s representation formula (Theorem 1.3.1) to u on B (since B is compact, so
u € H*(B) and therefore, by the discussion previous to the theorem, Green’s representation formula



3.2. THE LIPPMANN-SCHWINGER EQUATION 39

can be applied) to the first integral of the following expression, obtaining that for z € B
u(y) aq)(w,y)] 2 J
u(y)———=| ds(y) — k O (x,y)m(y)uly) dy
Jl )() ()ay(y) () B()()()

f [Au(y) + Ku(y)|®(,y) dy — k2 Lway)m(y)u(y)dy

ulz) + f [ k2n(y)u <y>+k2u<y>]¢<x,y>dy—k2f B(z,y) - m(y)uly) dy

B

I
<
—~
=
_I_
Sy ?
KA
8
s
oy

no

S
~—

+

—_

|

S

QL
<

That is,

du(y) 0%(z,y) () k2 ) ) e
LB[ay(y)q)(”’y)_“(w 0 (y) ]d (y) — k JBCI)( yy) - m(y) - u(y) dy = u(x), B. (3.15)

Since u is an entire solution of Helmholtz equation (i.e., a solution on R3), in particular it is a
solution on B, so we can apply to it Green’s representation formula (1.3) obtaining

- 2ui(y) ()
() = Oz, y) —ui(y) - ds(y), =€ B. 3.16
i - [au@) ()~ ') | ds(o), (3.16)
Since u® satisfies the radiation condition (3.5), Green’s formula (5.5) and the Sommerfeld Radiation
Condition (3.5) give us
ou’ 0P (x,-)
D —uf - = ) 1
LB[ﬁV (x,") —u o ]ds 0, zeB (3.17)

This is because, if R > 0 is such that B < B[0, R], then

O [2EW) g ) ) - C2EY) ] W) g 0@y
Ls[ﬁv(y) Oz, y) —u(y) 0(y) ]d(y)+JSRlay(y) O(z,y) — u'(y) ds(y)

= | @) awt) - Av ) dy

) r\B

ot
ot

(5.
_ L o) (R ) () 0] dy =0

for all R sufficiently big, having used in the second-to-last step that ® is a solution of Helmholtz
equation (that is, A® = —k?®) and that u® is a radiating solution of Helmholtz equation on the
exterior domain' R*\B since supp(m) = B. Therefore, we can proceed in exactly the same way as
in Theorem 1.4.6 (because u® satisfies the exact same hypothesis) in such a way that when we take
limp_,,, we have

'Recall that we already noticed this: when we wrote (3.3) as Au® + k%u® = k%(1 — n)u’, it was clear that u® is a
solution to the Helmholtz equation outside the support of m =1 — n.
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as we wanted to prove.
We combine equations (3.15), (3.16) and (3.17) with (3.4) (i.e., with u = u’ + u®) to obtain that

_ Ju(y) RN} RN - Nl
o 5 [ |5 ot~ u) - S5 s 42 [ @t pmlspato

(3.15)
_ U WY) w0 — aifan C2EY) | U W) gy s C2EY) |

—k? fB O(x,y)m(y)uly) dy n u'(z) — k? JB O (z, y)m(y)uly) dy,

(3.16) and (3.17)

which is (3.14), as we wanted to prove.
Let us now prove the converse. Let u € C(R®) be a solution of (3.14). Let define u® as

u(2) = K f (z,y) - m(y) -u(y)dy, = eR®

R3
(it’s the logical way to define it so that u = u’ + u®)

Since ® satisfies the S.R.C. (3.5) uniformly with respect to y on compact sets (see Lemma 1.4.3)
and m has compact support, then u® also satisfies (3.5), since

(-

~ lim [a- ( e ity dy) - 5= ik | SR8 ) dy>
=t ol ([ vy L ik | R mtu )

= lim |z - URS —k*V,®(z,y) - %m(y)U(y) dy — ik fRS —k*®(z, y)m(y)u(y) dy>

Slimfel [ emun (TR kb)) dy

(0]
[ Rmlaty) - ol (e (50) = iKB(o0) ) dy =0
supp(m)

r—00 or(z)

where we have used in the last step that m(y)u(y) is bounded on the support of m (u because it is
continuous, and m because it is piecewise continuous), and the limit inside the integral is 0 because
of Corollary 1.4.4, because we are considering y € supp(m), which is a compact set.

Since m is piecewise continuous with compact support, then ¢ = —k*mu € L*(D) with D =
supp(m) (since v € C(R3), so it is bounded on supp(m), thus ¢ € L®(D), and since D has finite
measure because it is bounded, ¢ € L*(D)). So by Theorem 3.2.2, Vo € H?*(G) for every bounded
domain G. That is, u® = Vp € H (R?).

loc

Besides, because of (3.8) from Theorem 3.2.1, u® = Vo satisfies
AU + k*u = k*mu = —p on R
Since v’ is an entire solution to the Helmholtz equation, i.e., Au’ + k*>u’ = 0 on R3, then

Au + k*u = (Au' + K*u') + (Au® + k*u®) = k*mu,
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that is,
Au+ k*(1 —m)u = Au + k*nu = 0

on R3, as we wanted to prove. O

Remark 3.2.5. Notice that in (3.14) we can replace the region of integration by any domain G such
that the support of m is contained in G and look for solutions in C'(G). So if we have a solution
u to (3.14) defined on a domain G that contains the support of m, we can extend it for x € R*\G
defining u(z) by the right-hand side of (3.14), and we obtain in this way a continuous solution u to
the Lippmann-Schwinger equation (3.14) in all of R3.
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3.3 The Unique Continuation Principle

In order to establish the existence of a unique solution to the scattering problem (3.3)-(3.5) for all
positives values of the wave number &, we see from Theorem 3.2.4 that it is sufficient to establish the
existence of a unique solution to the Lippmann-Schwinger equation (3.14). To this end, we would
like to apply Fredholm’s Theorem.

Define the integral operator® T: (C(B),]| - |«) — (C(B),] - |») by

) =~ | Seymudy o< B (3.18)

B

where B is a ball such that supp(m) < B (notice that, by Remark 3.2.5, it does not matter which

region of integration we choose as long as it contains the support of m). This integral operator has a

weakly singular kernel ®(z, y)m(y), since m(y) is bounded (it is piecewise continuous and of compact
1

support) and |®(z,y)| < (Tt and therefore, they satisfy Definition 5.1.18 from the Appendix for

a = 2, n = 3. Hence, by Theorem 5.1.19 from the Appendix, T: C(B) — C(B) is a compact
operator.

In terms of this operator 7', the Lippman-Schwinger equation (3.14) is equivalent to the following:
given an incident field ¢, find u € C'(B) such that

(I —T)u=u'. (3.19)

Since T is compact, Fredholm’s theorem 2.2.8 asserts that it is enough to prove injectivity® of I — T
in order to prove bijectivity (i.e. existence and uniqueness). Therefore, we must show that the
homogeneous equation has only the trivial solution, which is equivalent to* prove that the only
solution of

Au + k*n(z)u = 0 in R?, (3.20)
rh_)Iglor <g—:f - zk‘u) =0 (3.21)

isu=0
To prove this, we need a unique continuation principle. The tough part is to prove the
following lemma:

Lemma 3.3.1. Let G be a domain in R3 and let uy, . .., up € H*(Q) be real valued functions satisfying
P

|Auy| < > [[ug] + [ Vu,[] in G (3.22)
q=1

forp=1,..., P and some constant c. Assume that u, vanishes in a neighborhood of some xy € G

forp=1,...,P. Then u, is identically zero in G forp=1,..., P.

Proof. See Section 3.6 for a detailed proof of this lemma. O

ZNotice that C(B) with the maximum norm | - | (maximum, since they are continuous functions on a compact
set) is a Banach Space because it is a closed subspace of (L®(B), ||ls) (closed because the uniform limit of continuous
functions on a compact set is continuous).

3That is, the homogeneous equation (I — T)u = 0 has zero as its only solution.

4This is true because the Lippmann-Schwinger equation (I — T)u = u’ on C(B) is equivalent by Theorem 3.2.4
to (3.3)-(3.5). Since the homogeneous equation is the one with u’ = 0, equations (3.3)-(3.5) are equivalent to (3.20)-
(3.21), since u! = 0 if and only if u = u*, and therefore the radiation condition for u® is equivalent to the radiation
condition for u.
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Theorem 3.3.2 (Unique continuation principle). Let G be a domain in R and suppose u € H*(Q)
s a solution of
Au+ E*n(z)u =0

in G such that n is piecewise continuous in G and u vanishes in a neighborhood of some xg € G.
Then u is identically zero in G.

Proof. We can apply Lemma 3.3.1 to u; := Rewu and us := Imwu. This is because, by definition of
up and ug, u = uy + iup and Au = Au; + iAuy, and because, by hypothesis, Au = —k?nu. These
equations imply that

[Au] < [Au| < K2 |nlloo|ul < k2 uloollur| + [uz]]-

and the same applies to us. So u; and us are real valued functions that satisfy (3.22).

If w vanishes in a neighbourhood of some point zy € GG, then u; = Reu and uy = Imu do vanish
as well in that same neighbourhood. Therefore, by Lemma 3.3.1, u; and uy vanish identically on G,
SO u = u; + tu2 as well. O

We can now show that for all £ > 0 there exists a unique solution to the scattering problem (3.3)
- (3.5).

Theorem 3.3.3. For each k > 0 there exists a unique solution u € H}_(R®) to (3.3)-(3.5) and u
depends continuously with respect to the maximum norm on the incident field u'.

Proof. By Theorem 3.2.4, the existence and uniquenes of a solution u € H2_(R?) to (3.3)-(3.5) is
equivalent to existence and uniqueness of a solution u € C'(R?) to the Lippman-Schwinger equation
(3.14).

Notice that this is equivalent to proving existence and uniqueness of a solution u € C'(B) to (3.14)
for B a ball or any bounded region that contains supp(m), as reasoned in Remark 3.2.5.

In brief, we just need to prove existence and uniqueness of the Lippmann-Schwinger equation
(3.14) in C(B) for a ball B that contains supp(m). As argued at the beginning of this section, the
Lippmann-Schwinger equation (3.14) can be expressed as: given u’ an entire solution to Helmholtz
equation, find u € C(B) such that (I — T)u = u’ where T is defined in (3.18). We deduced that
T is a compact operator. Hence, we can apply Fredholm’s theorem, which stablishes that in order
to prove existence and uniqueness, it is enough to prove that the only solution of (I — T)u = 0 is
u = 0. This, because of the equivalences we have just explained, is equivalent to prove that the only
solution to (3.3)-(3.5) for u’ = 0 is u = 0, i.e., that if u is a solution of (3.20)-(3.21), then u = 0.

So suppose u is a solution to (3.20)-(3.21). Let B := B(0,r) be a ball of radius r centered at the
origin such that m vanishes outside of B, i.e., supp(m) < B. Let v denote the exterior unit normal
to dB. From Green’s theorem (5.4) and from Au + k?n(z)u = 0 in R? (which is true because u is a
solution of (3.20)-(3.21)) we have that

f u&_u ds = J [u- Au+ Vu - Vu] = J [—k*R|ul® + |Vul*] dz.
|z|=r |z|<r

v |z|<r
Since Im(n) = 0, Im(7) = —Im(n), and Im(Az) = AIm(z) for A € R, we have
Im (J ug—z ds> _ f Im (—&27fuf? + [Vaul?) do = k?f m(n) - [uf2de > 0. (3.23)
lz|=r lz|<r lz|<r

Therefore, Theorem 1.7.2 shows that u(x) = 0 for |z| = r. So, by the Unique Continuation Principle
3.3.2,
u(z) =0 for all x e R®.



44 CHAPTER 3. SCATTERING IN AN INHOMOGENEOUS MEDIUM

Therfore, by Fredholm’s Theorem 2.2.8, the operator I — T is bijective. Since it is linear and
bounded, Theorem 5.1.22 from the Appendix gives us that its inverse is bounded as well. That is,
the integral equation (3.14) can be inverted in C'(B) and the inverse operator is bounded.

From this, the boundedness of (I —T)~! implies that v = (I — T)~'u’ depends continuously on
the incident field u* with respect to the maximum norm (i.e., || - ||)- O
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3.4 The Far Field Pattern

From (3.14) and Theorem 3.2.4 we see that the scattered field is given by
W) =~k [ S pmu)dy, o B
R3

Remark 3.4.1. In fact, since m has compact support D = supp(m), the above integral can be taken
over D (or any measurable set that contains it). See Remark 3.2.5.

Hence, letting |z| tend to infinity, we can apply formula (1.5) to obtain

1.16)
6ik|x\ k2 i 1
_ v —ikz-y i
" ( 4ﬂ> | [ +O(,x|>]m<y>u<y>dy.
Defining
2
un(®) =~ [ e (yu(y) dy (3.24)
477' R3

for # = x/|z| on the unit sphere S?, we have that
ezkz|x| ezk|x\ k2
S — U T + -
A e

ezk|:c| . 1
= Tl '“OO“”O(W)

eik|z|

being the last equality true because < = O <i> and

||
J..o () mww t< [ Cimtullds <

|
e 2 Jal o

where the last step is true because supp(m) is compact, m is bounded and u € C'(R?), so it is bounded
on compact sets. In brief,

o (i) m(y)u(y)

||

621€|m|

w(2) = (@) + O (i) ja] > o,

|z |z
where ug, is called the far field pattern and is given by (3.24) for & = x/|z| on the unit sphere S*.

Remark 3.4.2. Up to now, we have given two definitions of far field pattern: one in Theorem 1.6.1
for arbitrary radiating solutions of Helmholtz, and the one we have just given for the scattered field
of problem (3.3)-(3.5). However, this scattered field that satisfies (3.3)-(3.5) is a radiating solution
to Helmholtz equation on R*\D: radiating because of (3.5); solution to Helmholtz equation because
(3.3)-(3.4) imply that u® + k*nu® = k*(n — 1)u’ on R3, with n = 1 on R\ D.
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So for this scattered field we have two definitions of far field pattern: the one in (3.24) and the
one in (1.15).

Let us see that these two definitions coincide. Let v be the unit normal of 0D directed into the
exterior of R*\ D (i.e., the interior of D). Then, by definition (1.15), we have

0

weld) = g [ |l e = e S| asty

4z v(y) ov
- i oD [_k2 JR:; m(y) By, 2)u(z) dz - %@eikiﬁy

— YL (k) JRB m(z) aya(y) D(y, z)u(2) dZI ds(y)
_ _% [JRJ m(z)u(z) - [LDq)(y’ Z)ayiw)e—im.y _ eikﬁ-y%(y)@(y, z) ds(y)] dz]
= _g y (z)u(z)(—e_ikf'z) dz

where in the last step we have used Green’s representation formula on the bounded domain D =
supp(m) applied to the entire solution of Helmholtz equation e=*%¥ as a function of y. Notice that,
as in Remark 3.4.1, the volume integrals can be taken over D = supp(m), and therefore it is enough
to consider z € D, with D an interior domain of class C? by hypothesis. Then, for z € D, it is
legitimate to apply Theorem 1.3.1, which is what we have done.

Notice as well that the minus sign obtained in the last step is because v is the unit normal on
0D directed into the interior of D, so we have to change the sign of the representation formula of
Theorem 1.3.1.

3.4.1 Reciprocity relation

Let us consider the case when the incident field u’ is a plane wave, i.e.,

uz(x) _ eikaz-d
where d € S? is a unit vector giving the direction of propagation.

Notation: we denote the dependence of the far field pattern u,, on d by writing u.(2) = ux(Z; d).
Similarly, we write u®(z) = v®(z;d) and u(x) = u(x;d) for the scattered field an the total field
respectively.

First, we prove a reciprocity principle for uy. uq(Z;d) represents the observation in the direction
2 of the scattered wave produced by a plane wave travelling in the direction d. Therefore, the
reciprocity principle states the (physically reasonable) fact that the observation made in the direction
Z of an object illuminated from the direction 6 is the same as the obervation made in the direction
—6 of the same object but illuminated from —2Z. Since we are dealing with acoustic waves instead
of electromagnetic ones, change the word “illumination” by “sound emited” (but light is easier to
imagine).

Theorem 3.4.3. The far field pattern satisfies the reciprocity relation

~ ~

Ueo (25 0) = ueo (—0; —2)

for all z, 6 on the unit sphere S?.



3.4. THE FAR FIELD PATTERN 47

Proof. First, notice that if u € Hf (R3) is a solution of (3.3)-(3.5) for the incident field u'(z;d) =
e then u(z) = —k* (s ®(z, y)m(y)u(y) dy is a function of class® C*(R?), and therefore u = u'+u*
also is C?(R3) (since u' is analytic as well).

