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Preface

As mathematicians we work on our research program, write up and publish
our results, deliver lectures here and there disseminating our theorems and,
once in a while, we attend the lectures and read the papers of our fellow
mathematicians.

Some of us read a lot and some just rarely. But all of us have had
that special experience of reading a paper (attending a lecture or having a
mathematical discussion) which has been a personal turning point, perhaps
because its techniques and elegance have illuminated ongoing work or be-
cause it has led us to explore a whole new area of mathematics or because
it has given us a new set of mathematical objectives. We all treasure those
occasions and some of us, in the right context, even like to share them.

On the occasion of its centennial, the Real Sociedad Matemática Espa-
ñola asked the editors of the Revista Matemática Iberoamericana to con-
tribute to the occasion by editing and publishing a commemorative issue of
the journal. We decided to take the opportunity to ask distinguished math-
ematicians to write down their personal experiences as readers of research
papers. We are convinced that such a collection of essays, written by a
set of world-class researchers, will be interesting reading for mathematicians
in general and that it will contribute to understanding the role of research
journals in the development of mathematics.

We asked longtime friends of the Revista Matemática Iberoamericana,
both authors and members of past and present editorial boards who have
fostered and cared for Revista, to contribute with an essay about a paper
–not necessarily the most important publication in the field– which, in one
way or another, had a deep impact on their own mathematical careers, espe-
cially at its early stages, and giving the special reasons why “that particular
publication” got their attention and affected their research.

We have been very pleased, even overwhelmed, with the response of the
friends of the Revista to our call. The reader will find among the articles
in this book a surprisingly wide and rich variety of points of view, styles
and approaches to this topic, all of which we appreciate greatly and have
fully respected. Some are personal recollections with interesting anecdotes
and charming stories about some well-known mathematician, while others
present the state of the art of some specific field. Some papers are exquisitely
technical while some others are perfect bedtime stories.

We offer our deepest thanks to all of the authors for sharing these con-
tributions with all of us.

The Editors
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Pedro Luis Garćıa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
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On a paper by Giovanni Prodi on bifurcation

Antonio Ambrosetti
∗

1. Introduction

Many papers have influenced my
work, but the very first one is a
survey paper by G. Prodi [3] deal-
ing with bifurcation theory. I was
fascinated by the interplay be-
tween abstract methods which are
motivated by, and hence applied
to, concrete problems like fluid-
dynamics and elasticity. Among
other things, I learned that par-
tial differential equations aris-
ing in mathematical physics are
strongly linked to nonlinear func-
tional analysis. The correct ap-
proach to this field must have its
starting point in concrete prob-
lems modeled by differential equa-
tions. These applications moti-
vate the right choice of the ab-
stract tools and the advances

to be carried out in order to obtain the expected results.

Many physical problems can be formulated as an operator equation
F (λ, u) = 0 where u belongs to an appropriate Banach function space X
and λ is a real parameter with a specific physical meaning. Often there is a
threshold λ∗ such that new solutions arise when λ crosses λ∗, which is called
a bifurcation value for the problem.

Prodi outlines three different approaches that can be used to find bifur-
cation points: (i) analytical methods, (ii) degree theoretical arguments and,
in the case that the problem is variational, (iii) Morse theory. The abstract
results are used to discuss two main applications:

(i) the motions of a viscous fluid between two cylinders and

(ii) the equilibria of an elastic clamped plate.

∗ambr@sissa.it.
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4 Antonio Ambrosetti

2. Analytical methods

Let X, Y be Banach spaces and let F ∈ C2(R × X, Y ) (weaker regularity
assumption could be given). We assume the equation F (λ, u) = 0 has the
trivial solution u = 0 for all λ ∈ R. Let us denote by S the set of nontrivial
solutions of F (λ, u) = 0. A value λ∗ is a bifurcation point for F = 0 if
(λ∗, 0) ∈ S, the closure of S in R × X. It is easy to see that if λ∗ is
a bifurcation point then DuF (λ∗, 0) cannot be invertible as a linear map
from X to Y . One main purpose of bifurcation theory is to find sufficient
conditions for the existence of bifurcation points. Suppose that

(F1) there exists φ∗ ∈ X such that ker[DuF (λ∗, 0)] = Rφ∗;

(F2) range[DuF (λ∗, 0)] is closed and has codimension 1.

Using the Lyapunov-Schmidt reduction one proves

Theorem 1 Suppose that (F1) and (F2) hold. Moreover, letting M :=
Du,λF (λ∗, 0), assume that M(φ∗) �∈ Range[DuF (λ∗, 0)]. Then λ∗ is a bifur-
cation point for F = 0.

Remark 1 If X = Y and F (λ, u) = λu − G(u), the previous assumptions
are verified provided λ∗ is a simple eigenvalue of G′(0).

The interest of theorem 1 relies on the fact that it deals with a very
general equation F (λ, u) = 0.

Theorem 1 has many applications to Mathematical Physics. Among
them, Prodi considers a problems arising in fluid-dynamics. Consider two
coaxial rotating cylinders of ray r1 < r2 filled by a viscous fluid. Starting
from the stationaly Navier–Stokes system, one is lead to look for solutions
(u(r, z), v(r, z)), T-periodic in z, of the bounday value problem⎧⎪⎪⎨⎪⎪⎩

νL2u+ a(r)vz +M(u, v) = 0,
νL2v + buz +N(u, v) = 0,
u(r1, z) = u(r2, z) = ur(r1, z) = ur(r2, z) = 0,
v(r1, z) = v(r2, z) = 0.

(1)

Above ν > 0 is the inverse of the Reynolds number, a(r) ≥ 0, b > 0,

L =
∂2

∂r2
+

1

r

∂

∂r
+

∂2

∂z2
− 1

r2
.

and M,N are suitable homogeneous polynomials of degree 2 depending
upon u, ur, uz, urr, uzz, v, vr, vz.

Problem (1) has the trivial solution u(r) = v(r) ≡ 0 which corresponds
to the Couette flow. It is possible to show that for suitable choices of T ,
Theorem 1 applies and (1) has a bifurcation point ν∗ > 0. When ν > ν∗ the
fluid motion becomes turbulent.
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3. Degree theoretical approach

We restrict here the attention to the case in which X = Y and F (λ, u) =
λu−G(u), where G : X → X is compact. The form of F allows us to employ
the Leray-Schauder topological degree. Since the Leray-Schauder index of
the trivial solution u = 0 changes when λ passes through an odd eigenvalue
of G′(0), it can be proved that

Every eigenvalue of G′(0) with odd multiplicity is a bifurcation
point for G(u) = λu.

This theorem goes back to a celebrated paper by M. A. Krasnoselski [1].
Moreover, in [4] a global version of the result is given.

4. The case of variational operators

If X is a Hilbert space and G is variational (namely there exists Φ ∈
C2(X,R) such that ∇Φ(u) = G(u)) one can use critical point theory. Actu-
ally, solutions of G(u) = λu are the stationary points u ∈ X of the functional

Jλ(u) =
λ

2
‖u‖2 − Φ(u).

For every λ ∈ R, u = 0 is a critical point of Jλ. Moreover u = 0
is nondegenerate in the sense of Morse whenever λ is not an eigenvalue
of G′(0) and its nature changes when λ crosses the eigenvalues. To evaluate
this change we set U−

λ = {U ∈ H : Jλ(u) < 0} and let mj denote the Betti
number of the j-th homology group

Hj(U
−
λ ∩Bε, U

−
λ ∩ Bε \ 0),

where Bε is the ball centered at 0 with radius ε.

Let us introduce the multi-index

�λ = [m0, m1, . . . , mq, . . . ],

It is known that mq = δsq where δsq is the Kronecker symbol and s is the
number of the eigenvalues λi of G′(0) greater than λ, counted with their
multiplicity. Therefore, if α < λk < β it follows that �α �= �β . It is worth
pointing out that �λ is sharper than the Leray–Schauder index. Actually, this
latter equals (−1)s and hence does not change crossing an even eigenvalue
of G′(0), while �λ does.

