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Abstract

We study the classical Yamabe problem from the point of view of the Riemannian

geometry and PDEs. We discuss the existence and uniqueness of positive solutions and

its relation with the sharp form of the Sobolev inequality. Next, we introduce the moving

plane method and its applications to obtain radial symmetry results for the solutions

of some elliptic equations related to the Yamabe problem and also to deduce a Harnack

type estimate for the parabolic case ut =∆u
N+2
N−2 , which is associated to the Yamabe flow.

Finally, for this last equation, we describe the asymptotic behaviour near the vanishing

time for the positive solutions to a Cauchy problem with an initial condition verifying a

certain rate of decay at ∞.

Resumen

Estudiamos el problema clásico de Yamabe desde el punto de vista de la geometría

Riemaniana y de las ecuaciones en derivadas parciales. Discutimos la existencia y uni-

cidad de soluciones positivas y su relación con la desigualdad óptima de Sobolev. A con-

tinuación, introducimos el método del plano móvil y sus aplicaciones para obtener resul-

tados de simetría radial para las soluciones de algunas ecuaciones elípticas relacionadas

con el problema de Yamabe y también para deducir una estimación tipo Harnack para

el caso parabólico ut = ∆u
N+2
N−2 , que está asociado al flujo de Yamabe. Finalmente, para

esta última ecuación, describimos el comportamiento asintótico cerca del tiempo de ex-

tinción para las soluciones positivas de un problema de Cauchy con una condición inicial

verificando una cierta tasa de decaimiento en ∞.
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Introduction

The main purpose of this Master’s thesis is the study of the Yamabe problem. This

problem was born while Yamabe was trying to solve the Poincaré conjecture:

A compact simply-connected Riemannian manifold (M, g) of dimension N = 3 is dif-

feomorphic to S3.

With this aim, he considered a metric with constant scalar curvature and the Yamabe

problem arose:

Let (MN , g) be a compact Riemannian manifold of dimension N ≥ 3 and non-constant

scalar curvature. Is there a metric with constant scalar curvature conformal to g?

In 1960, Yamabe proved in [26] that his problem is equivalent to the so called Yamabe

equation:

−CN∆u+Rgu = Ru
N+2
N−2 ,

where C > 0 and R are constants, Rg is the scalar curvature of M and ∆ is the Laplacian

operator. Moreover, he proved the uniqueness of its solutions in the cases where the

curvature is equal to zero or negative, but when the curvature is positive, it we can

not be proven the uniqueness in general, as we will see later, being the sphere case an

exception ([16]).

On the same paper [26], Yamabe used the variational approach in order to prove

the existence of its solutions. When 2∗ = 2N
N−2 , we have the critical case for which the

inclusion H1(M)⊂ L2∗
(M) is not compact and it is not possible to prove that a minimizing

sequence of a certain energy functional has a subsequence converging to an extremal

function. To overcame this situation, Yamabe took a collection of perturbed problems

under a subcritical case (s < 2∗) in which this difficulty disappears, and then he solved

the problem taking s → 2∗. However, in 1968 Trudinger [23] discovered that there was a

gap in Yamabe’s proof and he made a modification of Yamabe’s work in which he proved

that for dimension N ≥ 6 whenever the so called Yamabe invariant λ verifies λ(M) ≤ 0,

showing also that there exists a constant α(M) such that the problem can be solved when

λ(M)<α(M). In 1976, Aubin [2] improves this result by demonstrating that if N ≥ 6, we

have α(M) = λ(SN), so when λ(M) < λ(SN), the proof works on any compact Riemannian

manifold M. Finally, in 1981 Schöen and Yau [18] proved the positive mass theorem of
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general relativity for dimensions 3 and 4, which was used by Schöen [17] in 1984 to prove

the cases for dimensions N = 3,4,5, completing the demonstration of Yamabe problem.

As pointed by Lee and Parker ([16]), the solution of the Yamabe problem marked a

milestone in the development of the theory of nonlinear partial differential equations.

Semilinear equations of this form with critical exponent arise in many contexts and have

long been studied by analysts. This was the first time that such an equation has been

completely solved.

Next, we will present the moving plane method which consists on comparing values

of the solutions of a PDE at two different points, one point is the reflection of the other

over an hyperplane, and this hyperplane is moved until it arrives to a critical position,

where it stops. This method was introduced by Alexandrov [1] in 1958 and Serrin [21]

in 1971 and it has important applications in the theory of PDEs particularly in the proof

of qualitative properties of solutions, as monotonicity, radial symmetry or Harnack type

estimates ([6], [8], [11], [27]). Thanks to the use of the moving plane technique done by

[8], we will determine the precise form of radially symmetric solutions to the Yamabe

problem.

On the other hand, in 1988 Hamilton [12] introduced the Yamabe flow, a tool to gen-

erate metrics of constant scalar curvature in a given conformal class, with the aim to

solve the Yamabe problem. In 1994, Ye [27] used the referred moving plane technique to

get a Harnack inequality for the Yamabe flow. Later, in 2001 Del Pino and Sáez [9] take

advantage of this Harnack estimation and applied it to study the asymptotic behaviour of

the Yamable flow in RN in the critical case, where they were able to do a transformation

into a fast diffusion problem posed on the sphere via the stereographic projection. The

organization is as follows:

In this Master’s thesis we are going to cover the study of all these topics from the

point of view of Riemannian geometry and its applications in PDEs.

In chapter 1, we will collect different notions of differential geometry, laplacian oper-

ator on manifolds, Sobolev spaces and from the theory of elliptic and non-linear parabolic

equations, that are needed for the subsequent analysis.

In chapter 2, first we formally state the Yamabe problem showing that under cer-

tain transformations, this is equivalent to the Yamabe equation. Secondly, we initiate
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the variational approach used to prove the existence of its solutions. Next, we focus on

the model case of the sphere which reveals as a benchmark in the study of the Yamabe

equation, stating the known Obata’s theorem. We will see its relation with the sharp

form of the Sobolev inequality on RN , and using this result we will obtain the inequality

λ(M)≤λ(SN) on any compact Riemannian manifold M, where λ is the Yamabe invariant.

We finish this chapter solving the Yamabe problem for any compact Riemannian manifold

provided that λ(M)<λ(SN), and discussing the uniqueness of solutions.

Chapter 3 is dedicated to the moving-plane method and its applications to obtain

some results of radial symmetry of solutions of elliptic equations related to the Yamabe

problem, and to obtain a Harnack type estimate for a parabolic equation associated to

the Yamabe flow.

In the final chapter, we will study the asymptotic behaviour of the solutions to a

Cauchy problem for the equation ut = ∆u
N+2
N−2 . When the initial condition has a certain

decay rate at ∞, it can be proven that the positive solutions to this problem has a finite

vanishing time, and we will describe the asymptotic behaviour of these solutions near its

vanishing time.
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Chapter 1

Preliminaries

In this chapter we are going to see some results but we are not going into the proofs.

1.1 Notation

Einstein summation convention

In the study of smooth manifolds it is common to use the known Einstein summation

convention which consists in omitting the summation sign, that is to say that instead of

write E(x)=
N∑

i=1
xiE i, we write

E(x)= xiE i.

We are going to use this convention during the whole work.

Notation

We use the following notation:

• SN = {
x ∈RN+1 | ∥x∥ = 1

}
, the unit sphere contained in RN+1.

• BR(x), the ball of radius R centered in x.

• 〈., .〉g, the inner product with respect to the g metric.

• ∇ f , the gradient of a scalar function.

• 〈∇ f ,∇h〉g =∇i f∇ih.

• |∇ f |2g =∇i f∇i f .

• ∆=∆g, the Laplace-Beltrami operator with respect of the g metric.
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• (.)+, the positive part, (x)+ =max{0, x}.

• g0, the Euclidean metric in RN .

• gc, the standard metric in SN .

• g1, the cylindrical metric in R×SN−1.
• 2∗ = 2N

N−2 .

• CN = 4(N−1)
N−2 .

1.2 Some notions of Differential Geometry

The main references here are [4], [14] and [15].

1.2.1 Differentiable manifolds

Definition 1.2.1. A topological space M is a Hausdorff space if for every pair of distinct

points p, q ∈ M, there are disjoint open subsets U ,V ⊆ M such that p ∈U and q ∈V .

Definition 1.2.2. MN is a manifold of dimension N if it is a topological Hausdorff space

such that each point p ∈ MN has a neighbourhood Ω homeomorphic to RN or equivalently

to an open set of RN .

We are going to work here with connected manifolds of finite dimension.

Proposition 1.2.1. A manifold is locally compact and locally path connected.

Proof. See [4], Proposition 1.2, p. 20.

Definition 1.2.3. Let MN be a manifold of dimension N.

• A local chart on MN is a pair
(
Ω,ϕ

)
, where Ω ⊂ MN is open and ϕ :Ω −→ U is an

homeomorphism, with U ⊂RN an open set.

• A collection of
(
Ωi,ϕi

)
i∈I of local charts such that

⋃
i∈I
Ωi = MN is called an atlas.

• An atlas of class Ck is an atlas for which all changes of charts ϕα ◦ϕ−1
β

are diffeo-

morphisms of class Ck if Ωα∩Ωβ ̸= ;. If all of them are C∞, we say that the atlas is

smooth.

• Two atlases of class Ck or C∞ are said to be equivalent if their union is an atlas of

class Ck or C∞, respectively.
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The coordinates of some point P ∈Ω related to the local chart (Ω,ϕ) are the coordinates of

the point ϕ(P) ∈RN .

Definition 1.2.4. A differentiable manifold of class Ck (respectively, C∞ or smooth) is a

manifold together with an equivalence class of Ck (or C∞) atlases.

Proposition 1.2.2. Let SN ⊂ RN+1, be the unit sphere. Then SN is a compact smooth

manifold.

Proof. See [4], Example 1.8, p.23.

Definition 1.2.5. Let M be a smooth manifold, let Y be a smooth vector field on M and

let ϕ be the local group of local diffeomorphisms related to Y (also known as flow of Y ).

For any smooth vector field X on M, we define the Lie derivative of X with respect to Y ,

denoted LY X , as

(LY X )p = d
dt

|t=0 d
(
ϕ−t

)
ϕt(p)

(
Xϕt(p)

)= lim
t→0

d
(
ϕ−t

)
ϕt(p)

(
Xϕt(p)

)− X p

t
, p ∈ M,

provided the derivative exists.

1.2.2 Riemannian manifolds

Definition 1.2.6. • A smooth Riemannian manifold of dimension N is a pair (MN , g)

where MN is a smooth manifold and g is a Riemannian metric.

• A Riemannian metric is a twice-covariant tensor field g, i.e. a section of T∗(M)⊗
T∗(M), such that at each point P ∈ M, gP is a positive bilinear symmetric form, i.e.

it satisfies:

∗ gP (X ,Y )= gP (Y , X ), ∀X ,Y ∈ T∗(M)⊗T∗(M).

∗ gP (X , X )> 0, i f X ̸= 0.

Riemannian metrics can be written in any smooth local coordinates {xi} as

g = g i jdxidx j,

where g i j is a positive-definite symmetric matrix of smooth functions.
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Definition 1.2.7. The Riemannian or Levi-Civita connection is the unique connection

with vanishing torsion tensor for which the covariant derivative of the metric tensor is

zero, i.e. ∇g = 0.

From now we are going to consider
(
MN , g

)
a connected smooth Riemannian manifold

endowed with the Riemannian connection.

For a Riemannian connection, the Christoffel symbols Γk
i j in a local coordinate system

are given by

Γl
i j =

1
2

[
∂i gk j +∂ j gki −∂k g i j

]
gkl ,

where gkl are the components of the inverse matrix of the matrix (g i j)i j, i.e. it verifies

g i j gk j = δk
i , with δk

i the Kronecker symbol.

Example 1.2.1. Let us define the euclidean metric on RN as

g0 = δi jdxidx j = (
dx1)2 + ...+

(
dxN

)2 =
N∑

i=1

(
dxi

)2 = |dx|2 ,

where δi j is the Kronecker delta. On R2, we have g0 = dx2 +d y2 and on R3, g0 = dx2 +
d y2 +dz2.

Remark 1.2.1. One example is the Euclidean metric in Polar coordinates in dimension 2.

Let (x, y) be the euclidean coordinates and (r,θ) be the polar coordinates such that
x = r cosθ,

y= rsinθ.

Then the Euclidean metric in polar coordinates can be rewritten as

g0 = |dx|2 = dr2 + r2dθ.

Another example is the Euclidean metric in cylindrical coordinates. Let (x, y, z) be the

Euclidean coordinates and (r,θ, z) be the cylindrical coordinates defined as
x = r cosθ,

y= rsinθ,

z = z.

Then the euclidean metric in cylindrical coordinates is

g0 = dr2 + r2 dθ2 +dz2.
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Example 1.2.2. (Standard metric in SN) SN ⊂ RN+1 is an embedded submanifold of

dimension N. We denote by gc the standard metric defined on SN by the Euclidean

metric on RN+1.

Example 1.2.3. (Cylindrical metric in R×SN−1) We consider the product metric on

R×SN−1, g1 = dt2 +dθ2, with t ∈ R and θ ∈SN−1. Here dt2 is the Euclidean metric in R

and dθ2 is the standard metric in SN−1. Sometimes it is interesting to use the cylindrical

metric instead of the Euclidean metric in order to facilitate the calculations We are going

to see that the cylindrical metric and the Euclidean one are conformal.

If we use the Emden-Fowler coordinates r = e−t, then the euclidean metric in RN in

polar coordinates becomes:

g0 = dr2 + r2dθ2 = r2 (
dt2 +dθ2)= r2 g1.

Definition 1.2.8. Let (MN , g) be an oriented N−dimensional smooth Riemannian mani-

fold and
(
x1, ..., xN)

a smooth coordinates system, then the Riemannian volume form has

the local coordinates expression:

dVg =
√

det(g i j) dx1 ∧ ...∧dxN ,

where g i j are the components of g in these coordinates. We define the volume of M by

V ol(M)=
∫

M
dVg.

Definition 1.2.9. X(M) is the space of smooth vector fields on M.

Definition 1.2.10. Let
(
MN , g

)
be a N−dimensional Riemannian manifold, the (1,3)-

curvature tensor R is defined by

R(X ,Y )Z = DX DY Z−DY DX Z−D[X ,Y ]Z, ∀X ,Y , Z ∈X(M),

with D denoting the Riemannian connection.

Definition 1.2.11. Let (MN , g) be a N−dimensional smooth Riemannian manifold, its

Riemannian curvature tensor is defined as Riem(X ,Y , Z,T)= g [R(X ,Y )T, Z], a 4-covariant

tensor whose components are Riemi jkl = glm Rm
i jk, with Rm

i jk the components of the curva-

ture tensor R, which verify:
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• Riemi jkl =−Riemi jlk.

• Riemi jkl =Riemkli j.

Definition 1.2.12. Let (MN , g) be a N−dimensional smooth Riemannian manifold, the

Ricci tensor is a covariant 2-tensor field defined by contraction of the curvature or Rie-

mannian curvature tensors. Its components are

Rici j = Rk
ki j = gklRl ik j.

Remark 1.2.2. Using properties of metrics and of the Riemannian curvature tensor, we

obtain that the Ricci tensor is symmetric:

Rici j = gkl Rieml ik j = gkl Riemk jl i = glk Riemk jl i =Ric ji .

Definition 1.2.13. Let (MN , g) be a smooth Riemannian manifold with N ≥ 2, p ∈ M,

X ,Y ∈ TpM linearly independent vectors. The sectional curvature of the plane spanned by

X and Y is defined by

σ(X ,Y )= Riem(X ,Y , X ,Y )
g(X , X )g(Y ,Y )− g(X ,Y )2 .

Example 1.2.4. (SN , gc), with N ≥ 2, has a constant sectional curvature 1 (see [15], The-

orem 8.34, p. 254).

Definition 1.2.14. The scalar curvature is defined as the contraction of the Ricci tensor:

Rg = gi j Rici j .

Remark 1.2.3. The scalar curvature at p ∈ M is the sum of all sectional curvatures of the

planes spanned by ordered pairs of vectors from an orthonormal basis of TpM (see [15]),

Proposition 8.32, p. 253). Then for (RN, g0), Rg0 = 0, and for (SN , gc), Rgc = N(N −1),

being constant both scalar curvatures.

Definition 1.2.15. Let (MN , g) be a smooth Riemannian manifold, the trace-free Ricci

tensor is defined as

Eg =Ric−Rg

N
g.

Remark 1.2.4. The trace-free Ricci tensor verifies:
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• tr(Eg)= gi jEg i j = 0.

• div(Eg)= N−2
2N dRg, with div(Eg)= tr(∇Eg).

(see [15], Proposition 7.18, p.209).

Definition 1.2.16. A Riemannian metric g is said an Einstein metric if there exists λ ∈R
such that Ric=λg.

Proposition 1.2.3. (Schur’s Lemma) Let (MN , g) be a smooth connected Riemannian

manifold with N ≥ 3. If Ric = f g, for f ∈ C∞(M), then f is constant and g is an Einstein

metric.

Proof. See [15], Proposition 7.19, p. 210.

Proposition 1.2.4. Let (MN , g) be a connected smooth Riemannian manifold, with N ≥ 3.

Then g is Einstein if and only if Eg = 0.

Proof. See [15], Corollary 7.20, p. 210.

1.2.3 Conformal geometry

Conformal geometry is the study of transformations preserving angles on surfaces

(see Figure 1.1). Some examples of these transformations are translations, orthogonal

maps or spherical isometries, and they are important in many areas such as physics

(heat diffusion, electric–magnetic fields), general relativity, cartography,...

Figure 1.1: Conformal transformation

Definition 1.2.17. A normal coordinate system at P ∈ MN is a local coordinate system for

which the components of the metric tensor at P satisfy g i j(P) = δ
j
i , and, ∂k g i j(P) = 0, or,

equivalently, Γk
i j(P)= 0, ∀i, j,k.
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Definition 1.2.18. Two metrics g and g̃ on a N−dimensional smooth Riemannian man-

ifold M are said conformal if there is a positive function f ∈ C∞(M), such that g = f g̃.

Definition 1.2.19. A diffeomorphism ϕ between two smooth Riemannian manifolds (M, g)

and (M̃, g̃) is called a conformal diffeomorphism (or conformal transformation) if it pulls

g̃ back to a metric conformal to g, i.e., if ϕ∗ g̃ = f g, for some f ∈ C∞(M), f > 0. Two smooth

Riemannian manifolds are said conformally equivalent if there is a conformal diffeomor-

phism between them.

Theorem 1.2.1. Let MN be a Riemannian manifold and P ∈ MN . For each N ≥ 2, there

is a conformal metric g on MN such that

det g i j = 1+O(|r|N),

where r = |x| in normal coordinates at P.

Proof. See [16], Theorem 5.1, p. 58.

Definition 1.2.20. Let (MN , g) be a smooth Riemannian manifold, with N ≥ 3, the Weyl

tensor is a 4 covariant tensor defined in a local chart by the components:

Wi jkl =Riemi jkl −
1

N −2
(
Ricik g jl −Ricil g jk +Ric jl g ik −Ric jk g il

)
+ Rg

(N −1)(N −2)
(
g jl g ik − g jk g il

)
.

Remark 1.2.5. The Weyl tensor is conformally invariant.

Definition 1.2.21. A smooth Riemannian manifold (MN , g) is locally conformally flat if

every P ∈ M has a neighborhood that is conformally equivalent to (RN , g0).

Proposition 1.2.5. Let (MN , g) be a smooth Riemannian manifold of dimension N ≥ 3

and locally conformally flat, then the Weyl tensor vanishes identically: W ≡ 0.

Proof. See [15], Corollary 7.3, p. 218.

Example 1.2.5. (SN , gc) is locally conformally flat (see [15], Corollary 3.6, p. 61). In fact,

gc =
(

1
1+|x|2

) N−2
2 |dx|2.
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Let consider Rg the scalar curvature of (MN , g), which we assume that is not con-

stant, and, Rg′ , the scalar curvature of (MN , g′), that by hypothesis is constant with g′

conformal to g. If g′ = e f g, we can compute the curvature tensor Rg′ of g′ in terms of that

of g. In the next theorem we calculate their difference by the transformation laws of the

Ricci tensor ([20], p. 184) given by:

(1.1) Ricg′
k j −Ricg

k j =− (N −2)
2

∇k∇ j f − 1
2
∆ f g jk +

N −2
4

∇k f∇ j f − N −2
4

∇i f∇i f g jk,

Theorem 1.2.2. Under the above hypothesis, we have that:

(1.2) Rg′ e f −Rg =−(N −1)∆ f − (N −1)(N −2)
4

∇i f∇i f .

Proof. If we contract (1.1) by gk j, we get

Ricg′
k j gk j −Ricg

k j gk j =− (N −2)
2

∇k∇ j f gk j − 1
2
∆ f g jk gk j + N −2

4
∇k f∇ j f gk j

− N −2
4

∇i f∇i f g jk gk j.

Ans using that g jk gk j = N because it is the trace of the identity matrix of order N,

Ricg′
k j gk j −Ricg

k j gk j =− (N −2)
2

∇k∇ j f gk j − N
2
∆ f + N −2

4
∇k f∇ j f gk j − N(N −2)

4
∇i f∇i f .

Knowing that ∇ j f gk j =∇k f :

Ricg′
k j gk j −Ricg

k j gk j =− (N −2)
2

∇k∇k f − N
2
∆ f + N −2

4
∇k f∇k f − N(N −2)

4
∇i f∇i f .

Thus, because gk j = e f g′k j, and using the fact that ∇k∇k f =∆ f , we get

Rg′ e f −Rg =− (N −2)
2

∆ f − N
2
∆ f + N −2

4
∇i f∇i f − N(N −2)

4
∇i f∇i f .

We arrive finally to

Rg′ e f −Rg =−(N −1)∆ f − (N −2)(N −1)
4

∇i f∇i f .

1.3 The Laplacian operator on manifolds

Definition 1.3.1. Let (MN , g) be a smooth Riemannian manifold. The gradient of a scalar

function f is the vector field, denoted ∇ f , defined as

〈∇ f (x),vx〉g = dx f (vx), ∀vx ∈ TxM.
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So, in local coordinates, we denote ∂i f = gi j∂ j f , and we have ∇ f = gi j∂ j f ∂i f , then the i-th

component of ∇ f is :

∇i f (x)= ∂i f = gi j∂ j f .

Definition 1.3.2. Let (MN , g) be a smooth Riemannian manifold. The divergence of a

vector field X on M, denoted div X , is defined as the scalar function verifying

(div(X ))dVg =LX dVg,

where LX is the Lie derivative along the vector field X , and dVg is the Riemannian volume

form. So in local coordinates:

div(X )= 1√|g|∂i

(√
|g|X i

)
.

Definition 1.3.3. Let N > 2, (MN , g) be a smooth Riemannian manifold , we define the

standard Laplace-Beltrami operator of a scalar smooth function f as

∆g f = div(∇ f ) .

Combining the above definitions, in local coordinates:

∆g f = 1√|g|∂i

(√
|g|gi j∂ j f

)
.

Definition 1.3.4. Let (MN , g) be a smooth Riemannian manifold. The conformal lapla-

cian operator is defined as

Lg =−CN∆g +Rg.

Proposition 1.3.1. Given g, g̃ two conformal metrics on a smooth Riemannian mani-

fold MN , with g̃ = u
4

N−2 g, for u a smooth positive function, then the conformal laplacian

operator satisfies the following property:

L g̃(ϕ)= u− (N+2)
(N−2) Lg(uϕ), ∀ϕ ∈ C∞(MN).

If ϕ= 1, we have the classical scalar curvature equation:

Lg(u)= R g̃u
N+2
N−2 .

Proof. See [15], Problem 7.11, p. 223.
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1.4 Sobolev spaces

Definition 1.4.1. Let p ∈R, 1≤ p ≤∞. The Lebesgue space Lp(M) is the set of locally inte-

grable functions u on M for which the following norm is finite: ∥u∥Lp(M) =
(∫

M |u|p dVg
) 1

p .