Therefore, we can apply Green’s second formula (5.5): since u’ is an entire solution of the
Helmholtz equation, applying it on the interior domain B(0,a) we obtain

le:a {ui(’y; é)a—iu"(y; —) — u'(y; —:%)a—ayui(y; é)] ds(y)

- j 0 =) ) )
B(0,a

= JB(O’G) (ul(ya é) (-k%ﬁ(y; —i’)> — ui(y; — &) (—kQui(y; é))) dy = 0.
That is,
fw: lu w07, a u'(y; —&) — u'(y; — &) - ‘ u'(y 0)] ds(y) = 0. (3.25)

(7V ov

On the other hand, u* is a solution of the Helmholtz equation on the exterior domain R*\B(0, a).
Therefore, applying Green’s second formula on (5.5) on D = B(0,R)\B(0,a) for R > a, and
denoting by v the unit exterior normal to Dy, we obtain

[, | et - v ot asw
-| [ (g 6) A (s —) — (3 ~2) At (3 )] dy
(0,R)\B(0,a)
-| (s 0) (k20 ~)) — w(y: —2) (~ K (:))) iy = .
B(0,R)\B(0,a)

Since dDg = S(0,a) U S(0, R), we have that

+  (5:6) o (4, — ) — s ) (3;0) | ().
J oo 5 ]

Since u® satisfies the same hypothesis as in Theorem 1.4.6, following its proof we see that the limit
of the second integral as R — oo is 0. Therefore,

S() 0 J A s/ 0
0= L|_a [u (y; 0)5»“ (y; —2) — u’(y; —x)ayu( 9)] ds(y). (3.26)

Of the two expressions that we have for the far field pattern, we now use the one given in (1.15),
replacing the exponentials of that formula by ul, because we are considering ul(y, —1) = e (=),
We apply it to the far field patterns uy(#;6) and uy,(—6, —2), obtaining that

~

i) = | - [u%y; ) L) iy —) 9)] ds(y) (3.27)

°In fact, C*(R3); in fact, it is analytic outside of the ball B(0,a), but we will just need it to be C?(R3?).
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and

~ ~

b, 8) = [ o) ) — s ) i) ). 29

We substract the (3.28) from the sum of (3.25)-(3.27). This yields
LA 5 N . 0 N
il (@:0) — (-0, = | [ulyi) Zutys—2) — alys )5 u(u:0) | ds(o)
ly|=a v v

To obtain the statement of the theorem, it suffices to show that this expression vanishes. But this
follows directly from Green’s first formula (5.4), since

f oty 0) L uly; —2) ds(y) = L(O [y 0)u(: ) + Vu(y:0) - V() dy

and

A ~

0 A . .
|t St dsty) = | ulys - )duly:0) + Tuly: ) - Tu(y:0)] dy
lvl=a ov B(0.a)
so substracting the first expression from the second we get
| ot St =)ty —0) S utw:0) | dsto)
ylea Y v Y Y v Y; Y

- L(O ., |u(y: 0)Auly: ) — uly; ~2)Au(y;0)| dy = 0

A

having used in the last step that u is solution of (3.3) and therefore Au(y; —%) = —k*n(y)u(y; —2)

and Au(y; ) = —k*n(y)uly; 0).
Hence uy(Z;0) — up(—0; —2) = 0, i.e.,

U (23 0) = ue(—0; —2),

as desired. []

3.4.2 Completeness of the far field patterns

For applications, it is important to study if the far field patterns corresponding to all incident plane
waves are complete in L?(S?). We are going to see that the far field patterns are complete provided
k? is not a transmission eigenvalue having an eigenfunction that is a Herglotz wave function. We will
explain what are these concepts in a moment.

Definition 3.4.4. A Herglotz wave function is a function of the form
v(z) = J ekrdg(d)ds(d), xzeR? (3.29)
SQ

where g € L?(S?). The function g is called the Herglotz kernel of v.

Herglotz wave functions are understood as a superposition of plane waves, i.e., a superposition of
waves of the form e?**? with d € S?. Because we can differentiate under the integral sign and e?*¢
is a solution to Helmholtz equation as a function of x, Herglotz wave functions are entire solutions
to the Helmholtz equation.
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Remark 3.4.5. In this TFM, we have only considered scattering by an inhomogeneous medium, but
we have not said anything about the case of obstacle scattering (see Chapter 3 of [13] for a treatment
of this case). However, in the case of obstacle scattering, there is an analogous result to the one we are
going to study here for scattering by an inhomogeneous medium. In obstacle scattering, the set of far
field patterns for this problem is complete in L?(S?) provided that k? is not a a Dirichlet eigenvalue
having an eigenfunction that is a Herglotz wave function. That is, provided that Au = —k?u on
D, u =0 on dD does not have as a solution a Herglotz wave function. Herglotz wave functions are
already solutions to Au = —k?u, the set of far field patterns is complete provided that no Herglotz
wave function vanishes on ¢D. For a complete discussion see [13], pages 75-76, specifically Theorem
3.29.

In the present case of scattering by an inhomogeneous medium we have a similar result except that
the Dirichlet problem is replaced by a new type of boundary value problem: the interior transmission
problem. This name is motivated by the fact that we have two partial differential equations defined
on the same interior domain and linked together by their Cauchy data on the boundary.

We assume that D = {x € R3 : m(z) # 0} is connected with a connected C? boundary 0D and
D contains the origin.

Theorem 3.4.6. Let {d, : n € N} be a countable dense set of vectors on the unit sphere S* and
define the class F of far field patterns by

F = {ux(-,d,) : ne N}

The orthogonal complement of F in L*(S?) consists of the conjugate of those functions g € L*(S?)
for which there exists w € H*(D) and a Herglotz wave function

v(z) = L2 e *rdg(d)ds(d), xeR3

such that the pair v,w s a solution to

Aw + E*n(z)w =0, Av+k*v=0 inD (3.30)
satisfying
ow v
— _— = — . . 1
w=v, o= on oD (3.31)

Proof. Let F* denote the orthogonal complement to F. We will show that g € F* if and only if g
satisfies the assumptions stated in the theorem.

ge]:l — <Uoo(',dn),§>L2(s2) =0 VneN

< U (—dy; —3) - g(2)ds(2) =0 YneN
2
Thmn.3.43 "
From the continuity of u, as a function of d (due to the continuity of uy with respect to & and the

reciprocity principle) and Theorem 3.4.3, we obtain
J Up(—dy; =) - g(2)ds(2) =0 YVneN «— Up(—d; —3) - g(2)ds(2) =0 Vde S?
S2 S2

— | ux(d;d) g(—d)ds(d) =0 VieS?
S2
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having renamed in the last step —d — 2 and —% — d.
In brief,
geFt — | uy(d;d)-g(—d)ds(d) =0 VieS” (3.32)
82
Remark 3.4.7. What the deduction of (3.32) is really telling us is that the density of the directions
{d, }nen and the continuity of ue (&, d) with respect to the direction of propagation d allow us to pass
from

the orthogonality of § in L*(S?) to {ux(Z;d,)}, with {d,}, a dense set of directions in S?
to
the orthogonality of g in L*(S?) to the collection {uy(#;d) : d € S*} for every direction d € S?.

That is why in the statement of this theorem we stablish the equality of the orthogonal complement
of F (which depends a priori on the directions d,) and a set of functions where the directions d,
play no role (that is, the conjugate of those functions for which there exist solutions of a specific
kind to the problem (3.30) and (3.31)). So we could substitute the countable dense set {d,},en by
any dense set of S? (including S?).

We now continue with the proof. From Theorem 3.2.4, we have that
u(z; d) = u'(x; d) + u'(z; d) = * + us(2; d) (3.33)

where

u%xun::—kZJ B (e, y)m(y)uly; d) dy.

R3
Let us prove the equivalence stated in the Theorem.
To begin with, suppose that g € F. As a consequence of (3.32), this is equivalent to

L2 U (2,d)g(—d)ds(d) =0 VieS?

We need to find w and v satisfying the conditions of the Theorem. The function v is already given
by the theorem: it has to be

v(x) = L2 e kedg(d) ds(d), xeR3,

which already satisfies Av + k*v = 0 in D.
Let us see which function must be w. Multiplying (3.33) by g(—d) and integrating over d € S?
we have that

| wsdg-ayasta - |

SZ

e*krdg(—d) ds(d) + f u®(z;d)g(—d) ds(d). (3.34)

S2
Notice that
w(z) = J u(z,d)g(—d) ds(d), z e’
S2
w'(x) = f ekvdg(—d)ds(d), zeR?
S2

and
w(z) = f u®(z,d)g(—d) ds(d)
S2

satisfy (3.3)-(3.5), because
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e Since we can differentiate under the integral sign and e***¢ is an entire solution of Helmholtz’s

equation, w’ is an entire solution of Helmholtz’s equation.

e Since we can differentiate under the integral sign and u(, d) is a solution of Au + k?nu = 0 in
R3, we have that w is as well a solution of (3.3).

e Since u® satisfies the radiation condition (3.5), we can derivate under the integral sign and apply
the Dominated Convergence Theorem to obtain that w® also satisfies the radiation condition
(3.5).

In brief, if we define an incident field as
wia) = | *lg(-ayas(a),
its scattered field is
w(z) = JS u*(z, d)g(—d) ds(d).
Let us see what is the far field pattern w., associated to w.
12

won(#) = =7~ . e M Im(y)w(y) dy

[ et ([ uto - as@)) ay

A7 R3

L2 (-g JRB e~ A (y)u(y) dy) g(—d) ds(d)

_ L o (2, d)g(—d) ds(d).

That is,

Therefore, since we are assuming that g € F, then by (3.32) we have that
we(#) =0 in S

To summarize, the far field pattern of the scattered field w® corresponding to the incident field

W (@) = L el (—d) ds(d) = J =g () ds(d).

S2

is §g» U (&, d)g(—d) ds(d), which is zero by assumption.
Therefore, by Theorem 1.7.3, w® = 0 in all of R¥\ D. So, if we define

V=W and w = w'+ W’

then (3.30) is satisfied (as we have already discussed). Moreover, they satisfy (3.31) as well because

— ot + s — ol _
w|aD waD w‘aD waD U|aD
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and

8_w
ov

ow?

+8V

_ ow'

oD ov

_ ow'

oD ov

o
v

oD oD oD

To prove the converse, suppose g € L*(S?) is such that there exists w € H?*(D) and a Herglotz wave

function
v(z) = J e~ kedg(d) ds(d) = J e*rdg(—d)ds(d), zeR3
s2 s2
satisfying (3.30) and (3.31).

The idea is to show that there exists w such that its far field pattern is (g, ue (2, d) - g(—d) ds(d)
and that its far field pattern is identically zero, therefore proving (3.32) and, consequently, that
geF.

In order to do so, we extend w, initially defined by hypothesis on D, to all of R? by setting w := v
in R3\D. Notice that v € H?_(R3) (since v € C*(R?), because we can derivate under the integral
sign as many times as we want by Theorem 5.1.2 of the Appendix), and w € H*(D) and v = w and
‘g—f = g—;’ on 0D by hypothesis. So the boundary values of w from the interior and the exterior of 0D
coincide. Thus, the extension satisfies w € HZ (R?).

loc
Besides, we have that, for any test function ¢ € C?(R?) we have

J (Aw + E*nw)¢ dr = J w(A¢ + k*ng) dx Int. by parts
R3 R3
= J w(A¢ + k*ng) dr + J w(A¢ + k*¢) dx n=1in R¥*\D
D R3\D
= J w(A¢ + k*ne) dv + J v(AG + k*¢) dx. w=vin R3\D
D R3\D

Applying Green’s formula (5.5) to the first integral, we have

.
J w(A¢ + k*ng)dr = | [wA¢ — (—k*nw)¢] dx
D Jp
r
= | [wA¢ — Awd|dx Aw + k*nw = 0 on D
Jp
i ¢ ow
= 1in lwg — ﬁ_y—| ds (55)
— [ a¢ v _ ov _ ow
_J§D|:Ua_y %] ds v=uw, 5 =5 on oD
(
= | [vA¢ — Av¢|dx (5.5)
Jp
-
= | v(A¢ + k?*¢)dx. Av+k*v=0o0n D
Jp

So
f (Aw + k*nw)¢ dx = f v(AG + k?¢) dx + f v(A¢ + k*¢) dx
R3 D

R3\D

= f v(A¢ + k*¢) dx
RS

= J (Av + k*v)¢dx = 0,
R3
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where we have used on the last step that v is an entire solution of Helmholtz’s equation, and on the
penultimate step we have integrated by parts over a ball B(0, R) that contains the support of ¢ (and,
therefore, with boundary terms that are 0).

Therefore, taking ¢ in such a way that SRB(Aw + k*nw) - ¢ dx is a convolution with an approxi-
mation of the identity (see Theorem 5.1.3 of the Appendix), we obtain that Aw + k*nw = 0 a.e in
R3. That is, it is a solution in H2,_(R?) of Aw + k*nw = 0.

Since w = v on R*\ D, the difference w — v vanishes in the exterior of D and therefore it trivially
satisfies the radiation condition. Therefore, if we take as incident field w® = v (it is an entire solution

of Helmholtz’s equation, so it can be an incident field), and define

s, Jw in D,
YTY0  inRAD,

we have that w := w’ + w® = v is the unique total field corresponding to the incident field w® = v;
i.e., it is the unique solution solution of (3.3)-(3.5) for w’ = v (uniqueness follows from Theorem
3.3.3).

Since
ezk|z\

. A 1
w?(x) = Wwoo(:v) +0 (W) , |z > oo,

the fact that w*(z) = 0 on R*\D implies that w, =0 on S%
But, at the same time, from (3.34) we see that

L2 u(z,d)g(—d) ds(d)

is also a solution of (3.3)-(3.5) for the incident field w’ = v. Therefore, uniqueness gives us that

w(z) = L (e, d)g(~d)ds(d) Ve R

Since the far field pattern of the right-hand side is, as we have already computed,

| et gy asta.

we have that
J U (2, d)g(—d) ds(d), = we(z) = 0. O
S2

3.4.3 The interior transmission problem

Motivated by Theorem 3.4.6 we now define the interior transmission problem.
Interior Transmision Problem Given f € H%*?(0D) and g € HY/?(0D) find two functions
v,we L*(D) with w —v € H?*(D) such that

Aw + E*n(x)w =0, Av+k*v=0in D (3.35)
and 5 5
w v
’(U—U:f, a—y—gzg Ol’laD (336)

where the differential equations for w and v are understood in the distributional sense and the
boundary conditions are well defined for the difference w — v.
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Remark 3.4.8. When we say that the equations in (3.35) are understood in the distributional sense,
we mean that

J w- (A + k*ng) dr =0
D

and

f v (Ap+ k*¢)dr = 0
D

for every ¢ € C(R?).

Notice that the boundary conditions (3.36) are not written precisely, because w|,,, v|;p, ‘;—f and
are not necessarily defined for arbitrary functions of L?*(D) such as v and w. What we mean is that
(w— U)|6D = fand a%(w—v) = gon ¢D, and in order for this conditions to be well defined we impose
the necessary condition w —v € H?(D) (so that w — v|,, € H¥*(0D) and £ (w—v) € H/?(0D) and
therefore the boundary conditions (3.36) make sense).

In this TFM, we will only study the homogeneous interior transmission problem, i.e., for f =0
and g = 0. For information on the inhomogeneous interior transmission problem, we refer the reader
to section 3.1 of [7].

In particular, our main concern is going to be the existence of positive values of the wave number k
such that nontrivial solutions exist to the homogeneous interior transmission problem since, according
to Theorem 3.4.6, this is the only case for which there is a possibility that F is not complete in L?(S?).
Because of this, we make the following definition.

Definition 3.4.9. If £ > 0 is such that the homogeneous interior transmission problem, i.e., the
problem (3.35) and (3.36) with f = g = 0 has a nontrivial solution, then k is called a transmission
etgenvalue.

Remark 3.4.10. Complex transmission eigenvalues can also exists, but we will only deal with real,
positive transmission eigenvalues, because they correspond to a positive wave number k, the only
case that has physical meaning.

Remark 3.4.11. We have studied the completeness of the set F of far field patterns relating it to
the existence of a nontrivial solution to the homogeneous interior transmission problem. However,

there is a different approach: one can study the completeness of F by analyzing the far field operator
F: L*(S*) — L*(S?) defined by

(Fg)() — J (i, d)g(d) ds(d), & e S2. (3.37)
SQ

We refer to [13], pages 323-340 for an introduction to this approach in the case of scattering by an

inhomogeneous media, and pages 76-87 for the case of obstacle scattering.

3.5 Introduction to Non-Scattering Inhomogeneities

The transmission eigenvalue problem is closely related to a perplexing question in scattering theory:
the problem of non-scattering inhomogeneities. Given an inhomogeneity (D,n), does there exist a
wave number k£ > 0 and an incident wave u’ such that the corresponding far field pattern ug, is
identically zero?

Such an incident field is referred to as a non-scattering incident wave and the corresponding k£ > 0
as a non-scattering wave number. Again, we consider positive wave numbers k > 0 because they are
the only ones that have physical meaning.
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Notice that, by Theorem 1.7.3, a radiating solution of the Helmholtz equation with identically
zero far field pattern is identically zero as well. Therefore, since u® is a radiating solution of the
Helmholtz equation outside D, an inhomogeneous media (D, n) is non-scattering if and only if there
exists a wave number k > 0 and an incident field u® such that the corresponding scattered field is
zero outside the inhomogeneity.

For a given incident field u’, we know that the scattered field u* € HZ,

(R?) satisfies the equation
Au® + k*nu® = k*(1 —n)u’  on R?

together with Sommerfeld’s radiation condition.
So, explicitly, an inhomogeneity (D, n) does not scatter if there exits a wave number k& > 0 and
an incident field u?, i.e., a solution of

Au' + E*u' =0 on R3,

such that 4
Au® + E*nu® = kK*(1 —n)u’  on R,
and
u*=0 on R*D.

This is an overdetermined system of elliptic equations (it has more equations than unknowns),
so it could have no solution. However, it can be proved that for the simplest case, i.e., spherically
stratified media (to which we can apply separation of variables), there exist non-scattering media
(see minutes 13-18 of [5] for the sketch of a proof). So it makes sense to consider this problem,
because in general we are not talking about the empty set.

Notice that this problem is physically astonishing: it considers incident fields of specific frequencies
for which the inhomogeneity is invisible, in the sense that the wave does not change its behavior (there
is no nonzero scattered wave).

Relation between transmission eigenvalues and non-scattering inhomogeneities

Let us see how transmission eigenvalues and non-scattering inhomogeneities relate.