By an elegant argument, it is possible to show that �λ remains constant
if λ varies in an interval T which does not contain any eigenvalue λk. It fol-
lows:
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Theorem 2 If G is a compact potential operator then any eigenvalue of
G′(0) with finite multiplicity is a bifurcation point for G(u) = λu.

Remark 2 Theorem 2 was first proved by Krasnoselski by means of a dif-
ferent argument. The complete proof of Theorem 2 is carried out in [2].

As an important application of Theorem 2, Prodi discusses a bifurcation
problem arising in nonlinear elasticity. According to the Van Karman theory,
the buckling states of a clamped plate Ω ⊂ R2, Ω bounded, are the nontrivial
solutions (u, f) of⎧⎨⎩

Δ2f = −μB(u, u), in Ω

Δ2u = μB(F, u) + B(f, u), in Ω

u = f = uν = fν = 0, on ∂Ω

(2)

where μ > 0 is the bifurcation parameter, F is given, uν , fν denote the outer
normal derivatives at ∂Ω and

B(f, g) = fxxgyy + fyygxx − 2fxygxy.

If K denotes the Green operator of Δ2 on X = H2
0 (Ω), we have that

f = −μK B(u, u).

Hence weak (and by regularity strong) solutions of (2) are the u ∈ X such
that u = μG(u) where

G(u) = KB(F, u)−KB(KB(u, u), u).

It is easy to check that G is a compact variational operator. If μ �= 0,
we are in the preceding abstract setting, with λ = μ−1. The linearized
problem v = μG′(0)v is nothing but

Δ2v = μB(F, v), v ∈ X. (3)

Let us point out that the multiplicity of the eigenvalues, including the first
one, of this linear problem can be an even integer. However, an application
of Theorem 2 yields to show that any eigenvalue μk of (3) is a bifurcation
point for (2).

I believe that any young researcher could have a great benefit reading this
paper: he will have an idea of many of the most useful tools of nonlinear
functional analysis, learning the correct way to carry out research in this
beautiful field.
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Miracles of holomorphic motions

Kari Astala
∗

1. λ-lemma

What draws us to mathematics and maintains its spell upon us? We all
have our own reasons, tastes and backgrounds, but I cannot think I would
be alone in admiring the unexpected strikes of power our science presents
every now and then: No matter how implausible or even counter-intuitive a
mathematical fact might at first appear, once its proven and booked, there
will be no objections towards the result –it is our own thinking and prejudices
that we must change, according to the unquestionable facts of nature.

A beautiful example of such phenomena are no doubt the Holomorphic
Motions, discovered by Mañé, Sad and Sullivan [10] and then developed by
many others, that have hold their magic since their invention in the mid 80’s.
The notion can be explained in few lines to anyone interested in mathemat-
ics, and with an intuitive interpretation even beyond –a deformation of the
space with a nonstandard concept of time; time is assumed to vary holomor-
phically. Nothing more is assumed and yet the conclusions are very strong
and unexpected. The first properties of holomorphic motions can be proven
with classical methods from the beginning of 20th century –and yet the
method was found only recently, in the mid 80’s within the modern study
of complex dynamics. One cannot avoid an everlasting astonishment!

Computer animations revolutionized complex dynamics in the early 80’s,
and among phenomena observed was strong geometric –not only topological–
stability in perturbations of hyperbolic systems; see Figure 1 for a typical
illustration. Mañé, Sad and Sullivan [10] realized that these phenomena can
be completely understood in terms of the following fundamental notion.

Definition 1. Let A be any subset of the complex plane C. Then a holo-
morphic motion of A, parametrized by the unit disk D, is a map

Φ : D×A→ C

such that

i) For any fixed λ ∈ D, the map

a→ Φ(λ, a) = Φλ(a) is an injection.

∗kari.astala@helsinki.fi.

11



12 Kari Astala

ii) For any fixed a ∈ A, the map

λ→ Φ(λ, a) is holomorphic in D.

iii) The mapping Φ0 is the identity on A,

Φ(0, a) = a, for every a ∈ A.

Motions in the complex plane are enough for this presentation, but it does
not take much effort to extend the discussion to the Riemann sphere C. Com-
bining with a Möbius transform, we may and will always assume that Φλ(z)
fixes the points z = 0 and z = 1.

In practical terms, we are discussing deformations of A with no assump-
tions at all on the “space” variable –continuity or even measurability– while
the key property is the holomorphic dependence required from the “time”
parameter λ. As innocent as this mere last assumption may appear, let us
see how far it can take us –be ready for surprises!

That continuity occurs after all is a consequence of the remarkable λ-
lemma of Mañé–Sad–Sullivan [10], the first step towards classifying and
understanding the holomorphic motions. The result is best formulated in
terms of a notion describing a weak form of scale invariance –the quasisym-
metric mappings of Tukia and Väisälä [19]: A mapping f : A→ C is called
quasisymmetric if the condition

|f(z)− f(x)|
|f(z)− f(w)| ≤ η

(
|z − x|
|z − w|

)
for all x, z, w ∈ A,

holds for some modulus of continuity η (= increasing homeo η : R+ → R+).
Here recall that similarities, i.e. compositions of rotations, translations and
scalings, are exactly the quasisymmetric maps with η(t) ≡ t. An arbitrary
quasisymmetry preserves the relative sizes and geometric roundishness of
sets, though not in general the rectifiability or even the Hausdorff dimension.

Theorem 1 (λ-lemma, Mañé–Sad–Sullivan) If Φ : D × A → C is a

holomorphic motion, then Φ has an extension to Φ̂ : D× A→ C such that

i) Φ̂ is a holomorphic motion of the closure A.

ii) Each Φ̂λ(·) : A→ C is quasisymmetric, in particular continuous.

iii) Φ̂ is jointly continuous in (λ, a).

In view of the result, in a world where the (physical) time is holomorphic,
according to ii) one can not even tear a piece of paper!
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A typical illustration of the λ-lemma is given in Figure 1, where the
polynomial Pc(z) = z2 + c with Julia set the “Douady rabbit” is holomor-
phically perturbed. It is easy to see that under a holomorphic deformation
of parameters the repelling fixed points move holomorphically, and these are
dense in the Julia set. By Theorem 1 the motion extends to J(Pc), inducing
an equivariant quasisymmetry between the respective Julia sets.

For the lemma, simply consider the holomorphic mapping

g(λ) :=
Φ(λ, z)− Φ(λ, x)

Φ(λ, z)− Φ(λ, w)
, λ ∈ D,

with values in Ω = C \ {0, 1}. Since holomorphic mappings contract the
hyperbolic metric and this is complete, we see that |g(λ)| ≤ η|λ|

(
|g(0)|

)
,

where η|λ|(t) → 0 as t → 0. This establishes the quasisymmetry, condition
ii), and the two other claims quickly follow.

The Mañé–Sad–Sullivan proof was so simple and the result so unex-
pected, that –to be honest– upon seeing the argument each of us complex
analysts stood in bewilderment –how is this possible?

The authors themselves used the λ-lemma to prove an important result
in complex dynamics, the density of structurally stable maps within the
polynomials of any given degree. This just falls short of the celebrated
Fatou conjecture of the density of hyperbolic maps.

Density of structural stability for all rational maps requires an improved
version of the λ-lemma, provided by Sullivan and Thurston [18]. They
showed that any motion φ of any set A extends to a motion of the whole
space C, but were able to prove this only for a small fraction of the parame-
ters, for |λ| ≤ ε; in an accompanying paper Bers and Royden [6] showed that
one can take ε = 1/3. It is natural to enquire whether the extension works
for the whole parameter disk D. This important question was open for some
years, with researchers in the area debating in both directions and looking
for counterexamples –a complete extended version might be too good to be
true? However, with an unexpected approach, using methods from several
complex variables, Z. S�lodkowski [12] hit the jackpot.

Theorem 2 (S�lodkowski) Every holomorphic motions of any set A ⊂ C

is the restriction of a holomorphic motion of the entire complex plane C,
with the same parameter disk D.

There are now several approaches to S�lodkowski’s theorem –it suffices to
find a problem, typically a PDE, for which solutions depending holomorphi-
cally on a parameter are uniquely determined by their values at any single
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point. All these tended to be somewhat technical, until Chirka gave an el-
egant approach in terms of a non-linear Cauchy problem; see [7] or e.g. [3,
Chapter 12].