Definition 1.4.2. Let p ∈R, 1≤ p ≤∞, and k a non-negative integer.

• The Sobolev space Wk,p(M) is defined as

Wk,p(M)=
{
u ∈ Lp(M) |Dαu ∈ Lp(M), ∀α ∈NN : |α| ≤ k

}
,

where Dαu is the α weak derivative of u, ∀α ∈NN . This is a Banach space equipped

with the norm:

∥u∥Wk,p(M) =
(

k∑
i=0

∥∇iu∥p
Lp(M)

) 1
p

,

with ∇0(u)= u. This space is reflexive for 1< p <∞ and it is separable for 1≤ p <∞.

• We set Hk(M)=Wk,2(M), which is a separable Hilbert space. For example, H1(M) is

equipped with the scalar product:

〈u,v〉Hk(M) = 〈u,v〉L2(M) +〈∇u,∇v〉L2(M) =
∫

M
(u ·v+∇u ·∇v) dVg,

and with the associated norm:

∥u∥Hk(M) =
(
∥u∥2

L2(M) +∥∇u∥2
L2(M)

) 1
2 .

Remark 1.4.1. We obviously have Wk,p(M)⊂ Lp(M). Also, for α= 0, W0,p(M)= Lp(M).

Definition 1.4.3. Given 1 ≤ p ≤ ∞, k a non-negative integer and N the dimension of

a smooth Riemannian manifold (MN , g). We define the critical exponent p∗ as the real

number which satisfies
1
p∗ = 1

p
− k

N
.

In particular, for p = 2, k = 1 and assuming N ≥ 3, we define

2∗ = 2N
N −2

.

Theorem 1.4.1. (Sobolev embedding for RN ) Let M =Rn and let 1
p − k

N > 0. Then

Wk,p(RN) ,→ Lp∗
(RN),
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with a continuous injection. In particular for p = 2, k = 1 and N ≥ 3, we have the following

Sobolev inequality:

∥u∥2
L2∗ (RN )

≤σN ∥∇u∥2
L2(RN ) , ∀u ∈ H1(RN).

We will call the smallest such constant σN , the N−dimensional Sobolev constant.

Proof. See [16], Theorem 2.1, p. 44.

The following theorem shows us that the Sobolev inequality holds with the same con-

stant on any compact manifold M.

Theorem 1.4.2. (Sharp Sobolev inequality) Let (MN , g) be a compact Riemannian

manifold, N ≥ 3 and let σN be the best Sobolev constant defined in the theorem before.

Then ∀ε> 0, there exists a constant Cε > 0 such that

∥u∥2
L2∗ (M)

≤ (1+ε)σN

∫
M
|∇u|2 dVg +Cε

∫
M

u2 dVg, ∀u ∈ C∞(M).

Proof. See [16], Theorem 2.3, p.45.

Theorem 1.4.3. (Sobolev embedding for compact manifolds) Let MN be a N−dimensional

compact Riemannian manifold, then:

1. If 1
p∗ ≥ 1

p − k
N , then the embedding Wk,p(MN) ,→ Lp∗

(MN) is continuous.

2. If 0<α< 1, and, k−α
N ≥ 1

p , then the embedding Wk,p(MN) ,→ Cα(MN) is continuous.

Proof. See [3], Theorem 2.20, p. 44.

Theorem 1.4.4. (Rellich-Kondrachov) Let MN be a N−dimensional compact Rieman-

nian manifold (possibly with C1 boundary), and, 1 ≥ 1
q > 1

p − k
N , then the embedding,

Wk,p(MN) ,→ Lq(MN), is compact.

Proof. See [3], Theorem 2.34, p. 55.

1.5 Fast diffusion equation

Following [24] and [25], the non-linear heat equation:

(1.3) ut(x, t)=∆um(x, t), ∀x ∈RN , t ∈R,m ∈R,
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is called the porous medium equation for m > 1 and fast diffusion equation for m < 1.

The classical heat equation is the case m = 1. We can write it in the divergence form

as ut = div(D(u)∇u), where D(u) is the diffusion coefficient, D(u) = mum−1, if u ≥ 0, and

D(u)= m|u|m−1, for signed solutions. However, it is a parabolic equation only when u ̸= 0,

while when u = 0, we say that the porous medium equation is a slow diffusion equation,

because: D(u) = m|u|m−1 −→
u→0

0. Instead, in the case of fast diffusion equations we have

this name because: D(u)= m|u|m−1 −→
u→0

∞.

Note that when m < 0, the fast diffusion equation can be written in the following

modified form:

ut =∆
(

um

m

)
= div

(
um−1∇u

)
,

to keep the parabolic character of the equation. When m = 0, this modified form allows

us to write the equation as

ut = div
(
u−1∇u

)=∆ log(u),

and it is called logarithmic diffusion.

1.6 Uniformly elliptic equations

1.6.1 Uniformly elliptic equations

Using the Einstein summation convention, let consider the solutions u ∈ C2 of the

elliptic problems of the form

(1.4) Lu =−ai j(x)uxi x j +bi(x)uxi + c(x)u = 0, x ∈Ω,

where Ω ⊂ RN is an open smooth bounded set, ai j(x), bi(x), and c(x) are C
(
Ω

)
functions

called structural functions. Similarly, the equation can be posed on Riemannian mani-

folds.

Definition 1.6.1. We say that the operator L is uniformly elliptic if there exists a constant

θ > 0, such that for every vector ξ= (ξ1, . . . ,ξN) ∈RN and a.e. x ∈Ω, the following inequality

holds:

(1.5) θ |ξ|2 ≤ ai j(x)ξiξ j,
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where ai j are the structural functions in (1.4).

Now we are going to see the following theorems on an open set in RN and on a mani-

fold.

Theorem 1.6.1. (Local elliptic regularity) Let p ≥ 1, Ω ⊂ RN an open set and u ∈
L1

loc(Ω) be a weak solution to ∆u = f .

1. If f ∈ Wk,p(Ω), then u ∈ Wk+2,p(K) for any compact set K ⋐ Ω, and there exists a

constant C > 0 such that

∥u∥Wk+2,p(K) ≤ C
(∥∆u∥Wk,p(Ω) +∥u∥Lp(Ω)

)
.

2. If f ∈ Ck,α(Ω), then u ∈ Ck+2,α(K) for any compact set K ⋐ Ω, and there exists a

constant C > 0 such that

∥u∥Ck+2,α(K) ≤ C
(∥∆u∥Ck,α(Ω) +∥u∥Cα(Ω)

)
.

Proof. See [16], Theorem 2.4, p. 46.

Theorem 1.6.2. (Global elliptic regularity) Let p ≥ 1, M be a compact Riemannian

manifold and u ∈ L1
loc(M) be a weak solution to ∆u = f .

1. If f ∈Wk,p(M), then u ∈Wk+2,p(M), and there exists a constant C > 0 such that

∥u∥Wk+2,p(M) ≤ C
(∥∆u∥Wk,p(M) +∥u∥Lp(M)

)
.

2. If f ∈ Ck,α(M), then u ∈ Ck+2,α(M), and there exists a constant C > 0 such that

∥u∥Ck+2,α(M) ≤ C
(∥∆u∥Ck,α(M) +∥u∥Cα(M)

)
.

Proof. See [16], Theorem 2.5, p. 46.

Proposition 1.6.1. (Weak removable singularities) Let U ∈ M an open set, P ∈U and

u be a weak solution to −∆u = h(u) on U \ {P}, with h ∈ L
N
2 (U) and u ∈ Lp(U) for some

p > 2∗
2 = N

N−2 . Then u satisfies −∆u = h(u) weakly on all of U .

Proof. See [16], Proposition 2.7, p. 47.
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1.6.2 Maximum principle

Theorem 1.6.3. (Weak maximum principle) Let Ω ⊂ RN be an open bounded set, u ∈
C2(Ω)∩C(Ω), L in (1.4) an uniformly elliptic operator with c ≡ 0 in Ω. We have:

• If Lu(x)≤ 0, for x ∈Ω, then max
x∈Ω

u =max
x∈∂Ω

u.

• If Lu(x)≥ 0, for x ∈Ω, then min
x∈Ω

u = min
x∈∂Ω

u.

Proof. See [10], Theorem 1, p. 344-345.

We are going to present the well known Hopf Lemma in whose proof we use a suitable

comparison function which is the same tool that we will use in subsequent chapters.

Lemma 1.6.1. (Hopf) Let Ω ⊂ RN be an open bounded set, u ∈ C2(Ω)∩C1(Ω), L in (1.4)

an uniformly elliptic operator with c ≡ 0 in Ω. If Lu(x)≤ 0, ∀x ∈Ω, and there exists a point

P ∈ ∂Ω such that

• There exists an open ball BR(x)⊂Ω, R > 0, with p ∈ ∂BR(x).

• u(x)< u(P), ∀x ∈Ω.

Then ∂
∂ν

u(P)= uν(P)> 0, where ∂
∂ν

is the outward normal to BR(x) at p. The same conclu-

sion holds if c ≥ 0 in Ω provided that u(P)≥ 0.

Proof. We can assume without loss of generality that BR(x) = BR(0). We give the proof

for c ≡ 0, and we refer to [10], p.348-349, for the case c ≥ 0. Let us define the function

v(x)= e−λ|x|
2 − e−λR2

, then we have by (1.5):

Lv(x)=−ai j(x)vxi x j +bi(x)vxi = e−λ|x|
2
ai j(x)

(−4λ2xix j +2λδi j
)− eλ|x|

2
bi(x)2λxi

≤e−λ|x|
2 (−4λ2θ|x|2 +2λtr(A)+2λ|b||x|) ,

where A = (ai j(x))i, j=1,...,N , and, b = (b1, . . . ,bN). Now, consider the open annulus W =
BR(0)−B R

2
(0), then

(1.6) Lv(x)≤ e−λ|x|
2 (−λ2θR2 +2λtr(A)+2λ|b|R)≤ 0, ∀x ∈W ,

where λ> 0 is fixed large enough.

By hypothesis, we have u(x) < u(p), ∀x ∈Ω, then there exists ε > 0 sufficiently small

such that

(1.7) u(x)+εv(x)≤ u(p), ∀x ∈ ∂B R
2
(0),
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and since v(x)≡ 0, for x ∈ ∂BR(0):

(1.8) u(x)+εv(x)≤ u(p), ∀x ∈ ∂BR(0).

Now from (1.6) and that Lu ≤ 0 in Ω:

L (u(x)+εv(x)−u(p))≤ 0, ∀x ∈W .

Moreover, from (1.7) and (1.8):

u(x)+εv(x)−u(p)≤ 0, x ∈ ∂W .

Then applying the weak maximum principle of Theorem 1.6.3, we get u(x)+εv(x)−u(p)≤
0 for x ∈W . As we have u(p)+εv(p)−u(p)= 0, then

uν(p)+εvν(p)≥ 0.

From where we obtain

uν(p)≥−εvν(p)=− ε

R
∇v(p) · p =

(
− ε

R

)(
−2λRe−λR2

)
= 2ελe−λR2 > 0.

Theorem 1.6.4. (Strong maximum principle) Let Ω ⊂ RN be an open bounded con-

nected set, L in (1.4) an uniformly elliptic operator with c = 0 in Ω, and, u ∈ C2(Ω)∩C(Ω).

Then:

• If Lu(x) ≤ 0, ∀x ∈Ω, and u attains its maximum over Ω at an interior point, then

u(x) is constant for x ∈Ω.

• If Lu(x) ≥ 0, for x ∈Ω, and u attains its minimum over Ω at an interior point, then

u(x) is constant for x ∈Ω.

The same conclusion holds for c ≥ 0 inΩ if u attains respectively a non-negative maximum

or a non-positive minimum.

Proof. See [10], Theorem 3, p.349-351.
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1.7 Non-linear parabolic equations

Following what we have done on the previous section of non-linear elliptic equations,

let us consider u ∈ C2 a solution of the quasi-linear parabolic equation

(1.9) ut(x, t)=
(
ai(x, t,u,∇u)

)
xi
+b(x, t,u,∇u),

where ai(x, t,u, p1, . . . , pN), and, b(x, t,u, p1, . . . , pN) are bounded and smooth functions,

called structural functions.

Definition 1.7.1. We say that the equation (1.9) is uniformly parabolic if there exist con-

stants 0 < C1 < C2 <∞, such that for every vector ξ = (ξ1, . . . ,ξN) ∈ RN , the following in-

equality holds:

(1.10) C1 |ξ|2 ≤
(
ai(x, t,u,uxi )

)
p j
ξiξ j ≤ C2 |ξ|2 ,

where ai are the structural functions in (1.9).

Let see the following theorem of regularity of uniformly parabolic equations:

Theorem 1.7.1. Let u0(x) be bounded and continuous and (1.9) satisfying the uniformly

parabolic condition. Then the Cauchy problem associated to (1.9) with initial condition

u(x,0)= u0(x), can be solved and the solution verifies:

• u(x, t) ∈ C∞ (
RN × (0,∞)

)
.

• u is unique.

• u is continuous down to t = 0, that is u ∈ C∞ (
RN × [0,∞)

)
, and, u(x,0)= u0(x).

Proof. See [25], (i) in p.31.

1.7.1 A comparison principle

One important property of parabolic equations is the maximum principle, especially

in the form of comparison principle. We state here a comparison principle for the follow-

ing general non-linear Dirichlet problem for the so-called filtration equation ([25]):

(1.11)


ut(x, t)=∆φ(u(x, t))+ f (x, t), inΩ× (0,T),

u(x,0)= u0(x), inΩ,

φ(u(x, t))= h(x, t), in ∂Ω× [0,T),
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where Ω ⊂ RN is a bounded open set with regular boundary ∂Ω ∈ C2+α (0 ≤ α < 1), u0

is a measurable function in Ω, h(x, t) is a measurable function on ∂Ω× [0,T), f (x, t) is a

measurable function in Ω× (0,T), and, φ :R+ −→R+ is continuous and strictly increasing

in u with φ(0+) = 0, φ(+∞) = +∞, and such that φ(u) is smooth with φ′(u) > 0, for u >
0. The filtration equation includes the particular case: ut(x, t) = ∆um(x, t), which the

porous medium equation explained in Section 1.5. In Chapter 5 of [25], it is proved

the existence of weak solutions to this problem and that these solutions also satisfy the

following comparison theorem.

Let denote ψ the primitive of φ with respect to u:

ψ(s)=
∫ s

0
φ(σ)dσ,

and define Lψ(Ω)⊂ L1(Ω) the space where u0 is a measurable function such that ψ(u0) ∈
L1(Ω).

Theorem 1.7.2. (Comparison Principle) Let H ∈ L2 (
(0,T);H1(Ω)

)
with, h = T∂Ω×(0,∞)(H),

its trace, u0 ∈ Lψ(Ω), and, f ∈ L2 (Ω× (0,T)) such that there exists u ∈ L∞ (
(0,∞);Lψ(Ω)

)
,

a weak solution for the problem (1.11). Then the comparison principle applies to these

solutions, i.e., taking u,u two weak solutions that satisfy
u0(x)≤ u0(x), a.e. in Ω,

f (x, t)≤ f (x, t), a.e. inΩ× (0,T),

h(x, t)≤ h(x, t), a.e. in ∂Ω× (0,∞).

Then u(x, t)≤ u(x, t), a.e. in Ω× (0,T).

Proof. See Theorem 5.14, p. 105 in [25].

1.7.2 Asymptotic limit

To address the asymptotic limit of the solutions of non-linear parabolic equations we

have followed [22]. Let (M, g) be a compact smooth Riemannian manifold, we start by

defining the following energy functional:
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Definition 1.7.2. Let u(x, t) be a C∞ function on M with (x, t) ∈ M×[0,T), T > 0. We define

the energy functional

E (u)=
∫

M
E (x,u,∇u)dVg,

where E = E(x, z, p), with (x, z, p) ∈ M×R×TxM, is a function which satisfies

• If px depends smoothly on x, then E depends smoothly on (x, z, px) ∈ M×R×TxM.

• Let x fixed, then E is uniformly convex in the p variable for p ∈ TxM and |z| + |p|
sufficiently small, that is to say, there is a constant C > 0 (independent of x and p),

such that
d2

ds2

∣∣∣
s=0

E(x,0, sp)≥ C|p|2.

• E has an analytic dependence on (z, p) ∈R×TxM uniformly in x for sufficiently small

|z|, |p|, that is to say, there exists β> 0 such that for |z|, |u|, |p|, |q| <β,

E(x, z+λ1u, p+λ2q)= ∑
|α|≥0

Eα(x, z,u, p, q)λα, z,u ∈R, p, q ∈ TxM,

where λ = (λ1,λ2) ∈ R2 such that |λ| < 1, and, sup
|λ|<1

∣∣∣∣∣ ∑
|α|= j

Eα(x, z,u, p, q)λα
∣∣∣∣∣ ≤ 1, for

j ≥ 1.

Let us denote the Euler-Lagrange operator for E (u) as W(u), i.e.

W(u)=−DE (u),

with D the Frechet derivative, which it is uniquely characterized by

(1.12)
〈−W(u),ϕ

〉
L2(M) =

d
ds

∣∣∣
s
E (u+ sϕ), for u,ϕ ∈ C2(M).

We also require W(0) = 0. By the hypothesis on E(x, z, p), W(u) is a second order quasi-

linear operator as the one appearing in the right side of (1.9), being this a uniformly

parabolic equation for ∥u∥C1(M) sufficiently small.

Let consider the following equation:

(1.13) ut(x, t)=W(u(x, t))+ f (x, t), (x, t) ∈ M× (0,∞).

where f (x, t) is a smooth function with exponential decay with respect to t, that is for a

given ε> 0 there exists a constant C > 0, such that

∥ f (x, t)∥H l +∥ f t(x, t)∥H l +∥ f tt(x, t)∥H l ≤ Ce−εt,∀t > 0,
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where l is an integer.

The following theorem states that for initial data sufficiently small, there exists a

solution of (1.13) which either reaches a point where E (u) is negative, or else it is defined

for all time and converges asymptotically to a solution of the equation W(u(x, t))= 0.

Remark 1.7.1. Let l be an integer sufficiently large such that C2(M) ⊂ H l−1(M), and

∀ϕ ∈ H l−1(M), we have |ϕ|C2(M) ≤ C∥ϕ∥H l−1 , for certain C > 0.

Theorem 1.7.3. Given ε> 0, there are constants δ= δ(E,ε)> 0 and α=α(E) ∈ (
0, 1

2

)
such

that for any given u0(x) ∈ C∞(M) with ∥u0∥H l+2 < δ, and, f (x, t) ∈ C∞(M × [0,∞) with

exponential decay with respect to M, there exist T∗ > 0 and a solution u ∈ C∞(M × [0,∞))

of the equation (1.13) on [0,T∗) satisfying:

• u(x,0)= u0(x) on M.

• sup
[0,T∗)

∥u(x, t)∥Hp < δα.

• One of the following assertions:

∗ If T∗ <∞,

lim
t→T∗

E (u(x, t))≤ E (0)−δ.

∗ If T∗ =∞,

lim
t→∞

(|ut(x, t)|C1(Ω) +|u(x, t)−u(x, t)|C2(Ω)
)= 0,

where u(x, t) ∈ C∞(M) is a solution of W(u(x, t))= 0.

Proof. See [22], Theorem 2, p. 535.

To continue, consider the following Cauchy problem:

(1.14)


ut(x, t)=W(u(x, t)), (x, t) ∈ M× (0,∞),

u(x,0)= u0(x),

where the initial data fulfills the condition ∥u0∥H l+2 <∞. From the theorem above, we

obtain the two following corollaries which are relevant to prove the uniqueness of the

asymptotic limit for the solution of quasilinear parabolic equations. The first one guar-

anties the existence and uniqueness of the solution of the parabolic problem and the

second one the existence of its asymptotic limit.
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Corollary 1.7.1. Let ϕ(x) ∈ C∞(M) such that for a given ε > 0, when ∥ϕ(x)− ϕ̃(x)∥H l < ε,

we have

E (ϕ(x))≤ E (ϕ̃(x)).

Then there exist constants δ = δ(ε, M,E,ϕ), and, α = α(E,ϕ) ∈ (0,1), such that if ∥u0(x)−
ϕ(x)∥H l+2 < δ, then there is u(x, t) ∈ C∞ (M× [0,∞)), a solution of the problem (1.14) such

that lim
t→∞u(x, t)= u(x), where:

• E (u(x))= E
(
ϕ(x)

)
.

• W(u(x))= 0.

• ∥u(x)−ϕ(x)∥H l <min
{
δα, ε2

}
.

Proof. See [22], Corollary 1, p.536.

Corollary 1.7.2. Let u be a smooth solution of the equation (1.13), ∀t ∈ (0,∞), and

f (x, t) ∈ C∞(M × (0,∞)) a function with exponential decay with respect to t. If there ex-

ists a sequence tk →∞, and u(x), with W(u(x))= 0, such that

lim
k→∞

∥u(x, tk)−u(x)∥H l+2 = 0.

Then we have lim
t→∞∥u(x, t)−u(x)∥H l+2 = 0.

Proof. See [22], Corollary 2, p. 536.

Let see the following estimate for ∥W(u)∥L2(M):

Theorem 1.7.4. Let β > 0 be as in Definition 1.7.2, and µ ∈ (0,1) arbitrary. There are

constants θ = θ
(
E,β

) ∈ (
0, 1

2

)
, γ = γ(E,β) ≥ 2, and, σ = σ(E,β) ∈ (0,β), such that if u ∈

C2,µ(M) is an arbitrary function with ∥u∥C2,µ(M) <σ, then

∥W(u)∥L2(M) ≥
(

inf
ζ∈Z

∥u−ζ∥L2(M)

)γ
, and, ∥W(u(x, t))∥L2(M) ≥ |E (u(x, t))−E (0)|1−θ,

where Z = {
ζ ∈ C2(M) : |ζ|C2(M) <β, W(ζ)= 0

}
.

Proof. See [22], Theorem 3, p. 537.
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Chapter 2

The Yamabe problem

2.1 An introduction to the Yamabe problem

As we exposed in the introduction, Yamabe originally formulated his problem in the

following terms:

Let (MN , g) be a compact Riemannian manifold of dimension N ≥ 3 and non-constant

scalar curvature. Is there a metric with constant scalar curvature conformal to g?

Throughout this chapter, we are going to study in depth the resolution of this problem.

To simplify the equation (1.2), Yamabe proposed a conformal deformation in the form

g′ = u
4

N−2 g, with u ∈ C∞(M), u > 0. In the next theorem we use this transformation to

obtain this simpler equation, in the sense that changing f by u, instead of having the

gradients, we have the laplacian.

Theorem 2.1.1. Under the previous hypothesis, (1.2) is equivalent to

(2.1) Rg′u
N+2
N−2 =−CN∆u+Rgu.

Proof. From (1.2) we have

Rg′ = e− f
[
−(N −1)∆ f − (N −2)(N −1)

4
∇i f∇i f +Rg

]
.

We do the change of function e f = up−2 = u
4

N−2 for u ∈ C∞(M), u > 0. So we get f =
4

N−2 log(u)=− log(u2−p), and then

Rg′ = u2−p
[
(N −1)∆

(
log

(
u2−p))− (N −2)(N −1)

4
∇i (log

(
u2−p))∇i

(
log

(
u2−p))+Rg

]
.
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So,

Rg′ = u1−p
[
(N −1)(2− p)∆ (log(u))u− (N −2)(N −1)

4
(2− p)2∇i (log(u))∇i (log(u))u+Rgu

]
.

As we know, ∇ log(u)= ∇u
u , and, ∆ log(u)=∇i∇iu = u·∆u−|∇u|2

u2 . Then

Rg′ = u1−p
[
(N −1)(2− p)

(
∆u ·u−|∇u|2

u2

)
u− (N −2)(N −1)

4
(2− p)2

∣∣∣∣∇u
u

∣∣∣∣2 u+Rgu
]

.