Suppose that u’ and u* satisfy the non-scattering condition for a wave number k > 0 (recall that
supp(n — 1) = D). Restricting v’ to D, we have that it is a solution to Helmholtz equation on the
domain D, that is,

Au' + k*u' =0 on D.
Since v* = 0 on R3, we have that v* = 0 and aai: = 0 on 0D, Therefore, u := v® and v = ui‘D
are solutions to the transmission eigenvalue problem, i.e., the problem of finding u € HZ(D) and
v e L*(D) such that

Au+k*nu=k1—-n)v and Av+k*0=0inD

where u € HZ(D) means u = 0 and ‘;—Z =0 on 0D.
Remark. Notice that v and v are solutions to the transmission eigenvalue problem since taking
w = u+v (w would be the total field, since u = u*, v = u' in the above discussion), then v, w € L*(D)
satisfy that v —w € HZ(D) and
Av+k*v =0in D,

Aw + k*nw = 0 in D.

Therefore, solutions to the non-scattering problem are solutions to the transmission eigenvalue
problem. That is,
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Theorem 3.5.1. Given an inhomogeneous medium (D, n), non-scattering wave numbers are a subset
of transmission eigenvalues.

So a neccesary condition for k being a non-scattering wave number is that & is a transmission
eigenvalue. It is natural then to ask another important question in scattering theory: when a (real)
transmission eigenvalue is a non-scattering wave number? This is a partially open question yet.
Many papers have been published lately regarding this topic.

This problem is beyond the scope of this TFM. To attack it, it has been related to regularity of
the eigenfuctions of the laplacian (i.e. solutions of Helmholtz equation) and free boundary problems.

Let us give an overview here. Suppose that k£ > 0 is a transmission eigenvalue, that is, there
exists u € H2(D) and v € L?(D) such that

Au+ E*nu = k*(1 —n)v and Av + k*v =0 in D

u=0anda—u=OonﬁD.
ov

We want to see if k is a non-scattering wave number, i.e., if there exists an incident wave v and a

scattered wave v such that
Av + k*v =0in R?

Au+ k*nu = k*(1 —n)v in D

u=0anda—u=00n§D.
ov

Notice that the only difference is that v must exist as a solution to Helmholtz equation in all of
R3 and not only on D. Since H' solutions to Helmholtz equation are analytic (see [28], page 6),
the problem is if it is possible to extend v outside of D in such a way that it is analytic. That is,
under what assumptions the function v € L?(D) is a H' solution to Helmholtz equation in a region
including D?. In that case, the eigenfunction v has to be analytic, because H* solutions to Helmholtz
equation are analytic. So it is a regularity issue of eigenfuctions up to the boundary.

There have been several approaches to this problems, such as the use of free boundary methods by
Cakoni and Vogelius [10] and by Salo and Shangolian in [28]. For an overview of the recent advances
in this problem, see [5].

3.6 Appendix to Chapter 3

In this appendix, we prove Lemma 3.3.1.

Proof of Lemma 3.3.1. For 0 < R < 1, let B|zo; R] be the closed ball of radius R centered at
zo. Choose R such that B[zg; R] < G. We shall show that u,(z) = 0 for z € Blx; R/2] and
p=1,...,P. The theorem follows from this fact since any other point x; € G can be connected to
xo by a finite number of overlapping balls. Without loss of generality, we shall assume that xq = 0
and for convenience we temporarily write u = u,.

For r = |z| and n an arbitrary positive integer (the refractive index n does not appear in this
proof, so there is no risk of confussion), we define v € H*(G) by

v(w) = {6rnéf<x)’ v 8? (3.38)

Then:
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Lemma 3.6.1. Given u and v as above, we have

pntl gp - opnt2 | pn

Au=¢e¢ " " |Av + 2n §v+ n (ﬁ—n—kl)z}].

Proof of Lemma 3.6.1. Let us check this. Since

ov T

g(m) = Vv — =V(e" "u(x)) -

we need to compute the partial derivatives of " "u(z).
As used repeatedly in Chapter 1, we have that 0;r = % for i = 1,2, 3. Therefore,

cu(z)) =" "ou(x) + e (—n)r " ().

So
Ve "u(z)) = e "Vu(x) + e r " 2u(z)(—n)T
Hence,
@(l‘) = Vou(z) - . e""Vu(r) - Ly ey () (—n) i - z
or |z ] ]

=e" "Vu(z) - % + U(x)r_(”+2)(—nr).

Since Av = d2v + 03v + 02v, we have to compute 0?v for i = 1,2,3. By (3.40), we have

Zv(x) =0i(e" " Qu(x)) + (e " (=n) T2y u(z)) +
+(=n) - [e"

The last expression is

Oi(r " zu(x)) = (—n — 2)7’_”_3%:@ cu(z) + 20 (zu(x))

where 0;(x; - u(z)) = 1-u(x) + x; - dyu(z). Therefore, the above expression results in

Zv(x) =e" " - 0Pu(x)

2 r—"

+n”-e 3 O -y u(w)

+(-=n)-e" " (—n—2)-r "t 2} u(x)

+e" " (=n) "y Qu(x)
7

—n —n

+(=n)-e" "2 u(x) + (—n) - e"

where, as we have already commented, 0;r = %-. Therefore, we obtain

(=) TG T () e O (rT Ry u(w)]

o7

(3.39)

(3.40)
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“n 2n  oOv n
-Tr

e . AU—Fm'g—F ]
it L —n+ 1o

= Au(z) + (—n) -7 " 2Vu(z) -2 +n* r 2 Bu(x) v+ (-n) - (—n—2) - r " ou(z)

+3(—n) 2 () + (—n) R Vu(z) o+ rn'fl Vu(z) - L
2n 2 n n n n
yn+l u(x) - (=n)-r ynt2 pen u(x) — yn+2 n-uz) + yn+2 ()

on n? n? N n
' ' ’ r2n+2  pnt2 ' pn+2

= Au(z) + u(z) - [7“_2”_2 (=20 + ) +r "2 (0 4+ 2n —3n—n® + n)]

= Au(x).
This ends the verification of (3.39). O

n_. 2 and a to the rest of the expression
r or

Using the inequality (a + b)? > 2ab and calling b :=
in brackets of (3.39), we see that

2
n 2 0
(Au)? = (e 7") | Av + —— (£—n+1)v+ - a—”]
rn rn rn r
=e " "(a+b)?
> e " "2
dne= 2" ov n n
T Tt op A Tn+2(r_n_n+1)7}]

o(z) i (1) for |z| > R and is decreasing with respect to

r = |z|. Then if we define @ := ¢ - u and v := ¢ - v, it can be seen that the above inequality is also

valid for v and v replaced by @ and v respectively.
In particular, multiplying by r on both sides, we have the inequality

00 R n n

rn+2627'_n (AQ)Q > 47,”,, . a_
ov

r
/,"_
G 6’7‘

Now, let ¢ € C*(R?) be such that {w(i) for |2 < R/2

Integrating over G:

Ab+ — (ﬁ —n+ 1) @] dz. (3.41)
/ran

f "2 (AQ)? dr = 4n
G
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Next, we are going to integrate by parts in (3.41).

First notice that, since supp(¢) < Blzg, R] < G with zy = 0 (the inclusion due to our choice of
R), we have that all the boundary terms vanish (if it was necessary, we could choose a bit smaller
R), because &t = ¢ - u and 0 = ¢ - v have compact support contained in G.

We are going to use as well the following vector identity:
2V (z - V1) - Vo = div[z|Vi|*] — Vo] (3.42)
Let us check this: to begin with, recall that if ' = (F,, F},, F,) is a differentiable vector field, then

: oF, 0F, O0F,
dlvF—V‘F—ax—F&y pra

First, we compute V(z - V0) (the left-hand side of (3.42)) :

Oi(z - V) - 0;0 = 0; (931611) + :1:2622; + xgﬁgv) 0; 0

Then,

3
3

We now compute the right-hand side of (3.3.1), which is div[z - |[V©|?] — [V9]%. The divergence is

Oi(x; - [(51’0)2 + (5213)2 + (5317)2])
=1-[(0:10)% + (020)* + (030)?] + x5 - 20,0 - 61Zv +x; - 2090 - é’%v +x; - 2050 - 6?2)2-@
= |Vo]* + 224(V - V(0;0))

So

div[z - [Vo[*] — |V3|* = 3|Vo|* + 2[z1 - (Vi - V(610) + 25 - (VO - V(020) + 23 - (Vi - V(030)] — |V
= 2|Vo]* + 2[z; - (VO - V(010) + 29 - (Vi - V(020) + 23 - (VD - V(030)].
So 2V (x - V1) - Vo = div[z|Vo|?] — |Vo|?, which ends the verification of (3.42).
From (5.4), we have that:

JT —Avd:zc— JV -Vodzx + @.(60) ds.
G 5Gal/ 57“

The boundary integral is 0 since v has compact support contained in GG. Using that
o x
or r
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the volume integral gives

JV Vvda:——f V(z-V0)-Vide
G
1
= —J —[div[z - [Vo[*] — |V0|*] dx
G2
= —J —x-|VO]* - vds+ - J V0|2 do Divergence thm.
f V6| da.
Therefore, we obtain
J T—AU dr = f V| da. (3.43)
For m an integer, we have that:
i . @ dz = ! Vv dx
arm or a rm

1
:f -@-(81@~x1+&2@~x2+§3@-x3)dx

a rm-&-l
R I ’lA) “ ) QA) “ xIs - ?A]
=— JG [vﬁl (m) + 00y (Tm+1) + 003 (Tm+1)] dx. supp(
;0 Z; . Ty A L
ai (Tm-‘rl) = a ( Tm+1> = aﬂjrm—&-l + Uai <m> : (344)

Let us compute first the integrand:
P ( ZT; ) 81(:@) : Tm+1 — X 62-(7“"”1)

R=xe.

=

We have that

Terl 712m+2

Tt — i (m o+ 1) ™ 0i(r)
r2m+2
_ (D) plme)=@m2) 2 ) =

— p—(m+1) _ —(m+3) xf . (m +1).

Therefore, (3.44) turns into

(BA4) =07~ 4 30— (m 1) b 2?0
Tm

Hence,

3 N 3 3
x;0 T
. ¢ — 3y (m+1) R 5. g2y (m+3)
. 182 (rm“) = 30r + E 0;0 e E (m+1)0-xir
1=

i=1 i=1

1 x
=30 M) 4 — V5.2 — (m 4 1) E
URE VO (m 7
1 0v

— (m + 1)pr~ (D)

1 0b
= or "B~ (m+1) + — - —.
or ( (m ) e

rm or
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61
So
3 ~ ) ~
;0 v 1 0v
A 3 o 2 Y-+
D0 (i) = g 2+
Therefore,
1 . 0o b2 1 . 0o 1 . 00 0
—f)-—vd:cz—f 2—m)+ —0- | do = — —@-—”dx+(m—2)-f U .
arm™  or rmtl rmoor arm  or qrmtl
That is,
1 oV 1 0>
f—'@ —dez—(m—2)~J U da. (3.45)
arm or o rmtl
Since
0? 0?
L o de > L g dx (3.46)
(which we will justify in a moment) we obtain
J rn+262r’" (A'LAL)Q dx
G
o . . o0 n n . o n )
> 4dn | r—Addr+4n | r—- —odr+4n | r—- (—n + 1) da.
1 o Or o Or rnt2pn o Or rnt?
(3.41)
Using (3.43) on the first integral, (3.45) with m = 2n + 1 on the second integral and (3.45) with
m =n + 1 on the third one, we obtain
1 Y 1 0?2 , 1 02
S12 2 0’ 0’
=2n JG |Vo|“dz +2n(2n—1) - n JG o dx + 2n(n — 1)n(l —n) JG s
S12 20, 2 v 2 2 0
> QnJG\Vv] dx + 2n°(2n —n)JG poTrS dx + (—2n°) - (n” — 2n + 1)f — 5 dr
52
12 v 2/ 2
= QnJG |Vo|* dx + JG ot dx - 2n“(n“ +n—1).
That is,
52
f "2 (AG) do > QnJ IVo|? dx + 2n*(n® +n — 1) J QU—H dx. (3.47)
G G ar’

The justification of (3.46) is the following:

o If r > 1, then 7%"*2 > r””ﬁ < 7‘"%

o Ifr <1,r2 <2 —= 1

1
r2n+2 >

rnt+2 ¢

Since 0(z) = 0 for r = |z| = R and 0 < R < 1, we just need to consider the case v(x) # 0, i.e.,

r=|z| < R. Inthiscase,r<R<1,soT2n%>rn%.
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Now, from (3.47), we have

J "2 (AG)? do
G

2n? 2n? v?
~12 ~2 ~2 2.2
fG2|VU| dx+fG sl dav—frzwr2 -0 dx] +2n°(n" +n — I)JGTQ”—”

=Zn

~2

512 d 2n? 52 d 3 0’ d 2,2 Y 4
—n- G2|Vv| T + GT2"+2'U x| —2n°- e x+2n°(n"+n—1) e x

2 ~2

. 2n® v
—n. JG(2|VU|2 + s %) d:p] + (2n" — 2n?) fG r2nt2 dx

52
e 0
>n| & "|Val|*dr + nt dx
r2n+2
a ¢
. 621"_”
=n| & "|Va|*dr + n* o d.
r2n+2
a ¢
That is,
—n —n err "
J r"2e? " (AG) dr = nf e " |Val* dx + n* J g0 dr, (3.48)
G G T

where in the last inequality we have used that

2Tl < 2Vl + 2o
& u S v T2n+2'U .

(3.49)

Let us see why this is true. To begin with,

—n

Vii=e [w + Tﬁl % v] ,
since
Vi(z) = V(e " -a)(x)
and
Sile” " a)(x) = e " (=n) Y o) s a(x) + e - dsu(x)
= (—n) - r~ D e () a4 e dya(x),
SO
Vio(x) = V(e "a)(x) = (—n) - v~ e )z + e - Via(z) =
e Vo) = (—n) D La(x) -z + Va(z) =
Vi(z) =e" " - Vo(z) +n-r "2 gz) x =" [V@(x) + 7":“ : % @(x)] :
Therefore,

TnJrl r

2
. o . n xr . P . n P ) n®
R R .[|Vv|+(rnﬂ|v|)] <o -2[|W|2+Tw|v2
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From here we obtain (3.49), as desired. Now we can continue the proof of the Lemma. We have not
used hypothesis (3.22) yet, which established that

P
Auy| < C Y Nlug + V] on G
q=1
for every p =1,..., P and some constant C' > 0.

Therefore, by (3.22),
2

P
| Aup ()] < Z |ug| + V]
q=1

Cauchy-Schwarz inequality gives us that > a;b; < (X a?)Y2(3]b2)Y2. Using it with a; = |u,| + |V,
and b, = 1 we obtain
2

P P P
Z gl + [Vug|] | < c?- 2[|uq| + [V, 212
q=1 q=1 1
P
< PG 2fug| + [Vugl’] (a +b)? < 2(a® + b?)
qg=1

[[ugl* + [Vug|*]

I
[\
'“U
M”ﬂ

q=1
P 2 2
2 |uq| ]qu|
S 2PC Z [T3n+4 + rn+2 )
q=1

having used on the last step that since R < 1, we have

o If |z| = r < £ it holds
1

L2 1 n+2 3n+4
S22l — S22l y gz
o If r = |z € [, R], then I € [, 2] with & > 1 because R < 1. So
1 1 23n+4
an+d © | Raned Rantd
with sz > 1 since R < 1
Thus, in both cases we have
X |Ady ()|
| Ay (2)]? < #
Since u,(z) = @,(z) for all z satisfying |z| < £, using (3.48) we obtain
2r—"
—n e —n ~
nf e |Vﬁp|2d:v+n4f T adr < f e A da
|z|< & lz|<E& T S T Ja
(3.48)
2 C 2" o |2 2 ¥ " | Aty (z))|
< 2PC f e |V, | dx +J 5 dx —i—J dx,
r n-+2 q T2n+2
q=1 | YIzI<R/2 |z|<R/2 R/2<|z|<R
having separated on the last step the integral in two domains: |z| < £ and |z| € [R/2, R]:
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e On |z| < R/2 we use that |Au,(z)]* < 2PC?- 25:1 ... and the linearity of the integral.

e On |z] € [R/2, R], we use that |Ad,(z)[2 < Bl

Substracting the first two terms of the last expression on both sides, we obtain

P
n f e Vi [* du — 2PC Y J & Vi) dx
|z|<R/2 |z|<R/2

627“_” P 621"
+ TL4J 2n+2 ' ﬁi dr — 2P02 Z J 2n+2 Ag dx
lz|<r/2 T lz|<R/2 T

2r— " ~ 2
o[ e,
R/2<|z|<R T

Taking n sufficiently large, the only non-negligible term of the left-hand side is

627’*”
nt J - wldx
|

2n+2 P
z|<r/2 T

n € N.

SO
e e " | Adiy ()|
n4f 2n+2 uy dw < C |2n+2( ) dx
lz|<r/2 T R/2<|z|<R r
for every p = 1,..., P, with n sufficiently big and C' some positive constant.
Since f(r) := iz;ﬁ (r > 0) is increasing, we have
e If r € [0, R/2], then
o2 " o2AR/2)™
5y 2 : (3.50)
r2n+2 = (R /2)2n+2
e If r € [R/2, R], then
o2 " o2R/2)"
s S : (3.51)
r2n (R/2>2n+2
Therefore,

. (R/2) ) . 627”*" )
" LKR/Q e WS j pne U 0
5

,,n2n+2

627"_"
< Cf | Ady(2)[? de
R/2 <R

C- J S —————|Ad,(z)[*d
< Uy (X T.
T R/2<|z|<R R/2 2n+2 P

(3.51)

Cancelling out the constants 612;/ - +2| on both sides, the remaining expression is

n4f uﬁdwgC’f |Ad,(2))*de Vp=1,...,P.
2| <R/2 R/2<|x|<R
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Since the right-hand side is constant with respect to n, taking n — oo we obtain that the only

possibility is that
f uf) dr =0
|z|<R/2

up, =0 en || < R/2.

which implies that

and this completes the proof of the Lemma. n
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CHAPTER 3. SCATTERING IN AN INHOMOGENEOUS MEDIUM



Chapter 4

Existence of Transmission Eigenvalues

4.1 Introduction

In the previous chapter we have seen that the transmission eigenvalue problem is important for
establishing the completeness of a set of far field patterns in L*(S?). In this chapter we study the
question of discreteness and existence of transmission eigenvalues.