Theorem 2 appears a complete and final word –yet, is there still room
for further improvements? It is well known that for mappings of the entire
plane C, the quasisymmetry admits an equivalent analytic or infinitesimal
formulation, leading us to first order PDE’s and the well developed theory
of quasiconformal mappings. Thus we have a detailed description of holo-
morphic motions of the entire plane –and through S�lodkowski’s theorem– of
all holomorphic motions.

Put the story short, a mapping f : C→ C is quasisymmetric if and only
if it is a homeomorphic W 1,2

loc (C)-solution to the elliptic Beltrami equation

∂f

∂z̄
(z) = μ(z)

∂f

∂z
(z), ‖μ‖∞ ≤ k < 1, (1)

where μ is bounded and measurable. Further, for compactly supported
coefficients, a Neumann-series development shows that in (1) the deriva-
tives depend holomorphically on μ, hence the same is true for the values
f(z) = fμ(z). For general coefficients we use a limiting argument combined
with a suitable normalization of the mapping. As a consequence we see that
holomorphic deformations of μ give rise to holomorphic motions.

We now arrive at the characterization of all global motions; for further
details see [3, Section 12.3].

Theorem 3 The following are equivalent:

• fλ(z) = Φ(λ, z), λ ∈ D, defines a holomorphic motion of C.

• fλ ∈ W 1,2
loc (C) are homeomorphic solutions to the PDE

∂f

∂z̄
(z) = μλ(z)

∂f

∂z
(z), f(0) = 0, f(1) = 1,

where ‖μλ‖∞ ≤ |λ|, λ ∈ D, and λ → μλ(z) is holomorphic (as an
L∞-valued function).

For a given motion Φ(λ, z), the ellipticity bounds ‖μλ‖∞ ≤ |λ| in the
second condition follow from Schwartz lemma (once holomorphicity [6] of μλ
is shown), and the bounds are optimal. As we will see below, this means
that the distortion under every holomorphic motion can be described by
exact quantitative bounds.

At least for the author of this article, it is still –after all these years–
almost breathtaking to see how far the simple notion of Definition 1 can
take us!
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2. Quasiconformal mappings

A more traditional way to state the condition (1) is the following equivalent
form, requiring the operator norm

‖Df(z)‖2 ≤ KJ(z, f) for almost every z, K :=
1 + k

1− k ∈ [1,∞). (2)

The W 1,2
loc -mappings with this property are called K-quasiregular, or K-

quasiconformal when homeomorphisms.

In the late 80’s a small Revista-paper of mine [1] got me interested in opti-
mal bounds for distortion of Hausdorff dimension under a K-quasiconformal
mapping. Particularly necessary appeared the bounds for the dimension of a
K-quasicircle, the image of a line or circle under a global K-quasiconformal
mapping f : C→ C. At the time many of the distortion properties of qua-
siconformal mappings had already obtained their optimal form by classical
methods, such as the Hölder continuity with exponent 1/K where e.g. sym-
metrization methods are available. However, the dimension bounds were a
mystery, even though Iwaniec and Martin [9] had already found the natural
conjectures.

One expects the worst dimension distortion under a quasiconformal map-
ping to happen within the family of Cantor sets –but how to get a global
control of Cantor sets with either of the conditions (1) or (2)? Other stan-
dard methods in the quasiconformal theory, such as path families or capacity
estimates, seemed equally useless.

Around these times came S�lodkowski’s theorem, the extended λ-lemma
and all the consequences it brought with: As we see with Theorems 2–3,
quasiconformal mappings and holomorphic motions are just different sides
of the same coin! With the precise ellipticity bounds of the theorem, it be-
came an equivalent problem to study distortion of dimension in holomorphic
motions of Cantor sets. The Cantor sets one can identify as an attractor of a
simple dynamical system, and this brings us the Thermodynamical formal-
ism [11], [20], developed for understanding invariant measures for general
dynamical systems. Within the formalism we have quantities such as the
“topological pressure” determining the dimension of the attractor. It turns
out that these quantities are not difficult to control under a holomorphic
motion.

In the end, making the above intuition rigorous by using decomposi-
tions of quasiconformal mappings [2], using holomorphic motions and ideas
from thermodynamical formalism led to even stronger results, the optimal
Sobolev regularity and area distortion bounds for quasiconformal mappings
conjectured by Gehring and Reich [8].
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Theorem 4 ([2]) Suppose f : Ω → Ω′ is a K-quasiconformal mapping.
Then f ∈ W 1,p

loc (Ω) for every exponent p < 2K
K−1

.

In fact, it follows that locally Df ∈ weak-Lp0 , p0 = 2K
K−1

. Simple exam-

ples show that in general f /∈ W 1,p0
loc (Ω). As a consequence of the Theorem,

Corollary 1. If f : Ω→ Ω′ is a K-quasiconformal mapping and A ⊂ Ω is
compact, then

1

K

( 1

dim(A)
− 1

2

)
� 1

dim(f(A))
− 1

2
� K

( 1

dim(A)
− 1

2

)
(3)

Further, for both estimates we have sets A and maps f so that the equality
holds.

Recalling that basically, quasiconformal mappings do not differ from
holomorphic motions we have obtained the optimal bounds for distortion
of Hausdorff dimension under an arbitrary Holomorphic motion.

What remained above was the original goal, the dimension of K-quasi-
circles. Given a holomorphic motion Φ(λ, z), Corollary 1 gives for any set
A of Hausdorff dimension one the estimate dim(ΦλA) ≤ 1 + |λ|. However,
by the Mañé–Sad–Sullivan λ-lemma, continuums are preserved under the
motion, and this extra constraint forces an improved dimension bound.

It was natural to conjecture [2] that dim(ΦλS
1) ≤ 1 + |λ|2 for any holo-

morphic motion of the circle. And indeed, recently this was proved by
Smirnov [16] who discovered a new class, the so called antisymmetric qua-
siconformal mappings, having extra symmetries, and then showed that any
quasicircle is the image of S1 under such a mapping. Holomorphic perturba-
tions of antisymmetric maps give motions with extra symmetries, yielding
improved bounds in the thermodynamical arguments.

Theorem 5 (Smirnov) Let Γ be a K = 1+ k
1− k

-quasicircle. Then the Haus-
dorff dimension

dim(Γ) � 1 + k2 (4)

The work of Smirnov leads also to new understanding of distortion prop-
erties quasisymmetric maps of the circle [14], [15], as well as suggests the
use of holomorphic motions towards fundamental open questions in com-
plex analysis, such as exact bounds for the multifractal spectrum of the
harmonic measure [17]. These questions are also related to the sharpness
of the bound (4), which remains open. We therefore pose the reader the
following “homework”:

Find a holomorphic motion of S1 with dim(ΦλS
1) = 1 + |λ|2, λ ∈ D !

For an experimental step towards this problem see [5].
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−→

Figure 1: Holomorphic perturbations induce a quasisymmetry of Julia sets
(Pictures drawn with a program of C. McMullen.)

What I have described above is, naturally, not the whole story –but I
hope I have been able give some flavor of the developments the work [10]
has led to. The holomorphic motions have of course become a basic tool in
complex dynamics, but they remain a deep method also in analysis and PDE.
At this moment I cannot resist the temptation and hint on the work [4] where
the motions are used –towards lower semicontinuity properties in vector
valued calculus of variations. I would expect this not to be the last area
where holomorphic motions will appear indispensable.
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[10] Mañé, R., Sad, P. and Sullivan, D.: On the dynamics of rational maps.
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Geometric constructions and thermodynamic
formalism

Luis Barreira
∗

I discuss briefly the early contribution of Moran to dimension theory
of dynamical systems in his paper “Additive functions of intervals and
Hausdorff measure”, Proc. Cambridge Philos. Soc. 42 (1946), 15–23.

Pat Moran (1917–1988) was an Australian math-
ematician who made significant contributions to
probability theory and its applications. Today,
the Moran Medal is awarded by the Australian
Academy of Science, normally every two years,
recognizing outstanding research by scientists un-
der the age of forty in the fields of probability and
statistics.