Then

Rg′ = u1−p
[
−4

(N −1)
(N −2)

∆u+Rgu
]

.

As p−1= N+2
N−2 , we finally get (2.1).

Then we have obtained an elliptic semi-linear equation known as the Yamabe equa-

tion:

(2.2) −CN∆u+Rgu = Rg′u
N+2
N−2 ,

where CN = C(N)= 4 (N−1)
(N−2) > 0 is a constant.

Definition 2.1.1. Let consider Rg the scalar curvature of (MN , g) a N-dimensional smooth

Riemannian manifold.

• If Rg > 0, we say that g is scalar positive. For example, the sphere case.

• If Rg < 0, we say that g is scalar negative. The metric of an hyperbolic space is an

example of this.

• If Rg = 0, we say that g is scalar flat, as what happens in the plane.

2.2 The variational approach

As we have seen, the Yamabe problem is equivalent to obtaining a smooth and strictly

positive solution to (2.2) with Rg′ constant. To achieve this goal, we follow the variational

method as stated in [4] or [16] proposed by Yamabe.

Definition 2.2.1. Let us define the Yamabe functional as

(2.3) I[u]=
∫

M
(
CN |∇u|2 +Rgu2) dVg[∫

M |u|2∗ dVg
] 2

2∗
,

where u ∈ H1(M), with 2∗ = 2N
N−2 .
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Lemma 2.2.1. The functional I is invariant by rescaling.

Proof. Let λ be a scalar, we have

I[λu]=
∫

M
(
Cn |∇ (λu)|2 +Rg (λu)2) dVg[∫

M |λu|2∗ dVg
] 2

2∗
= λ2 ∫

M
(
Cn |∇u|2 +Rgu2) dVg

λ2
[∫

M |u|2∗ dVg
] 2

2∗
= I[u].

Remark 2.2.1. If we take λ= 1∫
M |u|2∗ dVg

, then by the last lemma we have I[λu] = I[u], so

we can assume without loss of generality that
∫

M |u|2∗
dVg = 1.

Lemma 2.2.2. Let u be solution of (2.2), then I[|u|]= I[u].

Proof. Since u ∈ H1(M), then |u| ∈ H1(M), and, |∇u| = |∇|u|| almost everywhere. From

this constraint we obtain that:

I [|u|]=
∫

M
(
Cn |∇|u||2 +Rg |u|2

)
dVg[∫

M |u|2∗ dVg
] 2

2∗
=

∫
M

(
Cn |∇u|2 +Rgu2) dVg[∫

M |u|2∗ dVg
] 2

2∗
= I[u].

Remark 2.2.2. Lemma 2.2.2 allows us to assume u ∈ H1(M), u ≥ 0 without loss of gener-

ality.

Remark 2.2.3. We can define the functional I for conformal metrics, as follows:

(2.4) I[u]=
∫

M Rg′ dVg′[∫
M dVg′

] 2
2∗

= I[g′], with g′ conformal to g.

Let g′ = u
4

N−2 g, with u ∈ C∞(M), u > 0, by the Definition 1.2.8, we have

dVg′ =
√
|g′|dx1 ∧·· ·∧dxN =

√
u

4N
N−2 |g|dx1 ∧·· ·∧dxN = u2∗√|g|dVg = u2∗

dVg.(2.5)

So we have by the Green’s identity and (2.2),

I[u]=
∫

M
(
CN |∇u|2 +Rgu2) dVg[∫

M u2∗ dVg
] 2

2∗
=

∫
M Rg′u

N+2
N−2 u dVg[∫

M u2∗ dVg
] 2

2∗
=

∫
M Rg′u2∗

dVg[∫
M u2∗ dVg

] 2
2∗

.

Using (2.5), we get (2.4).

Do note that I[u] is well defined because Theorem 1.4.3 ensures that H1(M)⊂ L2∗
(M),

that is to say:
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Lemma 2.2.3. The functional I is bounded below in A .

Proof. On one hand, we have CN
∫

M |∇u|2 dVg ≥ 0, then for u ∈A :

(2.6) I[u]=
∫

M

(
CN |∇u|2 +Rgu2) dVg ≥

∫
M

Rgu2 dVg ≥ inf
x∈M

{
Rg,0

}∫
M

u2 dVg.

On the other hand, applying Hölder inequality for p = 2∗
2 , q = N

2 , we have

(2.7)
∫

M
u2 dVg ≤ ∥u2∥

L
2∗
2 (M

∥1∥
L

N
2 (M)

= ∥u∥2
L2∗ (M)

V ol(M)
2
N =V ol(M)

2
N <∞.

From (2.6) and (2.7) we deduce the result.

Remark 2.2.4. Lemma 2.2.3 allows us to define λ(M) = inf
u∈H1(M)

{I[u]}. Since C∞(M) is

dense in H1(M), Lemma 2.2.3 guarantees that

λ(M)= inf
u∈C∞(M),u>0

{I[u]}= inf
g’ conformal to g

{I[g′]}.

Thus, the constant λ(M) is a conformal invariant.

Definition 2.2.2. Let (M, g) be a Riemannian manifold, we define the Yamabe invariant

as the following constant:

λ(M)= inf
u∈C∞(M),u>0

{I[u]}= inf
g’ conformal to g

{I[g′]}.

We consider the solutions of (2.2) as critical points of the functional I, so now we are

going to calculate the first variation of this functional.

Lemma 2.2.4. The Euler-Lagrange equation for the functional I is (2.2).

Proof. Let u0 ∈ H1(M), u0 ≥ 0 fixed, ε ∈R and v ∈ C∞
c (M). Let us denote ∥u∥2∗ = (∫

M |u|2∗
dVg

) 1
2∗ ,

then we have

I[u0 +εv]=
∫

M
(
CN |∇(u0 +εv)|2 +Rg(u0 +εv)2) dVg

∥u0 +εv∥2
2∗

=
∫

M
(
CN |∇u0|2 +CNε

2 |∇v|2 +2CNε∇u0 ·∇v+Rg(u2
0 +2u0εv+ε2v2)

)
dVg

∥u0 +εv∥2
2∗

.

For the next step, we have: |u0 +εv|2∗ = [(u0 +εv)(u0 +εv)]
2∗
2 = (

u2
0 +2u0εv+ε2v2) 2∗

2 ,

then

d
dε

|u0 +εv|2∗ = 2∗

2
(
2u0v+2εv2)(u2

0 +2u0εv+ε2v2) 2∗
2 −1 = 2∗

2
(
2u0v+2εv2) |u0 +εv|2∗−2.
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So we can calculate the derivative of the functional:

d
dε

I[u0 +εv]=
∫

M
(
2CNε |∇v|2 +2CN∇u0 ·∇v+Rg(2u0v+2εv2)

)
dVg ∥u0 +εv∥2

2∗

∥u0 +εv∥4
2∗

−
∫

M
(
CN |∇(u0 +εv)|2 +Rg(u0 +εv)2) dVg

∥u0 +εv∥4
2∗

· 2
2∗

(∫
M

2∗

2
(
2u0v+2εv2) |u0 +εv|2∗−2 dVg

)[∫
M
|u0 +εv|2∗

dVg

] 2
2∗−1

.

Letting ε= 0, we get

d
dε

∣∣∣
ε=0

I[u0 +εv]= 2
∥u0∥2

2∗

[∫
M

(
CN∇u0 ·∇v+Rgu0v

)
dVg

−∥u0∥−2∗
2∗

∫
M

(
CN |∇u0|2 +Rgu2

0
)
u2∗−1

0 v dVg

]
.

By an integration by parts using the Green’s identities, we have

d
dε

∣∣∣
ε=0

I[u0 +εv]= 2
∥u0∥2

2∗

[∫
M

(−CN∆u0 ·v+Rgu0v
)

dVg

−∥u0∥−2∗
2∗

∫
M

(−CN∆u0 ·u0 +Rgu2
0
)
u2∗−1

0 v dVg

]
.

If we denote E[u0]= ∫
M

(−CN∆u0 ·u0 +Rgu2
0
)

dVg, then we have

d
dε

∣∣∣
ε=0

I[u0 +εv]= 2
∥u0∥2

2∗

∫
M

[
−CN∆u0 +Rgu0 −∥u0∥−2∗

2∗ E[u0]u2∗−1
0

]
v dVg.

Thus, critical points of this functional must satisfy d
dε

∣∣∣
ε=0

I[u0 +εv]= 0 and

−CN∆u0 +Rgu0 −∥u0∥−2∗
2∗ E[u0]u2∗−1

0 = 0.

Finally,

−CN∆u0 +Rgu0 = E[u0]
∥u0∥2∗

2∗
u

N−2
N+2
0 .

Let µ be the Lagrange multiplier defined as

µ= E[u0]
∥u0∥2∗

2∗
∈R.

Then we have that u0 is a critical point of the functional I if it verifies equation (2.2) with

µ as above, that is:

−CN∆u+Rgu =µu
N−2
N+2 .

With this goal, we define:

A = {
u ∈ H1(M) | u ≥ 0, ∥u∥L2∗ (M) = 1

}
.
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2.3 The sphere case

As we will see, the Yamabe invariant for the sphere (λ(SN)) will play a critical role

in solving the Yamabe problem. In this section, we go deeper in the study of this model

case.

2.3.1 The stereographic projection

Definition 2.3.1. The stereographic projection σ, a conformal diffeomorphism, is defined

by

σ :SN \{q0} −→ RN

(z,ξ)= (z1, ..., zN ,ξ) 7−→ (x1, ..., xN) ,

where q0 = (0, ..,0,1) is the north pole on SN ⊂RN+1, and,

x j =
z j

1−ξ , for j ∈ 1, ..., N, and, (z,ξ) ∈SN \{q0}.

Remark 2.3.1. From the definition of the stereographic projection we also have:

σ−1 :RN −→SN \{q0}

(z1, ..., zN) 7−→
(
2z1, ...,2zN , |z|2 −1

)
1+|z|2 =

(
2z

1+|z|2 ,
|z|2 −1
1+|z|2

)
.

And denoting ρ =σ−1, we can compute the pullback metric of gc, the standard metric

on SN ([15], p. 61):

ρ∗gc =
4

(
dz2

1 + ...+dz2
N

)(|z|2 +1
)2 = 4(|z|2 +1

)2 g0,

with g0 the Euclidean metric on RN .

Since we are denoting conformal change by g = u
4

N−2 g0, we call

(2.8) u1(z)= (|z|2 +1
) 2−N

2 .

So we have ρ∗gc =
[
4

N−2
4 u1(z)

] 4
N−2 g0.

Now we are going to see that we can use the stereographic projection to write confor-

mal diffeomorphisms of the sphere generated by rotations and maps of the form σ−1τvσ

and σ−1δµσ, where τv is the translation by v ∈RN given by

τv :RN −→ RN

x 7−→ x−v,
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and δµ is the dilation by µ> 0:

δµ :RN −→ RN

x 7−→ µ−1x.

By doing a change of variables z =µ−1z′, with µ> 0, then under the dilation, the spherical

metric becomes

(2.9) δ∗µρ
∗gc = 4

(
1

|µ−1z′|2 +1

) N−2
2

4
N−2 1

µ2 g0.

Finally, if we call

(2.10) uµ(z)=
(

µ

|z|2 +µ2

) N−2
2

,

then we have

(2.11) δ∗µρ
∗gc = 4uµ(z)

4
N−2 g0.

Remark 2.3.2. The family of radial functions (2.10) are solutions of the Yamabe problem

in RN and they are called "bubbles". They receive this name, because of their shape, as

we can see in Figure 2.1 and play an important role in what follows.
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Figure 2.1: Bubbles

2.3.2 Yamabe problem on the sphere

Theorem 2.3.1. (Obata) If g is a metric on SN conformal to the standard metric gc and

it has constant scalar curvature, then g is a conformal diffeomorphism of the canonical

metric given by gc.

Proof. We follow [16].

• By hypothesis, gc = v−2 g, with v ∈ C∞(SN), v > 0. Then the transformation laws of

the Ricci tensor (1.1), with e f = v−2, becomes

Ricg
jk−Ricgc

jk = v−1
[
(N −2)∇k∇ jv− (N −1)v−1∇iv∇ivg jk +∆vg jk

]
,

with the right hand side computed with respect to g. Since gc is Einstein, its trace-

less Ricci tensor Egc = 0 (Proposition 1.2.4) and thus,

0= Egc jk
= Egc jk

+ (N −2)v−1
[
∇k∇ jv− 1

N
∆vg jk

]
.
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Now, because Eg is traceless, integration by parts gives:∫
SN

v|E|2g dVg =
∫
SN

vEg jk E jk
g dVg =−(N −2)

∫
SN

E jk
g

(
∇k∇ jv− 1

N
∆vg jk

)
dVg

=−(N −2)
∫
SN

E jk
g ∇k∇ jv dVg = (N −2)

∫
SN

〈
div(Eg),∇v

〉
g dVg = 0,

where we have used that div(Eg) = N−2
2N dRg = 0, because g has constant curvature

and then dRg = 0. So, |Eg|2 = 0, if and only if, Eg = 0, i.e., Ricg = Rg
N g and this

means that g is Einstein by Proposition 1.2.4.

• Now we are going to prove that the sectional curvature of g is constant. For that,

we clear Riemi jkl from the Weyl tensor:

Riemi jkl =W g
i jkl +

1
(N −2)

(
Ricik g jl −Ricil g jk +Ric jl g ik −Ric jk g il

)
− Rg

(N −1)(N −2)
(
g jl g ik − g jk g il

)
.

Now, because the Weyl tensor is a conformal invariant and gc is locally flat, we

have that W g = 0 by Proposition 1.2.5, and using that Ricg = Rg
N g, we obtain:

Riemi jkl =
Rg2

(N −2)N
(
g ik g jl − g il g jk

)− Rg

(N −1)(N −2)
(
g ik g jl − g il g jk

)
= Rg

N(N −1)
(
g ik g jl − g il g jk

)
.

Then we obtain

Riemi jkl =
Rg

N(N −1)
(
g ik g jl − g il g jk

)
.

Returning to the Definition 1.2.13 of sectional curvature, from this we get that is

constant. Then it is well known that
(
SN , g

)
is isometric to a standard sphere, RN or

the N−dimensional hyperbolic space, depending on wether the sign of its constant

scalar curvature is positive, zero or negative, respectively. But Rgc = N(N −1) > 0,

and Proposition 2.5.1 allows us to deduce that Rg > 0. Therefore, (SN , g) is isometric

to the standard sphere. Then we conclude that g must be the standard metric on

the sphere.

We can conclude that for the standard sphere (SN , gc), the minimizers of the Yamabe

functional (2.3) are unique in the sense that all of them can be obtained from gc through

conformal diffeomorphisms, as we had described in the previous section.
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2.3.3 Sobolev inequality on the sphere

We now turn to see the close relationship between the Yamabe’s constant and the

Sobolev inequality (see Theorem 1.4.1).

Theorem 2.3.2. (Sharp Sobolev inequality on the sphere) Let I be the functional

(2.3) defined on (SN , gc), and u a solution of (2.2). The N−dimensional Sobolev constant

is ζN = CN
Λ where

Λ=λ
(
SN

)
= I[u]= N(N −1)V ol(SN)

2
N .

Furthermore, the sharp form of the Sobolev inequality on RN is

∥u∥2
L2∗ (RN )

≤ CN

Λ
∥∇u∥2

L2(RN ) .

Equality is attained only by constant multiples and translates of uµ defined in (2.10).

Proof. We follow [16]. By means of the stereographic projection, the Yamabe problem

on SN becomes a problem on RN . Indeed, if we consider u ∈ C∞(SN) and denoting w =
u1ρ

∗u ∈ C∞(RN) the weighted push-forward function, with u1 the conformal factor (2.8),

then by (2.11) we get, for µ= 1,

ρ∗gc = 4u
4

N−2
1 g0.

By the definition of u1,

ρ∗(u
4

N−2 gc)= 4w
4

N−2 g0.

By the conformal invariance of I and knowing that Rg0 = 0, we get

I[u]= I[w]=
∫
RN

(
CN |∇w|2 +Rg0 w2) dVg0[∫

RN |w|2∗ dVg0

] 2
2∗

=
∫
RN CN |∇w|2 dVg0[∫
RN |w|2∗ dVg0

] 2
2∗

,

so we have

λ(SN)= inf
u∈C∞(SN )

{I[u]}= inf
w∈C∞(RN )

{I[w]}= inf
w∈C∞(RN )


∫
RN CN |∇w|2 dVg0[∫
RN |w|2∗ dVg0

] 2
2∗

 .

Before we continue, let ε> 0 and denoting Bε = B(0,ε) ⊂ RN , we define the smooth cutoff

function ϕε by: 
0≤ϕε ≤ 1

supp(ϕε)⊂ B2ε

ϕε ≡ 1, on Bε.
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Now we can define wε = ϕεw and we can obtain an approximation of w such that when

ε→ 0, we have

λ(SN)= inf
w∈C∞

c (RN )

CN ∥∇w∥2
L2(RN )

∥w∥2
L2∗ (RN )

 .

Then, we can apply the Sobolev inequality of Theorem 1.4.1 and conclude that there

exists the N− dimensional Sobolev constant ζN > 0 such that

(2.12) λ(SN)= inf
w∈C∞

c (RN )

CN ∥∇w∥2
L2∗ (RN )

ζN ∥w∥2
L2∗ (RN)

≥ CN

ζN
> 0.

And we have that λ(SN) > 0. From (2.12), we can conclude that identifying λ(SN) and

the related extremal functions is equivalent to identifying the N-dimensional Sobolev

constant and extremal functions for Sobolev inequality.

In [20] (appendix to chapter V, p. 224-230) it is proved the computation of λ(SN) =
N(N−1)V ol(SN)

N
2 and that the best constant in the Sobolev inequality in RN is achieved

by constant multiples and translations of the family of radial functions (2.10).

In chapter 3, we will see the moving plane technique in order to obtain radially sym-

metric solutions in RN . The difference between this technique and the Obata’s theorem is

that the first one is on RN and the second one is on SN which is compact. For this reason,

in the moving plane method we will study the asymptotics at ∞.

2.3.4 Upper bound for the Yamabe invariant

The objective of this section is to show that we can compare the invariant of any

compact smooth Riemannian manifold with the invariant of the sphere. We will see at

the end of this section the proof of this result:

Proposition 2.3.1. Let M be a compact smooth Riemannian manifold of dimension n ≥ 3,

then λ(M)≤λ(SN).

Lemma 2.3.1. Let uµ be the bubble in (2.10) and uµ(r) =
(

µ

r2+µ2

) N−2
2 , r ∈ R, µ > 0. Let

k >−N, and ε> 0 fixed, then when µ→ 0 we have that,

J[µ]=
∫ ε

0
u2
µ(r)rk+N−1 dr

is bounded above and below by:
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• positive multiples of µk+2, if N > k+4.

• µk+1 log( 1
µ

), if N = k+4,

• µN−2, if N < k+4.

Proof. To begin we do a change of variable y= r
µ

:

J[µ]=µk+2
∫ ε

µ

0
yk+N−1(y2 +1)2−N d y≤µk+2

(
C+2N−2

∫ ε
µ

1
yk+N−1(y2)2−N d y

)
=µk+2

(
C+

∫ ε
µ

1
yk+3−N d y

)
.

where we have applied that for y≥ 1, we have y2 +1≤ 2y2.

• If N > k+4 we have that this integral is bounded, as µ→ 0.

• If N < k+4 then

J[µ]≤µk+2
(
C+22−N

∫ ε
µ

1
yk+3−N dy

)
=µk+2

(
C+

[
1

k+4−N
yk+4−N

] ε
µ

1

)

=µk+2

(
C+ 1

k+4−N

[(
ε

µ

)k+4−N
−1

])
=µN−2

(
C′µk+4−N + ε

k+4−N

k+4−N

)
.

So this is bounded by µN−2, as µ→ 0.

• If N = k+4, then

J[µ]≤µk+2
(
C+22−N

∫ ε
µ

1

1
y

d y
)
=µk+2

(
C+22−N [log(y)]

ε
µ

1

)
=µk+2

(
C+22−N log

(
ε

µ

))
.

So this is bounded by µk+2 log
(

1
µ

)
=µN−2 log

(
1
µ

)
.

Proof of Proposition 2.3.1

Proof. We proceed as in [16]. By Theorem 2.3.2 the functions uµ satisfy the equality

(2.13) Λ
∥∥uµ

∥∥2
L2∗ (RN ) = CN

∥∥∇uµ
∥∥2

L2(RN ) ,

where uµ(r) =
(

µ

r2+µ2

) N−2
2 , and, ∂ruµ = ∂ruµ(r) |r=|x|. Let now fix ε > 0 and denoting Bε =

B(0,ε)⊂RN , we again define a smooth radial cutoff function ϕε(x), ∀x ∈RN , by:

0≤ϕε(x)≤ 1

supp(ϕε(x))⊂ B2ε

ϕε(x)≡ 1, x ∈ Bε

ϕε(x)= f (r), f ∈ C∞(R) non-negative, |x| = r.
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Now we can define u =ϕεuµ, which is a radial function and,

CN ∥∇u∥2
L2(RN ) =

∫
RN

CN |∇(ϕεuµ)|2 dx

=
∫

B2ε

(
CNϕ

2
ε |∇uµ|2 +2CNϕεuµ

〈∇ϕε,∇uµ
〉+u2

µ|∇ϕε|2
)

dx

=
∫

B2ε

CNϕ
2
ε |∇uµ|2 dx+

∫
B2ε\Bε

2CNϕεuµ
〈∇ϕε,∇uµ

〉
dx+

∫
B2ε\Bε

u2
µ|∇ϕε|2 dx

Because we know that ϕε ≡ 1 on Bε, and then ∇ϕε ≡ 0 on Bε, so, we have

CN ∥∇u∥2
L2(RN ) ≤

∫
RN

CN |∇uµ|2 dx+C
∫

B2ε\Bε

(
uµ|∇uµ|+u2

µ

)
dx.

From where we obtain the following:

(2.14) CN ∥∇u∥2
L2(RN ) ≤

∫
RN

CN |∂ruµ|2 dx+C
∫

B2ε\Bε

(
uµ|∂ruµ|+u2

µ

)
dx.

Then:

∂ruµ(r)= N −2
2

( −2rµ
(r2 +µ2)2

)(
µ

r2 +µ2

) N−2
2 −1

= (2−N)rµ−1
(

µ

r2 +µ2

) N
2

.

So we get |∂ruµ(r)| ≤ (N −2)r1−Nµ
N−2

2 , and we also know that

(2.15) uµ ≤ r2−Nµ
N−2

2 .

Then returning to the inequality (2.14), there exist constants C1,C2 > 0 such that

CN ∥∇u∥2
L2(RN ) ≤

∫
RN

CN |∂ruµ|2 dx+C
∫

B2ε\Bε

µN−2
(
(N −2)r3−2N + r4−2N

)
dx

=
∫
RN

CN |∂ruµ|2 dx+C1µ
N−2 =

(2.13)
Λ

(∫
RN

|uµ|2
∗

dx
) 2

2∗ +C1µ
N−2

=Λ
(∫
RN\Bε

|uµ|2
∗

dx+
∫

Bε

|uµ|2
∗

dx
) 2

2∗ +C1µ
N−2.

By (2.15) and as µ→ 0,

CN ∥∇u∥2
L2(RN ) ≤Λ

(∫
RN\Bε

∣∣∣r2−Nµ
N−2

2

∣∣∣ 2N
N−2 dx+

∫
B2ε

|uµ|2
∗

dx
) 2

2∗
+C1µ

N−2

=Λ
(∫
RN\Bε

µN
∣∣∣r−2N

∣∣∣ dx+
∫

B2ε

|u|2∗
dx

) 2
2∗ +C1µ

N−2

=Λ
(∫

B2ε

|u|2∗
dx

) 2
2∗ +C2µ

N +C1µ
N−2 ≤Λ∥u∥2

L2∗ (RN )
+CµN−2.