Particular cases can be considered. For example, there exists a rather complete knowledge of the
radially symetric case. One known result! is the following:

Theorem 4.1.1. Suppose that n € C?[0, R], Im(n(r)) = 0, and either
n(R) # 1
or

n(R) =1 and %L A/n(p)dp # 1.

Then, there exists an infinite discrete set of transmission eigenvales with spherically symmetric eigen-
functions.

Proof. See [7], Theorem 4.7, pages 130-131. O]

However, we are interested in more general results that do not assume any kind of symmetry.
This was an open problem for about twenty years, until in 2008 Paivérinta and Sylvester gave a
proof in [27] for large enough index of refraction. Briefly after that, Cakoni, Gintides and Haddar
gave a quite complete answer in [8] to the question of existence of transmission eigenvalues, under
the only assumption that m = 1 — n (where n is the refractive index) does not change sign in the
inhomogeneity. The objective of this chapter is to state and prove this last result.

We follow sections 4.1-4.2 of [7] and Section 10.1 of [13].

Preliminary concepts

Throughout this chapter, we use the following concepts.

Definition 4.1.2. Let A be a bounded linear operator on a Hilbert space X. A is said to be
e Non-negative if (Au,u) > 0 for every u e X.

e Coercive or strictly positive if there exists a constant § > 0 such that (Au,u) = S||ul?.

1See also [13], Theorem 8.13, pages 321-323.

67
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Structure of the chapter

The structure of the chapter is the following.

First, we reformulate the interior transmission problem as a fourth order equation. Then, we
reformulate the transmission eigenvalue problem as a classical eigenvalue problem (K — %I W =0
for 7 > 0. The operator K is not self-adjoint (although it is compact) and therefore non-standard
methods must be used to prove existence of eigenvalues. This is the reason why the problem was
open so many years. The approach to overcome this difficulty is the following:

e We will reformulate the problem as finding the values of 7 for which N(A, — 7B) # {0} for
{A.},~0 a family of self-adjoint, compact and coercive (or stricly positive) operators and B a
self-adjoint, compact and non-negative operator.

e This problem requires a functional analytic theory to study the spectral decomposition of a
compact, self-adjoint and strictly positive operator A with respect to another compact, self-
adjoint, positive operator B, i.e., a generalization of the spectral theory for A — AI when [ is
substituted by a more general operator B. This generalization requires several theorems that
are quite technical to prove.

e Lastly, we apply this theory to prove the existence of transmission eigenvalues aforementioned.

4.2 The Transmission Eigenvalue Problem

In this section, we formulate the transmission eigenvalue problem for isotropic non-homogeneous
medium in several ways.

Let D < R? be the support of an isotropic inhomogeneous media with refractive index n € L®(D)
such that Re(n) = ny > 0 and Im(n) = 0. Recall the interior transmission problem corresponding to
the scattering problem for this isotropic inhomogeneous media:

Interior transmission problem

Given f € H3(0D) and h e Hz(dD), find w € L*(D),v € L2(D) with w — v € H2(D) such that

Aw+ k*nw =0 in D
Av+EKkv=0 in D

w—uv=f on 0D (4.1)
ow  Ov R
%—%Z OHOD

where the equations for w and v are understood in the distributional sense and the boundary condi-
tions are well defined for the difference w — v.
We were particularly interested in the homogeneous case:

Definition 4.2.1. Values of k € C for which the homogeneous interior transmission problem

Aw+ k*nw=0 in D
Av+ kv =0 in D

w=v on ¢D (4.2)
g—‘;’ = % on 0D

has nontrivial solutions w € L*(D) and v € L*(D), such that w—v € HZ(D), are called transmission
eigenvalues.

Recall that we are going to be interested only in positive transmission eigenvalues: k € R, k£ > 0.
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Reformulation of the Interior Transmission Problem as a fourth order equation

One appealing approach, given the structure of the boundary conditions in (4.1), is to take the
difference u := w — v as a new unknown and try to obtain an equivalent equation for u. Let us see
how to do this.

Subtracting the second equation from the first, we have

Au+ k*nu = —k*(n —1)v  in D, (4.3)
together with the other equation
Av+kv=0 inD (4.4)
and the boundary conditions
u=f and a—uzh on 0D.
ov

To eliminate v we need to divide by n — 1, and therefore we have to assume that n — 1 is bounded
away from zero. This justifies the following assumption.

Assumption: the real part of the constrast n — 1 does not change sign in . More specifically,
we assume that there exists a > 0 such that

either Re(n(z)) —1>=a > 0or 1 —Re(n(z)) = a > 0 for almost all x € D.
. Letting

Nonin = irll)f Re(n) and  nyg. == sup Re(n), (4.5)
D

the above assumption means that
either n,,;, > 1 or 0 < Ny < 1.

Under this assumption, we can divide (4.3) by k%(n — 1) to obtain

[Au + k*nu]

v =

1
K2(n-1)

and substituting this into equation (4.4) we obtain

1 1
e [Au+ K 2| o [Au+ k]| =
k2(n—1)[ u+knu]}+k [ k’Q(n—l)[ u—I—knu]] 0
1 2y 1 2 1 _
— —kQ(A+k‘)n_1[Au+knu]—O
— (A+ K [Au + k*nu] = 0.

n—1

Using that "5 =1+ ﬁ, the left-hand side of the last expression can be rewritten as

Au —i—A[

2

Au +
n—1 n —

(A +K?) [Au + k*nu] = A 1k2nu

n—1 n —

1
1 anu] + k2

=A Au| + AlKu] + A

k2 1 k2
4 ] + k2 Au + 1 E*nu

n—1 n—1 n —

k2 k2
4 ] + kE*nu
n

n—1

1
Aul| + k2 "

n—1 n—1

Au + A

1
1(A + k?)u.
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That is, we have obtained an equivalent formulation of equation (4.1) as a boundary value problem
for a fourth order equation:

(A + k*n) . (A+E)u=0 inD (4.6)
n —
g and oD (4.7)
u = an ay = on .

where we assume u = w — v € H?(D). The functions v and w are related to u through

v = —m(Au + k*nu) (4.8)
w=u+v= —m(Au—i—k%) (4.9)

Weak formulation of the Interior Transmission Problem

In this section we are concerned with proving the existence of real transmission eigenvalues, i.e., the
values of k > 0 for which

Aw + k*nw = 0 in D,
Av+ Ek*v =01in D,

w—v=0ondD, (4.10)
ow  Ov
a—y—a—VZOOHaD

has non-trivial solutions w € L*(D) and v € L*(D) such that w — v € H?(D); that is, the values of
k > 0 for which

Aw + k*nw = 0 in D,
Av+k*v =01in D,

has non-trivial solutions w € L?(D) and v € L*(D) such that w — v € HZ(D), where

Hg(D)z{ueHZ(D):u=g—“=oOnaD}.

v

We have been able to write (4.10) as a fourth order equation

(A + k*n) (A+E)u=0 (4.11)

n—1

for u = w — v in HZ(D).
The weak formulation of this fourth order equation becomes, after integrating by parts, the
following: find a function u € HZ(D) such that

1
f (B -+ Ku) (AT + Knp) dr = 0 for all v e H3(D). (4.12)
DN

A consequence of this formulation is the following:
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Theorem 4.2.2. Suppose n € L*(D) with Imn > 0 almost everywhere in a region Dy < D of
positive measure. Then, there are no transmission eigenvalues k > 0 for the inhomogeneity (D,n).
In particular, the set F of far field patterns is complete in L*(S?) for each k > 0.

Proof. Let v, w be a solution to (3.35) and (3.36) for f = g = 0. Then, taking u = w — v, applying
(4.12) with v = u we obtain

J ! . (AT + k*nu)(Au + k*u) dx = 0.
D

n—
We have that
(AT + E*nu)(Au + k*u) = |Au + K*ul® + K*nulAu + K'nuu — E*ulAu — k*uk*u
= |Au + E*ul® + k*(n — D)u(Au + k*u)

Therefore, after integrating by parts, we see that

1 1
f (AT + k*na) (Au + k*u) do = f ——|Au + K*ul? dz + k4f u|? do — k:QJ |Vul?dz = 0.

Since Imn > 0 on a region Dy of positive measure, then Im (ﬁ) # 0 on this region, and the second

integral is a real number, taking imaginary parts we have that

1 1
0=1Im (J —|Au+k2u|2dx> —f Im (—) |Au + k*ul? dx.
pn—1 D n—1

Therefore, |Au + k*u*> = 0 on Dy, a region of positive measure. Since, by (3.35), Au + k*u =
k*(1 — n)w, we have that w = 0 on Dy. Therefore, by the Unique Continuation Principle (Theorem
3.3.2) we have that w = 0 on D. Therefore, its Cauchy data are zero, i.e., w = 0 and g—ﬁ’ =0on dD.
Thus, the Cauchy data of v are 0 as well, which implies* that v = 0 on D. So for the inhomogeneous
medium (D, n) there does not exist a transmission eigenvalue k£ > 0, since every solution to the
interior transmission problem is the trivial one. O]

However, when Im(n) = 0, there may exist values of k that are transmission eigenvalues. We
investigate this case in the rest of the TFM.

4.2.1 Non self-adjointness of the transmission eigenvalue problem
So, from now on, we consider the case where n is real and

The case 0 < nyqe < 1 is completely analogous and is treated in [7].
We would like to write the transmission eigenvalue problem as an eigenvalue problem.
First, take 7 := k? in (4.12) to obtain

n —

JD ! . (Au+ 7u)(AD + n0)do = 0 for all v € H3(D) (4.13)

Computing the product of the integrand, this is equivalent to

1 1 1
J Au-AEdw—i—f (Au-mnv + AT - Tu) dx—l—f 7 nuvdr =0 (4.14)
pn—1 pn—1 1

pn—

for all v e HZ(D). We can express this in terms of three operators. Let us see how.

2For example, by Green’s Representation Formula on bounded domains (which, as we reasoned in the previous
chapter, is valid for H?(D) functions).



72

CHAPTER 4. EXISTENCE OF TRANSMISSION EIGENVALUES

1. Consider the bounded antilinear functional that, for a fixed u € HZ(D), takes

H3(D) — C
v - ﬁAu - AT dx.

Therefore, by Riesz Representation Theorem for Hilbert Spaces, there exists a unique Tu €
HZ(D) such that

1
(Tu, v) g2(py = JD EAU -Avdr  Yve Hi(D).

Therefore, we have an operator T': H2(D) — HZ(D) bounded, strictly positive and self-adjoint
because

(a) Linear: because

(T(u+ M), w)p2(py = f ! A(u + W) - Awdx
pn—1
= (Tu,w) + \N(Tv,w) = (Tu + XTv,w) Ywe HZ(D).

(b) Bounded: it is a consequence of Riesz Representation Theorem; or simply because

1 _ 1 _
HTUH%,Q(D) = (Tu, Tu)p2(py = J ——Au - ATudzr < H— |AU r2(p) | AT w] 22Dy
pn—1 tofin— 1},
C-S
< || PlulmeoTalaw = | ——| Elulam|Tuluo),
n—1 - n—1 -

being ||ﬁ”oo < o0 since Ny, > 1 and having used that, by Theorem 5.1.10, on HZ(D)
the H?(D)-norm of a function is equivalent to the L?(D)-norm of its laplacian, so there
exists ¢ > 0 such that

|AU| L2y < c|ullm2(p)- (4.15)

for all u e HZ(D).
Therefore, by cancelling the term |Tu| z2(py on both sides, we have that

1

1 ¢+ Julmp)-

0

I Tu] 20y <

We conclude then that T' is bounded on HZ(D).

(c) Strictly positive (coercive):

1
(T'u, ) gr2(py = J Au - Audx
pn— 1

1
= JD - 1|Au]2dx

1
> J ——|Auf dz
D Mmaz — 1
= O Al

> HuH%ﬂ(D)

having used the hypothesis that n(z) < nme. < @ and, in the last step, the H*-norm
equivalence of Theorem 5.1.10 of the Appendix as in (4.15).
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(d) Self-adjoint:

1

n—1

(u, Tv)g2(py = (T, u) o py = f AD-Audz = (Tu,v)g2(p),

pn—1

Av Audr = J
D
having used that n is real-valued.

2. Consider now the bounded antilinear functional that, for a fixed u € HZ(D), takes

Hg(p) - C

v —§, =5 (nUAu + uAD) da.

By Riesz Representation Theorem, there exists an operator Ty : HZ(D) — HZ(D) such that

1
(Thw, v)p2py = — f (nvAu + uAv) dz (4.16)
pn—1

_)da:Jrf Vu - V.
D

This operator is

(a) Self-adjoint:

mJAu + uAv) dx

(TAu + nulATv) dx

n—l

(Thu,v)g2(py = f
B

= (Tho,u) 2

= (u, Tv)y2(p)-

(b) Compact: let T be the part of the operator 77 given by the second integral of (4.16).
We have that

1
|71 g2 = sup < Clul 2.

ozver? ||V 2

1
f uAT dz
D

n—1

Therefore, for a sequence {u,} bounded on H?(D), thanks to the compact embedding of
H2(D) into L*(D), we obtain that a subsequence of {T\"u,} converges strongly on H2(D).
The second integral of (4.16) gives us the same result (considering the adjoint). So we
can conclude that 77 is compact.

3. Lastly, consider the bounded linear functional that, for a fixed u € H3(D), takes

H3(D) — C
v — SD L - v dw.

Again, Riesz Representation Theorem gives us the existence of an operator Ty: HZ (D) —

HZ(D) that satisfies

n _
u-vdx

(Tou, v) g2(p) = f

p TN —

and is
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(a) Self-adjoint:

n
(Tou, v)p2(py = J U vdr = J v = (Tov,u) 2 py = (U, Tov) g2(p)-

(b) Non-negative:

lul*dr =0

(Tyu, u) g2(py = f D wowde = J
1 D

pn— n—1
(c) Compact: the reasoning is analogous to that of 7.
With these operators, (4.14) can be written as
(T'u, v) g2(py — 7(T1u, v) g2(py + *(Thu, V)m2py =0 wve H(D).
Since the scalar product is non-degenerate, the above expression means that

Tu — 17Tiu + 7*Thu = 0.

Therefore, we conclude that the transmission eigenvalue problem is equivalent to finding a non-zero
function u € HZ(D) such that
(T — k?leU, + k’4T2)U = 0.

Theorem 4.2.3. Assume that n € L*(D) takes real values and Ny, > 1, where n, is given by
(4.5). Then the set of transmission eigenvalues k € C is discrete (possibly empty) with +o0 as the
only possible accumulation point. The multiplicity of the eigenvalues is finite with finite dimensional
etgenspaces.

Proof. As discussed above, k € C is a transmission eigenvalue if and only if there exists a nonzero
solution u € HZ(D) of
Tu — k*Tiu + k*Thu = 0,

which, applying 7!, is equivalent to the existence of a nonzero function u € HZ(D) such that
(I =KT ' + KT ' Ty) u =0,

where I denotes de identity operator. Letting 7 := k? and setting U := (U,TT_lTQU), the interior
transmission eigenvalue problem becomes the eigenvalue problem

1
<K - —I) U=0 UeH;D)x H(D)
T
for the operator K : H2(D) x HZ(D) — H3(D) x HZ(D) given by
(T
K'_(T‘1T2 0)’

because

1 T -1 -1 u T +7-T7'T =TT 'Th)u
0= (K_ F[) U= ( T\, i) \rT'Thu) 0

= (I +7T7'Ty — 7T 'Ty)u = 0.



4.3. EXISTENCE OF TRANSMISSION EIGENVALUES 75

Notice that K is compact because each entry Kj;; is compact. Therefore, each entry is the limit
of a sequence of finite-rank operators {Kj; ;(n)}nen. So K is the limit of the sequence of finite-rank

operators
. Kii(n) Kia(n)
K(n) = ( Kor(n) Kaa(n) ) )

Therefore, we can apply Theorem 5.1.16 from the appendix to conclude that its eigenvalues are either
at most, a countable set that accumulates at 0 (including 0), and Theorem 5.1.14 to deduce that the
multiplicity is finite with finite dimensional generalized eigenspaces. O]

4.3 Existence of Transmission Eigenvalues

The fact that the eigenvalue problem associated to the transmission eigenvalue problem is not self-
adjoint makes it harder to prove the existence of transmission eigenvalues for media that is not
spherically stratified (that is, radially symmetric). In fact, this problem was open until 2008, when
Péivarinta and Sylvester proved in their article [27] that, for large enough index of refraction n,
there exsits at least one transmission eigenvalue. Later, the existence of transmission eigenvalues was
completely solved in [8], where they proved the existence of an infinite set of transmission eigenvalues
with oo as the only accumulation point by just assuming that either 7,,;, > 1 0r 0 < Npin < Nanae < 1.
We explain this proof in detail.

To clarify the exposition, we are just going to explain the case n,,;, > 1 (see [7], Section 4.2,
pages 130-136 for the other one).