Thus, it may come as a surprise that I
want to emphasize a particular paper of Moran,
namely [9], at the very early stage of his math-
ematical career –during which incidentally he
never got a PhD. In my opinion, this paper should
be considered one of the most significant early
contributions to dimension theory of dynamical
systems.

Pat Moran

1. Dimension theory of geometric constructions

Let us first describe a particular geometric construction in R. We consider
constants λ1, . . . , λp ∈ (0, 1) and disjoint closed intervals Δ1, . . . ,Δp ⊂ R

of lengths λ1, . . . , λp. For each k = 1, . . . , p, we choose again p disjoint
closed intervals Δk1, . . . ,Δkp ⊂ Δk of lengths λkλ1, . . . , λkλp. Iterating this
procedure, for each n ∈ N we obtain pn disjoint closed intervals Δi1···in of
lengths

∏n
k=1 λik , and we define the limit set

F =
∞⋂
n=1

⋃
i1···in

Δi1···in. (1)

The following formula for the Hausdorff dimension dimHF of the set F was
obtained by Moran in [9].

∗barreira@math.ist.utl.pt.
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Theorem 1 We have dimHF = s, where s is the unique real number such
that

p∑
k=1

λsk = 1. (2)

It is remarkable that the Hausdorff dimension of the limit set F does
not depend on the location of the intervals Δi1···in but only on their lengths.
Even today, most probably this observation is not given the value that it
rightfully deserves (in particular, the result in Theorem 1 has been often
referred to in the special case when the intervals Δi1···in are obtained from a
family of contraction maps).

Moran’s result can be broadly generalized. Before describing briefly some
of these generalizations, we recall the notion of geometric construction for
an arbitrary symbolic dynamics. Given p ∈ N, we consider the space of
sequences Σp = {1, . . . , p}N equipped with the distance

d(ω, ω′) =

∞∑
k=1

e−k|ik − i′k|,

where ω = (i1, i2, . . . ) and ω′ = (i′1, i
′
2, . . . ). We also consider the shift map

σ : Σp → Σp

defined by σ(i1, i2, . . . ) = (i2, i3, . . . ). A geometric construction in Rm con-
sists of:

1. a compact σ-invariant set Σ ⊂ Σp, for some p ∈ N;

2. a decreasing sequence of compact sets Δi1...in ⊂ Rm for each ω ∈ Σ,
with diameters diam Δi1...in → 0 when n→∞, such that

int Δi1...in ∩ int Δj1...jn �= ∅

whenever (i1, . . . , in) �= (j1, . . . , jn).

We also say that the geometric construction is modeled by Σ, and define
its limit set by (1), with the union taken over all i1, . . . , in ∈ {1, . . . , p}
such that (i1, . . . , in) = (j1, . . . , jn) for some sequence (j1, j2, . . . ) ∈ Σ. For
example, to model repellers and hyperbolic sets, one can consider geometric
constructions modeled by topological Markov chains.

Let us point out that in order to determine or even to estimate the dimen-
sion of the limit set F , sometimes it is not sufficient to know the geometric
shape of the sets Δi1···in , in strong contrast to what happens in Theorem 1.
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For example, the dimension can be affected by certain number-theoretical
properties. To explain this phenomenon, let us consider a geometric con-
struction in R2 modeled by Σ2 such that the sets

Δi1···in = (fi1 ◦ · · · ◦ fin)([0, 1]× [0, 1])

are rectangles with sides of lengths an and bn. More precisely, let us assume
that they are obtained from the composition of the functions

f1(x, y) = (ax, by) and f2(x, y) = (ax− a+ 1, by − b+ 1),

for some fixed constants a ∈ (0, 1) and b ∈ (0, 1/2). The projection of the
rectangle Δi1...in on the horizontal axis is an interval with right endpoint
equal to

an +
n−1∑
k=0

jka
k, (3)

where

jk =

{
0 if ik = 1,

1− a if ik = 2.

For a = (
√

5 − 1)/2, we have a2 + a = 1, and thus, for each n > 2 there
is more than one vector (i1, . . . , in) with the same given value in (3). This
causes a larger concentration of the rectangles Δi1...in in certain regions of the
limit set F . Therefore, in order to compute its Hausdorff dimension, it may
be possible to replace several elements of a given cover by a single element.
Thus, the set F may have a smaller Hausdorff dimension than expected, with
respect to a certain generic value obtained by Falconer in [7]. An example
was described by Pollicott and Weiss in [14], modifying a construction of
Przytcki and Urbański in [15] that depends on delicate number-theoretical
properties. The same phenomenon was observed by Neunhäuserer in [10].

2. Thermodynamic formalism and dimension theory

In [13], Pesin and Weiss extended the result of Moran in Theorem 1 to an
arbitrary symbolic dynamics, with the help of the thermodynamic formalism
(we refer to the books [5, 17, 20] for detailed presentations of the theory).
The notion of topological pressure, which is the most basic notion of the
thermodynamic formalism, was introduced by Ruelle in [16] for expansive
transformations and by Walters in [19] in the general case.

In order to illustrate the relation between the dimension theory of dy-
namical systems and the thermodynamic formalism, we consider the num-
bers λ1, . . . , λp ∈ (0, 1) and we define a function ϕ : Σp → R by

ϕ(i1, i2, . . . ) = log λi1 . (4)
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Then, given s ∈ R, the topological pressure of the function sϕ is given by

P (sϕ) = lim
n→∞

1

n
log

∑
i1,...,in

exp
(
s

n∑
k=1

log λik

)
= lim

n→∞
1

n
log

∑
i1,...,in

n∏
k=1

λsik

= lim
n→∞

1

n
log

( p∑
i=1

λsi

)n
= log

p∑
i=1

λsi .

That is, equation (2) is equivalent to the new equation

P (sϕ) = 0, (5)

which involves the topological pressure. Equation (5) was introduced by
Bowen in [4] (in his study of quasi-circles) and is usually called Bowen’s
equation. It is also appropriate to call it Bowen–Ruelle equation, taking not
only into account the fundamental role of the thermodynamic formalism
substantially developed by Ruelle, but also his article [18]. Equation (5)
establishes the connection between the thermodynamic formalism and the
dimension theory of dynamical systems. Moreover, it has a rather universal
character: virtually all known equations used to compute or to estimate the
dimension of an invariant set of a dynamical system are particular cases of
this equation or of an appropriate generalization (see [3]).

Now we present the result of Pesin and Weiss in [13] that extends The-
orem 1 to an arbitrary symbolic dynamics. The value of the dimension is
again given by Bowen’s equation in (5).

Theorem 2 For a geometric construction modeled by Σ ⊂ Σp such that
the sets Δi1...in ⊂ Rm are balls of diameter

∏n
k=1 λik , for some numbers

λ1, . . . , λp ∈ (0, 1), we have dimHF = s, where s is the unique real number
satisfying P (sϕ) = 0 with the function ϕ : Σ→ R given by (4).

It turns out that the topological pressure is not adapted to all geometric
constructions. Let us consider again a geometric construction such that all
sets Δi1...in are balls. In Theorems 1 and 2 we have

diam Δi1...in =
n∏
k=1

λik (6)
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for every set Δi1...in . A geometric construction for which identity (6) fails is
called a nonstationary geometric construction. The thermodynamic formal-
ism is of no help in this situation. However, the nontrivial generalization
given by the so-called nonadditive thermodynamic formalism can still be
used with success. The main idea is to replace the sequence of functions

ϕn =
n−1∑
k=0

ϕ ◦ σk (7)

in the definition of topological pressure by an arbitrary sequence Ψ = (ψn)n.
While the functions ϕn in (7) satisfy the identity

ϕn+m = ϕn + ϕm ◦ σn,

the functions ψn may have no similar property, giving rise to the expression
of nonadditive. The notion of nonadditive topological pressure P (Ψ) was
introduced by Barreira in [1] using the theory of Carathéodory dimensions
developed by Pesin (we refer to [11] for references and full details). This is
a generalization of the notion of topological pressure, and it contains as a
particular case the subadditive version earlier introduced by Falconer in [8].
In the additive case it recovers the notion of topological pressure introduced
by Pesin and Pitskel’ in [12].