Then we have

(2.16) CN ∥∇u∥2
L2(RN ) ≤Λ∥u∥2

L2∗ (RN )
+CµN−2.
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Now, on a compact manifold M, let u = ϕεuµ in normal coordinates {xi} in a neigh-

borhood of P ∈ M, extended by zero to a smooth function on M. Then we know that

dVg = (1+O(rN))dx in normal coordinates (Theorem 1.2.1), and the above estimate can

be corrected as follows:∫
M

(
CN |∇u|2 +Rgu2) dVg ≤

∫
B2ε

(
CN |∇u|2 +Rgu2)(1+CrN

)
dx

≤ (1+Cε)
(
Λ∥u∥2

L2∗ (RN )
+C′µN−2 +C′′

∫ 2ε

0
u2
µ(r)rN−1 dr

)
,

with C,C′,C′′ > 0 certain constants.

Finally, Lemma 2.3.1 allows to prove that the last term is O(µ). Therefore, we can

select ε and µ small enough to write

I[u]≤ (1+Cε)
(
Λ+Cµ

)
,

which prove that

λ(M)≤Λ.

2.4 Existence of solutions

Notwithstanding, there remains a problem. Due to the fact that precisely 2∗ = 2N
N−2 is

the critical exponent for which the inclusion H1(M)⊂ L2∗
(M) is not compact (see Theorem

1.4.4) it is not possible to straightly prove that a minimizing sequence of I[u] in (2.3) has

a subsequence converging to an actual extremal function. Yamabe [26] realized this and

his approach to overcome the issue was to address a collection of perturbed problems in

which this difficulty disappears. We follow [16] throughout this section. Based on the

previous sections, we are now in a position to prove that the Yamabe problem can be

solved on any compact smooth Riemannian manifold M provided that λ(M)<λ(SN).

Definition 2.4.1. Let define the subcritical Yamabe energy functional as

(2.17) Is[u]=
∫

M
(
CN |∇u|2 +Rgu2) dVg[∫

M |u|s dVg
] 2

s
,

where u ∈ H1(M), and, 2≤ s ≤ 2∗. Also, we define the subcritical Yamabe invariant as

(2.18) λs = inf
u∈C∞(M), u>0

{
Is[u]

}
.
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2.4.1 Subcritical equation

If u is such that ∥u∥Ls(M) = 1 and it is a critical point of the functional (2.4.1), it

satisfies the subcritical equation:

(2.19) −CN∆u+Rgu =λsus−1.

Let us see the next theorem about regularity in the subcritical case:

Theorem 2.4.1. Let u ∈ H1(M) be a non-negative weak solution of (2.19) with 2 ≤ s ≤ 2∗

and K > 0 a constant, such that |λs| ≤ K . If there exists r > N(s−2)
2 , such that u ∈ Lr(M),

then we have one of the following cases:

• u ≡ 0.

• u > 0, smooth and ∥u∥C2,α(M) ≤ C, where C = C
(
M, g, r,∥u∥Lr(M)

)
and 0<α< 1.

Proof. Let u ∈ Lr(M), with r > N(s−2)
2 from (2.19), then −CN∆u = λsus−1 −Rgu ∈ Lq(M),

with q = r
(s−1) . Applying Theorem 1.6.2, we get u ∈ W2,q(M). By the Sobolev embedding

Theorem 1.4.3, we have that W2,q(M) is continuously embedded in Lr′(M), where

1
r′

≥ 1
q
− 2

N
= Ns−N −2r

Nr
.

Thus, taking r′ = Nr
Ns−N−2r , then by hypothesis r′ > r, and u ∈ Lr′(M). Iterating this argu-

ment allows to conclude that u ∈W2,q(M), ∀q ≥ 1.

Now, for 0 < α < 1, there exists q ≥ 1 such that 2−α
N ≥ 1

q , so by the Hölder continuity

case of Theorem 1.4.3, we get that W2,q(M) is continuously embedded on Cα(M). Thus

u ∈ Cα(M), and then us−1 ∈ Cα(M). Applying Theorem 1.6.2, then u ∈ C2,α(M). By the

maximum principle (Theorem 1.6.4), we have two cases:

• If u = 0 at some point, then u ≡ 0.

• If u ̸= 0, we have −CN∆u+Rgu−λsus−1 > 0, then

−CN∆u+Rgu−λsus−1 = (−CN∆+Rg −λsus−2)u > (−CN∆+K)u > 0.

where K is a constant such that K ≥ sup
{
Rg −λsus−2}. So we conclude u > 0.

Finally, let u ̸= 0, and, u ∈ C2,α(M), from (2.19), then us−1 ∈ C2,α(M). Applying The-

orem 1.6.2, we obtain u ∈ C4,α(M). Repeating this process successively, we obtain

u ∈ C∞(M).
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We will see in the next proposition the existence of a minimizer sequence of the sub-

critical Yamabe functional and that the equation (2.19) always has a positive smooth and

minimizing solution for s < 2∗.

Proposition 2.4.1. For 2 ≤ s < 2∗, there exists us a smooth positive solution to (2.19),

such that Is [us]=λs, and, ∥us∥Ls(M) = 1.

Proof. Similarly to Section 2.2, it can be proved that there exists {ui}i∈N ⊂ C∞(M) be a

minimizing subsequence of the functional Is, for 2 ≤ s < 2∗ such that ∥ui∥Ls(M) = 1. If we

take |ui| instead of ui, then we have Is [|ui|]= Is [ui], so we may suppose that ui ≥ 0.

As {ui}i∈N is a minimizing sequence of Is, then Is[ui]−→λs(M). Knowing that ∥ui∥Ls(M) =
1, and by Hölder’s inequality:

∥ui∥2
H1(M) =

∫
M

(|∇ui|2 +u2
i
)

dVg = Is[ui]
CN

−
∫

M

(
1− Rg

CN

)
u2

i dVg

≤ Is[ui]
CN

+C∥ui∥2
L2∗ (M)

<∞.

Thus, {ui}i∈N is bounded in H1(M) and there is a subsequence, that we are going to denote

{ui}i∈N too, converging weakly to a function us ∈ H1(M). As 2≤ s < 2∗, applying Theorem

1.4.4, we have that H1(M) is compactly embedded in Ls(M), then ui −→
i→∞

us weakly in

H1(M), and, ui −→
i→∞

us strongly in Ls(M), for some us ∈ H1(M), satisfying ∥us∥Ls = 1. By

weak convergence in H1(M) and by Schwarz’s inequality, we have

∫
M
|∇us|2 dVg = lim

i→∞

∫
M
〈∇ui,∇us〉 dVg ≤ limsup

i→∞

(∫
M
|∇ui|2 dVg

) 1
2
(∫

M
|∇us|2 dVg

) 1
2

.

From where we get Is [us]≤ lim
i→∞

Is [ui]= λs. However, by Definition 2.18, we deduce that

Is [us] = λs, then us is a weak solution of (2.19). By Theorem 2.4.1, as us ∈ H1(M), we

have that u ∈ C∞(M), and it is positive.

2.4.2 Limit when s goes to 2*

After we have seen the subcritical case, it is natural to ask about the critical case,

that is to say, what happens when s → 2∗?

43



As we pointed before, the first issue in the critical case is that with the exponent

2∗, we have a minimizing sequence {ui}i∈N, such that ui −→
i→∞

u ∈ H1(M), but we do not

have the compactness of H1(M) in L2∗
(M), so we can not prove that if ∥ui∥L2∗ = 1, then

∥u∥L2∗ = 1.

Yamabe claimed that the collection of solutions {us}s∈[2,2∗), verify that ∥us∥L2∗ , is uni-

formly bounded as s → 2∗ in general. However, it is false and this was his gap in the proof.

The main result in this section is the following theorem in which we have a solution for

the Yamabe problem just supposing λ(M)<λ(SN):

Theorem 2.4.2. Let λ(M) < λ(SN), and {us} be the collection of function given by Propo-

sition 2.4.1. As s → 2∗, there exists a subsequence which converges uniformly to a positive

function u ∈ C∞(M), such that

I[u]=λ(M), and, −CN∆u+Rgu =λ(M)u2∗−1.

As a consequence, the metric g̃ = u
4

N−2 g has constant scalar curvature λ(M).

Before passing to the proof of this theorem, we study the behaviour of λs in the fol-

lowing lemma. For this, we fix a metric g such that V ol(M)= 1.

Lemma 2.4.1. Let (MN , g) be a smooth compact Riemannian manifold such that
∫

M dVg =
1. Then the function s 7−→ |λs| is non-increasing for s ∈ [2,2∗]. Moreover, if λ(M) ≥ 0, then

λs is continuous from the left.

Proof. Firstly, let see that s 7−→ |λs| is non-increasing. For that, note that ∀s, s′ ∈ [2,2∗]

and u ∈ C∞(M), such that u ̸= 0, then

(2.20) Is′[u]=
∥u∥2

Ls(M)

∥u∥2
Ls′ (M)

Is[u].

By hypothesis, as
∫

M dVg = 1, then if s ≤ s′, by Hölder’s inequality we have ∥u∥Ls(M) ≤
∥u∥Ls′ (M), and by (2.4.1) and (2.20), |λs′ | ≤ |λs|. So s 7−→ |λs| is non-increasing.

Furthermore, if there exists some s such that λs < 0, then there is a u ∈ C∞(M),

which verifies Is[u] < 0. By (2.20), we have Is′[u] < 0, ∀s′ ∈ [2,2∗]. Then we have λs < 0,

∀s ∈ [2,2∗].
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To finish, supposing λ(M)≥ 0, by the previous argument we obtain λs ≥ 0, ∀s ∈ [2,2∗].

Let us choose s ∈ [2,2∗], then given ε> 0, there exists u ∈ C∞(M), such that by the defini-

tion of the subcritical Yamabe functional (2.17),

(2.21) Is[u]<λs +ε.

As s 7−→ ∥u∥Lq(M) is continuous, then by (2.18) and (2.20),

λs′ ≤ Is′[u]= Is′[u]− Is[u]+ Is[u]≤ Is[u]
∥u∥2

Ls(M)

(
∥u∥2

Ls(M) −∥u∥2
Ls′ (M)

)
+ Is[u]≤λs +2ε,

for ∀s′ ≤ s close enough. As we have seen that |λs| is non-increasing, we conclude that it

is continuous from the left.

We turn now to see the following proposition due to Aubin [2] and Trudinger [23],

which shows that the hypothesis λ(M)<λ(SN) is enough to solve the problem.

Proposition 2.4.2. Let (MN , g) be a smooth compact Riemannian manifold with
∫

M dVg =
1 and λ(M)< λ(SN), and {us}s∈[2,2∗) the collection of functions given by Proposition 2.4.1.

Then there exist constants s0 < 2∗, r > 2∗, and, C > 0, such that

∥us∥Lr(M) ≤ C, ∀s ≥ s0.

Proof. Let δ> 0, if we multiply (2.19) by u1+2δ
s :

−CN∆us ·u1+2δ
s +Rgu2+2δ

s =λsus+2δ
s .

Integrating over M:

−CN

∫
M
∆us ·u1+2δ

s dVg +
∫

M
Rgu2+2δ

s dVg =λs

∫
M

us+2δ
s dVg.

Then:

CN

∫
M

〈
∇us, (1+2δ)u2δ

s ∇us

〉
dVg +

∫
M

Rgu2+2δ
s dVg =λs

∫
M

us+2δ
s dVg.

And setting w = u1+δ
s :

CN
(1+2δ)
(1+δ)2

∫
M
|∇w|2 dVg +

∫
M

Rgw2 dVg =λs

∫
M

us−2
s w2 dVg,
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which yields

(2.22) CN

∫
M
|∇w|2 dVg = (1+δ)2

(1+2δ)

(
λs

∫
M

us−2
s w2 dVg −

∫
M

Rgw2 dVg

)
.

On the other hand, by the Sharp Sobolev embedding (Theorem 1.4.2), for ε> 0, there

is a constant Cε > 0 such that

∥w∥2
L2∗ (M)

≤ (1+ε)σN

∫
M
|∇w|2 dVg +Cε

∫
M

w2 dVg,

where σN is the N-dimensional Sobolev constant. Then, for Λ = λ(SN), from Theorem

2.3.2 follows:

∥w∥2
L2∗ (M)

≤ (1+ε) CN

Λ

∫
M
|∇w|2 dVg +Cε

∫
M

w2 dVg.

Applying (2.22) and Hölder’s inequality:

∥w∥2
L2∗ (M)

≤ (1+ε) (1+δ)2

(1+2δ)
λs

Λ

∫
M

us−2
s w2 dVg +C′

ε,δ

∫
M

w2 dVg

≤ (1+ε) (1+δ)2

(1+2δ)
λs

Λ
∥us∥s−2

L
(s−2)N

2 (M)
∥w∥2

L2∗ (M)
+C′

ε,δ∥w∥2
L2(M).

As (s−2)N
2 < s, we have ∥us∥s−2

L
(s−2)N

2 (M)
≤ ∥us∥s−2

Ls(M) = 1, so,

∥w∥2
L2∗ (M)

≤ (1+ε) (1+δ)2

(1+2δ)
λs

Λ
∥w∥2

L2∗ (M)
+Cε,δ∥w∥2

L2(M).

• Now, on the one hand, if we suppose 0 ≤ λ(M) < Λ, for some s0 < 2∗, we will have

by Lemma 2.4.1, λs
Λ ≤ λs0

Λ < 1, for s0 ≤ s. On the other hand, we can choose δ,ε > 0

sufficiently small to obtain (1+ ε) (1+δ)2
(1+2δ)

λs
Λ < 1, then there is a constant C > 0 such

that:

(2.23) ∥w∥2
L2∗ (M)

≤ C∥w∥2
L2(M).

• Supposing λ(M)≤ 0, we obtain obviously the same result.

Applying again Hölder’s inequality on (2.23), we obtain

∥w∥2
L2(M) = ∥us∥2(1+δ)

L2(1+δ)(M)
≤ C∥us∥2(1+δ)

Ls(M) = 1.

Then we conclude that from (2.23), ∥w∥L2∗ (M) = ∥us∥1+δ
L2∗(1+δ) is bounded independently of

s.
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Proof of Theorem 2.4.2

Proof. By Proposition 2.4.1, we have that {us}s∈[s0,2∗) is uniformly bounded in Lr(M) for

certain 2< s0 < 2∗, r > 2∗. Then applying Theorem 1.6.2, as we have done on the proof of

the Theorem 2.4.1, we obtain that {us}s∈[s0,2∗) is uniformly bounded in C2,α(M).

Now, by Arzela-Ascoli theorem, we know that there exists a subsequence which con-

verges to u ∈ C2(M), such that u verifies

I[u]=λ, and, −CN∆u+Rgu =λu2∗−1,

where we define the limit λ= lim
s→2∗λs. Furthermore, we have

• If 0≤λ(M), by Lemma 2.4.1, λs is non-increasing, then λ=λ(M).

• If λ(M) < 0, λs is increasing, so we have that λ≤ λ(M). However, by (2.18), as it is

the infimum of the functional, then λ=λ(M), too.

Finally, by Theorem 2.4.1, we have that u ∈ C∞(M), and u > 0, because

∥u∥L2∗ ≥ lim
s→2∗∥us∥Ls = 1> 0.

2.5 Uniqueness

To continue, we are going to study the uniqueness of the solutions of the semi-linear

PDE (2.2).

Proposition 2.5.1. If we have two strictly positive solutions of (2.2), then the constant

curvatures of both metrics have the same sign or both solutions are equal to zero.

Proof. Following [3], p. 171, we consider g′ = u
4

N−2 g, with u > 0, and g̃ = v
4

N−2 g, with

v > 0, two solutions of the problem, with Rg′ and R g̃ are their respective constant scalar

curvatures.

Then we can compute g′ in terms of the metric g̃. For that, we know that as u,v > 0

we can set u = wv, and we have

g′ = u
4

N−2 g = (wv)
4

N−2 g = w
4

N−2 g̃.
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Then by (2.2):

−Cn∆u+Rgu = Rg′u
N+2
N−2 .

Setting ∆̃w =− g̃i j∇̃i∇̃ jw, idem as (2.2), we get

(2.24) −Cn∆̃w+R g̃w = Rg′w
N+2
N−2 .

Now, integrating with respect to g̃ and knowing that
∫
∆̃w dVg̃ = 0, we get

R g̃

∫
w dVg̃ = Rg′

∫
w

N+2
N−2 dVg̃.

So we obtain that R g̃ and Rg′ have the same sign or both are equal to zero.

By the above proof, we can conclude:

• If the curvature is equal to zero, i.e. Rg′ = R g̃ = 0, then by (2.24), ∆̃w = 0, so we

have w = constant and both solutions are proportional. Then, in this case there is

a unique solution up to rescaling.

• If the curvature is negative, i.e. Rg′ = R g̃ < 0, (2.24) has the unique solution w ≡ 1.

Indeed, if w has a maximum in p ∈ M, then ∆̃w(p)≥ 0, and from (2.24):

CN∆̃w(p)= R g̃w(p)−Rg′w
N+2
N−2 ≥ 0.

Then w(p)
4

N−2 ≤ Rg′
Rg

= 1. So, w(p) ≤ 1. In the same way, if w has a minimum in

q ∈ M, then ∆̃w(q) ≤ 0, and analogously w(q) ≥ 1. Therefore, w ≡ 1, and there is a

unique solution.

• If the curvature is positive, i.e. Rg′ = R g̃ > 0, we can not prove that there is a unique

solution.

In the next section, for the cases where g is scalar positive, we are going to see a

classical example where we do not have a unique solution. Therefore, if the curvature is

positive we can not guarantee uniqueness. In general, although we know that there are

few examples where uniqueness holds, as we have seen in a certain sense for the sphere.

2.5.1 Example of non uniqueness

As we have just seen, when the scalar curvature is positive we do not have uniqueness

generally. A classical example where there is more than one solution is due to Schöen [19],
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who found all solutions to the Yamabe problem in the Riemannian manifold S1 ×SN−1

with the product metric, being S1 = S1(T) the 1-sphere of length T > 0 and SN−1 the

N−sphere of radius 1, both considered with their standard metrics.

To address this example, we remember the relation between g0 and g1 of the Example

1.2.3 and for convenience we normalize first solutions of the equation (2.2) so that their

scalar curvature is Rg′ = N(N −1), i.e, equal to the scalar curvature of SN , and we look

for solutions of the form g′ = u
4

N−2 g1 on R×SN−1 with respect to the product metric

g1 = dt2+dθ2, (t,θ) ∈R×SN−1, with scalar curvature Rg1 = (N −1)(N −2). In short, (2.2)

turns to

(2.25) −∆g1 u+ (N −2)2

4
u = N(N −2)

4
u

N+2
N−2 .

When u just depends on t, writing ∆g1 = ∂tt +∆θ:

(2.26) utt − (N −2)2

4
u+ N(N −2)

4
u

N+2
N−2 = 0, u = u(t), t ∈R.

and we are interested in finding positive solutions of (2.26) defined in R.

Explicit solutions

This ODE has two explicit non-zero solutions:

• One solution is the constant u0 =
( N−2

N
) N−2

4 , where u
4

N−2
0 g1 is the multiple of g1 with

scalar curvature N(N −1).

Proof. This is an immediate calculation from (2.26).

• The other is a solution of constant sectional curvature. Let us take the spherical

metric gc in RN given by gc = 4
(
1+|x|2)−2 g0 (see (2.9)). Writing gc in the terms of

g1: gc = 4
( |x|

1+|x|2
)2

g = 4
(|x|+ |x|−1)−2 g. Then as |x| = r = e−t, we have

cosh−2(t)= 4
(
et + e−t)−2 = 4

(|x|+ |x|−1)−2
.

Thus,

gc = cosh−2(t)g1.

From where we have the solution:

u1(t)= cosh−N−2
2 (t).
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Proof. This is an immediate calculation.

System of first order

To continue, we are going to transform (2.26) into a first order system. For that, we

take v = ut and let define

(2.27) X (u,v)=
(
v,

(N −2)2

4
u− N(N −2)

4
u

N+2
N−2

)
.

Then (2.26) become (u,v)t = X (u,v) a non-linear autonomous system that we are going

to study.

Critical points

This system has two critical points: X (u,v) = 0 if and only if v = 0 and u = 0, or,
(N−2)2

4 u+ N(N+2)
4 u

N+2
N−2 = 0. That is, the critical points are (0,0) and (0,u0).

Linearization of the equation

First, we calculate the Jacobian matrix and then we study each critical point. The

Jacobian matrix denoted J is

J(u,v)=
 ∂u∂tu |(u,v) ∂v∂tu |(u,v)

∂u∂tv |(u,v) ∂v∂tu |(u,v)

=
 0 1

(N−2)2
4 − N(N+2)

4 u
4

N−2 0

 .

• For the critical point (u0,0):

J(u0,0)=
 0 1

−(N −2) 0

 .

Then, its eigenvalues are given by

λ2 +N −2= 0.

Then we have, λ=±i
p

N −2. To conclude, as N ≥ 3 and we have two pure complex

eigenvalues, then the critical point (u0,0) is a (linear) center.
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• For the critical point (0,0):

J(0,0)=
 0 1

(N−2)2
4 0

 .

Then, its eigenvalues are

λ2 − (N −2)2

4
= 0.

From where we have, λ=±N−2
2 . Finally, as N ≥ 3, λ1 > 0, and, λ2 < 0, we conclude

that the critical point (0,0) is a saddle point.

As the point (u0,0) is a center and the system is an ODE of first order we have the

next equations for the orbits:

u(t)= A sin
(
t
p

N −2
)
+Bcos

(
t
p

N −2
)
,

where A,B > 0 are constants.

We also know that these orbits are constants. Let u(t+T) = u(t) where T = 2πp
N−2

is

the fundamental period.

The orbits

Until now, we have transformed the equation of second order (2.26) into the first order

system (2.27). The study of linearization yields a critical point which is a (linear) center.

Now we study the phase diagram of the non-linear problem. However, in the non-linear

case, we will show that there exists a Hamiltonian in order to see in the phase diagram

that there are some orbits around this center. In this section we will study how to get the

exact equations of these orbits.

To continue, in order to calculate the exact trajectories of the orbits we are going to

compute the Hamiltonian. For this, we multiply (2.26) by ut:

utt ·ut − (N −2)2

4
u ·ut + N(N −2)

4
u

N+2
N−2 ·ut = 0.

And knowing that

• utt ·ut = 1
2

(
(ut)2)

t.

• u ·ut = 1
2

(
u2)

t.

• u
N+2
N−2 ·ut = N−2

2N

(
u

2N
N−2

)
t
,
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(0,0) (u0,0) (1,0)

critical points

Delaunay’s solutions

critical point (u0,0)

orbits

cylinder

Figure 2.2: Diagram of phases

we have
1
2

(
(ut)2)

t −
(N −2)2

8
(
u2)

t +
(N −2)2

8

(
u

2N
N−2

)
t
= 0.

Integrating with respect to t we obtain

H = 1
2

(ut)2 − (N −2)2

8
u2 + (N −2)2

8
u

2N
N−2 =±C,

where C > 0 is a constant. Therefore,

1
2

v2 − (N −2)2

8
u2 + (N −2)2

8
u

2N
N−2 ±C = 0.

Finally we get the exact trajectories of these orbits

v =±
√

(N −2)2

4
u2 − (N −2)2

4
u

2N
N−2 ±C.

Remark 2.5.1. The intermediate solutions have geometric interpretation, they are small

perturbations around the cylinder as we can see in Figure 2.2, and they are known as

Delaunay’s solutions.