We have seen in the previous section that the transmission eigenvalue problem is equivalent to,
given k > 0, finding a not identically zero function v € HZ(D) such that

n —

1
JD 1(Au + 7u) (AU + o) dr =0 Vv e Hi(D), (4.17)

where 7 = k2.
To formulate it in terms of operators, we give the following definition.

Definition 4.3.1. Let A,, B: H2(D) x H(D) — C with 7 > 0 the operators given by

1

n —

A (u,v) = ( 1(Au + 7u), (Av + 7"0)) + 7% (u,v)p

D

1 = T 2 () dx
- [ o ute) + rute) - (@0() + 7o) de 47 [ ate) ol

and
B(u,v) == (Vu, Vv)p = fD Vu(z) - Vo(zx)dx,

where (-,-)p denotes the scalar product of L*(D).

Proposition 4.3.2. The operators A, (T > 0) y B are symmetric sesquilinear operators (symmetric
in the sense that A.(u,v) = A;(v,u) and the same for B).

Proof. 1t is a consequence of the fact that we consider n(z) real-valued and 7 € R, and therefore
n=nand7T=rT. ]
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Applying the Riesz Representation Theorem as we did in the previous section for 7', T} and T5,
we can define the bounded linear operators A,: H3(D) — HZ(D) and B: H(D) — HZ(D) as the
only ones that satisfy

(Ayu,v)g2py = A (u,v)  Vu,v e Hi(D)
(Bu,v)g2(py = B(u,v)  Vu,v e Hy (D).
In terms of these operators, we can rewrite (4.17) in the following way. The integrand is
(Au+ Tu) (AT + ™n0) = Au - AT+ Au - ™0 + Tu - AU + Tu - TNO.

Since
(Au+ Tu)(AT + 70) = Au - AT+ Au - 70 + Tu - AT + Tu - 77,
we have that

(Au + 7u) (AT + 7n0) = (Au + T7u) (AT + 70) — Au - 70 + Au - TRU — TU - TU + TU - TNU =
(Au+ 7u)(AD + 70) + 7Au-v(n — 1) + 72 - u - v(n — 1).

Therefore

f ! . (Au + Tu)(AT + 7nv) dz
DN =

1
= F 3 [(Au+7u)(A@—|—Tﬂ)—|—7Au-ﬁ(n—1)~|—72u6(n—1)] dz
JD v
= [‘ 11(Au+ru)(A@+TU)dx+T2Ju@—i—TJAuE
Jp 1 —
= [‘ ! (Au—kTu)(AE—kTﬁ)dx—FTQf u@—q—f Vu- Vo
.)Dn_l D D

= AT(UJ U) - TB(“: U) = (ATU7 U)H2(D) - T(BU, U)H2(D) = (ATU — 7 Bu, U)H2(D)-

Since k is a transmission eigenvalue if and only if for 7 := k? there exists u € H2(D), u # 0 such
that

1
JD N (Au + 7u)(AD + ™) dr =0 Yve HZ(D),

n—
we have that k is a transmission eigenvalue if and only if 7 := k? is such that
(A;u — T7Bu,v)g2py =0 for all v e Hi(D)
has a non-trivial solution u. That is, k is a transmission eigenvalue if and only if
N(A, —7B) # {0}.

We are going to study some properties of the operators A, and B. In order to do so, let \;(D)
be the first Dirichlet eigenvalue of —A in D (that is, the smallest A\ > 0 such that the problem
—Au = Auon D, u =0 on ¢D has a non-trivial solution).

Lemma 4.3.3. The operators A, B: H3(D) — HZ(D) (t > 0) are self-adjoint, and B is non-
negative and compact. Besides, if Ny, > 1, then A, is strictly positive (i.e. coercive).
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Proof. The self-adjointness is a consequence of Proposition 4.3.2. Indeed,

(Aru, v)p2py = Ar(u,v) = Ar(v,u) = (A, u) g2(p) = (U, A70) 2.

and

(BU,’U)HQ(D) = B( ) (VU V'U)LQ(D (VU V'LL)]} B(U,U) = (BU,U)HQ(D) = ('Ll,, BU)HQ(D).

Now, we check that A, is strictly positive if n,,;,, > 1. To begin with,

almost everywhere x € D. Therefore

1
(Aru,uw)p2py = Ar(u,u) = ( . (Au + Tu), (Au + Tu)) + 7% (u, u) 2 (p)

e L2(D)
1
=f —]Au~|—7u|2d:v+TQJ |ul?
pn—1 D

> 7| Au + TU’H%Q(D) + T2HUH%2(D)

= v(Au + Tu, Au + Tu) 12(p) + 7'2HUH%2(D)
= 7| 18ula(o) + T2l + 27, Au) + (Au,w)] | + 72 ulz)

= | Auliapy + 7y + Dluliap) — 297 [ul 2y - 1Au]z2p)

2
v
(7 - —) |Au|Zz p) + —IIAUI|L2 = 297]| Aul 2y | ul 22y

+er?|ulZapy + (1 + 7 — )72 ulf2 p)

2 2
v
(7 = —) | AulFap) + € (T|IU||L2(D - —HAU||L2(D)) + (147 —a)r?ulizp

2
v
<7 - —> |AulZap) + (1 +y =) ulfapy €€ (v,v +1).

1

In brief, for all € € (7,7 + 1) with v = - (positive because 1y, > 1), we have

2

f‘y
(Aru, u)g2(py = Ar(u,u) = (7 - ?> NAu) 2y + (T4 — )72 - JulZ2py (4.18)

Notice that we choose ¢ € (7,7 + 1) so that v — g >0and 1 +v—¢ > 0. So we can fix any
g€ (v,7+1) (for example, £ = v + 3).

Besides, as u € HZ(D), then Vu € H}(D), so by Poincaré’s inequality (Theorem 5.1.9 of the
Appendix)
1

A(D)

HVUH%Q(D) < HAUH%Q(D)'
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Therefore
Y
(Aru,u) 2o (7 ?> | AulFzpy + (1 + 7 — )7 ul?2

() 12y 5 (1 L) IAulapy + (04— )l
< 1 B Aull? 1 72 (D 2 1 20,112
5\ 7 | A7z (p) + SR A 1(D)IVulz2py + (1 + v —&)77|ul:
= Cr- ‘UHLQ(D + ||VUHL2 p) T HAUHH )]

with

_ ) 1 ,}/2 1 72
CT.—mln 5(7—?>,§(’7—? )\1(D),1+’}/—€

Since v € HZ(D), its H?-norm is equivalent to the L?-norm of its laplacian (see Proposition 5.1.10
of the Appendix). Therefore

Cr- [||U||2L2(D) + HVUH%Q(D) + ”AUH%Q(D)] = OTHAUH%Q(D) = CTHUH%IQ(D)'
So
(AT'LL,U>H2(D) = CT . H’UH?{Q(D)
with C; > 0 constant.
Finally, B is

e Non-negative:

(BU,U)HZ(D) = B(U,U,) = (VU,VU)L2(D) = ”qu%Q(D) = 0.

e Compact: let (u,) be a bounded sequence in HZ(D). We want to see that (Bu,), has a
convergent subsequence in Hi (D).

Since (u,,) is bouned in HZ(D), then (Vu,) is bounded in H} (D), so by the compact embedding
of H}(D) into L?(D) (Theorem 5.1.12) , there exists a subsequence of (Vu,) that converges in
L*(D), say (Vu,, ). That is, there exists u € H} (D) such that Vu,, — Vu in L*(D).

Let us see that Bu,, — Bu in HZ(D). We have

| B, — BUHHg(D) = sup (B(un, —u), <P)H§(D)
‘PEHZ ”‘PHH2(D):1

= f V(uy, —u)-Veodr Definition of B

1/2 1/2
< (J |\Vu,, — Vu|2d:c) <J \V(p\2> C-S
D D

= [Vun, = Vulr20) - [Ve| 2 ()
< Vg, — Vu||L2(D)a HSOHHg(D) =L
which tends to zero when k — o because Vu,, — Vu in L?(D). Notice that the first step of

the above deduction follows from the characterization of a norm in a Hilbert Space in terms of
the scalar product. In brief, Bu,, — Bu in Hi(D), completing the proof. ]
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Remark 4.3.4. Notice that the condition n,,;, > 1 is used in this Lemma and in the following one
to prove the coercivity of certain operators. More specifically, this condition is asked so that the
bounds ﬁ > —L > 0 are true.

Nmaz—1

Theorem 4.3.5. If i, > 1, then A, — 7B s coercive for 0 < 7 < _/7\11(D)

0<71< @, there exists a constant o > 0 (that only depends on T and Nyq,) such that

NMma

That s, for every

(Asu — TBu,u) e = allul3. >0 for allue HZ (D),

where A1 (D) is the first Dirichlet eigenvalue for the negative Laplacian.

Proof. Let v := nmlx_l > 0 as in the proof of Lemma 4.3.3. We then have
(A,u — 7Bu, u)Hg = A (u,u) — 7| Vul 32
> (7 - 7;) |AulZopy + (1 + 7 = )7 |ulf2p) — TVl (4.19)
for v <& <~ + 1. Since Vu € H}(D), the Poincaré inequality gives us
IVultn, < 557180 o

Therefore, apllying it to the above expresison we obtain

2
’Y 1
(A;u — TBu,u) = (7 — ?) . HAU”%2(D) +(1+y—e)r- HuHiz(D) —T- —Al(D) ||AUH%2(D)
72 T 2 2 2
e ) 1A+ Ay = el

Hence, since the norm of H?(D) is equivalent to the L?(D)-norm of the Laplacian for functions in
HZ(D) (see Section 5.1.10 of the Appendix), A, — 7B is strictly positive if

T < (7 - %2) A (D).

In particular, taking € arbitrary closed to v + 1, the latter becomes

2 2 2
. Y Y Yy +1) —v g
lim —— | M(D)=~v— M(D)=——\(D) = A (D).
T<a—>(lv+1)* (7 5) (D) =7 v +1 (D) v+1 (D) v+1 (D)

Since vy =mn__ 1, then % = — and the condition becomes
1

n
Nmax — max

A (D
T< i ) ]
nmaa}
As a corollary, we have:
Corollary 4.3.6. Assume that n,,;, > 1. Then
M(D
k2> i ), (4.20)
nmaz

where kg is the smallest transmission eigenvalue and A\ (D) is the first Dirichlet eigenvalue of —A
on D.

Proof. For 7 = k* < M, A, — 7B is strictly positive, and therefore its kernel is {0}. Therefore, k

Nmax
cannot be a transmission elgenvalue. D
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4.3.1 Spectral decomposition with respect to an operator

Remember that we are interested in studying the kernel of A, — 7B. That is, we are concerned
with the spectral properties of A, with respect to B. The following step is to establish some general
spectral properties for operators in the conditions of Theorem 4.3.3.

Throughout this section, let X be a Hilbert space with scalar product (-, -) and associated norm
o

Recall that if A: X — X is a bounded, self-adjoint, and stricly positive definite operator, then
we can define the operators ATY/? by

Ail/? _ JOO )\il/Q dE)\
0

where dF) is the spectral measure associated with A. In particular, A*'/? are also bounded,
self-adjoint, and stricly positive definite operators on X satisfying

A7V2AV2 1 and  AY2AV2 = A

What we are going to do now is to describe the spectral decomposition of the operator
A with respect to self-adjoint nonnegative compact operators B. That is, we are going to
generalize the known properties of the eigenvalue problem

A— I

when the identity operator I is replaced by an arbitrary operator B (which has to satisfy some
properties).
Specifically, we want to generalize the spectral decomposition and the min-max principle.

Generalized Spectral Decomposition

Theorem 4.3.7. Let A: X — X be a bounded, self-adjoint, and stricly positive definite operator on
a Hilbert space X and let B: X — X be a nonnegative, self-adjoint, and compact linear operator with
null space N(B). There exists an increasing sequence of positive real numbers (\;) and a sequence
(uj) of elements of X satisfying

AUj = )\jBU,]‘ (421)

and
(BUJ', ul) = §jl (422)

such that each u € [A(N(B))]* can be expanded in a series
0
u = Z VU (4.23)
j=1

If N(B)* has infinite dimension then \; — 0 as j — o0.

Remark 4.3.8. Notice that this theorem gives us a spectral decomposition because the A; are the
eigenvalues of the operator A with respect to the operator B, with the eigenfunctions u; being
orthonormal with respect to the scalar product [u, v|p = (Bu,v) defined for u,v € X\N(B) (see the
end of Remark 4.3.14). In the case where B is the identity, we have the classical result.
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Proof of Theorem /.3.7. The idea of the proof is to apply the well-known spectral theorem for com-
pact self-adjoint operators, and then derive the stated properties from it.
The operator B = A~Y2BA-? is

e Nonnegative, because A2, A=Y2 are positive, and B is non-negative.

e Self-adjoint: in general if we denote the adjoint of an operator A by A*, then (AB)* = B*A*.
So
<A71/2BA71/2>* _ (Afl/Q)*B*(A71/2>* _ Afl/QBA71/27

being the last step true because A~/ and B are self-adjoint.

e Compact, because it is a composition of B, which is compact, with bounded operators, namely
AY2 and A7Y2,

Therefore, we can apply the spectral decomposition (5.10) and (5.11). Let (p;) be the decreasing
sequence of positive eigenvalues of B and (vj) the corresponding orthonormal eigenelements of B

that are complete in A~1/2BA-1/2(X). Then

i (v, v;)v (4.24)

for all v € A=1/2BA-1/2(X). Note that, because of the spectral theorem, zero is the only possible
accumulation point for the sequence (p;).
We have that

/l,jUj = ij < /LjUj = A71/2BA71/2U]‘

Proof of (4.21) and (4.22).

To obtain (4.21), we want an equation with the operator A on the left-hand side acting on a
vector, and the operator B on the right-hand side acting on that same vector and multiplied by an
scalar. Therefore, we divide by p; (which is positive, thus non-zero) and apply on both sides the
operator A2 = (A=%2)~71 thus obtaining

A2y, = iBA—l/%A
j j
i
Since we want to have operator A on the left-hand side acting on the same vector as B on the

right-hand side, we express A2 = AA~Y2 getting

1
AA™V2y; = —BA™V2y,
1

Therefore, our candidate for \; is /% and our candidate for u; is A~1/2v;. However, notice that
J

(B(A™'2u;), A7) = (A™Y?BA™v;,0) = (Buj, u) = 1 (v, vr)
A—1/2 self-adjoint Buvj=p;v;
_ sy iy =l
T M %“‘{o if j# 1.

{v;}; orthonormal
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So, in order to have (Buj,u;) = §;,, the right choice for u; is not A=%2v; but \/%T_A_mvj.
J
Therefore, what we have proved is that if we define

1
Aji=— and uj = «//\jA_mvj ,
Hj

for j = 1,2,..., then they satisfy (4.21) and (4.22).

Proof of (4.23)

Let us check (4.23). The only tool we have to obtain it is equation (4.24) (i.e., the fact that
{v;};en is an orthonormal basis of A=1/2BA~1/2(X)), so we are going to apply it.

Let

we A-IBA-12(X).

Then, there exists a sequence {w,} € A~'BA~"/2(X) such that v = lim, w,,. Therefore, since A*'/?
is bounded (i.e. continuous) we have

Ay = AV2(limw,) = lim AY?w,,

where A'Y2w, € AV2AT'BATV2(X) = A7Y/2BA~Y2(X) for all n € N. So

ATV e A-12BA-12(X).

Therefore, we can write A*'/2y using the orthonormal basis {v;}ey (that is, we can apply (4.24)),
obtaining

o0
A+1/2 Z A+1/2u Uj

1/2

Applying A=1/2 = (AY2)~! and using its continuity and linearity, we have

0
u=A"1? (A2, v;)v; = Z ATV ((AV2u,v;)v;)

A=1/2 lin. and cont.

[]s

1 j=1

1

A—1/2 linear

(Al/zu7 vj) - A’l/zvj

s 5

Il
—_

6] 1 o0
A1/2u v; NAT 20 = Y v,
];\//\»] i) \/7 j ]; iU

T
J
b

Multiply by 1=

A

where
1

RRNeY

We have thus obtained (4.23) for u e A='BA~1/2(X). Nevertheless, the statement asserts that (4.23)
is true for all u € [A(N(B))]*. If we prove that

(A1/2U, Uj).

A-1BA-12(X) = [A(N(B))]*,

then we will have finished. This is true since

ATIBATI2(X) = AT'B(X) = [N(BAT']" = [A(N(B))]*

having used
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e On the first equality, that A="/2 is bijective from X to X (since it is invertible being (A~%/2)~1
AY?) so A7V2(X) = X. Therefore, A"'BA™Y?(X) = A7'B(X).

e On the second equality, we use Theorem 5.1.20, which gives us N(A*)t = A(X) for A an
operator defined on X. We use that (A7'B)* = B*(A™1)* = BA™! where the last step is true
because A (and therefore A~!) and B are self-adjoint.

e On the third equality, we have used that N(AB™') = A(N(B)).

Proof of the last statement

The only thing left to prove is that if N(B)* has infinite dimension, then A\; — o0 when j — co.

If N(B)* has infinite dimension, then, since A*'/? are bijective and strlclty positive and B =
A"Y2BA-12 then N(B)* has infinite dimension as well. Since N(B)' is an (at most countable)
orthogonal dlrect sum of eigenspaces associated to different non-zero eigenvalues, and (because of the
spectral theorem) the eigenspace associated to one eigenvalue is finite-dimensional, then N (B)* being
infinite-dimensional implies that there must be an infinite number of distinct eigenvalues.
Therefore the eigenvalues form a non- negative decreasing sequence, with 0 as the only accumulation

point: {y;}52, with ;N\, 0. Therefore, \; = —J — o0 when j — o0, as we wanted to prove. ]

Generalized Min-Max Principle

The next important result is a generalized min-max principle. Before proceeding with it, we make
some remarks that will be useful in the following.