The following result gives a formula for the dimension of the limit sets of
a class of nonstationary geometric constructions, in terms of the nonadditive
topological pressure. It was obtained by Barreira in [1].

Theorem 3 Consider a geometric construction modeled by Σ ⊂ Σp such
that the sets Δi1...in are balls of diameter ri1...in < 1. If there exists λ ∈ (0, 1)
such that

λm+n ≤ ri1...in+m ≤ ri1...inrin+1...im

for every (i1, i2, . . . ) ∈ Σ and n,m ∈ N, then dimHF = s, where s is
the unique real number satisfying P (sΨ) = 0, where Ψ is the sequence of
functions ψn : Σ→ R defined by

ψn(i1, i2, . . . ) = log diam Δi1...in.

We note that the proof in [1] requires that ri1...in+1 ≥ δri1...in for some
constant δ. This assumption was recently removed by Cao, Feng and Huang
in [6].

The equation P (sΨ) = 0 is a nonadditive version of Bowen’s equation
in (5). We note that Theorem 3 contains both the result of Moran in Theo-
rem 1 and the result of Pesin and Weiss in Theorem 2. It is not too much to
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consider that Theorem 3 is ultimately inspired in Moran’s work, although
certainly the theory required for the generalization is much more involved.

We refer the reader to the books [2, 3, 11] for related discussions and for
a detailed exposition of selected topics of the dimension theory of dynamical
systems.
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Early experiences in Number Theory

Pilar Bayer
∗

I first encountered number theory in the autumn of 1967, during the last
academic year of my undergraduate studies at the University of Barcelona.
I had enrolled on a course entitled Teoŕıa de números, which was to be given
by Professor Enrique Linés.

Linés was an analyst who loved to teach undergraduate students, and
whom I already knew from his earlier, highly stimulating lectures on Real
Analysis. What is more, one of his assistants at the University was Ms. Gri-
selda Pascual, my wonderful mathematics teacher at secondary school.

Linés began his lectures by saying that the purpose of the course was to
carry out a joint study of a book that had just arrived in the Faculty Library.
The book was, no less, the French translation of Borevich-Shafarevich’s
Théorie des Nombres [3].

As is well known, the late sixties was a tumultuous period everywhere.
Unauthorized meetings, riots, fights between students and police, and strikes
paralysed academic life at Spanish universities day after day.

Because of this, Linés’ expectations for the course would remain unful-
filled, since we could only go through the first chapters of [3]; the local
methods presented in chapter 4 and the analytical methods in chapter 5
remained completely untouched.

In 1970, after teaching mathematics for a year at a secondary school, I
obtained a scholarship from the Spanish Ministry to take part in an innova-
tive three-year program for training scientific researchers. At the same time,
I began to teach as an assistant at the University of Barcelona and at the
newly created Autonomous University of Barcelona (in Bellaterra, a small
village 22 km from Barcelona).

To begin my research training, I studied the whole of Borevich–Shafare-
vich’s book from scratch, trying to solve as many exercises as possible. This
took me the whole of 1971. My next step was spelled out in a passage from
Borevich–Shafarevich’s book:

La théorie du corps de classes décrit la loi de décomposition
des diviseurs premiers d’un corps quelconque k de nombres algé-
briques en facteurs dans une extension K/k si le groupe de Ga-
lois de cette extension est abélien [. . . ] On connâıt trés peu de
résultats sur les lois de décomposition des nombres premiers dans
les corps dont le groupe de Galois est non abélien.

∗bayer@ub.edu.
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Figure 1: My copy of Borevich–Shafarevich’s bookThéorie des Nombres.

My journey through class field theory would last for the next two years.
Luckily I was not alone, because Griselda (who was 20 years my senior)
joined me on the project. It took us over a year to study the local theory,
through Serre’s book Corps locaux [6], and almost another year to familiarize
ourselves with the global theory, through Artin–Tate’s book Class Field
Theory [1]. Both books were innovative, marvelously written, and presen-
ted an extremely profound theory in an accessible way. We studied their
pages with great excitement, without even noticing the heat of the summer
afternoons. It was not only a matter of understanding the contents of the
books, but also of becoming familiar with the variety of tools used in them
to obtain the main theorems. (We were blissfully unaware of the fact that
the development of class field theory had taken more than 100 years.)

Our encounter with class field experience left Griselda and me exhausted,
but we had the impression that we now had a good grounding in the modern
developments in the field and might be ready to undertake some sort of
personal research. The 100 bibliographical references at the end of Serre’s
Corps locaux were tantalizing, but where should we start?

I took advice from two mathematicians. The first was Jean Dieudonné.
In a visit of him to Barcelona, he told me of Jacques Martinet’s thesis, which
had recently appeared in Annals de l’Institut Fourier [4]. Dieudonné was
very kind and encouraging. The second was Francesc Tomàs, a Mexican
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mathematician with Catalan ancestors, who had just enrolled at the Au-
tonomous University of Barcelona. Tomàs recommended that I read Jürgen
Neukirch’s papers.

Griselda studied Martinet’s thesis carefully, in which he proved the ex-
istence of normal bases for the ring of integers of dihedral number fields of
degree equal to 2p, p denoting an odd prime. The analogous result in the
abelian case had been proven by Hilbert long before.

My choice was Neukirch’s paper [5], in Inventiones Mathematicae, deal-
ing with the remarkable result that normal algebraic number fields are char-
acterized by their absolute Galois group. (But first, I had to translate the
paper from German to Catalan –my mother tongue– since at that time I
could not read German fluently.)

The problems studied in those papers were an inspiration for us. Two
years later, in April 1975, my former teacher and I were able to defend our
theses at the University of Barcelona (becoming, on the same day, the second
and third female Doctors in Mathematics at the University).

In May 1977, I moved to Regensburg University in Germany. There, in
an ideal environment, I enjoyed the immense privilege of working in number
theory with the Research Group conducted by Jürgen Neukirch, Günter
Tamme and Manfred Knebusch, for more than three years.

Today, the Number Theory Research Group in Barcelona comprises
some 40 people from the University of Barcelona, the Autonomous Uni-
versity of Barcelona, and the Polytechnic University of Catalonia. When I
look back on these lines for the Revista Matemática Iberoamericana, the
question I cannot help asking is this: what would have happened if the
French translation of Borevich–Shafarevich’s work had not been published
in 1967?
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A random walk in analysis

Christopher J. Bishop
∗

1. Introduction

Which papers have had a big impact on my own work? When Antonio
Córdoba and José Luis Fernández asked me to write about this, I started
by making a list of some topics I’ve worked on and drew arrows to indicate
when one idea led to another. The final version of my diagram is in Figure 11
and it includes three papers besides my own: Nick Makarov’s paper on the
dimension of harmonic measure, Peter Jones’ traveling salesman paper and
Dennis Sullivan’s paper on hyperbolic convex hulls. Below I’ll try to explain
why each of these caught my attention and how it pushed my work in new
directions.

2. Harmonic measure

I’m a Chicago Ph.D., but spent two years at Yale when my advisor, Peter
Jones, moved there and I briefly shared an office with Stephen Semmes and
Tim Steger who were Gibbs instructors. Stephen told me about his con-
struction of a non-rectifiable closed curve such that the harmonic measures
ω1, ω2 for opposite sides had a bounded ratio (i.e., log dω1/dω2 is bounded.
If you don’t know what ω is, just think of a random path running until
it hits the curve and ω is the probability distribution of that first hitting
point.) His paper [58] was hard for me to follow, but while trying to sort
through it, I built a curve with dimension > 1 and the same bounded ratio
property (giving me the first part of a thesis). This is a useful technique:
fail to understand what some smart person has done and prove a different
result with a simpler technique instead. (Applying this method to Tim Ste-
ger’s description of his work resulted in our joint paper [30] about Fuchsian
groups, representations and rigidity.)

I told Peter about the curve when he returned from a visit to UCLA and
it prompted him to share his conversations with Lennart Carleson and John
Garnett about a related problem: harmonic measures ω1, ω2 corresponding
to opposite sides of closed curve are mutually absolutely continuous on the
tangent points, but what happens on the set of non-tangent points? Must
the measures be singular there? Luckily, Nick Makarov had already invented
the right tool to solve this problem.