The orbit corresponding to the solution u1(t) contains the point (1,0), is symmetric

under reflection in the u-axis, and when t →∞ it approaches (0,0). Therefore, this orbit

and (0,0) bound a region Ω, which includes the center (u0,0).
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Now taking α ∈ [u0,1],we parametrize the orbits in Ω by γα(t), with γα(0) = (α,0)

where α ∈ [u0,1]. So we have γu0(t) ≡ (u0,0), and γ1(t) = (u1(t), (u1(t))t). For α ∈ (u0,1),

there exists a first positive time 1
2 T(α), at which γ0 intersects the u− axis. Denoting

γα(t)= (uα(t),vα(t)), thus γα(−t)= (uα(t),−vα(t)). From where we get that γα(t) is periodic

with period T(α). Moreover, we have T(α) −→
α→1

∞, and, T(α) −→
α→u0

2πp
N−2

, where, as we have

seen before, this is the fundamental period.

To continue, we return to the manifold S1(T)×SN−1, provided with the product metric

g. Supposing that T(α) is increasing for α ∈ [u0,1], then there exists a T0 = 2πp
N−2

, such

that the manifold S1(T)×SN−1, for T ≤ T0, has a unique solution of (2.26), which is a

constant times g0. So we conclude that for T ∈ (T0,2T0], (2.26) has two solutions: the

constant solution and the solution with fundamental period T. However, these two solu-

tions have different periods so they are inequivalent. Furthermore, the same reasoning

leads to assure that for T ∈ [2T0,3T0], there are three inequivalent solutions, and so on.

Then this example stress that we can not guarantee uniqueness of solutions in case of

positive scalar curvature.

Note that R×SN−1 is conformally equivalent to RN \{0}, and thus the solution of (2.25)

in R×SN−1 is equivalent to the solution in RN \ {0}. Precisely, [11] proved that under

suitable conditions, any solution of (2.25) is a radial function. Furthermore, u(x) =ψ(r),

with r = |x|, ψ ∈ C2(RN \{0}) is a solution of (2.25) if and only if:

(2.28) −ψrr −ψr

(
N −1

r

)
+ (N −2)2

4
ψ= N(N −2)

4
ψ

N+2
N−2 .

As pointed by [8], p. 272, equation (2.28) can be simplified by considering u(t)=
(
r

N−2
2 ψ(r)

)
|r=e−t ,

in which case, such equation becomes (2.26).
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Chapter 3

Moving plane

The moving plane technique dates back to applications to geometry by Aleksandrov in

1958 ([1]) and Serrin ([21]) in 1971. After that, this method found important applications

in the theory of PDEs, beginning with the seminal papers by Gidas, Ni and Niremberg

([11]) followed by many researchers in the field ([6]), reveling itself as a fundamental tool

in the proof of qualitative properties of solutions of certain PDEs, as monotonicity, radial

symmetry or even Harnack type estimates. Do note that knowing that if a particular

PDE has only a radially symmetric solutions it allows to reduce it to an ODE, simplifying

the problem in some sense, as we did before. In this section we introduce this technique,

and at the end, we show its relation with the Yamabe problem. Even more, we will see in

the last chapter that it will play a main role in the study of parabolic PDEs, as it is the

case of Yamabe flow.

3.1 Main idea

The method of moving plane essentially consists on comparing values of the solution

to a PDE at two different points, one point is the reflection of the other over a hyperplane

x1 = λ, and after that, the plane is moved until it reaches a critical position, then the

solution will be symmetric with respect to that plane.

From now on, as we are interested in radial symmetry, we select γ = (1,0, . . . ,0) and

we will study symmetry with respect to x1. After that, reordering variables leads to

desired result. In this section we follow [11] and consider the following semi-linear elliptic
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Figure 3.1: Moving plane method

equation:

(3.1) ∆u(x)+b1(x)ux1(x)+ f (u)= 0,

where b1 ∈ C(Ω), f ∈ C1, and, x1 is the first coordinate of x = (x1, . . . , xN). Our objective

will be to prove the symmetry of a solution u ∈ C2(Ω) with respect to the hyperplane x1,

with Ω an arbitrary bounded domain with smooth boundary ∂Ω, but first let see which is

what we call radial symmetry.

Definition 3.1.1. A measurable function u defined in RN is called radially symmetric if

u(r)= ũ(r), for r = |x|.

Following [11], we present the main idea of the moving plane method. Let Ω⊂RN be

bounded with smooth boundary, γ ∈RN be a unit vector, and, Tλ =
{
x ∈RN |λ= x ·γ}⊂RN

be an hyperplane orthogonal to γ, for λ ∈R. To start the method, let λ ∈R be large enough

such that if λ= λ, we have that the hyperplane T
λ

is disjoint with Ω. Then if the plane

moves continuously in the γ direction toward Ω while λ decreases, then Tλ will begin to

cut off from Ω an open cap that we define as Σ(λ)= {
x ∈Ω | γ · x >λ}

. On the other side, let

denote Σ′(λ) the reflection of Σ(λ) with respect to the plane Tλ. It will begin to be inside

Ω, since ∂Ω is smooth, until one of the following situations occurs:

• Let P ∉ Tλ and Σ′(λ) is tangent to ∂Ω at P.

• Let Q ∈ Tλ and Σ′
λ

is orthogonal to ∂Ω at Q.

To continue, we suppose that Tλ reaches one of the above positions in λ=λ1, then Σ′(λ)⊂
Ω, ∀λ ≥ λ1, and, by definition Σ′(λ) ⊈Ω, for λ < λ1. For any unit vector γ, the goal is to

prove the reflection symmetry of solutions to (3.1) with respect to the plane γ · x = 0. In

this step it will be crucial some form of the maximum principle.
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We are going to use the following notation:

• The maximum of the first coordinate for x ∈Ω is λ0 =max
x∈Ω

x1.

• The maximal hyperplane

Tλ1 := {x1 =λ1} , with λ1 <λ0.

• The maximal cap

Σ=Σλ =Σ(λ1)= {x ∈Ω | x1 >λ1} .

• The reflection of this maximal cap on the plane Tλ1 : Σ′(λ1).

Definition 3.1.2. We define uλ(x)= u(xλ), with xλ = (2λ−x1, x2, . . . , xN), to be the reflection

of x with respect to the hyperplane x1 =λ, for λ1 <λ<λ0.

3.2 Symmetry on an arbitrary bounded domain

Next we see the following symmetry theorem which allows us to obtain the radial

symmetry on any bounded domain with smooth boundary.

Theorem 3.2.1. Let u ∈ C2(Ω∩Σ) be a solution of (3.1) and such that
u(x)> 0, x ∈Ω,

u(x)= 0, x ∈ ∂Ω∩Σ.

Let b1(x) ≥ 0, for x ∈Σ∪Σ′. Then ux1(x) < 0 in Σ. Furthermore, if ux1 = 0 at some point in

Ω on the plane Tλ1 , then u is symmetric on the plane Tλ1 , that is to say Ω=Σ(λ1)∪Σ′(λ1)∪
(Tλ1 ∩Ω), and b1(x)= 0.

To prove this theorem, we start the moving plane method in a point of the boundary

and while we have

ux1(x)< 0, and u(x)< uλ (x) , for x ∈Σ(λ),

we can move the plane until we arrive to a critical value µ, which is the higher value

that does not allow us to move the plane more. The main idea of the proof is that by

contradiction, if µ > λ1, we do not have reached the critical value and therefore we can

move the plane a little more.
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First, we are going to prove the following lemma which shows that the derivative of u

with respect to x1 has sign, so we can say that it is a kind of Hopf ’s lemma:

Lemma 3.2.1. Let ν(x) be the exterior unit vector of Ω, and, x ∈ ∂Ω with ν1 (x) > 0. For

some ε> 0, if u ∈ C2 is a solution of (3.1) in Ωε =Ω∩ {|x− x| < ε}, and it verifies

(3.2)


u(x)> 0, x ∈Ω,

u(x)= 0, x ∈ S = ∂Ω∩ {|x− x| < ε} .

Then there exists δ> 0 such that ux1(x)< 0, for x ∈Ω∩ {|x− x| < δ}.

Proof. As u > 0 in Ω, and, u = 0 in S = ∂Ω∩ {|x− x| < ε}, necessarily u increases near the

boundary, so uv ≤ 0, on S. For such ε, as v1 > 0 everywhere, then

ux1 ≤ 0, on S.

We are going to continue the proof by contradiction, so we suppose that the lemma is

false, then there would be a sequence of points {x j} j∈N, such that x j → x, and, ux1

(
x j)≥ 0.

For j large, the interval in the x1 direction, going from x j to ∂Ω, intersects S at a point

that we are going to call x̃, where ux1(x̃) ≤ 0. Then we have in the direction of x1, the

interval going from x j to x such that

ux1(x j)≥ 0, and, ux1(x̃)≤ 0.

By the mean value theorem, there exists a point x̂ j which is in the interval between

x j and x̃, such that ux1(x̂ j)= 0. As u ∈ C2, we have

(3.3) 0= lim
j→∞

ux1(x̂ j)= ux1

(
lim
j→∞

x̂ j
)
= ux1(x),

and we also have

(3.4) ux1x1 (x)= lim
j→∞

ux1(x̂ j)−ux1(x)
x̂ j − x

= 0.

Suppose f (0)≥ 0, then u satisfies

(3.5) ∆u(x)+b1(x)ux1(x)+ f (u(x))− f (0)≤ 0, x ∈Ωε.

By the mean value theorem, for some function c(x)≥ 0, we have

∆u(x)+b1(x)ux1(x)+ c(x)u(x)≤ 0.
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Taking the function −u, we have

∆u(x)−b1(x)ux1(x)− c(x)u(x)≤ 0.

Applying the Hopf ’s Lemma 1.6.1, we find (−u)ν (x) > 0, so uν (x) < 0. Moreover, as we

have uν(x)= ux1(x)ν1(x)< 0, then

ux1(x)< 0,

which is a contradiction with (3.3). So we have to suppose f (0)< 0. Knowing that as x ∈ S

by (3.2), f (u(x))= f (0), and, by (3.3), ux1(x)= 0, we obtain that u is a solution of (3.5) at x:

∆u(x)=− f (0).

But then if we had uxi x j (x) = − f (0)νi(x)ν j(x), then it contradicts (3.4), since ux1x1(x) =
− f (0)ν1(x)2 > 0.

So we need to prove that uxi x j (x) = − f (0)νi(x)ν j(x). For that, we follow the same

process as before but instead of taking the direction of x1, we do it in the direction of xi,

then uxi (x) = 0, for 1 ≤ i ≤ N. Using this and the definition of the derivative with respect

to x j, we have, taking x = 0 to simplify without loss of generality:

uxi x j (x)= lim
h→0

uxi (0, . . . ,h, . . . ,0)−uxi (0, . . . ,0)
h

= lim
h→0

uxi (0, . . . ,h, . . . ,0)
h

.

By (3.2), u = 0 in ∂Ω. As x ∈ ∂Ω, ∇u(x) has the direction of ν, then, if e j = (0, . . .1, . . .0):

uxi x j (x)=lim
h→0

uxi (0, . . . ,h, . . . ,0)
h

= lim
h→0

uxi (he j)
h

= lim
h→0

|∇u(he j)|uxi (he j)
|∇u(he j)|h

=νi lim
h→0

|∇u(he j)|
h

= νi lim
h→0

√
u2

x1(he j)+·· ·+u2
xN (he j)

h
Since we have

lim
h→0

|∇u(he j)|
h

=lim
h→0

√
u2

x1(he j)+·· ·+u2
xN (he j)

h

=lim
h→0

ux1x j (he j)ux1(he j)+·· ·+uxN x j (he j)uxN (he j)√
u2

x1(he j)+·· ·+u2
xN (he j)

=lim
h→0

ux1(he j)√
u2

x1(he j)+·· ·+u2
xN (he j)

ux1x j (he j)+ . . .

· · ·+ uxN (he j)√
u2

x1(he j)+·· ·+u2
xN (he j)

uxN x j (he j)

=
N∑

k=1
νk(x)uxkx j (x).
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Using this we get

uxi x j (x)= νi(x)
N∑

k=1
νk(x)uxkx j (x).

Then 1
νi(x) uxi x j (x) =

N∑
k=1

νk(x)uxkx j (x), and we have 1
ν1(x) ux1x j (x) = ·· · = 1

νN (x) uxN x j (x). Fur-

thermore, ∀i, j,k = 1, . . . , N, it holds

ux j x j =
ν j

νk
ux j xk =

ν j

νk

ν j

νi
uxi xk =

ν2
j

νkνi
uxi xk , all evaluated at x.

Thus, fixed i,k,

∆u(x)=
N∑

j=1
ux j x j (x)=

N∑
j=1

ν2
j

νkνi
uxi xk (x)=

(
ν2

1

νkνi
+·· ·+ ν2

N

νkνi

)
uxi xk (x)

= 1
νkνi

uxi xk (x).

From this we have

uxi xk (x)= νkνi∆u(x)=− f (0)νkνi.

Finally, we conclude that there exists δ > 0, such that ux1 < 0 in Ω∩ {|x− x| < δ}, and

this completes the proof.

The substance of the following lemma is to show that when we are in the case λ1, we

have u(x)≤ uλ(x), so it is a Hopf ’s lemma modified to apply it to our problem:

Lemma 3.2.2. If u ∈ C2 is a solution of (3.1). Assume that for some λ with λ1 ≤λ<λ0, we

have b1(x) ≥ 0 for x ∈ Σ(λ)∪Σ′(λ), ux1(x) ≤ 0, and, u(x) ≤ uλ (x), but u(x) ̸≡ uλ (x), in Σ(λ).

Then

(3.6) u(x)< u(xλ), in Σ(λ),

and,

(3.7) ux1(x)< 0, on Ω∩Tλ.

Proof. As u is solution of (3.1), then in Σ′(λ), uλ verifies

−∆uλ(x)−b1(xλ)uλx1
(x)+ f (uλ(x))=−∆u(xλ)+b1(xλ)ux1(xλ)+ f (u(xλ))= 0,
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and by hypothesis, uλx1
(x) ≥ 0, for x ∈ Σ′(λ). To continue, if we subtract (3.1), we find for

x ∈Σ′(λ) that

−∆
(
uλ(x)−u(x)

)
+b1(x)

(
uλ(x)−u(x)

)
x1
+ f (uλ)− f (u)−b1(xλ)(uλ(x))x1 −b1(x)(uλ(x))x1

=−∆uλ(x)+∆u(x)−b1(x)(uλ(x))x1 −b1(x)ux1(x)+ f (uλ)− f (u)−b1(xλ)(uλ(x))x1

−b1(x)(uλ(x))x1 ≡
(
b1(xλ)+b1(x)

)
(uλ(x))x1 ≤ 0,

where we have used
(
uλ(x)

)
x1
= ux1(xλ)(xλ)x1 =−ux1(xλ). Let us define h(x)= uλ(x)−u(x)≤

0, for x ∈Σ′(λ). Then using the mean value theorem, for some function c(x), h verifies

−∆h(x)+b1(x)hx1 + c(x)h(x)≤ 0, x ∈Σ′(λ).

If x ∈ Tλ∩Ω, x = xλ, then h(x)= 0 on Tλ∩Ω. Since h(x)≤ 0 for x ∈Σ′(λ), but by hypothesis

we have uλ(x) ̸≡ u(x), so h(x) ̸≡ 0 in Σ′(λ), then by the maximum principle (Theorem 1.6.4),

we have that

h(x)< 0, for x ∈Σ′(λ).

Then we have uλ(x)< u(x), for x ∈Σ′(λ), and thus u(x)< uλ(x), for x ∈Σ(λ).

Since h(x) = 0 for x ∈ Tλ∩Ω, by Hopf ’s Lemma 1.6.1 we get hν(x) > 0, and, hx1(x) > 0,

for x ∈ Tλ∩Ω. Moreover,

hx1(x)= uλx1
(x)−ux1 = ux1(xλ)−ux1 =−2ux1(x), x ∈ Tλ∩Ω.

Finally, we have

ux1(x)< 0, x ∈ Tλ∩Ω.

Proof of Theorem 3.2.1

Proof. From Lemma 3.2.1, for λ near λ0,λ<λ0, we obtain

(3.8) ux1(x)< 0, and u(x)< uλ (x) , for x ∈Σ(λ)

Now, if we decrease λ until a critical value µ ≥ λ1. Then (3.6) holds for λ > µ, while for

λ=µ, we have by continuity:

ux1(x)< 0, and u(x)≤ uµ (x) , for x ∈Σ(µ)
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We will show that µ= λ1. By contradiction, we suppose µ> λ1. For a point x ∈ ∂Σ(µ)\Tµ,

then xµ ∈Ω. By (3.8), we have 0= u (x)< uµ (x), then we deduce that u(x) ̸≡ uµ (x) in Σ(µ).

Thus, by Lemma 3.2.2, we get u(x)< uµ (x) in Σ(µ), and, ux1 < 0 on Ω∩Tµ, from where we

have (3.8) for λ=µ.

As we have ux1 < 0 on Ω∩Tµ, by continuity, for some ε> 0, we have:

(3.9) ux1 < 0, in Ω∩{
x1 >µ−ε

}
.

From the definition of µ, we can conclude that there exists an increasing sequence

{λ j} j∈N, such that λ1 < λ j −→
j→∞

µ, and there exists a point x j ∈ Σ(λ j) such that u(x j) ≥
uλ

j
(x). Then there is a subsequence, which we still call x j, such that x j −→

j→∞
x ∈Σ(µ), and

x
λ j0
j0

−→
j0→∞

xµ, with u(x)≥ u (xµ). As we have (3.6) for λ=µ, then x ∈ ∂Σ(µ). Furthermore, if

x ∉ Tµ, then xµ ∈Ω and

0= u(x)< uµ (x) ,

which is impossible. Therefore, we obtain x ∈ Tµ and xµ = x.

On the other hand, knowing that for j large enough, the segment joining x j to xλ j
j is

in Ω, by the mean value theorem, there exists a point yj in this segment, such that

ux1

(
yj

)≥ 0, with yj −→
j→∞

x = lim
j→∞

x j.

But this contradicts (3.9), then µ=λ1 and (3.8) holds for λ>λ1.

As u ∈ C2, by continuity,

ux1(x)≤ 0, and u(x)≤ uλ1 (x) , in Σ=Σ(λ1).

To finish the proof, let suppose ux1 = 0 at some point in Ω∩Tλ1 , by Lemma 3.2.2, we

have that u(x) ≡ uλ1 (x) in Σ(λ1). Since u(x) = 0, if x ∈ ∂Ω, and, x1 ≥ λ1, then uλ1 (x) =
u(xλ1)= 0 at the reflected point x = xλ1 , then

Ω=Σ(λ1)∪Σ′(λ1)∪ (
Tλ1 ∩Ω

)
.

Suppose further that b1 > 0 at some point x ∈ Ω, and, x ∉ Tλ1 , then from (3.1) and the

symmetry of the solution in the plane Tλ1 that we have just proved, we obtain

b1(x)ux1(x)= b1(xλ1)uλ1
x1 (x) .
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If x ∈ Σ(λ1), then ux1(x) < 0, and left-hand side is negative, while the right-hand side is

non negative, which is impossible. Similarly for x ∈Σ′(λ1), thus

b1 = 0.

3.3 Symmetry in RN

From now on, in (3.1) we take the particular case f (u) = um, where m = N+2
N−2 , N > 2,

and b1 ≡ 0. Therefore, we consider here the non-linear elliptic equation:

(3.10) −∆u(x)= um(x), in RN ,

Essentially, we use the method developed by [11] and [27] to prove the main result of

this section, which is the following theorem justifies that a C2 solution of (3.9) is radially

symmetric with respect to a plane:

Theorem 3.3.1. Let w ∈ C2(RN) be a positive solution of (3.10) on RN fulfilling expansions

(3.13) and (3.14) as x → ∞, and define x = (x1, . . . , xN) to be the center of w, with xi =
− 1

(N−2)
ai
a0

, where a0 and ai, for i = 1, . . . , N. Then w is symmetric with respect to the plane

x1 =− 1
(N−2)

a1
a0

, and, wx1 < 0, for x1 >− a1
(N−2)a0

.

The main idea of the proof of this theorem is to start the technique of moving plane

by comparing w with its reflection, i.e.

w(x)> wλ(x), for x1 <λ, ∀λ≥λ1,

and we will prove that it is true in an open set, which is, we can move the plane a little

more.

With the invaluable help of the moving plane method just explained, [8] goes further

to generalize Theorem 3.3.1 to equations under the form of (3.1) with b1 = 0 and removing

the implicit growth assumption w =O(|x|2−N).

To adapt the method of moving plane to RN , we need to know what happens to the

equation (3.1) far from the origin and then some expansion of u in ∞ is required. For
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that, we exchange 0 by infinity using the Kelvin transform:

(3.11) w(x)= 1
|x|N−2 u

(
x

|x|2
)
, for x ̸= 0.

Doing the change of variable y= x
|x|2 ,

(3.12) u(y)= 1
|y|N−2 w

(
y

|y|2
)
, for y ̸= 0.

The equation (3.1) is invariant by the Kelvin transform, so we can study it in the same

way for u and for w. This allows us to deduce the following Taylor expansions:

Proposition 3.3.1. If w ∈ C2(RN) is a positive solution of the equation (3.10), verifying

w(x)=O(|x|2−N), when |x|→∞, then the following expansions when |x|→∞ hold:

(3.13) w(x)= 1
|x|N−2

[
a0 +ai

xi

|x|2 +ai j
xix j

|x|4 +O(|x|−3)
]

,

(3.14) wxi (x)= d
dxi

w(x)=−(N −2)
xi

|x|N
(
a0 +a j

x j

|x|2
)
+ ai

|x|N − 2xi

|x|N+2 a jx j +O
(
|x|−(N+1)

)
,

for certain unique a0, ai, ai j ∈R, i, j = 1, . . . , N.

Proof. Consider the Kelvin transform of w given by (3.11). Since w ∈ C2(RN), u ∈ C2(R\

{0}) and has a removable singularity at zero. Indeed, u(y) verifies also (3.10) for y ̸= 0,

and is bounded near y= 0, because u(y)= |y|2−Nw
(

y
|y|2

)
≤ C|y|2−N

(
1
|y|

)2−N = C, for certain

C > 0 when y → 0 by hypothesis. Then it can be proved that u(y) is a weak solution of

(3.10) in RN (Proposition 1.6.1), and by regularity theory for this equation guarantees

that u ∈ C2 near y= 0 (Theorem 1.6.1).

Then we can write a Taylor expansion for u(y) at y = 0 as u(y) = a0 +ai yi +ai j yi yj +
O(|x|3), by using Einstein’s notation and being a0 = u(0)> 0, ai = uyi (0) and ai j = 1

2 uyi yj (0).

Putting this expansion in (3.11) proves (3.13). Analogously one can prove (3.14).

Now, to simplify the Taylor expansions (3.13) and (3.14) we shift the origin by doing

a change of variables replacing x by x− x0, with x0 = (x0 1, . . . , x0 N), being x0 j =− a j
(N−2)a0

,

j = 1, . . . , N, and taking into account that for q > 0: 1
|x−x0|q = 1

|x|q
(
1+ q

|x|2 x jx0 j + . . .
)
, then

we have that the expansions (3.13) and (3.14) turn into:

w(x)= 1
|x|2

(
1+ x jx0 j

|x|2 + . . .
)(

a0 + ai(xi − x0 i)
|x− x0|2

+ ai k(xk − x0 k)
|x− x0|4

+O
(

1
|x|3

))
= 1
|x|N−2

(
a0 +

ai jxix j

|x|4 +O
(

1
|x|3

))
,

(3.15)
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wxi (x)=− (N −2)(xi − x0 i)
|x|N

(
1+ N

|x|2 x jx0 j + . . .
)(

a0 + ak(xk − x0 k)
|x− x0|2

)
− 2(xi − x0 i)
|x− x0|N+2 a j(x j − x0 j)+O(|x|−N−1)

=− (N −2)
|x|N a0xi +O(|x|−N−1).