Lemma 4.3.9. Let X be a Hilbert space with scalar product (-,-)x, and let A: X — X be a bounded
linear operator, which is self-adjoint and stricly positive. Then the mapping [, Ja: X x X — K
given by

[u,v]4 = (Au,v)x

18 an scalar product.

Proof. For simplicity, we denote by (-,-) the scalar product of X. Let u,v,w e X, a,8 € K. We
have that:

1. Conjugate symmetry:

[U,U]A = (AU,U) ? (U’vAU) = (AU,U) = [U7U]A'
A self-adjoint
2. Sesquilinearity:
[au + fu,w]a = (A(au + fv),w) = a(Au,w) + B(Av,w) = afu, w]a + Blv, w]a
3. Positive-definiteness: [u,ula = (Au,u) = c- |ul% for some constant ¢ > 0 because A is strictly
positive. So [u,u]a = 0 and the equality is reached if and only if u = 0. n

The fact that [-,-]4 is an scalar product is useful to prove that the vectors {u;} given in the
previous theorem are linearly independent.

Corollary 4.3.10. Let A and B be as in Theorem 4.3.7. Then, the vectors {u;}jen are orthogonal
with respect to the scalar product [-,-]a and, therefore, they are linearly independent.



84 CHAPTER 4. EXISTENCE OF TRANSMISSION EIGENVALUES

Proof. We have that
[y, ue]a = (Aug,ue) - = (A Buj,ue) = Aj(Buj,ue) = Ay O
(4.21) (4.22)
Since they are orthogonal with respect to [, -]4, they are linearly independent. O

Corollary 4.3.11. Let A and B be as before, Then, X can be decomposed in the following direct
sum:

X = N(B)®[A(N(B))]*

Proof. Since N(B) is a closed subspace of X, we can decompose X as an orthogonal direct sum of
N(B) and its orthogonal complement with respecto to the scalar product [-,-]4. This gives us

X = N(B)®[N(B)]*~.

We have that

since

ue [A(N(B)]" < (u,v) =0 Yve A(N(B)) < (u, Aw) =0 Yw e N(B) =
A self-adjoint

— (Au,w) =0 Yw e N(B) Aras [u,w]s =0 Ywe N(B) < wue [N(B)]*.
Def. of [-,-]a

Therefore, we have the following decomposition of X as a direct sum:
X = N(B)®[A(N(B)]*. ]

Remark 4.3.12. Because of the direct sum given by Lemma 4.3.11, u ¢ N(B) implies that u = b+v
with v € N(B) and v € [A(N(B))]*\{0}.

Theorem 4.3.13. Let A, B, and (\;) be as in Theorem 4.3.7 and define the Rayleigh quotient as

- e

foru¢ N(B), where (-,-) is the scalar product in X. Then the following min-max principles hold

Aj = min ( max R(u)) = max ( min R(u)) : (4.25)
weut \ueW\{0} welt | \ ue[A(W+N(B))]+\0
where U;* denotes the set of all j-dimensional subspaces of [A(N(B))]*.

Remark 4.3.14. R(u) = % is well defined for u ¢ N(B). To check this, it is enough to see

that (Bu,u) # 0 for u ¢ N(B).
By Theorem 4.3.7, for every u € [A(N(B))]*, there exist scalars v; such that

o0
w= %
j=1
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with (Buj,w) = 6,;. So, if @ ¢ N(B), i.e., @) = b+u with b e N(B), u e [A(N(B))]*\{0} (see
Remark 4.3.12), then

(Bu,u) = (B(b+ u),b+u) = (Bu,b +u) = (Bu,u) + (Bu,b) = (Bu,u) + (u, Bb) = (Bu, u)

o 0 0 w
Z’yjuj ,Zmul :ZZ%% Buj,u;) = 22%% JZ_ZWJP#O
j=1

=1 j=1l=1 Jj=1l=1

since u ¢ N(B), so in particular u # 0, so ; # 0 for some j. In the above formula we have used that
B is continuous and that the scalar product is continuous in each of its variables.

Notice as well that a consequence of the fact that (Bu,u) # 0 for v ¢ N(B) is that [u,v]p =
(Bu,v) defines a scalar product on X\N(B) (as can be checked in a similar way to what we did
with [-,-]4 in Lemma 4.3.9).

Proof of Theorem 4.3.13. The proof is based on the fact that if u € [A(N(B))]*, then from Theorem
4.3.7 we can write

o0
= >y (4.26)
ik

for some coefficients 7;, where the u; are defined in Theorem 4.3.7. Using this expression of u, we
can calculate R(u) in the following way®:

R(u) = ST e 1’ P Z)\ ;2. (4.27)

This is because

Au,u)
Bu,u)

21 7]% Zic Vk“k)
7

R(u) = E

< 1 %UJ Zio Vkuk>
( v Ay, Y Wf“k)
(21 VJBU1721 ’quk)

ee} PR
e (Aug, u
= ggokl %EEB ’ k; (+,+) lin. and cont. in 1st var.
j k=1 ViTk\ DU , Uk
D1 ViR (Buy, g )
- (4.21): Au; = A;Bu,
2kt Yk (Bug, ug)
FeAj0j k
= 2ipjt TN (4.22): (Buj,u;) = 63
Zj,kzl VJ'Yk(S],k
Sty il

IDINETE

3Notice that, given u € [A(N(B))]*, a priori the expression (4.26) may not be unique. But this is not important:
(4.27) is the formula for R(u) for every expression of the form (4.26). That is, given u € [A(N(B))]* in the form
(4.26), R(u) can be computed with formula (4.27).

(A, B lin. and cont.)
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We have to prove (4.25).

Proof of the first equality of (4.25) Let W, = span{uy,...,u;}. We have that W; € Z/{jA
because

o W, = [A(N(B))]* since uy € [A(N(B))]* for every k = 1,...,j. This is because given
ve A(N(B)), that is, v = Aw with w € X such that Bw = 0, we have that

(ug,v) = (ug, Aw) ? (Aug, w) = (A Bug, w) T A (ug, Bw) = Ag(ug, 0) = 0.

A self-adjoint B self-adjoint

o W; = spanf{uy,...,u;} has dimension j because {u;}en are linearly independent because of
Lemma 4.3.10.

First step: Let us prove that

Aj = max R(u) = min R(u). (4.28)
ueW;\{0} ue[A(W;—1+N(B))]*+\{0}

1. First equality of (4.28): if w e W;\{0}, i.e., u € span{uy, ..., u;}, then u = Zi:l i, which is
an expression of the form (4.26). So by (4.27),

R(U) _ i:zll |7k|2)‘k < ?c:l |/7k|2 : >\j =X -1 =)\
f 21 |7 f 21 |75 ’ ’
Y, =0 for k=j+1 in (4.26) A;>0,{)\;} increasing

So Aj = maxy,ew;\(0} R(u). To see the equality, it is enough that the bound is reached for some
vector. That is, it is enough that R(u) = A; for some u € W;\{0}. Let us see that u; € W;\{0}
satisfies that. To begin with, u; € W;\{0} since u; # 0 because of condition (4.22) and because
u; € W, by definition W;. Since u; = 1 - u; is an expression of the form (4.26), by (4.27) we

have that R(u;) = 121# = Aj.

Therefore \; = maxyew,\(0; 2(v), thus obtaining the first equality.

2. Second equality of (4.28): let we A(W;_1 + N(B))*\{0}.

Notice that A(W,_, + N(B))* < [A(N(B))]* because A(N(B)) < A(W,_, + N(B)), so it
makes sense to apply formula (4.26) to elements of A(W;_; + N(B))*.

That is, since u € [A(N(B))]*, Theorem 4.3.7 gives us that u can be expressed in the form
(4.26):

0
u = Z’)/k c U
k=1
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Let je{l,...,j—1}. Then
0= <U7Au]'0) =

a0
= (Z Vil Aujo)

k=1

I
RgE

Vi (g, Awj, ) (+,+) lin. and cont. on 1st var.

=
Il
—

I
[M]8

Vi (ks Ajo Buy,) (4.21)

Ee
I
—

[
M8

Vi - Njo (g, Bugy) (-, ) sesquilinear; A\; € R

ey
I
—

ViAjo (B, ) B self-adjoint

I
s

=
Il
—_

ee}
= )‘jo Z ’Vk(sk,jo = ’7j0)‘j0' (4'22)
k=1
Then, since Aj, > 0 (by Theorem 4.3.7), it has to be ~;, = 0.
Since this is valid for all jo = 1,...,j — 1, we have that u = ka:j kU, SO applying (4.27) we

have that " ) " )
R(u) = Zk:j AR < Zk:j RO
D a2 D w2

Therefore

)\ < min R(u).
ue[A(W;—1+N(B))]+\{0}

To see the equality, it is enough to find u € [A(W,_; + N(B))]*\{0} such that R(u) = ;. We
have seen when checking the first equality that R(u;) = A; (and that u; # 0). So it is enough
to see that u; € [A(W,_1 + N(B))]*\{0}.

Lemma 4.3.15. Under the conditions of the theorem, if W;_y := span{us, ..., u;_1}, then
w € [A(Wj—1 + N(B))J'\{0}  vi=j.
Proof. Let v e A(W;_1 + N(B)), i.e., v = Aw with w € W;_; + N(B). Then
(u,v) = (uy, Aw) < (Auj,w) = (NBu,w)

T
A self-adjoint (4.21)

Since w € W;_y + N(B), w = 31} apuy + b for some aj, € C, be N(B). So

j—1 Jj—1
M(Bui,w) = N | Buy, Y agu +b | = Aj - | - @(Buy, ug) + (B, b)
k=1 k=1

The sum is 0 because, by (4.22), (Buj,u) = d, = 0for k=1,...,j—1 and in this case [ > j.
So what remains is

(Ul,’l)) = )\Z(Bul,b) T )\l(ul,Bb) ?

B self-adjoint beN(B)

>\l (ul, O) = 0.
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Then, since this is true for all v e A(W;_, + N(B)), we have that

w e [A(W,_1 + N(B))]J‘\{O} Vi = j. O

So, applying Lemma 4.3.15, we end the proof of the second equality of (4.28).
Next, let T be any element of ¢4, that is, W has dimension j and W < [A(N(B))]*. Therefore,

W A [AW,_, + A(N(B))]* # {0}. (4.29)
By Lemma 4.3.15 we have that
span{ug}rs; < [AW;_1 + A(N(B))],

so to prove (4.29) it is enough to see that W n span{uy}r=; # {0}. Let us check this.
Since W is a subspace of dimension j of [A(N(B))]*, there exists a basis {vi,...,v;}. As

[A(N(B))]* = span{us}_,, there exist scalars fyl(k), leN, k=1,...,nsuch that

0

k
vy = Z%( .

=1

We can thus consider the matrix of dimension j x (j—1) whose k-th row is composed of the coefficients

fyfk), N ](.’i)l. We can then make Gaussian elimination (i.e., row reduction) to obtain matrix whose
last row is composed by zeros.
This means that, from the basis {v1,...,v;} of W, we can obtain another basis {w;,...,w;} such

that w; € span{uy}r=;. In particular, since it is a basis, we have that w; # 0 and W; € W, so
W n span{ug}is; # 0.

Therefore, we obtain (4.29).
S0
max R(u) > min R(u) = min R(u) = \;
ueW\{0} ueW n[A(W;-1+N(B))]-\{0} ue[A(W;—1+N(B))]+\{0}

where

e The first inequality is true because that maximum over W\{0} is > that the minimum over
any subset of W\W\{0} and W n [A(W;_1 + N(B))]*\{0} is a subset of W\{0}.

e The second inequality is true because that set on the left-hand side is smaller, so the minimum
over the set on the left is greater or equal to the one over the set on the right.

e The last equality is true because of (4.28).
Since maxy,ep oy R(u) = A; for every w e Z/{]A, with max,ew, (0 R(u) = A; with W; e L{JA (because

Uy, ..., u; are linearly independent due to Lemma 4.3.10) we have that

= min (mox A0 )

wellA \ ueWw\{0}

which is the first equality of the statement of the theorem that we wanted to prove.

Proof of the second equality of (4.25)
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To prove the second equality of the theorem, we reason in a similar way to what we have done
for W e Z/{]-A before.

Let W e UL | be asubspace of [A(N(B))]* of dimension j—1. Reasoning as before, W;n(AW)*+
{0} . So

min R(u) < min R(u) < max R(u) < max R(u) = \j,
ue[A(W)+A(N(B))]+\{0} ueW;n(AW)-L\{0} ueW;n(AW)-L\{0} ueW;\{0}

having used on the first equality that! W; n (AW)* < [AW + A(N(B))]*.

Since minue[A(W)+A(N(B))]J_\{O} R(U) < )‘j for every W e Z/[A_l and minue[A(Wj_l)+A(N(B))]L\{O} R(U) =
Aj because of the second equality of (4.28) with W;_, € U, then

Aj = max min R(u) |,
weuﬁl ue[A(W+N(B))]+\{0}

proving thus the second equality of the theorem. O

The following corollary shows that it is possible to remove the dependence on A in the choice of
the subspaces in the min-max principle for the eigenvalues A;.

Corollary 4.3.16. Let A, B, \; and R be as in Theorem 4.3.15. Then

A, = min < max R(u)), (4.30)

wel; \ ueW\{0}
where U; denotes the set of all j-dimensional subspaces W of X such that W n N(B) = {0}.
Proof. To clarify the notation, recall that
e U; is the set of all the W vector subspaces of X of dimension j such that W n N(B) = {0}.
e U is the set of all the subspaces of dimension j of [A(N(B))]".

Let us see that U < U;. Let W e U, ie., a subspace of [A(N(B))]* = X of dimension j. To
check that W e U;, we just have to see that W n N(B) = {0}.
Let ve W n N(B).

e Since v e W, then v e [A(N(B))]*. So (v,w) = 0 for every w € (A(N(B)).

e Since v € N(B), then Av e A(N(B)).

4This is true because, in general, given A, B vector subspaces of X, and given A; — A a vector subspace, we have
that

Ay n Bt c [A+ Bl
because if v € A; N BY, given w = wa + wp € A 4+ B, we have that
(va) = ('anA) + (vva) =0

where the first term of the sum is 0 because v € A; € AL and wa € A; and the second is 0 because v € BL and
wa € B. So it is enough to take A = A(N(B)), A1 =W, y B=AW.
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So (v, Av) = 0. Since (v, Av) = (Av,v) = [v,v]a = 0, and [-,-]4 is a scalar product (because of
Lemma 4.3.9), then v = 0. So W n N(B) = {0} and, therefore, W € U;.
In brief,

From Theorem 4.3.13 and the fact that UJA < U;, we have that

A = min | max R(u)] > min | max R(u) |.
1 WeuA \ueW\ {0} T weld; \wew\{o}
Thm. 4313  ° Uty

So to prove (4.30), it is enough to prove the other inequality, that is, it is enough to see that

; < mi . .
A Jmin (ug%%}{%} R(u)) (4.31)

Proof of (4.31)

Let W e U; and let vy,...,v; a basis of W.

We want to prove the previous theorem, and in order to do it we need to work with j-dimensional
vector subspaces of [A(N(B))]*, that is, elements of ¢;*. To do so, we are going to try to obtain a

subspace W e L{JA from the given subspace W.
Because of the direct sum, every v; (I = 1,...,7) of the basis of W can be decomposed as a sum

UIZUIO-F@Z

with ¢, € [A(N(B))]* y v € N(B).
The vectors {f;}]_, are linearly independent, since W € U; = W n N(B) = {0}, so, if
> a0 = 0, we have that

4% BZalvl = ial (v) + ) Zalvl +Zalvl i ialv? e N(B) —
1

'
v =00+ Hypothesis 1 W AN (B)={0}

Zalvlzo = ap=...=a; =0

v1,...,v5 lin. indep.

Therefore, the space W := span{?y,...,0;} has dimension j. Besides, W < [A(N(B))]* (since
U1, ...,0; € [A(N(B))]* by definition). So W e U*.
Let @ € e W\{0}. Then, there exist scalars ai, . .. ,a;j such that

J J J J
3= Dt = Yl —1f) = S — anf
1 1 1 1

Denoting u = Y] ajuy € W, u® := 3 av? € N(B), we have that every i € W can be written as

i=u—u’

for some uw e W, u® € N(B).
We have that:
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e Since u’ € N(B), Bu’ = 0.

e Since u® € N(B), then Au® € A(N(B)). Since @ € [A(N(B))]*, then (Au®, @) = 0.

_ (Au,u) B (Aa,a) + (Au®,u’)  (Au,q) N (Au®,u®) R(3) +
+ (Bu,u) T (Ba, @) + (Bu®,u®) 1 (Ba,a) (Ba,a) 1 (Ba, @)
Def. u=u0+a; (Au0,q)=0 Bu%=0 Def.

R(u)

=

Since A is stricly positive and B is non-negative, i.e., (Au® u°) > c[[u°|?, (Ba,u) = 0 (and # 0
because @ # 0 and because of Remark 4.3.14) then
(Au? 0)

R(u) = R(@) + 5=t

> R(a).