∗bishop@math.sunysb.edu.
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The idea of Makarov’s paper [51] is that harmonic measure on the bound-
ary of a simply connected domain acts like a random walk. More precisely,
if we consider a disk D(x, r) with x ∈ ∂Ω and r ↘ 0, then log ω(D)

r
behaves

like a random walk on R whose step size is related to the “flatness” of the
boundary near x at scale r. At a.e. tangent point the boundary is very flat
and this quantity approaches a finite limit because the steps become small.
At non-tangent points we expect log ω

r
to oscillate between +∞ and −∞.

Christian Pommerenke [54] proved lim sup = +∞ soon after Makarov’s pa-
per, although lim inf = −∞ took another twenty years (see the beautiful
paper of Sunhi Choi [38]). The Ahlfors distortion theorem implies

ω1(D)ω2(D) = O(r2),

so for a disk where ω1 � r, we must have ω2 � r. Thus by Pommerenke’s
lim sup = ∞ result, ω1 and ω2 must be singular (written ω1 ⊥ ω2). on the
non-tangent points. This gave me the second part of my thesis and a joint
paper with Jones, Garnett and Carleson [26] (I still consider this paper a
highlight of my career).

Figure 1: The von Koch snowflake (left) has singular harmonic measures
which we visualize in two ways. In the center we plot the images of
120 radials lines under conformal maps to the inside and outside of a
196-sided approximation of the snowflake. On the right we simulate 100
Brownian paths per side by a discrete random walk that steps the distance
to the boundary. Using 10000 such paths gives two 196-vectors whose
normalized dot product is .0213 (so the vectors form an angle of 88.67◦;
almost perpendicular).

The final part of my thesis was an application of singular harmonic
measures. If f : C → D is continuous and is holomorphic off a smooth
curve γ, then it must be entire and hence constant (i.e., smooth curves are
removable). However, using an indirect duality argument, John Wermer
and Andrew Browder [33, 34] had proven that if ω1 ⊥ ω2, then there are
many such non-constant functions. Moreover, every non-trivial example is
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“space-filling”, i.e., it maps the curve to set that is the closure of its inte-
rior. Curious about what these functions looked like, I gave a new proof of
the Browder–Wermer theorem using explicit constructions [9]; these meth-
ods later led to new results about function algebras [10, 16, 17], conformal
welding [15, 21, 20] and Martin boundaries [12, 13].

Figure 2: Polygons whose vertices are

vk = 4−n
∑
j �=k

(zj − zk)
−1,

where {zk} are the vertices of the nth generation of von Koch snowflake
(this approximates the convolution of 1/z with Hausdorff measure on the
snowflake). These converge to a space-filling image of the snowflake, an
example of the functions given by the Browder-Wermer theorem.

Next I looked for other existence proofs that lacked an explicit construc-
tion. Don Sarason [45] had indirectly proven there are infinite Blaschke
products in the little Bloch space (i.e., |f ′(z)| = o(1/1 − |z|) for |z| < 1)
and had asked for an explicit example. I was able to build one [11, 14] using
another idea from Makarov’s paper: the radial behavior of harmonic func-
tions on a disk is tied to the pointwise convergence of dyadic martingales on
the boundary. To solve Sarason’s problem, I constructed a martingale with
certain smoothness properties on the unit circle and placed the zeros of the
Blaschke product in the tops of Carleson boxes that corresponded to dyadic
intervals where the martingale was zero.

As mentioned above, Makarov and Pommerenke proved that harmonic
measure on the non-tangent points gives full mass to a set of zero length.
What can we say about this set? Makarov proved it can’t be too small (i.e.,
dimension < 1 is impossible) and Bernt Øksendal conjectured that it must
be big in the sense that it cannot be contained in any finite length curve. As
a postdoc at MSRI and UCLA I thought a lot about this problem, but could
only prove it in special cases (it’s easy if Ω is a quasidisk). The difficulty is
that most nice properties of a rectifiable curve γ only hold a.e.; how does a
zero length subset of γ differ from a general zero length set? Fortunately,
the answer became available right on schedule.
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3. Traveling salesman and rectifiable sets

One summer I visited Peter Jones at Yale and he described his new “traveling
salesman theorem” (TST) that estimates the length of the shortest path γ
containing a given set E [47, 48]. For a disk D = D(x, t), define “Jones’
β-numbers”

βE(x, t) = inf
L

sup
z∈E∩D

dist(z, L),

where the infimum is over all lines L hitting D. Peter proved that

�(γ) � diam(E) +

∫∫
β(x, t)2

dx dt

t
.

His proof was simplified by Kate Okikiolu [53] who extended the result to Rd

and was extended to Hilbert space by Raanan Schul [56, 57].

Figure 3: β(x, t) measures the eccentricity of the narrowest rectangle
covering E ∩ D(x, t). A curve is wiggly if β > 0 uniformly and x is a
tangent point almost surely iff

∑
β(x, 2−n)2 <∞.

If a set E lies on a rectifiable curve, Jones’ TST gives concrete bounds
for how “flat” E must be and we turned these into bounds on the Green’s
function for the complement of E, and eventually into a proof of Øksendal’s
conjecture [27] and a generalization of the Hayman-Wu theorem. We wrote
a sequel [28] that simplified the proof, extended work of Astala and Zins-
meister [4, 5] on BMO domains and gave an a.e. characterization of tan-
gent points of a curve in terms the β’s. See the excellent discussion by
Garnett and Marshall in [44].

The TST allowed us to use Littlewood–Paley type estimates, but in
place of the usual second derivatives of a function, our estimates involved the
β-numbers and Schwarzian derivatives (the usual second derivative measures
deviation from a linear function, the β’s measure deviation from a line and
Schwarzians measure deviation from a linear fractional transformation). The
basic idea in Jones’ TST is that sets can be analyzed by quadratic sums
just as functions can be, and this fact distinguishes Euclidean space in a
way that I don’t fully understand, but can illustrate with an example. At
the 2005 Ahlfors–Bers colloquium in Ann Arbor, Juha Heinonen reminded
me of the question of whether every A1 weight on the plane is comparable
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to the Jacobian of some planar quasiconformal (QC) map. This problem
is in his “33 Yes/No problems” paper [46] with Stephen Semmes, so I had
seen it before, but I hadn’t thought it was “up my alley”. However, Juha’s
comments made me realize a counterexample would follow from a zero area
set E with the property that every small-constant QC image of E contains
a rectifiable curve. I constructed a Sierpinski carpet E where the holes are
large enough to give zero area, but small enough (even after a QC mapping)
so that we can construct rectifiable curves that avoid the holes [22] (the
length is estimated using Jones’ TST and the distribution of hole sizes).
From this construction we can also obtain a quasisymmetric image of R2

in R3 that is not a biLipschitz image of R2. Hence characterizing Euclidean
space up to biLipschitz equivalence is tied to understanding rectifiability and
Jones’ TST better.

Peter Jones and I also used his TST to prove “wiggly sets” have dimen-
sion > 1 [29] (a set is wiggly if it is connected and has β’s uniformly bounded
away from zero). This seems like an obvious result, but I still know no sim-
pler proof than using the TST. Moreover, this basic result led to more subtle
variations. A Brownian motion run for unit time defines a compact set in
the plane and the complementary components are simply connected open
sets, so their boundaries, called Brownian frontiers, are connected sets that
look quite wiggly. Motivated by physical arguments, Benoit Mandelbrot had
conjectured Brownian frontiers have dimension 4/3 and this was later proven
using SLE type techniques by Lawler, Schramm and Werner [49, 50]. At the
time, only infinite length was known, but Peter Jones, Robin Pemantle, Yu-
val Peres and I were able to prove Brownian frontiers have dimension > 1.
The β’s are not bounded away from zero, but they do have positive probabil-
ity of being non-zero with enough independence between different locations
and scales to prove the result (but not without a few tricks, e.g., we used a
fractal partition of the plane instead of the usual dyadic grid).