(3.16)

With respect to these new coordinates, we will show that any positive solution w(x)

of (3.10) and satisfying expansions (3.13) and (3.14) as x → ∞, is rotationally symmet-

ric about the origin, i.e. w(x) = w̃(r), with r = |x|, and that w̃′
r < 0 for r > 0. Do note

that as (3.10) is rotationally invariant, it is enough to prove Theorem 3.3.1 to reach this

conclusion.

With this goal, first observe that from (3.16), there exist constants C0,RN > 0 such

that:

(3.17) wx1(x)< 0, for x1 ≥ C0

|x| and |x| ≥ RN .

To continue, following [11], we are going to prove some results before obtaining the

radial symmetry.

Lemma 3.3.1. Let w ∈ C2(RN) a positive solution of (3.10) in RN fulfilling expansions

(3.13) and (3.14) for x → ∞. For any λ > 0, there exists R = R(λ) depending only on

min{1,λ} and also on w, such that, for x = (x1, x′), y= (y1, y′) ∈RN satisfying:

• x1 < y1.

• x1 + y1 ≥ 2λ.

• |x| ≥ R.

Then w(x)> w(y).

Proof. We prove this result by contradiction. So fixing λ > 0, we consider two points

x = (x1, x′), y = (y1, y′) ∈ RN , satisfying x1 < y1, x1 + y1 ≥ 2λ, |x| ≥ R for some R > 0, and

such that:

(3.18) w(x)≤ w(y).

Then we are going to see that there exists R1 > 0 depending only on min{1,λ}, such

that |x|, |y| < R1. First, do note that under a rotation or a translation we can assume that
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x and y are both in the x1 axis with 0< x1 < y1. Thus, we have |x| < |y| and from (3.16) for

large R,

w(x)−w(y)= 1
|x|N−2

[
a0 +ai j

xix j

|x|4 +O(|x|−3)
]
− 1
|y|N−2

[
a0 +ai j

yi yj

|y|4 +O(|y|−3)
]

=a0

(
1

|x|N−2 − 1
|y|N−2

)
+ai j

( xix j

|x|N+2 − yi yj

|y|N+2

)
+O(|x|−N−1)+O(|y|−N−1)≤ 0.

From where we get that there exist constants C1,C > 0 such that:

a0

(
1

|x|N−2 − 1
|y|N−2

)
<ai j

( yi yj

|y|N+2 − xix j

|x|N+2

)
+O(|x|−N−1)+O(|y|−N−1)

≤ai j

( yi yj

|y|N+2 − xix j

|x|N+2

)
+C1|x|−N−1 ≤ C|x|−N .

(3.19)

Now, because |x| < |y|, for p ≥ 1 we have

1
|x|p − 1

|y|p ≥ 1
|x|p−1

1
|x| −

1
|y|p−1

1
|y| ≥

1
|x|p−1

1
|x| −

1
|x|p−1

1
|y| =

1
|x|p−1

(
1
|x| −

1
|y|

)
,

then (3.19) implies that

(3.20)
1

|x|N−3

(
1
|x| −

1
|y|

)
≤ 1

|x|N−2 − 1
|y|N−2 ≤ C|x|−N , for a certain C > 0.

Then:
1
|x| −

1
|y| ≤

1
|x| −

|x|N−3

|y|N−2 ≤ C|x|−3.

From where we have:

|y|− |x| ≤ C
|y|
|x|2 = C

( |y|− |x|
|x|2 + 1

|x|
)
.

If we suppose that C|x|−2 ≤ 1
2 , then:

(3.21) |y|− |x| ≤ 2C
|x| , and, |y| ≤ 2|x|.

Indeed, we may assume from now on that C|x|−2 ≤ 1
2 , because if Cx−2 ≤ 1

2 , i.e., if x2 <
2C, then as w(y) → 0 when y → ∞, and w(x) ≤ w(y), we have that |y| ≤ R for some R

independent of λ and the result will be proved. Therefore, returning to (3.19),

a0

(
1

|x|N−2 − 1
|y|N−2

)
≤b11

(
y2

1

|y|N+2 − x2
1

|x|N+2

)
+2

∑
j>1

b1 jx j

(
y1

|y|N+2 − x1

|x|N+2

)
+ ∑

j,k>1
bk jx jxk

(
1

|y|N+2 − 1
|x|N+2

)
+C|x|−N−1.
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By following the same arguments as before, we obtain:

1
|x|N−3

(
1
|x| −

1
|y|

)
≤C

(
y2

1 − x2
1

|x|N+2

)
+C

(
y1 − x1

|x|N+1

)
+C|x|2

(
1

|x|N+2 − 1
|y|N+2

)
+C|x|−N−1

=C

(
y2

1 − x2
1

|x|N+2

)
+C

(
y1 − x1

|x|N+1

)
+C

1
|x|N−1

(
1
|x| −

1
|y|

)
+C|y|−N−1.

Then we have:

1
|x| −

1
|y| ≤C

(
y2

1 − x2
1

|x|5
)
+C

(
y1 − x1

|x|4
)
+C

1
|x|2

(
1
|x| −

1
|y|

)
+C|x|−4.

Multiplying by |x| and |y|, and by (3.21):

|y|− |x| ≤C|y|
(

y2
1 − x2

1

|x|4
)
+C|y|

(
y1 − x1

|x|3
)
+C

1
|x|2 (|y|− |x|)+C|x|−3|y|

≤ C
|x|3

(
y2

1 − x2
1
)+ C

|x|2 (y1 − x1)+ C(|y|− |x|)
|x|2 + C

|x|2 .

We multiply by |y|+ |x|, and take into account that |y|2 −|x|2 = y2
1 − x2

1:

|y|2 −|x|2 = y2
1 − x2

1 ≤
C
|x|3

(
y2

1 − x2
1
)
(|y|+ |x|)+ C

|x|2 (|y|+ |x|) (y1 − x1)+ C
|x|2

(
y2

1 + x2
1
)

+ C
|x|2 (|y|+ |x|) .

Remembering that we assume C
|x|2 ≤ 1

2 , and by (3.21):

y2
1 − x2

1 ≤
C(y1 − x1)

|x| + C
|x| .

As we have that |y|2 −|x|2 = y2
1 − x2

1 ≥ 2λ(y1 − x1), we deduce:

2λ(y1 − x1)≤ y2
1 − x2

1 ≤
C(y1 − x1)

|x| + C
|x| .

Then: (
2λ− C

|x|
)
(y1 − x1)≤ C

|x| .

On one side, if we suppose 2λ− C
|x| ≥λ, that is to say:

(3.22)
C
λ

≤ |x|,

we have y1 − x1 ≤ C
λ|x| . So, by hypothesis, as 2λ− x1 ≤ y1, we have 2λ−2x1 ≤ C

λ|x| , then

λ− C
2λ|x| ≤ x1.
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On the other side, there exists a constant C0 > 0 which verifies (3.17), then we have

that C0
|x| ≤λ− C

2λ|x| , if and only if:

(3.23)
C

2λ2 + C0

λ
≤ |x|.

Therefore, if (3.22) and (3.23) take place, then necessarily (3.17) happens and it implies

that w is decreasing on the segment joining x and y, but this contradicts (3.20).

Remembering the Definition 3.1.2, we define the function wλ(x) = w(xλ), with xλ =
(2λ− x1, x2, . . . , xN) the reflection of x to the hyperplane x = λ. Let us see the following

result in which we can compare w with its reflection, that it is to say that the moving

plane method begins.

Lemma 3.3.2. Let w(x) be in the hypotheses of Theorem 3.3.1. There exists λ1 ≥ 1, such

that, ∀λ≥λ1 :

(3.24) w(x)> wλ(x), for x1 <λ.

Proof. Let R1 = R(1) be defined as in Lemma 3.3.1, we define R1 =max {1,R1}.

On one hand, by Definition 3.1.2 and by Lemma 3.3.1. If λ≥ 1, and x1 <λ, then:

(3.25) w(x)> wλ(x), for |x| ≥ R1.

On the other hand, for |x| ≤ R1, we have that there exists a constant c0 > 0 which

verifies:

w(x)≥ c0.

But if we take 1< R2 sufficiently large, we can get:

w(y)< c0, ∀y ∈RN with |y| ≥ R2.

From where we deduce that (3.24) occurs if R2 ≤ λ, and, |x| ≤ R1. Finally, by (3.25), it is

enough to take λ1 = R2 to conclude (3.24).

Lemma 3.3.3. Let w(x) be in the hypotheses of Theorem 3.3.1. If for some λ> 0, we have

wλ(x)≤ w(x), and wλ(x) ̸≡ w(x), for x1 <λ. Then:

(3.26) wλ(x)< w(x), for x1 <λ, and, wx1(x)< 0, for the hyperplane x1 =λ.
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Proof. Firstly, the function wλ is also a solution of (3.10) for x1 <λ, and we know that for

x1 <λ, we have:

wλ(x)≤ w(x).

Secondly, we set the function f (x)= wλ(x)−w(x), and so, for x1 <λ:
f (x)≤ 0,

f (x) ̸≡ 0.

Thus f (x) satisfies that −∆ f = (
wλ

)m −wλ ≤ 0, for x1 ≤ λ, and it achieves its maximum

(zero) at every point on the hyperplane x1 =λ. We can apply the maximum principle and

the Hopf ’s Lemma 1.6.1 to f to deduce that:
f (x)< 0, for x1 <λ,

0< fx1(x)=−2wx1(x), on x1 =λ.

Lemma 3.3.4. In the hypotheses of Theorem 3.3.1, the set of positive λ for which (3.24)

holds is open.

Proof. Let us consider the set I = {
λ> 0 | w(x)> wλ(x), for x = (x1, . . . , xN) with x1 <λ

}
. Then,

for λ ∈ I, (3.24) holds. Now, we take R = R
(
λ
2

)
of Lemma 3.3.1, then it follows that for

λ≥ λ
2 and |x| > R, (3.24) holds. But, if we instead consider |x| ≤ R and (3.24) does not hold,

∀λ in a neighborhood of λ, then there exists a sequence {x j} j={1,2,... }, such that |x j| ≤ R,

for a certain R > 0, and a sequence λ j −→
j→∞

λ which satisfies λ j ≥ λ
2 , with, x j

1 <λ j, and:

(3.27) w(x j)≤ w
λ

(x j).

Then there exists a subsequence which we denote again {x j} j={1,2,... }, such that x j −→
j→∞

x, where |x| ≤ R, and:

w(x)≤ w
λ

(x).

From (3.24), we have necessarily that x1 =λ. But from (3.27), we have:

0≤ wx1(x),

which contradicts Lemma 3.3.3. Then we have that ∀λ ∈ I, there exists a neighbourhood

of λ included in I, so I is open.
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Proof of Theorem 3.3.1

Proof. Lemma 3.3.2, Lemma 3.3.3 and Lemma 3.3.4 guarantee that (3.24) and (3.26) hold

in some open maximal interval (λ1,∞)⊆ (0,∞). Also, we have

(3.28) wx1(x)< 0, for x1 >λ1,

and by continuity, we have:

(3.29) w(x)≥ wλ1(x), for x1 <λ1.

If we now suppose that λ1 > 0, then from Lemma 3.3.3, we deduce that we have one

of the following cases:

1. w(x)≡ wλ1(x), for x1 <λ1.

2. w(x)> wλ1(x), for x1 <λ1.

However, 1 contradicts Lemma 3.3.1 and 2 is impossible while I is open as we have seen

in Lemma 3.3.4. Hence, λ1 = 0, and from (3.29), w(x) = w0(x), for x1 < 0, proving this

way the symmetry of w with respect to the plane x1 = 0 or x1 = − a1
(N−2)a0

in the original

coordinates. The remainder of the theorem can be deduced from (3.28).

Theorem 3.3.1 allows us to prove that for all unitary vectors γ in RN , every positive

solution w(x) of (3.10) fulfilling the hypothesis of this theorem is symmetric to the plane

γ(x−x)= 0, where x ∈RN is the center defined in Theorem 3.3.1, and that γ·gradw < 0, for

γ(x−x)> 0. Therefore, we can finally conclude that w(x) must be radially symmetric about

some point, i.e. w(x)= w̃(r), with w̃r(r)> 0, for r > 0, where r is the radial coordinate from

that point.

Next, we include this result and refer to [8] for the details of the proof.

Theorem 3.3.2. Let N ≥ 3, and w ∈ C2(RN \{0}) a solution of:

(3.30) −∆u = f (u), x ∈RN ,

with an isolated singularity at the origin, and f a locally Lipschitz function verifying:

1. f (u) is non-decreasing and f (0)= 0.
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2. u− (N+2)
(N−2) f (u) is non-increasing .

3. f (u)≥ Cup, for some p ≥ N
N−2 , when u →∞.

Then,

1. If the origin is a non-removable singularity, then u is radially symmetric about the

origin, i.e. u = ũ(r), with r = |x|, and ũr < 0, for r > 0.

2. If the origin is a removable singularity, then u is radially symmetric about some

point x ∈RN , i.e. u = ũ(r), with r = |x− x|, and ũr < 0, for r > 0.

Proof. See [8], Theorem 8.1, p. 294.

3.4 Relation with the Yamabe problem

As we had illustrated on Chapter 2, equation (3.10) is a Yamabe equation in RN ,

where u is defining a conformally flat metric g = u
4

N−2 g0, with g a metric with a constant

positive scalar curvature. The previous section shows that all solutions must be radially

symmetric. The next corollary due to [8] determines the precise form of these radially

symmetric solutions in this particular case, but first let us see the following identity that

we will use later:

Proposition 3.4.1. Let u ∈ C2(RN) be a non-negative solution of the problem, we define

the Pohozaev identity as follows:

RN(u′(R))2 +RN uα+1(R)
α+1

+ N −2
N

RN−1u(R)u′(R)=
(

N
α+1

− N −2
N

)∫ R

0
rN−1uα+1(r)dr.

Corollary 3.4.1. Let u ∈ C2(RN), be a non-negative solution of the problem:

(3.31) −∆u(x)= uα(x), x ∈RN , with
N

N −2
≤α< N +2

N −2
, N ≥ 3.

Then we have:

1. If N
N−2 ≤α< N+2

N−2 , then u ≡ 0.

2. If α= N+2
N−2 ,

u(x)=
(
µ
p

N(N −2)
µ2 +|x− x|2

) N−2
2

, µ> 0,

for x some point in RN .
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Proof. 1. By Theorem 3.3.2, we know that u is radially symmetric about the origin.

So, if r = |x|, denoting u(x)= u(r), by (3.31), u verifies:

(3.32) (rN−1u′)′ = rN−1ur,r(r)=−rN−1uα(r).

Integrating from 0 to r:

rN−1ur(r)=−
∫ r

0
sN−1uα(s)ds.

Then, as u(r) is decreasing (u′ < 0 by Theorem 3.3.2), we have

rN−1u′(r)=−
∫ r

0
sN−1uα(s)ds ≤− rN

N
uα(r).

Then u′(r)
uα(r) ≤− r

N . Integrating from 0 to r:∫ r

0

u′(s)
uα(s)

ds ≤−
∫ r

0

s
N

ds =− r2

2N
.

Now by an integration by parts we solve the left side:∫ r

0

u′(s)
uα(s)

ds = 1
α−1

(
1

u1−α(r)
− 1

uα−1(0)

)
≥− r2

2N
.

Then we get:
1

uα−1(r)
≥ 1

uα−1(0)
+ (α−1)

2N
r2 ≥ α−1

2N
r2.

This implies that:

u(r)≤ Cr−
2

α−1 ,

|u′(r)| ≤ Cr−
α+1
α−1 .

(3.33)

To finish the proof we are going to use the Pohozaev identity of Proposition 3.4.1:

RN(u′(R))2+RN uα+1(R)
α+1

+N −2
N

RN−1u(R)u′(R)=
(

N
α+1

− N −2
N

)∫ R

0
rN−1uα+1(r)dr

By (3.33), we obtain that the left side of the Pohozaev identity tends to 0, when

R →∞. By hypothesis N
N−2 ≤ α < N+2

N−2 , and therefore N
α+1 − N−2

N > 0, then we have∫ R
0 rN−1uα+1(r)dr = 0, and this implies that u ≡ 0.

2. Again, by Theorem 3.3.2, we know that u is radially symmetric about some point

x ∈ RN . We are going to prove that u(x) =
(
µ
p

N(N−2)
µ2+|x−x|2

) N−2
2

is solution of the problem

(3.31) for α= N+2
N−2 .
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• The derivative of u with respect to xi:

uxi (x)=−(N −2)
(
µ
√

N(N −2)
) N−2

2 (
µ2 +|x− x|2)−N

2 (xi − xi) .

• The second derivative of u with respect to xi:

uxi ,xi (x)=− (N −2)
(
µ
√

N(N −2)
) N−2

2 (
µ2 +|x− x|2)− (N+2)

2
[−N (xi − xi)2

+µ2 +|x− x|2] .

• The Laplacian of u:

−∆u(x)=−
N∑

i=1
uxi ,xi (x)= (N −2)

(
µ
√

N(N −2)µ
) N−2

2 (
µ2 +|x− x|2)− (N+2)

2

· [−N |x− x|2 +Nµ2 +N|x− x|2]= (p
N(N −2)µ

µ2 +|x− x|2
) N+2

2

.

• For α= N+2
N−2 :

uα(x)=
(p

N(N −2)µ
µ2 +|x− x|2

) N+2
2

.

From where we get −∆u = uα, so we have that u is a solution to the Yamabe problem

in RN . The result required is finally deduced from the uniqueness of solutions to

the ODE (3.32).

3.5 A Harnack estimate for a parabolic equation re-

lated to the Yamabe problem

Now, to illustrate the versatility of the moving plane technique, we put the focus on

how this usefull tool allows to obtain a Harnack type estimate for a parabolic equation

closely related to the Yamabe problem which we are going to study in some aspects in

greater depth in the final chapter of this Master’s thesis.

From a geometrical point of view, let us consider first the well known Yamabe flow

([24], [27]). Originally conceived by Hamilton as a device to solve the Yamabe problem,

the Yamabe flow is defined by an evolution equation for a family of conformal metrics on

a given Riemannian manifold (MN , g) that seeks to decrease the total scalar curvature.
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In particular, the objective is to find a family of conformal metrics g(x, t) solution of the

evolution problem 
gt = (sg −Rg)g,

g(0, x)= g, for x ∈ MN ,

when MN is compact, being Rg the scalar curvature and sg = 1
V ol(M)

∫
M Rg dVg. If the

Yamabe flow exists for all t > 0 and converges smoothly as t →∞, then the limit metric

has constant scalar curvature ([27]).

For MN = RN , with the Euclidean metric g0, the Yamabe flow can be defined by the

evolution equation 
gt =−Rg g,

g(0, x)= g0, for x ∈RN .

If we write, as usual, g = v
4

N−2 g0, with v > 0, then this equation turns to (vN(x, t))t =
CN∆v(x, t), where CN = 4(N−1)

N−2 . Putting vN = u and rescaling the time variable, we obtain

ut(x, t) =∆um(x, t), for m = N−2
N+2 , which is the fast diffusion equation that we are going to

study now on following the paper of Del Pino and Sáez [9].

Therefore, for N ≥ 3, let consider the Cauchy problem:

(3.34)


ut(x, t)=∆um(x, t), in RN × (0,∞)

u(x,0)= u0(x),

with m = N−2
N+2 , 0 < m < 1, and u0(x) non-negative, continuous, not identically zero and

satisfying the fast decay condition:

(3.35) ∥u0∥∗ = sup
x∈RN

(1+|x|N+2)u0(x)<+∞.

As we will see in the next chapter, the decay rate condition (3.35) implies that there

exists a finite time T > 0 such that the solution of (3.34) vanishes when t > T, ∀x ∈ RN .

Do note that some decay of the initial condition is needed to assure the existence of a

vanishing time, because for example, u ≡ 1 is a solution of (3.34) with u0 = 1 and it does

not vanish anywhere.

The objective of this section is the study of the behaviour of any positive solution u

to (3.34) when t is near its vanishing time. For this, we are going to define the following
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transformation:

(3.36) w(x, s)= (T − t)−
m

1−m um(x, t) |t=T(1−e−s), x ∈RN , s > 0.

Then, for p = 1
m = N+2

N−2 , w satisfies the problem

(3.37)


(wp)s =∆w+ 1

1−m wp, (x, s) ∈RN × (0,∞),

w(x,0)= T− m
1−m um

0 (x).

Furthermore, the steady state of this equation are the positive solutions w of the elliptic

equation analogous to the case studied in the previous section:

∆w+ 1
1−m

wp = 0, x ∈RN .

So, Theorem 3.3.2 guarantees that w is radially symmetric around some point of RN , and

as in Corollary 3.4.1, necessarily:

(3.38) w(x)=
(

kNµ

µ2 +|x− x|2
) N−2

2
,

for kN = [
4N

( N−2
N+2

)] 1
2 and some µ> 0, x ∈RN .

In order to pass from RN to SN to obtain advantages from the compactness of the

sphere, we are going to define another transformation via the stereographic projection

(see Remark 2.3.1). We define the function v from w as:

(3.39) w(x, s)=
(

2
1+|x|2

) N−2
2

v(F(x), s), (x, s) ∈RN × (0,∞),

or,

(3.40) v(y, s)=
(

1
1− yN+1

) N−2
2

w(F−1(y), s), (y, s) ∈SN \{q0}× (0,∞),

where F :=σ−1 :RN −→SN \{q0}, with q0 = (0, . . . ,0,1) the north pole of SN , is the stereo-

graphic projection and, v satisfies the equation:

(3.41) (vp)s =∆SN v−C(N)v+ 1
1−m

vp, (y, s) ∈SN × (0,∞),

for some constant C(N)> 0.

In the same way as in the elliptic case, some Taylor expansions are required, so we

establish first:
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Proposition 3.5.1. Let s0 > 0 be such that v(y, s), defined by (3.39), is positive and

smooth in SN × (0, s0), with w(x, s) a positive solution of (3.37). The following expansions

hold when |x|→∞:

(3.42) w(x, s)= 2
N−2

2

|x|N−2

[
a0(s)+ai(s)

xi

|x|2 + 1
2

(
ai j(s)− (N −2)a0(s)δi j

) xix j

|x|4 +O(|x|−3)
]

,

(3.43)

wxi (x, s)= d
dxi

w(x, s)=−(N−2)2
N−2

2
xi

|x|N
(
a0(s)+a j(s)

x j

|x|N
)
+ai(s)
|x|N − 2xi

|x|N+2 a j(s)x j+O
(
|x|−(N+1)

)
,

for certain a0(s), ai(s), ai j(s) ∈R, with a0(s)> 0, ∀s ∈ (0, s0), i, j = 1, . . . , N.

Proof. Using again the Kelvin transform (3.11)-(3.12) to exchange ∞ by 0, we define:

w(x, s)= 1
|x|N−2 h

(
x

|x|2 , s
)
, x ̸= 0, s ∈ (0, s0).

Thus, calling y= x
|x|2 , and by (3.39):

h(y, s)= 1
|y|N−2 w

(
y

|y|2 , s
)
= 2

N−2
2

(
1+|y|2) 2−N

2 v
(
F(

y
|y|2 ), s

)
, y ̸= 0, s ∈ (0, s0).

Now, we can write

H(x)= F
(

x
|x|2

)
:RN −→SN \{p0}

(x1, ..., xN) 7−→
(
2x1, ...,2xN ,1−|x|2)

1+|x|2 =
(

2x
1+|x|2 ,

1−|x|2
1+|x|2

)
,

i.e. H(x) is the stereographic projection from the south pole p0 = (0, . . . ,0,−1), and then

h(y, s) = 2
N−2

2
(
1+|y|2) 2−N

2 v (H(y), s), and therefore h(y, s) is smooth in RN × (0, s0) and we

only have to calculate its Taylor expansion at y= 0.