So for every @ € W\{0} there exists u € W\{0} such that R(@) < R(u). Therefore,

max R(u) < max R(u). 4.32
aeW (@) ueW\{0} (v) ( )

Besides, by Theorem 4.3.13 we also have that

max R(#Z) > min (max R(u) = \j. (4.33)
aeW 1 WEZ/IJA aeW 1
WEMJA Thm. 4.3.13

So, combining (4.32) and (4.33), we have

Aj < max R(u).
ueW\{0}

This is true for every W e U; (because that one we have chosen is arbitrary), so

A; < min ( max R(u)) ,

Weld; \ ueW\{0}
as we wanted to prove. O

Until now, we have stablished general results about the spectral decomposition of an operator
A (bounded, self-adjoint and stricly positive definite) with respect to a self-adjoint nonnegative
compact operator. The following theorem is a corollary of all the results we have proved in this
sections, and it is exactly what we will use to prove the existence of transmission eigenvalues. The
two hypothesis enumerated in it may look a little bit rare at first sight, but they are used to apply
Bolzano’s Theorem.

Theorem 4.3.17. Let 7 — A, be a continuous mapping from (0,00) to the set of bounded, self-
adjoint, and strictly positive definite operators on the Hilbert space X and let B be a self-adjoint and
nonnegative compact linear operator on X. We assume that there exist two positive constants 1o > 0
and 7 > 0 such that

1. A,, — 1oB is strictly positive on X.

2. A, — 1B is non-positive on an l-dimensional subspace W; of X.
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Then each of the equations \j(t) = T for j = 1,...,1 has at least one solution in [Ty, 1] where A\;(T)
is the j' eigenvalue (counting multiplicity) of A, with respect to B, that is, N(A, — \;(1)B) # {0}.

Proof. The idea of the proof is to apply Bolzano’s Theorem on the closed and bounded interval
[70, 71] to the continuous function \;(7) — 7. So the proof is divided in two steps: first, we prove the
continuity using Corollary 4.3.16. It will be important to use it instead of Theorem 4.3.13, because
we will use that the subspaces over which we take the minimum do not depend on A,. The second
part of the proof is to check that \;(79) — 79 > 0 and that \;(71) — 7 < 0, so that we can apply
Bolzano’s Theorem.

First step: \;(7) is a continuous function of 7.

Let us see the continuity in 7y € (0,00). From Lemma 5.1.1 and the fact that inf(f) = — sup(—f)
we have that |inf(f) —inf(g)| < inf(|f — g|), so

IAi(T) = Aj(To)| =

min < max RT(u)> — min < max Rm(u))‘

Weld; \ ueW\{0} Weld; \ ueW\{0}

)

R (u) — R.
58 o0 = gt Pl

< min
Weuj

< mi R.(u) - R,
moin ( max [Rr(u) = B (u)])

We have that

|R-(u) — Ry, (u)| = ‘(é;; ’5)) - ((fgzui;)
|t
(Bu,u)
1A~ Al ol
(Bu,u)
< HAT — ATOH ’ HuH2
(Bu,u)

Given € > 0, we want to choose 0 > 0 independent of u in such a way that the last expression is < ¢
for every w € W\{0}, and this for every W € U;. However, this turns out to be complicated, so we
take a different path. We have that

A(7) = Aj(r0)| < min ( max [Rr(u) = Rry ()]) < max [ R (u) = Ry, (u)])

for any subspace Wy € U;. We are interested in chooosing one in which we can bound w
independently of u, so it is convenient to choose a subspace in which we can work explicitly.

So let (uy)r=1 be the sequence of vectors given by Theorem 4.3.7 associated to the operators A,
and B. Let Wy := spanf{uy, ..., u;}. Then, every u € Wy can be written as u = Zi=1 auy. Therefore

J
(BU,U) = Z |ak|2'
k=1

We are interested in obtaining a lower bound for this which has the form of a constant multiplied by

[ Ar—Axg-[lul?

|u]? so that, when we take the inverse, we can obtain an upper bound for By~ and the terms
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|u|? in the numerator and denominator simplify, leaving just a constant multiplied by |A, — A,,||.
We have that

2
j 9 j
= Y] < (X ol -Jual)) < CG) - D lowl -l < €G- sup s+ Y s
1

:17"'7] 1

where C'(j) > 0 is a constant that depends on j.

So
1 1 1 1 1

= — < — .
(Bu,u) 2]1|Oék|2 C(y) SUPg=1,....j

g >

Therefore,

[ Ar = An |- Jul® _ |Ar = An] - ul? 1

x — C : N AT B AT
Bu) = swpyyful? Jup ~ () A

for every u € Wy\{0}, with C'(7p,7) > 0 a constant that depends on 7y and j (it depends on 7 because
the sequence (uy)g>1 is associated to the operator A,).

So, given ¢ > 0, since 7 — A, is continuous, there exists 0 > 0 such that if |7 — 79| < 0, then
|A; — Ay | < &, and therefore [\;(1) — \j(70)| < C- & =e.

In brief, A\;(7) is a continuous function of 7 for every j > 1.

Second step: to apply Bolzano’s theorem.

Since A;(7) is continuous, we can apply to it the well-known theorems of analysis of one real
variable about continuous functions on compact intervals (more specifically, we are going to use
Bolzano’s theorem).

Hypothesis 1. tells us that A,, — 7oB is stricly positive on X. Since B is non-negative, we have
that® A, — 7B is positive for every 7 < 79, so N(A,, — 7B) = {0} for every 7 < 19. Therefore,
in order to have 7 = \;(7) (that is, in order for 7 to be an eigenvalue of A, in the sense that
N(A,, — 7B) # {0}) a necessary condition is that

)\j(Tg) > Tp. (434)
Hypotesis 2. gives us that A, — 7B is non-positive in a [-dimensional subspace of X, namely
W.
That is,
((A;, —B)u,u) <0 YueW, — (A u,u) <7 (Bu,u) YueW,. (4.35)

Since A,, is strictly positive, (A, u,u) = Cllu|? for every u € X, in particular for every u € .
So 11 (Bu,u) > 0 for every u € W, which implies that

° (ATI u,u)

(Buw S T1bara todo u e Wj.

e Bu # 0 for every u € W;, that is,
Wi n N(B) = {0},

5In detail, the explanation is the following:
Clul? < (Aryu — ToBu,u) = (Aryu,u) — 7o(Bu,u) < (Aryu,u) — 7(Bu,u)

for every T < 79, since A,, — 79 B is stricly positive and B is non-negative.



94 CHAPTER 4. EXISTENCE OF TRANSMISSION EIGENVALUES

From the second item we deduce that W, € i, and, in particular, any j-dimensional subspace of W,
(with 1 < j <) isin U;.

The min-max principle (equation (4.30)) gave us that

) - i (e G2,

wett; \ueW\{0} (Bu,u)

So given W; € U; a j-dimensional subspace of W, and using (4.35), we have that

. (A u,u) (Anu,u)
Aj(m1) = min [ max ~———*] < max ————* < max T = 7.
wett; \uew\{0} (Bu,u) uew;\{0} (Bu,u) ueW;\{0}

In brief, we have seen that

{)\j (10) > 7o

Aj(m) <7

for every 1 < j < [. So, if we define the continuous function f(7) := A;j(7) — 7, we have that
f(m0) > 0y f(m1) < 0. So, by Bolzano’s theorem, there exists 7 € 19, 71| (or [11,70] if 71 < 7p) such
that f(7) = 0, that is, such that A\;(7) = 7. O

We are now ready to prove the main theorem of this chapter:

Theorem 4.3.18. [fn e L*¥(D) with 1 < Nypin < n(x) < Npae < 0, the there exists an infinit set of
transmission eigenvalues with +00 as its only accumulation point.

Proof. We have that

0< L < L < L <
Nomaz — 1 n(x) =1 Nppin — 1 '

By Proposition 4.3.3, A, is self-adjoint and stricly positive (as well as bounded), and B is self-adjoint,
non-negative and compact. Therefore, they satisfy the first necessary conditions to apply Theorem
4.3.17.

By Lemma 4.3.5, A, — 7B is strictly positive on X = HZ(D) for 0 < 7 < 2B) g, hypothesis 1

of Theorem 4.3.17 is satisfied if we take 75 < ’\1(D)

So the only thing left to check is hypothems 9. of Theorem 4.3.17.

In order to do so, let ky ,,,,, be the smallest transmission eigenvalue for the ball B of radius R = 1
and let n(z) := Ny, (constant). Notice that this transmission eigenvalue exists because of Theorem
4.1.1, and there is a minimum eigenvalue because of Theorem 4.2.3.

Then k., ., = kl"% is the least transmission eigenvalue corresponding to the ball of radius
with refractive index n,,;,. This is due to the following scaling argument:

r 1
————(Au+ E*u) (AT + k*npin0)dz =0 Vv e HY(D) —

JB; Nmin —

N

B. Mmin — 1 9 € € c o3

( 1 1 Y k‘2 y 1 (v k2 y - ,

B. Mmin — 1 (;Au (8) +§ <E>) . <5_2AU (g + 52” - dy=0 Yve Hi(D)

(&

[
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and since the laplacian of w(z) = u(2) is Aw(z) = FAu(%), we have that w is a non-trivial® solution
of the interior transmission problem on the ball B, with n(x) = n,, so f is a transmission eigenvalue
for this medium.

Therefore,
k is trans. eig. of the media By, n,,;, <= — is trans. eig. of the media B., 1.
£
Therefore k., , = kl”% is the smallest transmission eigenvalue corresponding to the ball of

radius ¢ and index of refraction n,,,.
Given ¢ > 0 (sufficiently small), let m = m(e) > 1 be the maximum number of disjoint balls
Bl ..., B™ of radius ¢ that are contained in D. That is,

BlcD Vj=1,...,m and B_gmggzgifj;éi.

Then &

of refraction n,,;, and let uBg«"mz‘n_ € H§(B!) (j = 1,...,m) the corresponding eigenfunctions.

= % is the smallest transmission eigenvalue for each one of these balls with index

€, Nmin

The extension of @ from u%*mmin to all D by zero is on H2(D) since u*mmin € HZ(BI) (see
Theorem 5.1.21 of the appendix).

Besides, the vectors {@',..., @™} are orthogonal in HZ(D) because they have disjoint supports.
In particular, they are linearly independent.

By (4.17), as they are a solution of the interior transmission problem for n = n,;,, they satisfy

0= [ AT R EAT 1R, ) do
D Mmin — B o

= f ;\Aﬂj + k2w Pdr kR, J AR f V& | d (4.36)
D Mmin — 1 e b o
for each j = 1,...,m, where the second equality comes from the calculation made before to see that
(4.17) is equivalent to (A,u — 7Bu,v) = 0 for all v e HZ(D).
Let U := span{u', ..., @™} a m-dimensional subspace of HZ(D).
Since every @/, j = 1,...,m satisfies (4.36) and they have disjoint supports, for 7, = k?ﬁnmm and

for every u € U it is true that

1
(An @ — 7 BU, @) g2(py = J |AT A+ 7] do + Tff |@)? do — 7 f Vil do
pn—1 D D

< J S | AT+ Tyl de + rff |af? dz — Tlf [Va|? dz = 0.
D Mmin — 1 D D
Hence, hypothesis 2 of Theorem 4.3.17 is also satisfied.

Therefore, we can apply it to conclude that there are m(e) transmission eigenvalues (counting
multiplicity) in |79, K p,,.,, |- Notice that m(e) and k go to +00 when ¢ — 0. Since the multiplicity
of each eigenvalue is finite (because of Theorem 4.2.3) taking ¢ — 0 we see that there exists an infinte
set (countable, because of Theorem 4.2.3) of transmission eigenvalues that accumulates at +co (that
is, they can be ordered in an increasing sequence that goes to infinity). O

€NMmin

In a similar way (see Theorem 4.12.2 of [7], pages 135-136) it is possible to prove the following
theorem:

Theorem 4.3.19. Assume that 0 < nppm < Nmax < 1. Then there exist an infinite number of
transmission eigenvalues with oo as the only accumulation point.

5Non-trivial because u # 0.
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Chapter 5

Appendix

5.1 Results from Analysis

5.1.1 Technical lemma: supremum of the difference of two functions

Lemma 5.1.1. Let f,g: A — R be two real-valued functions. Then
sup(f(z) — g(z)) = sup f(z) — sup g().
zeA TreA zeA

Proof. First proof: we begin by proving that

sup(f(z) + g(z)) < sup f(x) + sup g(z). (5.1)
TEA TeA €A

This is a particular case of the fact that the supremum over a set is greater or equal to the supremum
over a subset. The left-hand side of (5.1) is

sup_ (f(z) +9(v)) (5:2)
whilst the right-hand side of (5.1) is
sup (f(z) + 9(v))- (5.3)

The set of the z,y considered in (5.2) is a subset of the z and y considered in (5.3), so (5.1) follows.
Using (5.1), we have that sup((f — ¢) + ¢g) < sup(f — g) + sup(g). That is,

sup(f — g) = sup(f) —sup(g).

Second proof: we want to prove

sup(f — g) = sup(f) —sup(g).

To express everything in terms of addition, we can write the minus sign inside the supremum by
changing it to an infimum, i.e., using that

—sup(g) = +inf(—g).
Let us define h(x) = —g(x). The problem then reduces to prove that
sup(f + h) = sup(f) + inf(h).
This is simple, because for every = we have that h(z) = inf(h), so

sup(f + h) = sup(f + inf(h)) = sup(f) + inf(h). O

97
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5.1.2 Basic results from Measure Theory

Differentiation under the integral sign

Theorem 5.1.2. Suppose that f: X x [a b] —» C, with —0 < a < b < 0 and that f(-,t): X — C is
integrable for every t € [a,b]. Let F(t) = { f(x,y)du(x).

1. Suppose that there exists g € L'(p) such that |f(z,t)] < g(z) for every x,t. If limy ., f(x,y) =
f(z,to) for every x, then limy_,, F(t) = F(to); in particular, if f(x,-) is continuous for every
x, then F' is continuous.

a—(x,t)‘ < g(x) for every x,t. Then F

exists and there is g € L' () 3t

2. Suppose that & at

is differentiable and F'(x) = |, % Wz, t) dp(x).

Proof. See Theorem 2.27 of [18], page 56. O

Approximations of the identity

Theorem 5.1.3. Suppose |p(x)| < C(1+|z])""¢ for some C,e > 0 and § ¢(x) dv = a. If f € LP(R™)
(1<p<w)and ¢ (x) =t"¢(t ), then [+ (x) > af(x) ast — 0 for every x in the Lebesque
set of f (in particular for almost every x, and for every x at which f is continuous).

Proof. See Theorem 8.15 of [18], pages 243-245. O]

5.1.3 Integration by parts

In this section, we assume that D is a bounded, open subset of R” and 0D is C*.

Theorem 5.1.4 (Gauss-Green Theorem). 1. Suppose u € C*(D). Then

f Oz, dx :f uvtds (i=1,...,n).
D oD
2. We have

f divu dz —J u-vds
D oD

for each vector field uw € C*(D;R™).
Proof. See Theorem 1 of Section C.2 of [16], pages 711-712. O

The second assertion is called the Divergence Theorem and follows from the first one applied to
each component of w = (u',..., u").

Theorem 5.1.5 (Integration by parts formula). Let u,v € C*(D). Then

J@xiuvdx——f u@xivdx—i-f wov'ds (i=1,...,n).
D D oD

Proof. 1t follows from applying the first item of the previous theorem to uv. O
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Green’s Formulas

To begin with, we recall Green’s formulas, which will be used repeatedly throughout the essay. First,
we have the classical result for C? functions up to the boundary (see [13], page 19).

Lemma 5.1.6 (Green’s Formulas). Let D be a bounded domain with boudnary of class Ct, and let
v be its unitary exterior normal. Let v e C*(D).

1. If ue CY(D), then

0
J (uAv + Vu - Vv)dr = f w2 ds. (5.4)
D op OV
2. If we make the stronger assumption that w e C?(D), then
0 0
f (uAv —vAu)dx = J (u—v - v—u) ds. (5.5)
D oD ov ov
Proof. To prove (5.4), use the theorem of integration by parts replacing 0., by v. To obtain (5.5),
apply (5.4) to u and v, then apply it again interchanging them, and the substract them. ]

This theorem can be generalized to the setting of Sobolev spaces.

Lemma 5.1.7. Let D be a bounded domain with boundary of class C, and let v be its unitary
exterior normal. Let v e H*(D).

1. Ifue HY (D), then

J (uAv + Vu - Vo) de = f u&_v ds. (5.6)
D op OV
2. If ue H*(D), then
ov ou
JD<UAU —vAu)dx = LD (uﬁ — v%) ds. (5.7)

Proof. In this TFM we will only use the second one, so we only prove this one. We will use that
C?*(D) is dense in H*(D) and apply the classical Lemma 5.1.6.

Since C?(D) is dense in H?(D), given u,v € H?(D), we can approximate them by a sequence of

J— R 2 2
C2(D) functions. Let {ty}n, {vn}n © C*(D) be two sequences such that u, —— — D), w and v, 2L, 4,

By (5.5), we have
J (unAv, — v, Auy,) de = J Un% — vn% ds
D oD v v
for every n € N.

We would like to see that the left-hand side tends to §, uAv — vAu)dz when n — oo and that
the right-hand side tends to §,, (ug—:j — v%) ds, obtaining thus (5.7).
Let us check this. We have that

(U Avy, — v, Auy) — (UAv — vAu) = (u,Av, — uAv) — (v,Au, — vAu)
= [u,Av — uAv, + uAv, — uAv| + [v,Au, — VAU, + VA, — vAu]
= (up, — u)Av + u(Av, — Av) + Au, (v, —v) + v(Au, — Au).
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Therefore

f [(un,Avy, — v Auy) — (WAV — vAu)] dx
D

< J [Jun — ul|Av| + [u]|Av, — Av] + [Au,|Jv, — 0] + [v]| A, — Au|] d
D

() () ([ ]9
(o) () () 1

= [[tn = ullZ2(p) | Al L2y + 1AV — Av |2y [ull 12
t vn = V() | Al () + | At — AulTa ) [0]72p)

2 2 2 2
Since u,, H'(D) u and v, M, we have that u, o), u, U L), v, Au, —> Au and

2
Awv, Lo, Awv. So the above expression tends to 0 as n — oo. Therefore,

lim | [u,Av, — v,Au,]de = f [uAv — vAu] dx.