Figure 4: A Brownian path and its outer frontier. Jones’ TST implied
it has dimension > 1 and more recent work shows the exact dimension
is 4/3, verifying a conjecture of Benoit Mandelbrot.
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4. Kleinian groups and the convex hull theorem

By this time I had moved to Stony Brook and started to learn about Kleinian
groups. Ed Taylor, a student of Bernie Maskit, asked me if the limit set of a
finite generated, geometrically infinite Kleinian group has dimension > 1, a
problem that seemed related to wiggly sets. Briefly, a Kleinian group G is a
discrete group of Möbius transformations acting as isometries on hyperbolic
3-space H (identified with the upper half-space R

3
+). The limit set Λ ⊂ ∂H

= R2 ∪ {∞} is the accumulation set of any orbit and usually has a fractal
structure. Ω = ∂H \ Λ is open and we define the “dome” SΩ of Ω as the
upper envelope in H of all hemispheres with base disk in Ω. The region
above the dome is the hyperbolic convex hull of Λ (assuming ∞ ∈ Λ), and
is denoted by C(Λ). If G is finitely generated then the surface SΩ = ∂C(Λ)
has finite hyperbolic area mod G, but C(Λ)/G itself may have either finite
or infinite hyperbolic volume. These cases are called geometrically finite
and infinite respectively. Ed Taylor’s question was a weaker version of a
well known conjecture that limit sets of geometrically infinite groups must
have dimension 2. Like Brownian frontiers, Kleinian limit sets need not be
uniformly wiggly, but in the finitely generated case there are only countably
many points at which β tends to zero, so it was possible to prove dim(Λ) > 1
using TST [29].

Figure 5: Here is a Kleinian limit set generated by circle reflections. The
group is finitely generated and the limit set is connected but not a circle,
so must have dimension > 1. However, the β’s are zero where generating
circles touch and along the orbits of such points.

Eventually, I was able to prove dim(Λ) = 2 as well. The critical ex-
ponent δ of a Kleinian group measures the exponential rate growth of the
G-orbits (there are at most O(eδn) orbits points in any hyperbolic ball of ra-
dius n). Peter Jones and I showed that δ ≤ dim(Λ) for any Kleinian group,
so the conjecture reduces to the case when δ < 2. Dennis Sullivan [60] had
related δ to the base eigenvalues for the Laplacian on a hyperbolic manifold
M = R3

+/G, and using this I showed that if δ < 2 and G is geometrically in-
finite, then a Brownian motion started inside C(Λ) has a positive probability
of never crossing ∂C(Λ). This implies Λ has positive area, hence dim(Λ)=2.
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(In fact, area(Λ) > 0 is impossible for finitely generated groups by later work
of Danny Calegari, David Gabai [35] and Ian Agol [1] proving the Ahlfors
measure conjecture.)

This Brownian motion argument uses the fact mentioned earlier that
SΩ/G has finite hyperbolic area because we estimate the probability a Brow-
nian motion crosses SΩ = C(Λ) by integrating heat kernel bounds over SΩ.
Finite area is a consequence of two theorems: the Ahlfors finiteness theorem
(hyperbolic area(Ω/G) < ∞) and Dennis Sullivan’s convex hull theorem
(CHT) [59]: Ω is biLipschitz equivalent to SΩ with a universal bound K
(so they have comparable areas). The CHT holds for any simply connected
domain, as established by David Epstein and Al Marden [40, 41]. Peter
Jones and I avoided quoting the CHT by using an alternate argument in
the dim(Λ) = 2 paper, but it was not long before I needed to understand
the CHT much better.

A Fuchsian group G is a Kleinian group that preserves the unit disk, D.
A deformation of G is a conformal map f : Ω → D that conjugates G to
a Kleinian group G′ = f−1 ◦ G ◦ f acting on Ω. If the group is cocompact
(i.e., R = D/G is compact) then Rufus Bowen [32] proved ∂Ω is either a
circle or has dimension > 1. This is “Bowen’s dichotomy”. Dennis Sullivan
extended it to cofinite groups (R has finite area), and Kari Astala and Michel
Zinsmeister [3, 6, 7] showed it fails whenever G is convergence type (R is a
surface with a Green’s function). This left open the case when R has infinite
area but no Green’s function (divergence type groups).

Thurston had observed that the hyperbolic path metric on the dome SΩ

is isometric to the hyperbolic unit disk (geometrically, the dome is just a
hyperbolic disk that has been folded along certain geodesics). Composing
Sullivan’s map σ : Ω → SΩ with this isometry gives a hyperbolically biLip-
schitz (hence QC) map from Ω to D with uniform constants. We call this
the iota map. I observed (perhaps others had as well) that iota is locally
Lipschitz Ω→ D and deduced a factorization theorem: any conformal map
f : Ω :→ D is the composition of a locally Euclidean Lipschitz QC map
ϕ : Ω → D and a hyperbolically biLipschitz map ψ : D → D, both with
uniform constants (assuming Ω has inradius ≥ 1).

Why does this help with Bowen’s dichotomy? Suppose we have a non-
circular deformation of a divergence type group G. We can show the β’s
for ∂Ω are large a.e. with respect to harmonic measure, but we need them
large on positive length to get dim > 1. Since Makarov showed harmonic
measure can be concentrated on a zero length set, the strategy seems to fail,
but Sullivan’s CHT saves the day. The factorization theorem implies that a
conformal deformation of G via f is also a QC deformation of the divergence
type group G′ = ψ◦G◦ψ−1 via the map ϕ (divergence type is a QC invariant
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by Pfluger, [55]). Moreover, ϕ−1 : D → Ω is locally expanding; this implies
the β’s are large on positive length, as desired [18].

Figure 6: A polygon and its dome. The dome is the upper envelope
of all hemispheres with base disk inside the polygon. The centers of
hemispheres touching the dome form the medial axis of the polygon, a
well studied object in computational geometry.

Figure 7: Here is a “side view” of a hyperbolic dome. The nearest point
retraction is defined by expanding a hyperbolic ball until it hits the dome.
For points in the base domain we expand a horoball instead. This defines
a quasi-isometry, giving Sullivan’s theorem. The map is not necessarily a
homeomorphism since two distinct points can map to the same point.

The factorization theorem implies that if f : Ω → D is conformal, then
|f ′| = |ϕ′| · |ψ′| where ϕ′ ∈ L∞ and ψ′ is in weak-Lp for p = 2K/(K − 1)
by a celebrated result of Kari Astala [2]. This is reminiscent of Brennan’s
conjecture that f ′ ∈ L4−ε(dxdy,Ω) for any ε > 0. In fact, if Sullivan’s
theorem held with constant K = 2, Brennan’s conjecture would follow. This
motivated me to try to give the best explicit constant I could. In [19] I proved
K < 7.82 by carefully examining the Epstein-Marden proof of CHT in [40].
Unfortunately, Epstein and Markovic found a logarithmic spiral domain for
which K > 2.1, [42]. It is still possible that every simply connected domain
has a 2-QC, locally Lipschitz map to the disk (this would imply Brennan’s
conjecture), but iota itself doesn’t always work.
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5. Computational conformal geometry

For polygons, the Riemann map is given by the Schwarz–Christoffel formula,
but this involves unknown parameters, namely, the points on the circle that
get mapped to the polygon’s vertices. Solving for these can be quite difficult.
On the other hand, the iota map can be applied to every vertex of an n-
gon in time O(n). This depends on the close relation between the dome of
a domain and its medial axis. The medial axis is a term from computer
science [31] that refers to the centers of subdisks of Ω whose boundaries hit
∂Ω in ≥ 2 points (Erdös [43] called the same set M2 twenty years earlier).
The medial axis of an n-gon can be computed in time O(n) by a result
of Chin, Snoeyink and Wang [36, 37] and iota can be computed in linear
time from the medial axis. Thus iota gives a “fast” map to the disk that
is uniformly close to conformal by the CHT. Dennis Sullivan told me he
originally thought of the CHT as a “constructive version of the Riemann
mapping theorem”.

Figure 8: A polygon is foliated by arcs of medial axis disks; the or-
thogonal flow gives the iota map from the polygon to a circle (it can also
computed algebraically in time O(n) for any n-gon).