1. Calling a0(s)= v(H(0), s)= v(q0, s)> 0, ∀s ∈ (0, s0), then:

h(0, s)= 2
N−2

2 a0(s), s ∈ (0, s0).

2. ∀i = 1, . . . , N, knowing that ∂
∂yi

(|y|2)= 2|y| yi
|y| = 2yi, and by the chain rule, we have:

∂

∂yi
h(y, s)=2

N−2
2 (2−N)(1+|y|2)−

N
2 yiv (F(y), s)

+2
N−2

2 (1+|y|2)
2−N

2
N+1∑
k=1

vFk (F(y), s) ·Fk yi (y).

Then for y= 0, and denoting ai(s)= ∂
∂yi

v(H(y), s) |y=0:

∂

∂yi
h(0, s)= 2

N−2
2

N+1∑
k=1

vFk (F(0), s) ·Fk yi (0)= 2
N−2

2
∂

∂yi
v (H(y), s) |y=0= 2

N−2
2 ai(s).
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3. ∀i, j = 1, . . . , N,

(a) If i ̸= j:

∂2

∂yj∂yi
h(y, s)=2

N−2
2 (2−N)

(
−N

2

)
(1+|y|2)−

N
2 −12yi yiv (F(y), s)

+2
N−2

2
(2−N)

2
(1+|y|2)−

N
2 2yi

∂

∂yi
(v(H(y), s))

+2
N−2

2
(2−N)

2
(1+|y|2)−

N
2 2yi

∂

∂yi
(v (H(y), s))

+2
N−2

2 (1+|y|2)
2−N

2
∂2

∂yj∂yi
(v (H(y), s)) .

Then for y= 0, and denoting ai j(s)= ∂2

∂yj∂yi
v(H(y), s) |y=0:

∂2

∂yj∂yi
h(0, s)= 2

N−2
2

∂2

∂yj∂yi
v(H(y), s) |y=0= 2

N−2
2 ai j(s).

(b) If i = j:

∂2

∂yi∂yi
h(y, s)=2

N−2
2 (2−N)

(
−N

2

)
(1+|y|2)−

N
2 −12yi yiv(F(y), s)

+2
N−2

2 (2−N)(1+|y|2)−
N
2 v (F(y), s)

+2
N−2

2
(2−N)

2
(1+|y|2)−

N
2 2yi

∂

∂yi
(v(H(y), s))

+2
N−2

2
(2−N)

2
(1+|y|2)−

N
2 2yi

∂

∂yi
(v(H(y), s))

+2
N−2

2 (1+|y|2)
2−N

2
∂2

∂yi∂yi
(v(H(y), s)) .

Then for y= 0 and denoting aii(s)= ∂2

∂yi∂yi
v(H(y), s) |y=0:

∂2

∂2 yi
h(0, s)= 2

N−2
2 [(2−N)a0(s)+aii(s)]= 2

N−2
2 [aii(s)− (N −2)a0(s)] .

So, finally the Taylor expansion of w(y, s) in y= 0:

w(y, s)= 2
N−2

2 |y|N−2

[
a0(s)+

N∑
i=1

ai(s)yi + 1
2

N∑
i ̸= j; i, j=1

ai j(s)yi yj

+ 1
2

N∑
i= j, i=1

(aii(s)− (N −2)a0(s)) y2
i +O(|y|3)

]
.

Undoing the change y= x
|x|2 :

w(x, s)= 2
N−2

2

|x|N−2

[
a0(s)+

N∑
i=1

ai(s)
xi

|x|2

+ 1
2

(
N∑

i ̸= j; i, j=1
ai j(s)

xi

|x|2
x j

|x|2+
N∑

i= j, i=1
(aii(s)− (N −2)a0(s))

xi

|x|2
xi

|x|2
)
+O(|x|−3)

]
.
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By Einstein notation we arrive to (3.42). Analogously, we obtain the Taylor expan-

sion in ∞ for its partial derivatives.

Theorem 3.5.1. Let s0 > 0 be such that v(y, s), defined in (3.39), is positive and smooth in

SN × (0, s0), with w(x, s) a positive solution of (3.37). Let us define x(s) = (x1(s), . . . , xN(s)),

with xi(s)= 1
(N−2)

ai(s)
a0(s) , to be the center of w(x, s), for s ∈ (0, s0). Then given 0< s∗ < s0, there

exists C > 0 constant such that:

|x(s)| ≤ C, ∀s ∈ (s∗, s0).

Proceeding as in the elliptic case, we obtain under the hypotheses of Proposition 3.5.1

that for every 0< s < s0, there exist constants C0,RN > 0 such that:

(3.44) wx1(x, s)< 0, for x1 ≥ C0

|x| and |x| ≥ RN .

And to prove Theorem 3.5.1, next we establish several intermediate results being

analogous their proofs to their respective ones in the elliptic case.

Lemma 3.5.1. Under the hypotheses of Theorem 3.5.1, for any λ> 0, there exists R = R(λ)

depending only on min{1,λ}, such that, for x = (x1, x′), y= (y1, y′) ∈RN satisfying:

• x1 < y1.

• x1 + y1 ≥ 2λ.

• |x| ≥ R.

Then w(x, s)> w(y, s), for 0< s < s0.

Proof. See Lemma 3.3.1.

Definition 3.5.1. Under the hypotheses of Theorem 3.5.1, we define wλ(x, s) = w(xλ, s),

∀s ∈ (0, s0), and, xλ = (2λ− x1, x2, . . . , xN), the reflection around the hyperplane x1 = λ, for

λ> 0.

Lemma 3.5.2. Under the hypotheses of Theorem 3.5.1, there exists λ1 ≥ 1, such that,

∀λ≥λ1 and 0< s < s0:

(3.45) w(x, s)≥ wλ(x, s), for x1 <λ.
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Proof. See Lemma 3.3.2.

Lemma 3.5.3. Under the hypotheses of Theorem 3.5.1, if for some λ> 0, we have wλ(x, s)≤
w(x, s), and, wλ(x, s) ̸≡ w(x, s), for, x1 <λ, and 0< s < s0. Then:

wλ(x, s)< w(x, s), for x1 <λ, and, wx1(x1, s)< 0, for the hyperplane x1 =λ.

Proof. See Lemma 3.3.3.

Proof of Theorem 3.5.1

Proof. Given any 0< s∗ < s0, let us take s ∈ [s∗, s0), we can assume under a rotation/reflection

if necessary that x1(s)=max
i

|xi(s)|, and let xλ = (2λ−x1, x2, . . . , xN) be the reflection in the

hyperplane x1 = λ, for λ> 0. From Taylor expansions of w and its derivatives in infinity

for s = s∗ and by Lemma 3.5.2, we obtain that there exists λ1 > 0 such that ∀λ≥λ1:

w(x, s∗)> wλ(x, s∗), x1 <λ.

So we have:

• w(x, s∗)> wλ(x, s∗), for x1 <λ.

• wλ is solution of (3.37), for x1 ≤λ.

• w(x, s)= wλ(x, s), for x1 =λ.

Then applying the Comparison Principle (Theorem 1.7.2), we get:

(3.46) w(x, s)> wλ(x, s), ∀s ∈ [s∗, s], x1 <λ, for λ1 ≤λ.

Now, let consider the set I =
{
λ>λ1 |λ> max

s∈[s∗,s]
x1(s), and (3.46) is verified

}
, which satis-

fies:

• I is open: the proof is analogous to the elliptic case (Lemma 3.3.4).

• I is relatively close on (λ1,∞): let λ be on the closure of I relative to (λ1,∞), from

(3.46), we have that wλ ≤ w, for λ ≥ λ1, but we also have λ ≥ max
s∈[s∗,s]

x1(s) and we

want to prove that λ> max
s∈[s∗,s]

x1(s), so let search it by contradiction.

Let λ= max
s∈[s∗,s]

x1(s)= x1(s̃0), with s̃0 ∈ [s∗, s]. By (3.39), we can define v and vλ from w

and wλ, respectively, and both verify the equation (3.41). Then by the stereographic

projection, the region {x ∈ RN | x1 < λ} becomes Ωλ ∈ SN , such that q0 ∈ ∂Ωλ. Then
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we have:

vλ ≤ v, in Ωλ,

vλ = v, in ∂Ωλ, ∀s ∈ (s0, s̃0].

Then by the parabolic version of Hopf ’s lemma, we get that

∂

∂ν
v(y, s) |(y,s)=(q0,s̃0)<

∂

∂ν
vλ(y, s) |(y,s)=(q0,s̃0),

where ∂
∂ν

is the derivative along the outer normal to ∂Ωλ. However, as λ = x1(s̃0),

we also have ∂
∂ν

v(y, s) |(y,s)=(q0,s̃0)= ∂
∂ν

vλ(y, s) |(y,s)=(q0,s̃0), from where we obtain a con-

tradiction.

We conclude that I = (λ1,∞) and then, x1(s)<λ1, which yields the result.

We conclude with the desired Harnack type estimate. We know that the standard

Harnack estimate is defined locally on a ball, but here we are going to prove a stronger

estimate in the whole sphere SN .

Proposition 3.5.2. Let 0 < s∗ < s0, and v(y, s) positive and smooth in SN × (0, s0). Then

there exists a constant C > 0 such that:

(3.47) min
y∈SN

v(y, s)≥ Cmax
y∈SN

v(y, s), ∀s ∈ (s∗, s0).

Proof. • STEP 1. Given 0 < s∗ < s0, let us prove that there exists a constant C > 0

such that:

(3.48) sup
y∈SN

∣∣∇SN v(y, s)
∣∣

v(y, s)
≤ C, ∀s ∈ (s∗, s0).

With this aim, let q0 ∈ SN which we assume is the north pole of SN without loss

of generality. By Theorem 3.5.1, we have that there exists a constant C > 0 such

that |z(s)| ≤ C, ∀s ∈ (s∗, s0), where zi(s) = (N −2)−1 ai(s)
a0(s) , i = 1, . . . , N, is the center

of w(x, s). From that and expansions (3.42) and (3.43), we get that there exists a

constant C > 0 such that:

|∇w(x, s)|
w(x, s)

≤ C, s ∈ (s∗, s0), for |x| sufficiently large.

By (3.40), we obtain that there is a constant C > 0 such that:

|∇SN v(y, s)|
v(y, s)

≤ C, s ∈ (s∗, s0), for y in a neighbourhood of q0.
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As q0 ∈SN is arbitrary, by the compactness of the sphere, we have:

sup
y∈SN

|∇SN v(y, s)|
v(y, s)

≤ C, s ∈ (s∗, s0).

• STEP 2. Let y1, y2 ∈ SN and γ be the geodesic joining y1 and y2. Then integrating

for each s (3.48) along γ: ∫
γ

sup
y∈SN

|∇SN v(y, s)|
v(y, s)

d y<
∫
γ

C dy.

If and only if:

log(v(y2, s))− log(v(y1, s))< C L(γ),

where L(γ) is the length of γ.

To finish, if we take y2 and y1 to be the maximum and minimum of v on SN , respec-

tively, then we obtain (3.47).
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Chapter 4

Extinction profile for solutions of

ut =∆u
N+2
N−2

As we saw in the last section of the previous chapter, the Yamabe flow in RN with

standard metric gives rise in a natural way to the fast diffusion Cauchy problem (3.34),

i.e.:

(4.1)


ut(x, t)=∆um(x, t), in RN × (0,∞)

u(x,0)= u0(x),

with N ≥ 3, m = N−2
N+2 , 0 < m < 1, and u0(x) non-negative, continuous, not identically zero

and satisfying the fast decay condition:

(4.2) ∥u0∥∗ = sup
x∈RN

(1+|x|N+2)u0(x)<+∞.

As pointed by [9] or [24], it can be proved that solutions of (4.1) are smooth and positive

for m > N−2
N , while this is not the case for m ≤ N−2

N . Indeed, for m < N−2
N , it can be easily

proved that the functions

u(x, t)= [
C|x|−2(T − t)+

] 1
1−m

are non-smooth distributional solutions of (4.1), for a certain C > 0. Do note that these

functions vanish after time T > 0. Moreover, by the comparison principle, these solutions

can be used as upper barriers to establish that if m < N−2
N , 0≤ u0 ∈ L∞(RN), and

u0(x)=O(|x|− 2
1−m ), as |x|→∞,
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then there is a time T > 0 such that

(4.3) u(x, t)≡ 0, for (x, t) ∈RN × (T,∞).

We call the vanishing time of the solution u to the infimum of such numbers T. Let

remark that assumption (4.2) implies the decay rate (4.3), and therefore, for any positive

solution u(x, t) of the problem (4.1), there is a vanishing time T > 0.

The rest of the chapter is dedicated to analyzing the asymptotic behaviour of the

positive solutions to (4.1) near their vanishing time. Following the pioneering paper of

Del Pino and Sáez [9],

Theorem 4.0.1. Let u0(x) as in (3.34) which satisfies (3.35). Then there exists µ0 > 0, and,

a point x ∈RN such that:

(4.4) (T − t)−
1

1−m u(x, t)=
(

kNµ0

µ2
0 +|x− x|2

) N+2
2

+ϑ(x, t),

with ∥ϑ(·, t)∥∗ −→
t→T

0, and where T = T(u0) is the vanishing time of the solution u to problem

(3.34).

Remark 4.0.1. We talk about vanishing profile of u, because as 1
1−m > 0, then, (T −

t)
1

1−m −→
t→T

0, and we obtain:

u(x, t)= (T − t)
1

1−m

(
kNµ0

µ2
0 +|x− x|2

) N+2
2

+ϑ(x, t)

 −→
t→T

0,

from where we get how u vanishes when it is near its vanishing time T = T(u0). Fur-

thermore, the vanishing profile of u is determined by
(
µ0, x

) = (
µ(u0), x(u0)

)
, such that

u(x, t)= (T − t)
1

1−m

[(
kNµ0

µ2
0+|x−x|2

) N+2
2 +ϑ(x, t)

]
, where µ0 > 0, and, x ∈RN .

Moreover, if we do not take into account the part of the equation which depends on t,

we have the known "bubbles" as in (2.10), that we remember that are the solutions of the

Yamabe equation, that is to say that the vanishing profile is a "bubble".

4.1 Short time positivity

The aim of this section is to first prove that every solution u of the problem (4.1) is

positive and smooth for every short time.
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4.1.1 Tools for the proof

Lemma 4.1.1. Let u be the solution of (4.1). There exist t0, η, R0 > 0 and a point x0 ∈RN

such that:

(4.5) u(x, t)> η, ∀t ∈ (0, t0), x ∈ BR0(x0).

Proof. Suppose that u0≡0 non negative and continuous then by (4.2), there exists ρ,δ> 0

and x1 ∈RN such that for x ∈Aρ =
{
x | ρ2 < |x− x1| < ρ

}
, we have:

(4.6) δ< u0(x).

Now let suppose that g(x) is a solution of the problem:

(4.7)

 ∆gm(x)+ 1
1−m g(x)= 0, in Aρ with g > 0

g(x)= 0, in ∂Aρ

 ,

that we know that it has a positive radially symmetric solution (see [5]).

If we define ψ(x, t)= (λ− t)
1

1−m g(x), for λ> 0 and ∀t ∈ (0, t0), we get:

ψt(x, t)−∆ψm(x, t)=− 1
1−m

(λ− t)
1

1−m−1 g(x)− (λ− t)
m

1−m∆gm(x)

=− 1
1−m

(λ− t)
m

1−m g(x)+ 1
1+m

(λ− t)
m

1−m g(x)= 0, ∀x ∈Aρ, ∀t ∈ (0,λ),

where we have used (4.7). Taking λ=
(

δ
sup
g∈Aρ

g

)1−m

> 0, we have:

ψ(x,0)=λ 1
1−m g(x)= δ

sup
g∈Aρ

g
g(x)≤ δ <

(4.6)
u0(x), in Aρ,

ψ(x, t) =
(4.7)

0≤ u(x, t), in ∂Aρ.

(4.8)

Then by the Comparison Principle (Theorem 1.7.2), we get ψ(x, t) ≤ u(x, t), ∀x ∈ Aρ, ∀t ∈
(0,λ).

Finally, choosing t0 = λ
2 , 0 < R0 < ρ

4 , x0 ∈ Aρ with |x1 − x0| = 3
4ρ, and taking η =

inf
(x,t)∈BR0 (x0)×[0,t0]

ψ(x, t), we obtain (4.5).

Now let see this lemma in which we are going to define a function which bounds u

below and which we will use later for comparison purposes.
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Lemma 4.1.2. Let x0, t0 and R0 be as in Lemma 4.1.1 and consider the function φ(x):

(4.9) φm(x)= 1
|x− x0|N−2 + 1

|x− x0|α
,

where α= (N −2)p−2= N. Then there is a constant η1 > 0 such that:

(4.10) u(x, t)≥ η1t
1

1−mφ(x), ∀t ∈ (0, t0), |x− x0| > R0.

Proof. Firstly we define ψ(x, t) = η1t
1

1−mφ(x). Then, using the definition of φ on the hy-

pothesis, we obtain:

ψt(x, t)−∆ψm(x, t)= 1
1−m

η1t
1

1−m−1φ(x)−ηm
1 t

m
1−m∆φm(x)

= 1
1−m

η1t
m

1−mφ(x)−ηm
1 t

m
1−m∆

(
1

|x− x0|N−2 + 1
|x− x0|N

)
= 1

1−m
η1t

m
1−mφ(x)−ηm

1 t
m

1−m∆|x− x0|2−N −ηm
1 t

m
1−m∆|x− x0|−N .

Knowing that for β> 0:

∂

∂xi
|x− x0|β =β|x− x0|β−2(xi − x0 i).

and,
∂2

∂2xi
|x− x0|β =β(β−2)|x− x0|β−4(xi − x0 i).

Then: 
∆|x− x0|2−N = 0,

∆|x− x0|−N = 2N|x− x0|−N−2.

If we return to the calculation and by the definition of φ in (4.9): Finally we have:

ψt(x, t)−∆ψm(x, t)=ηm
1 t

m
1−m

1
|x− x0|N+2

[
η1−m

1

1−m

(
1+ 1

|x− x0|2
) 1

m −2N

]
.

So there exists η1 = η1(t0,η0,R0) small, such that:

ψ(x,0)= 0≤ u0(x), by hypothesis.

ψ(x, t)−∆ψm(x, t)≤ 0, for |x− x0| ≥ R0, and, ∀t ∈ (0, t0).

ψ(x, t)≤ η0, for |x− x0| = R0, and, ∀t ∈ (0, t0).

Then by the Comparison Principle 1.7.2, we have ψ(x, t) ≤ u(x, t), ∀x ∈ RN with |x− x0| ≥
R0, and ∀t ∈ (0, t0), so finally we get the inequality (4.10).
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4.1.2 Short time positivity

Now remembering from Section 3.5, how we pass from the problem (4.1) in RN to a

problem in SN by means of the transformations (3.36), which define the function w(x, s)

for (x, s) ∈RN × (0,∞), and (3.39), which define v(y, s) for (y, s) ∈SN × (0,∞). The principal

result of this section is the following proposition:

Proposition 4.1.1. There exists s∗ > 0 such that:

v(y, s)> 0, ∀s ∈ (0, s∗], ∀y ∈SN .

Moreover, v ∈ C∞ (
SN × (0, s∗)

)
.

Proof. 1. v(y, s)> 0, ∀s ∈ (0, s∗], ∀y ∈SN .

By Lemma 4.1.1 and Lemma 4.1.2, we have that the solution u(x, t)> 0, ∀t ∈ (0, t0].

If we take s∗ = log
(

T
t0

)
, ∀s ∈ (0, s∗]:

• For |x− x0| ≥ R0, by Lemma 4.1.2,

u(x, t)≥ η1t
1

1−mφm(x).

If and only if, using (4.9):

um(x, t)≥ ηm
1 t

m
1−m

(
1

|x|N−2 + 1
|x|α

)
.

Taking t = T(1− e−s), from (3.36) we have um(x, s)= (T−T(1− e−s))
m

1−m w(x, s)=
(e−s)

m
1−m w(x, s), then:

w(x, s)≥ ηm
1

(
es) m

1−m
(
T(1− e−s)

) m
1−m

(
1

|x|N−2 + 1
|x|α

)
= ηm

1
(
T(es −1)

) m
1−m

(
1

|x|N−2 + 1
|x|α

)
.

From (3.39) we have w(x, s)=
(

2
1+|x|2

) N−2
2 v(F(x), s), so:

v(F(x), s)≥ ηm
1

(
T(es −1)

) m
1−m

(
1

|x|N−2 + 1
|x|α

)(
1+|x|2

2

) N−2
2

:= P(s)> 0,

where P(s) is an increasing function.

• For |x− x0| < R0, by Lemma 4.1.1, we have:

um(x, t)> ηm.
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By the definition of w in (3.36):

w(x, s)≥ ηm(es)
m

1−m .

By the definition of v in (3.39):

v(F(x), s)≥ ηm(es)
m

1−m

(
1+|x|2

2

) N−2
2

.

If and only if by the definition of the stereographic projection F, we get:

v(F−1(x), s)≥ ηm(es)
m

1−m ≥ η̃> 0.

Finally, we have:

(4.11) v(y, s)≥min{η̃,P(s)}> 0, ∀s ∈ (0, s∗], ∀y ∈SN .

2. v ∈ C∞(SN × (0, s∗]).

As (4.2) holds for u0, we have sup
x∈RN

(1+ |x|N+2)u0(x) < +∞, then exists M > 0 suffi-

ciently large such that:

sup
x∈RN

(
1+|x|N+2

)
u0(x)< M.

If and only if for a certain kN , we have:

u0(x)≤ M
1

1−m

(
kN

1+|x|2
)
, ∀t ∈ (0,T).

Knowing by (3.38) that the right side of the inequality is also solution of (4.1) for

µ= 1, then by the Comparison Principle (Theorem 1.7.2) we get:

u(x, t)≤ (M− t)
1

1−m

(
kN

1+|x|2
)
, ∀t ∈ (0,T).

Then:

um(x, t)≤ (M− t)
m

1−m

(
kN

1+|x|2
)m

.

From (3.36):

w(x, s)≤ (es)
m

1−m (M−T(1− e−s))
m

1−m

(
kN

1+|x|2
)m

= (Mes −T(es −1))
m

1−m

(
kN

1+|x|2
)m

.

From (3.39):

v(F(x), s)≤ (Mes −T(es −1))
m

1−m

(
kN

1+|x|2
)m (

1+|x|2
2

) N−2
2

:= A(s),
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where A(s) is a continuous function. So we have obtained:

(4.12) v(y, s)≤ A(s), ∀s > 0,∀y ∈SN .

Finally, we can write (4.1) as:

(4.13) ut(x, t)= mum−1∆u+m(m+1)um−2 |∇u|2 = div
(
mum−1∇u

)
This equation satisfies (1.9) with ai j(x, t) = mum−1uxi and bi(x, t) = 0, with i, j = 1, . . . , N.

Furthermore, this equation will be uniformly parabolic if it verifies (1.10), that is C1|ξ|2 ≤
mum−1|ξ|2 ≤ C2|ξ|2 on RN × (0,∞)× (0,∞)×RN . Now, by (4.11) and (4.12), we have:

0<min{η,P(s)}≤ v(y, s)< A(s), ∀s ∈ (0, s∗], y ∈SN ,

where x0 ∈RN is arbitrary. By (3.37):

0<min{η,P(s)}≤ v(F(x), s)=
(

2
1+|x|2

) 2
N−2

w(x, s)< A(s).