It remains to see that

, oy, ouy, _ ov ou
nlgrolo N <ung - vng) ds = LD (ug - Uﬁ_y) ds. (5.8)

We have

"0 "ov "ov ov
G G o
Una, T, T T Ve

[ (e ne) - (a2

oD o T oy Yov v °
- 1/2

() (L)
oD oD oD

ov

2\ 1/2 1/2
-z (J lu, — u|2)
oD

ov

[

1/2 ou oul? 1/2 oul? 1/2 1/2
+ (J |vn|2> f - + f — <J v, —U’Q)
oD op| v v op | OV oD
2 2
Because the trace operator is continuous, the fact that wu, H1D), u and v, HD), v imply that
|t — vl 2Dy = 0, [|vn — V| 22Dy — 0, | G2 o %) 120py — 0 and [ %2 — 2] 12(5py — 0. So the above

expression tends to 0 when n — o0, obtalmng thus (5.8). O
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5.1.4 Convergence of the derivatives

Proposition 5.1.8. Let (f,) be a sequence of functions in H'(R"), and let f € H'(R™) and g €
L*R™). If f, — f in L*(R") and f, — g in L*(R"), then g = f'.

Proof. Let ne C(R"™). Then

fn(g - = Jﬂg + fﬁlf Int. by Parts
zlimfnffl—i—limfn'fn =g, fn— fin L?
= lim — Jn'fn + limfn’fn Int. by Parts

Therefore, by Theorem 5.1.3, taking n so that the product is a convolution with an approximation
of the identity we obtain that g — f’ = 0 almost everywhere. So g = f’ in L*(R"). O

5.1.5 Poincaré’s Inequality

Theorem 5.1.9. Assume D is a bounded open subset of R™. Suppose u € Wol’p(D) for some 1 <
p <n. Then we have the estimate

|ulla(py < C|Vul| e (p)

for each q € [1, rf%”p], the constant C depending only on p,q,n and D. Notice that |Vul|r»(py means

|V HLP(D) where

. 1/2
Vul = | D |0a,uf?
j=1
In particular, for all 1 < p < o0,
[ul ooy < CIVu|Lop)- (5.9)

In fact, for p = 2, the greatest possible value of the constant é 18

[Vl
inf -0 _ inf |Vul32p) = M(D),

2
ueH&(D):HuHLQ(D)=1 HUHL2(D) ueH; (D):llullp2(py=1

where A\ (D) denotes the smallest Dirichlet eigenvalue of the negative Laplacian. That is, the smallest

constant C' for which (5.9) is true forp =2 is C' = ,\I(D)
1

Proof. For a proof of (5.9), see Theorem 3 of Section 5.6 of [16], page 279. The value of the sharpest
constant is a consequence of Theorem 2 of Section 6.5 of [16], page 356, using that the bilinear form
associated to the negative Laplacian is Blu, u] = ||Vu|\%2(D) for ue H}(D). O
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5.1.6 Equivalent norms on H3(D)

Proposition 5.1.10. Let D be an open bounded set of R™. Then, the H*(D)-norm of a function
w e HZ(D) and the L*(D)-norm of its Laplacian are equivalent.

Proof. Note that u € HZ(D) implies that Vu € H} (D), so Poincaré inequality (Theorem 5.1.9) gives
us :
2 2,12
HUHHg(D) <C|D u”L?(D)
Besides, by definition of the H? norm, we trivially have
HD2UH%2(D) < |ullzz(py-
So, if we define the norm
2
ol? = |90
on HZ(D), it is equivalent to the to the standard Hg(D) norm. We now claim that
[Aulz2py = [ D*u] oy = Tl

for any u € HZ(D). If we check this, we end the proof of the proposition. To see this, first consider
u e CP(D). Then integration by parts and commutativity of partial derivatives for smooth functions
implies

u$i$iu$j$]‘d‘r = _Jv u:tiu.rjitjibidx = _J umiu$]'$i$]'dx = f u$i$]'u$i$]'d'r
D D D D

for every 1 < ,7 < n. Since

|Aul? = iaﬂf’f“ + 2 Z Oy, U
i=1

1<i<j<n
and

|D?ul? = Z |arirju|27

1<ij<n

we have that

[Auli2p) = | D%l 2
for all u e CX(D). Since C¥(D) is dense in H3(D), passing to limits we find that

|Au|2(py = HD2uHL2(D) for all u e H3(D) O

5.1.7 Rellich-Kondrachov Compactness Theorem

Definition 5.1.11. Let X and Y be two Banach spaces, X < Y. We say that X is compactly
embedded in Y, written
X ccy,

provided that

1. |uly < Clu|x (ue X) for some constant C.

2. Each bounded sequence in X is precompact in Y.

Theorem 5.1.12 (Rellich-Kondrachov Compactness Theorem). Assume U is a bounded open subset
of R™ and oU is Ct. Suppose 1 < p <n. Then

WP(U) cc LYU)
for each 1 < g < :%np.

Proof. See Theorem 1 of Section 5.7 of [16], pages 286-289. ]
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5.1.8 Trace Theorems

For a definition of Sobolev Spaces of arbitrary order, see [24], page 76. We use them in the following
result.

Theorem 5.1.13. Define the trace operator vv: C*(D) — C*(dD) by

U= ulyp

If D is a C* 11 domain, and if% < s < k, then v has a unique extension to a bounded linear operator
~v: H¥(D) — H*%(0D),
and this extension has a continuous right inverse.

Proof. See Theorem 3.37 of [24], page 102. O

5.1.9 Spectral Theory
Relation between the spectrum and the eigenvalues

We state here the fact that, when the operator is compact, its spectrum is composed only by eigen-
values.

In what follows, given a Hilbert space X over a field F (with F = R or C) and a linear operator
T: X — X, let p(T) denote its spectrum. We collect here the ones needed in the essay.

The first one says that nonzero eigenvalues of compact operators have finite multiplicity.

Theorem 5.1.14. Suppose T is a compact operator on a Hilbert space and oo € F with o # 0. Then
N(T — al) is finite-dimensional.

Proof. See Theorem 10.82 of [1], page 318. ]

Theorem 5.1.15. Suppose T is a compact operator on a Hilbert space and o € F with o # 0. Then
the following are equivalent:

1. e p(T).
2. « is an eigenvalue of T.
3. T — ol s not surjective.
Proof. See Theorem 10.85 of [1], page 319. O

The next theorem states that the eigenvalues of an operator form at most a discrete set that
accumulates only at 0.

Theorem 5.1.16. Suppose T is a compact operator on a Hilbert space X. Then
{aep(T) : || = 6}
s a finite set for every § > 0.

Proof. See Theorem 10.93 of [1], page 322. ]
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Spectral decomposition

Theorem 5.1.17. Let X be a Hilbert Space and let A: X — X be a compact self-adjoint operator,
A # 0. Then, every eigenvalue of A is real. A has at least one eigenvalue different from 0 and at
most a countable set of eigenvalues that accumulate only at 0. All eigenspaces N (A — A) for nonzero
eigenvalues A have finite dimension and eigenspaces to different eigenvalues are orthogonal. Assume
the sequence (X\,) of the nonzero eigenvalues to be ordered such that

MEYE.

and denote by P,: X — N(\,I — A) the orthogonal projection operator onto the eigenspace for the
eigenvalue \,. Then

a0
A= MDy (5.10)
n=1

in the sense of norm convergence. Let (Q: X — N(A) denote the orthogonal projection operator onto
the nullspace N(A). Then

o0
o= Pap+Qp (5.11)
n=1
forallp € X. (When there are only finitely many eigenvalues, the series (5.10) and (5.11) degenerate
into finite sums).

Proof. See Theorem 15.12 of [22], pages 305-306. O

Integral operators with weakly singular kernels

Definition 5.1.18. Let G < R™ be a nonempty compact Lebesgue measurable set. We say that a
function K: Gx G\{(z,z) : v € G} — R is a weakly singular kernel if K is defined and continuous
for all z,y € G < R™, x # y, and there exist positive constants M and « € (0, m] such that

|K(z,y)| < M|z —y|*™, z,yeG, x+#y.

Theorem 5.1.19. Integral operators

(Ag)(x) = LK(aﬁ,y)sO(y) dy

with weakly singular kernel K are compact linear operators on C(G), where C(G) denotes the Banach
space of continuous functions with the mazimum norm ||ul| = max,eq |u(z)| for u e C(G).

Proof. See Theorem 2.29 of [22], page 29. O

Properties of the adjoint operator

Recall that for every bounded linear operator A: X — Y between Hilbert Spaces X and Y there
exists a unique bounded linear operator A*: Y — X called the adjoint operator of A, given by the
relation (Ag, 1) = (p, A*Y) for every p € X and ¢ € Y. In the TFM, we make use of the following

basic connection between the kernels and ranges of A and A*.

Theorem 5.1.20. Let A: X — Y be a bounded linear operator between Hilbert Spaces X and Y.
Then
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Proof. g € A(X)* means (Ay, g) = 0 for every ¢ € X. This is equivalent to (p, A*g) = 0 para todo
¢ € X, which is equivalent to A*g = 0, that is, g € N(A*). So
A(X)E = N(A*),

Let us call U := A(X). We have U < (U*)*. Denote by P: Y — U the orthogonal projection
operator. Then, for ¢ € (U+)*! arbitrary, we have the orthogonality relation Py — ¢ L U. We also
have Py — ¢ L U™, because we now that U < (U*)*. Therefore, it follows that ¢ = Py € U, so
U = (U*)*; that is,

A(X) = N(A"*. O

Theorem 5.1.21. Let Q = R? be a bounded Lipschitz domain. Then
HE(Q) = {u|g : ue H*(R?),u = 0 in R*\Q}.

Proof. See Lemma 7.4 of [19], page 245. O

5.1.10 More facts from Functional Analysis

Theorem 5.1.22. Let E and F' be two Banach spaces and let T be a continuous linear operator from
E into F that is bijective. Then T~ is also continuous from F to E.

Proof. See Corollary 2.7 of [4], page 35. O

Theorem 5.1.23. Assume that E is a reflexive Banach space and let (x,) be a bounded sequence in
E. Then there exists a subsequence (z,,) that converges in the weak topology.

Proof. See Theorem 3.18 of [4], page 69. ]
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5.2 Normal derivative and radial derivative

Suppose we have two vectors ¥ and 77, forming an angle .. Let a be the length (i.e. the module) of
the projection of the vector ¥ over the vector 7.
We then have that cosa = 7. So a = cosar- |7

Therefore 0 -7 = |[0] - |7i] - cosa = a - ||7i]|. So

<y
3!

a =

JEFTRRRY

7]
If 77 is unitary, then the previous formula reduces to
a=7-T.

That is, the scalar product v - 77 gives the lenth of the projection of the vector ¢ over the unitary
vector 1
Hence, if we define

ou
— =Vu- v,
ov
what we obtain is the module of the projection of the vector Vu over the unit exterior normal vector

v. That is, it gives how much the function u grows in the direction of v. That is why S—Z is called

the normal derivative.
On the other hand, we have the radial derivative

du

or

() == Vu(z) - s

||

which can be understood as the normal derivative when the surface is a sphere S(0, R).

In this way, ‘2—”; gives us the module of the projection fo u over =, that is, over the radial unit

exterior vector. l.e., it gives how much u grows in the radial direction.
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5.3 Spherical Harmonics
Spherical harmonics can appear when we separate variables in polar coordinates, taking x = rz with
r=|z|>0and 2 €S

For a detailed treatment of the subject, we refer to Chapter 2 of [17], pages 98-110, or Chapter
5 of [2], pages 73-109. See also Section 2.3 of [21], pages 36-48, for an explicit approach on S? using

Legendre polynomials.
We present here just the basic results that we need for our purposes.

Definition 5.3.1. Let P, be the space of homogeneous polynomials of degree £ on R™ and let
Hy ={PePr: AP =0}

be the space of homogeneous harmonic polynomials of degree k and
Hy, = {Plgn-1 : P e My}

be the space of their restriction to the unit sphere.
The elements of H; are called spherical harmonics of degree k.

Remark 5.3.2. The restriction map from H; to Hj is an isomorphism, its inverse map being
Y € Hy, — P e Hy, P(x) = |z|*Y (|z| z).

Proposition 5.3.3. P, = Hy ® r*Py_o, where r*Py_o = {r?P : P € Pj_»}.
Proof. See Proposition 2.49 of [17], page 98, or Proposition 5.5 of [2], page 76. O
Corollary 5.3.4. P, = H;, @ 1r?H, s ®r* O Hps® ...

Corollary 5.3.5. The restriction to the unit sphere of any element of Py is a sum of spherical
harmonics of degree at most k.

Theorem 5.3.6. L?(S"') = ®F Hy, the expression of the right being an orthogonal direct sum with
respect to the scalar product on L*((S™™1).

Proof. See Theorem 2.53 of [17], page 99, or Theorem 5.12 of [2], page 8]1. ]

Explicit bases of H,, and H,, in R?

For explicit bases of H,, and H,, in the n-dimensional case we refer to pages 92-94 of [2].
For the 3-dimensional case, we have an explicit basis, which we can define as

with —n <m <nandn=0,1,... and where Pr‘bm‘ are the Legendre Polynomials (see Section 2.3 of
[13] for a description of them). They form an orthonormal system in L*(S?). We will identify Y,™(z)
with Y™(0, ¢) for = (sin 6 cos p, sin § sin ¢, cos §)T € S2.

The result that we will use is the following;:
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Theorem 5.3.7. The functions {Y": —n < m <n,neNuU{0}} are complete in L? (S?); that is,
every function f € L* (SQ) can be expanded into a generalized Fourier series in the form

n

f = 2 Z (f7 Ynm)LQ(S2) Ynm

n=0m=—

The series can also be written as
1 o0
=Y 2n+1 P,(y - 2
flo) = nE_O( n+1) . fW)Pu(y - x)ds(y), z€S

The convergence of these series is in the L*-sense. Furthermore, on bounded sets in C! (82) the
series converge even uniformly; that is, for every M > 0 and € > 0 there exists Ny € N, depending
only on M and ¢, such that

N n N n
20 20 (YD) Ya' = | =max| >0 D (£Y") ey V' (3) = f(3)| <&
n=0m=-n n=0m=-—n

for all N = Ny and all f € C* (S?) with | f|1..c < M, and, analogously for (2.19b).
Here, the space C* (82) consists of those functions f such that (with respect to spherical coordi-
nates 0 and ) the functions f,0f/00, and =~0f/d¢ are continuous and periodic with respect to ¢

sin 6
with the norm. defined by | £l = max {[ £, 10£ /60, | 250f /0], }
Proof. See Theorem 2.19 of [21], pages 44-47. O

Eigenfunctions of the Laplace-Beltrami operator

One important property about spherical harmonics is that they are eigenfunctions of the Laplace-
Beltrami operator:

Theorem 5.3.8. IfY € Hy, then Agn1Y = —k(k+n—2)Y. In particular, for dimension 3 and the
normalized spherical harmonics defined above, we have

A" +nn+1)Y," =0

for all |m| < n (n now denotes the degree of the spherical harmonic; above, the degree is k, and the
dimension is n).

Proof. See Lemma 2.62 [17], pages 104-105, or page 41 of [21]. O
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5.4 Bessel functions
The spherical Bessel differential equation is the following
220" (2) 4 220'(2) + [2* = n(n + 1)] 6(2) = 0. (5.12)

We consider this linear differential equation of second order for arbitrary z € C. For z # 0 the
differential equation is equivalent to

§(2) + 20/(2) + (1 - M) o) =0 in C\{0}.

z 22
The coefficients of this differential equation are holomorphic in C\{0} and have poles of first and
second order at 0 . As in the case of real z one can show that in every simply connected domain
2 < C\{0} there exist at most two linearly independent solutions of (5.12). See Theorem 2.25 of [21]

for a proof.
It can be deduced that a pair of linearly independent solutions is the following;:

Definition 5.4.1. For all z € C the spherical Bessel functions of first and second kind and order
n € Ny are defined by

= (n+0)!
2 n 20 C
?) ;) z! 2n+2€+1)z’ e
(=)™ ¢ —n)l g
n Y C?
yn(z) = 2z)n+ ; ! 26 D TR
where - in the definition of y,,-a quantlty for positive integers k is defined by
(=k)! 5 (2F)!
oy~ Y kel
The functions
WY = jo + iyn,
hn2) - ,]n Zyna

are called Hankel functions of first and second kind and order n € Ng.
For many applications the Wronskian of these functions is important.
Theorem 5.4.2. For all n € Ny and z € C\{0} we have

w (]m yn) (Z) = ]n(z)y;(z) - j:@(Z)y”(Z) = i2

z

Proof. See Theorem 2.27 of [21]. O

Remark 5.4.3. From this theorem the linear independence of {j,, y,} follows immediately and thus
also the linear independence of { Jns s )} Therefore, they span the solution space of the differential
equation (2.27).

In the TFM we need the asymptotic behavior of h%l)
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Theorem 5.4.4. For everyn € N and z € C we have

S i (- —Z§<n+1>)] o (ﬁ)] P
diihg)(z) B exp [Z (ZZ_ %TL)] L+ O (ﬁ)] for 2] — o

uniformly with respect to z/|z|. The corresponding formulas for j, and vy, are derived by replacing
expli(...)] by cos(...) and sin(...), respectively.

Proof. See Theorem 2.30 of [21], pages 59-61. O
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