From where we obtain:

0< B∗(s)= C min{η,P(s)}≤
(

2
1+|x|2

) N−2
2

min{η,P(s)}

≤ w(x, s)= (T − t)−
m

1−m um(x, t) |t=T−e−s< A(s)
(

2
1+|x|2

) N−2
2 ≤ A(s)2

N−2
2 = A∗(s),

where x ∈ B(x0,R), t ∈ [0,T∗], T∗ ≤ T. We know that s = − ln
(
1− t

T
) > 0 and it increases

for t ∈ [0,T], then doing this change of variable we get:

0< B∗
(
− ln

(
1− t

T

))
(T − t)

m
1−m ≤ um(x, t) |t=T−e−s≤ A∗

(
− ln

(
1− t

T

))
(T − t)

m
1−m ,

for x ∈ B(x0,R), and t ∈ [0,T∗]. This implies that there exist constants 0 <α,β<∞, such

that:

α≤ u(x, t)≤β, ∀x ∈ B(x0,R), R > 0, t ∈ [t0, t1], 0< t0 < t1 ≤ T.

As mum−1, it decreases for u > 0, because m < 1, we have that mβm−1 ≤ mum−1 ≤ mαm−1.

Then we obtain:

mβm−1|ξ|2 ≤ mum−1|ξ|2 ≤ mαm−1|ξ|2,

from where we have that (4.13) is uniformly parabolic in B(x0,R)× [t0, t1]× (0,∞)×RN ,

x0 ∈ RN , 0 < t0 < t1 ≤ T∗ < T, and, R < 0. By Theorem 1.7.1, we have that u(x, t) ∈
C∞ (B(x0,R)× [t0, t1]), ∀x ∈ B(x0,R), R > 0, and, 0< t0 < t1 ≤ T∗. Then v(y, s) ∈ C∞ (

SN × (0, s∗)
)
,

so v is positive and smooth for s ∈ (0, s∗).
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4.2 Some estimates

4.2.1 Uniform estimates

Let see the following proposition which bounds v below and above in order to discard

the cases when v(y, s) −→
s→∞∞ uniformly and v(y, s) −→

s→∞ 0 uniformly.

Proposition 4.2.1. Let s∗ > 0, then there exist constants α,β> 0 such that:

α≤ v(y, s)≤β, ∀y ∈SN , s ∈ [s∗,∞).

Proof. We divide the proof into three steps:

• STEP 1. We are going to prove that if v(y, s) is positive and smooth ∀s ∈ (0, s0), then

there exists constant k1 > 0 such that:

(4.14) max
y∈SN

v(y, s)≥ k1.

We are going to prove it by contradiction, so let suppose that for each ε > 0, there

is a sε > s∗ such that, v(y, sε) < ε, ∀y ∈SN . Now let define for a given ε> 0, and, a

constant K > 0:

U(s)= K(1+ sε− s)
m

1−m+ .

Then, if we remember that p = 1
m :

(
U p(s)

)
s +C(N)U(s)− 1

1−m
U p(s)

=− K
1
m

1−m
(1+ sε− s)

m
1−m+ +C(N)K (1+ sε− s)

m
1−m+ − K

1
m

1−m
(1+ sε− s)

1
1−m+

= K
1
m

1−m
(1+ sε− s)

m
1−m+

(
−1+ (1−m)C(N)K1− 1

m − (1+ sε− s)
)

= K
1
m

1−m
(1+ sε− s)

m
1−m+

[
K1− 1

m

(
(1−m)C(N)−K

1
m−1

)
− (1+ sε− s)

]
= K p

1−m
(1+ sε− s)

m
1−m+

[
K1−p (

(1−m)C(N)−K p−1)− (1+ sε− s)
]
.

This expression is non-negative if K < [(1−m)C(N)]1−p, and, s > sε. Then U(s) is a

solution of (3.41) for s > sε. Moreover,

∗ Choosing ε> 0 small, we can get ε<U(sε).

∗ By hypothesis we have that v(y, sε)< ε, ∀y ∈SN .
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So we get that v(y, s)<U(s), for s > sε. Therefore, when U(s) vanishes for s > sε+1,

then v vanishes, but by the definition of v in (3.39) this means that u vanishes

before t = T, that is a contradiction. So (4.14) holds.

• STEP 2. We are going to prove that v(y, s) is strictly positive and smooth ∀s ∈ (0,∞).

We begin by defining:

(4.15) s0 = sup
s>0

{
inf

y∈SN
v(y,τ)> 0 | ∀0< τ< s

}
.

Then we have that v(y, s) is positive and smooth ∀s ∈ (0, s0). Secondly, by (4.12):

v(y, s)≤ A(s), ∀s ∈ (0,∞).

where A(s) is a continuous function. Moreover, as v satisfies a parabolic semi linear

equation, then we have that v(y, s) is smooth ∀s ∈ (0, s0). Our objective is to prove

that s0 =∞ by contradiction.

To start, we suppose that there exists a constant k > 0 such that v(y, s) ≥ k > 0,

∀s ∈ (0, s0). By the Harnack estimate (3.47), we have that there exists a sequence

sn > 0 such that:

0≤ v(y, sn), ∀s ∈ (sn, s0).

On the other hand, by Proposition 4.1.1:

v(y, s)> 0, ∀s ∈ (0, s0].

So we obtain v(y, s)= 0, for s sufficient large.

By (4.12):

v(y, s)≤ A(s), ∀s ∈ (0, s0).

By the definition of s0 (4.15) we have that v(y, s) is positive and applying Theorem

1.7.1 as we did in the proof of Proposition 4.1.1, we have that v(y, s) is smooth for

some time interval further than s0, which contradicts (4.15), the definition of s0. So

we conclude that s0 =∞.

• STEP 3. There exists a constant k2 > 0 such that:

(4.16) min
y∈SN

v(y, s)≤ k2, ∀s ∈ (0,∞).
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Let s > 0, we define the function:

(4.17) f (s)=
(
es−s +C(N)(1−m)

) m
1−m ,

First, we are going to prove that f satisfies the equation:

(4.18) ( f p(s))s =−C(N) f (s)+ 1
1−m

f p(s).

We know that:

∗ ( f p(s))s = 1
1−m es−s [

es−s +C(N)(1−m)
] 1

1−m−1
.

∗ −C(N) f (s)=−C(N)
[
es−s +C(N)(1−m)

] 1
1−m−1

.

∗ 1
1−m f p(s)= 1

1−m
[
es−s +C(N)(1−m)

] 1
1−m .

Then (4.18) becomes:

( f p(s))s +C(N) f (s)− 1
1−m

f p(s)

= 1
1−m

es−s
[
es−s +C(N)(1−m)

] 1
1−m−1 +C(N)

[
es−s +C(N)(1−m)

] 1
1−m−1

− 1
1−m

[
es−s +C(N)(1−m)

] 1
1−m

=
(
es−s +C(N)(1−m)

) 1
1−m

[(
es−s +C(N)(1−m)

)−1
(

1
1−m

es−s +C(N)
)
− 1

1−m

]
=

(
es−s +C(N)(1−m)

) 1
1−m

[(
es−s +C(N)(1−m)

)−1

(
1

1−m
es−s +C(N)− 1

1−m
es−s −C(N)

)]
.

If and only if: (
f p(s)

)
s +C(N) f (s)− 1

1−m
f p(s)= 0.

Then f is a solution for the equation (3.41).

To continue, we suppose that there exists s such that:

min
y∈SN

v(y, s)> f (s)= (1+C(N)(1−m))
m

1−m ,

so by the Comparison principle 1.7.2, we have:

v(y, s)> f (s), ∀y ∈SN ,∀s ∈ (s,∞).

By (3.39) we know that v(F(x), s)=
(

2
1+|x|2

)− (N−2)
2 w(x, s), so:

w(x, s)>
(

2
1+|x|2

) N−2
2

f (s), ∀x ∈RN ,∀s ∈ (s,∞).
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By (3.36), w(x, s)= (Te−s)−
m

1−m um(x,T(1− e−s), and by (4.17) we have:

um (
x,T(1− e−s)

)> (
2

1+|x|2
) N−2

2
(Te−s)−

1−m
m

(
es−s +C(N)(1−m)

) m
1−m .

If and only:

um
(
x,T(1− e−s+s)

)
>

(
2

1+|x|2
) N−2

2 [
T

(
e−s + e−sC(N)(1−m)

)] m
1−m .

Taking the everything to the power of 1
m :

u
(
x,T(1− e−s)

)> (
2

1+|x|2
) N−2

2
1
m [

T
(
e−s + e−sC(N)(1−m)

)] 1
1−m .

If and only if:

u
(
x,T(1− e−s)

)> (
2

1+|x|2
) N+2

2 [
T

(
e−s + e−sC(N)(1−m)

)] 1
1−m , ∀x ∈RN ,∀s ∈ (s,∞).

Then when t → T, there exists a constant k > 0 such that:

u(x, t)>
(

2
1+|x|2

) N+2
2

k, ∀x ∈RN ,∀s ∈ (s,∞).

But this contradicts the fact that u(x, t)= 0 after time T.

In conclusion, by the Harnack estimate (3.47), for a given s∗ > 0 and s0 = ∞ (we can

choose it by STEP 2), we have that there exists a constant C > 0 such that:

min
y∈SN

v(y, s)≥ C max
y∈SN

v(y, s), ∀s ∈ (s∗,∞).

By STEP 1, we have that there exists a constant k1 > 0 such that k1 ≤ max
y∈SN

v(y, s), and

by STEP 3, we have that there exists k2 > 0 such that min
y∈SN

v(y, s) ≤ k2. To finish, taking

α= k1
C and β= Ck2, we obtain the result.

Remark 4.2.1. As we have said at the beginning of this section, we have discarded the

cases when v(y, s) −→
s→∞∞ uniformly and v(y, s) −→

s→∞ 0 uniformly. On STEP 1, we defined a

large function such that it bounds the solution of the equation and we did a comparison

to get that the solution v vanishes before its vanish time. On STEP 3, we have used

the same tool, that is to say that we defined another function which bounds the solution

and which allows us to use the Comparison Principle to obtain that the solution vanishes

after its vanish time.
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4.2.2 Lyapunov estimate

Definition 4.2.1. We define the Lyapunov functional for a function z(·, s), depending only

on s:

Jz = 1
2

∫
SN

∣∣∇SN z
∣∣2 d y+ C(N)

2

∫
SN

z2 d y− 1
(1−m)(p+1)

∫
SN

zp+1 dy.

It holds:

Lemma 4.2.1. Let v be the solution of (3.41), then we have:

Jv(s)≥ 0, ∀s > 0.

Proof. We are going to prove this by contradiction, so let suppose that there is one s0 ∈
(0,∞) such that:

Jv(s0)< 0, ∀y ∈SN .

To start, let define:

(4.19) F(s)=
∫
SN

vp+1(y, s)d y≥ 0, s ∈ (0,∞).

Differentiating over s and by an integration by parts:

1
p+1

d
ds

F(s)=
∫
SN

vp(y, s) (v(y, s))s d y

=−
∫
SN

(
vp(y, s)

)
s v(y, s)d y

=
(3.41)

−
∫
SN

(
∆SN v(y, s)−C(N)v(y, s)+ 1

1−m
vp(y, s)

)
v(y, s)d y

=
∫
SN

∣∣∇SN v(y, s)
∣∣2 v(y, s)d y+C(N)

∫
SN

v2(y, s)dy− 1
1−m

∫
SN

vp+1(y, s)d y

If and only if, from Definition 4.2.1:

p
p+1

d
ds

F(s)=−2Jv(s)+ 1
1−m

(
1− 2

p+1

)∫
SN

vp+1(y, s)d y

=
(4.19)

−2Jv(s)+ p−1
(1−m)(p+1)

F(s)> p−1
(1−m)(p+1)

F(s), ∀s > s0.

So we get:
p(1−m)
(p−1)

d
ds

F(s)> F(s), ∀s > s0.

As p(1−m)
(p−1) = 1:

d
ds

F(s)> F(s), ∀s > s0.
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If there exists one s such that F(s)= 0, then v(y, s)= 0 and Jv(s)(s)= 0, which is a contra-

diction with respect to the hypothesis Jv(s)≤ Jv(s0)< 0. So we have F(s) ̸= 0, ∀s ≥ s0, and

F(s0)> 0. Integrating between s0 and s:

F(s)> F(s0)es−s0 , ∀s > s0.

From where we have that F(s) −→
s→∞∞. However, by Proposition 4.2.1, we have that v(y, s)

is bounded ∀s > s0 which implies that F(s) is also bounded ∀s > s0, thus we have a

contradiction.

The following lemma shows that the Lyapunov functional is decreasing over the tra-

jectories:

Lemma 4.2.2. Let v be the solution of (3.41), and let Jv be the Lyapunov functional, then

we have:

(4.20)
d
ds

Jv(s)=− 4p
(p+1)2

∫
SN

∣∣∣(v p+1
2 (y, s)

)
s

∣∣∣2 d y.

Proof. On one side, we know that:

d
ds

[
1
2

∫
SN

∣∣∇SN v(y, s)
∣∣2 d y

]
= d

ds

[
1
2

∫
SN

N∑
i=1

∂v2(y, s)
∂xi

d y

]
=

∫
SN

N∑
i=1

∂v(y, s)
∂xi

d
ds

(
∂v
∂xi

)
d y

=
∫
SN

∇SN v(y, s) ·∇SN (v(y, s))s d y.

As SN ⊂ RN+1 is compact, we can apply the Dominated convergence theorem, so we can

differentiate J in the Definition 4.2.1 with respect to s:

d
ds

Jv(s)=
∫
SN

∇SN v(y, s) ·∇SN (v(y, s))s d y+C(N)
∫
SN

∇ (v(y, s))s d y

− 1
(1−m)

∫
SN

vp(y, s) (v(y, s))s d y.

Integrating by parts:

d
ds

Jv(s)=−
∫
SN

(
∆SN v(y, s)−C(N)v(y, s)+ 1

(1−m)
vp(y, s)

)
(v(y, s))s d y

=
(3.41)

−
∫
SN

(
vp(y, s)

)
s (v(y, s))s d y=−p

∫
SN

vp−1(y, s)
(
(v(y, s))s

)2 d y.

Then:

(4.21)
d
ds

Jv(s)=−p
∫
SN

vp−1(y, s)
(
(v(y, s))s

)2 d y.

93



On the other side, we have:

− 4p
(p+1)2

∫
SN

[(
v

p+1
2 (y, s)

)
s

]2
d y=− 4p

(p+1)2

∫
SN

[
p+1

2
v

p+1
2 −1(y, s) (v(y, s))s

]2
d y

=−p
∫
SN

[
v

p−1
2 (y, s) (v(y, s))s

]2
d y.

By (4.21), we obtain (4.20).

4.3 Main results

4.3.1 The vanishing profile of u

Instead of proving Theorem 4.0.1, we know that by (3.39) this theorem can be written

in terms of v as the following theorem that we are going to prove:

Theorem 4.3.1. Let v as in (3.39). Then there exists a unique solution v non-trivial and

positive of the equation:

(4.22) ∆SN v(y)−C(N)v(y)+ 1
1−m

vp(y)= 0, ∀y ∈SN ,

and that verifies:

(4.23) sup
y∈SN

|v(y, t)−v(y)| −→
t→T

0.

Proof. • STEP 1. We are going to prove the existence of v such that it verifies (4.23).

By Proposition 4.2.1, we have that there exist constants α,β > 0 such that α ≤
v(y, s) ≤ β, away from s = 0, then by the Definition 1.7.1 of quasi-linear equation

that are uniformly parabolic, v(y, s) is uniformly parabolic away from s = 0. By the

Theorem 1.7.1, we have uniform estimates for Ck(SN), ∀k > 0, then ∀s ∈ [s∗,∞)

with s∗ > 0, y 7→ v(y, s) is compact in Ck(SN), ∀k > 0, and we can define:

v(y)= lim
s→∞v(y, s) in C2(SN).

But this limit is not unique. In STEP 3 we will prove uniqueness.

It follows from Proposition 4.2.1 that v verifies (4.23).
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• STEP 2. We are going to show that v is a solution of the equation (4.22).

Firstly, we can apply Lemma 4.2.2, which implies :

(4.24) Jv(s)=− 4p
(p+1)2

∫
SN

∣∣∣v p+1
2 (y, s)

∣∣∣2 d y.

Then let {sn}n∈N be a sequence such that lim
sn→∞v(y, sn)= v(y), in C2(SN), integrating

this with respect to s from sn to sn +τ, with τ> 0, we get:∫ sn+τ

sn

∫
SN

∣∣∣(v p+1
2 (y, s)

)
s

∣∣∣2 d yds =
∫
SN

∣∣∣v p+1
2 (y, sn +τ)−v

p+1
2 (y, sn)

∣∣∣2 d y

≤− (p+1)2τ

4p
[Jv(sn +τ)− Jv(sn)]= (p+1)2τ

4p
[Jv(sn)− Jv(sn +τ)] ,

where we have used Cauchy-Schwarz’s inequality and (4.24) again. By Lemma

4.2.1, Jv(s) is decreasing and bounded from below, then it has a limit when s →∞.

This implies that for each τ > 0, we have lim
sn→∞v(y, sn +τ) = v(y) in C2(SN), and we

also have lim
sn→∞v(y, sn +τ)= v(y) uniformly, for τ in bounded intervals.

To continue, if we take ϕ ∈ C∞(SN) and by (3.41):∫
SN

(
vp(y, sn +1)−vp(y, sn)

)
ϕ(y)d y

=
∫ sn+1

sn

∫
SN

(
∆SN v(y, sn +τ)−C(N)v(y, sn +τ)+ 1

1−m
vp(y, sn +τ)

)
ϕ(y)d ydτ.

From the above, when n →∞, we obtain:

0=
∫
SN

(
vp(y)−vp(y)

)
ϕ(y)d y=

∫
SN

(
∆SN v(y)−C(N)v(y)+ 1

1−m
vp(y)

)
ϕ(y)d y.

Then v verifies (4.22).

• STEP 3. v is unique.

By Corollary 1.7.1 and Corollary 1.7.2, we have that the limit point v of this parabolic

equation is unique.

4.3.2 Continuity of vanishing time and vanishing profile

Theorem 4.3.2. T(u0), µ0 and x are continuous functions of u0 for the norm ∥·∥∗ in (4.2).
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Proof. Firstly, let us take un
0 (x), ∀x ∈ RN , a sequence which satisfies (4.2) and ∥un

0 −
u0∥∗ −→

n→∞ 0. Secondly, let denote un(x, t) the solution of (4.1) but with the initial con-

dition un(x,0) = un
0 (x), ∀x ∈ RN , with vanishing time Tn, and, u(x, t) the solution of (4.1),

with vanishing time T0.

• STEP 1. We are going to prove that lim
n→∞Tn = T0.

Let define the limit point of Tn:

(4.25) T∗ = lim
n→∞Tn,

Secondly, let us define wn as:

(4.26) wn(x, s)= (Tn − t)−
m

1−m um
n (x, t) |t=Tn(1−e−s),

which satisfies (3.37). In the last place, let us define vn as:

(4.27) vn(F(x), s)=
(

2
1+|x|2

)− (N−2)
2

wn(x, s),

which satisfies (3.41). Now we can apply the Proposition 4.2.1 to vn, so there exist

constants α,β> 0 such that can be chosen uniform in n:

α≤ vn(F(x), s)≤β, ∀x ∈RN , s ∈ [s∗,∞).

By (4.27),

α≤
(

2
1+|x|2

)− (N−2)
2

wn(x, s)≤β, ∀x ∈RN , s ∈ [s∗,∞).

If and only if

(
2

1+|x|2
) N−2

2
α≤ wn(x, s)≤

(
2

1+|x|2
) N−2

2
β, ∀x ∈RN , s ∈ [s∗,∞).

By (4.26):

(
2

1+|x|2
) N−2

2
α≤ (Tn − t)−

m
1−m um

n (x, t)≤
(

2
1+|x|2

) N−2
2
β, ∀x ∈RN , t ∈ (t∗,Tn).

Taking everything to the power of 1
m :

(
2

1+|x|2
) N+2

2
α≤ (Tn − t)−

1
1−m un(x, t)≤

(
2

1+|x|2
) N+2

2
β, ∀x ∈RN , t ∈ (t∗,Tn).
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Considering that

(4.28) un(x, t) −→
n→∞ u(x, t), uniformly ∀t ∈ (0,T0),

we can pass the inequality to the limit, by (4.25), to obtain:

(
2

1+|x|2
) N+2

2
α≤ (T∗− t)−

1
1−m u(x, t)≤

(
2

1+|x|2
) N+2

2
β, ∀x ∈RN , t ∈ (t∗,T∗).

Then by (4.28) we have that T0 = T∗, so we have proved that lim
n→∞Tn = T0, from

where we get the stability of the vanishing time.

• STEP 2. Defining lim
s→∞v(y, s)= v(y) uniformly, and, lim

s→∞vn(y, s)= vn(y) uniformly, we

are going to see that lim
n→∞vn(y)= v(y) uniformly, ∀y ∈SN .

1. By STEP 2 in the proof of Theorem 4.0.1, v verifies (4.22), then when s →∞
in (4.24), we have that Jvn = Jv, that is to say that the energy does not change

for different steady states of (3.41).

2. As we have seen in the STEP 1 of the proof of Theorem 4.0.1, vn is compact in

Ck(SN), ∀k > 0.

3. Knowing that for a large s, v gets close to the set of steady states, then by

steps 1 and 2, we have that this energy functional for the steady states have

the same energy and it is uniformly bounded away from zero, so we can take

M(v(y, s)) = (vp(y, s))s as in (1.12). By Theorem 1.7.4, there exists θ ∈ (
0, 1

2

)
such that:

(4.29) ∥M(v(y, s))∥L2 ≥ |Jv(s)− Jv|1−θ , y ∈SN , for s sufficiently large.

Then by Lemma 4.2.2:

− d
ds

Jv(s)= 4p
(p+1)2

∫
SN

∣∣∣(v p+1
2 (y, s)

)
s

∣∣∣2 d y

= 4p
(p+1)2

∫
SN

(
M(v(y, s)), (vp)s

)
L2 ≥ C∥M(v(y, s))∥L2∥(vp)s∥L2 .

Then we obtain by multiplying on both sides by [Jv(s)− Jv]θ:

− d
ds

[Jv(s)− Jv]θ ≥ C [Jv(s)− Jv]θ−1 ∥M(v(y, s))∥L2∥(vp)s∥L2 .
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By (4.29)

(4.30) − d
ds

[Jv(s)− Jv]θ ≥ C∥(vp)s∥L2 .

Let 0< s∗ < s1 < s2, taking vn instead of v and integrating (4.30) from s2 to s1,

we obtain

(4.31) ∥vn(y, s2)−vn(y, s1)∥L2 ≤ C
∣∣Jvn(s1)− Jvn

∣∣θ , n ≥ 1, y ∈SN ,

and

(4.32) ∥v(y, s2)−v(y, s1)∥L2 ≤ C |Jv(s1)− Jv|θ , y ∈SN .

Then by the definitions at the beginning of this step, we have:

∥vn(y)−v(y)∥L2 ≤∥v(y, s2)−vn(y, s2)∥L2

=∥v(y, s2)−v(y, s1)+v(y, s1)−vn(y, s1)+vn(y, s1)−vn(y, s2)∥L2

≤∥v(y, s2)−v(y, s1)∥L2 +∥v(y, s1)−vn(y, s1)∥L2

+∥vn(y, s1)−vn(y, s2)∥L2 .

By (4.31) and (4.32) we obtain:

∥vn(y)−v(y)∥L2 ≤ C |Jv(s1)− Jv|θ+∥v(y, s1)−vn(y, s1)∥L2 +C
∣∣Jvn(s1)− Jvn

∣∣θ
= ∥v(y, s1)−vn(y, s1)∥L2 +C

(
|Jv(s1)− Jv|θ+

∣∣Jvn(s1)− Jvn

∣∣θ) .

As lim
n→∞vn(y, s)= v(y, s) uniformly on compact subsets of s ∈ (0,∞), then

limsup
n→∞

∥v(y)−vn(y)∥L2 ≤ 2C
(
|Jv(s1)− Jv|θ

)
.

As s1 is arbitrary, we can choose s1 =∞ and we have the continuity of the vanishing

profile.
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