Figure 9: A polygon and the Schwarz–Christoffel image using the correct
angles but pre-vertices guessed using iota. By the CHT there is a K-QC,
vertex preserving map between them. We can get an upper bound for K
by triangulating both polygons and computing the maximum dilatation
of the corresponding piecewise linear map; |μ| ≤ .108 is this case. The
most distorted triangle is shaded.
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In fact, the iota map was also discovered in numerical analysis, but un-
der a different name. While trying to numerically compute the best K in
Sullivan’s theorem, I came across the paper [39] by Toby Driscoll and Steve
Vavasis. It describes their CRDT algorithm, a numerical conformal mapping
method that uses a map from simple n-gons to n-tuples on the circle defined
in terms of cross ratios and the Delaunay triangulation of the polygon (hence
the name) and while reading this paper (for the fourth or fifth time), I real-
ized the CRDT map was a version of iota and I was able to prove the same
uniform QC bounds as for the “real” iota [23]. (Actually, Vavasis had sent
me a preprint of the CRDT paper a few years earlier, but I hadn’t appreci-
ated it without knowing about CHT and iota, and had forgotten about it.
My “rediscovery” of their paper led to a workshop, a joint grant with Vavasis
and several results about domain decomposition and conformal maps.)

CRDT uses the Schwarz–Christoffel formula, so each iteration gives a
true conformal map onto an approximate domain. The algorithm tries to
improve this domain at each step, but the dependence on the parameters
is so subtle that no proof of convergence is known (at least to me). Failing
to prove CRDT converges, I tried the opposite approach: approximately
conformal maps onto the true domain, i.e, consider QC maps D → Ω and
solve a Beltrami problem to lower the QC constant at each step. I showed
this method can compute a (1 + ε)-QC map from the disk onto any n-gon
in time O(n log 1

ε
log log 1

ε
) [24]. The maps are held in memory using O(n)

series, each of length p = log 1
ε
. The iteration has quadratic convergence,

so using iota as a starting point, Sullivan’s CHT implies only O(log log 1
ε
)

iterations are needed to reach accuracy ε, independent of the domain.

The CHT is used in other parts of this algorithm as well. A key ingredient
is the idea of a thick/thin decomposition of a polygon analogous to the
thick/thin decomposition of a Riemann surface. Thin parts of a polygon
are certain generalized quadrilaterals with a pair of sides whose extremal
distance inside the polygon is less than ε. Decomposing a polygon into its
thick and thin parts makes various mapping and meshing problems easier to
understand. The iota map and Sullivan’s CHT allow us to compute extremal
distances (up to a bounded factor) in linear time and this leads to a linear
time algorithm to find all the thin parts.

Marshall Bern and David Eppstein (two “p”’s this time; not the same
David Epstein mentioned before) had proven in [8] that any simply n-gon has
a quadrilateral mesh with O(n) elements and no angle bigger than 120◦ (and
this is sharp). They asked if a lower angle bound was possible, and using
thick/thin decompositions and the mapping theorem above, I showed [25]
we could also take all new angles ≥ 60◦ (small angles in the original polygon
must remain).
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Figure 10: Meshing with optimal angle and complexity bounds. We
decompose a polygon into thick and thin pieces (white and shaded).
Thin parts are meshed “by hand” and the Riemann map of the polygon
sends each thick part to a region in D that can be subdivided into four
types of hyperbolic polygons as shown. Each type has a mesh with angles
in [60◦, 120◦] that we transfer back to the thick part by the conformal
map.

This quickly leads to a more general problem. A planar straight line
graph (PSLG) is any finite, disjoint collection of line segments and points
(polygons are a special case where the edges meet end-to-end). A mesh of
a PSLG is a mesh of its convex hull whose vertices and edges covers all the
vertices and edges of the PSLG. I was able to show that any PSLG has a
quadrilateral mesh with O(n2) elements and the same angle bounds as above
(and n2 is sharp). By adding diagonals to the quadrilaterals, we get a O(n2)
triangulation of any PSLG with all angles ≤ 120◦, improving the bound
157.5◦ by Scott Mitchell [52] and 132◦ by Tiow-Seng Tan [61]. In fact, 120◦

can be replaced by any bound > 90◦ (but the constant in O(n2) grows) and
there is even a polynomial algorithm for nonobtusely triangulating a PSLG
(all angles ≤ 90◦).

The proof uses thick/thin decompositions and a foliation of the thin parts
similar to those used by Epstein and Marden in their proof of CHT. In each
thin part, the leaves are just circular arcs, but when joined together the
leaves can become quite complicated. If every path hits at most O(n) thin
parts, we get an O(n2) nonobtuse triangulation. In general, I show that by
adding O(n1.5) extra paths and bending the original paths slightly we can
cause collisions which terminate every path after crossing at most O(n) thin
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parts; this gives an O(n2.5) triangulation. The best lower bound is O(n2),
so a gap remains open (I either need to understand CHT a bit better or it is
time for another serendipitous result to appear; Dennis Sullivan suggested
looking at closing lemmas in dynamics).

That’s the story so far: Nick Makarov’s paper helped me write my thesis
and led to various problems including Øksendal’s conjecture; Peter Jones’
traveling salesman theorem was the key to solving that conjecture and in-
volved me with Brownian motion, geometric measure theory and Kleinian
groups; the dim(Λ) = 2 problem for Kleinian limit sets led me to Dennis
Sullivan’s convex hull theorem, which then solved Bowen’s dichotomy and
pushed me towards new results in numerical conformal mappings and com-
putational geometry. Each paper was first useful because it contained a fact
I needed, but their real value lay in the new problems they inspired.

Postscript

This essay is an edited version of an even more rambling previous attempt.
Trying to compress it further, I projected into a lower dimension rhyming
space:

Under logs are measures walking
along paths with betas stalking
over domes of bounded bending
questions answered and unending.

Projecting into the even lower dimensional haiku space gives

Flatness abandoned
deep origamic thunder
echos off my pen.

This may be useful if NSF proposal limits ever drop from 15 pages to 17
syllables.



All that Math 49

Bloch space

Denjoy domains

QC Jacobians & A

thick−thin polygons

Dirichlet algebras

harmonic algebras

ω 1 2ω

dim(  )=2Λ compact deformations

Maskit’s conjecture

Whitney seriesLIL for limit sets

Poissonian domains

conformal dimension

conformal interpolation

removable sets

iota = medial axis flow

Pommerenke
harmonic measure

Makarov

orthogonal functions

non−rectifable QS surface

1

BMO domains

L   Schwarzians2

Generalized Hayman−Wu

conformal factorization

Bowen’s dichotomy

nonrectifiable limit sets

nonobtuse triangulation

quadrilateral meshes

fast conformal mapping

treelike decompositions

Explicit K estimate

CRDT bounds

Oksendal conjecture

wiggly sets
rigidity in PSL(2,R)

Sullivan
Epstein−Marden
convex hulls

Peter Jones
traveling salesman

Koebe and welding Brownian frontier

Ruelle’s property

Figure 11: Some of my work as a directed graph.
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The Uncertainty Principle for Fourier analysts

Aline Bonami
∗

Which paper? Why?

There are certainly many kinds of
mathematicians. Some dig the same
furrow to infinity, some others pick
right or left the little flowers they find
during an endless promenade, while
probably most of them move from one
of these attitudes to the other. The
paper that I will speak of, The Un-
certainty Principle: A Mathematical
Survey, by Gerald B. Folland and Al-
ladi Sitaram [9], definitely invites the
reader to a kind of walk around the
uncertainty principle, with the possi-
bility of picking right and left armfuls
of flowers.

This choice may be considered as not serious, and the serious (and slightly
critical) reader will ask questions.

• Why did I choose a survey paper, not an original one? Such a paper
is always somewhat superficial. In this particular case, for the reader
who wants to study the Uncertainty Principle, the book of Havin and
Jöricke The Uncertainty Principle in Harmonic Analysis [11] is cer-
tainly a much richer reference1.

• The Uncertainty Principle is, in some ways, a fashion. It is certainly
fundamental in physics, but this term, when used in Harmonic Anal-
ysis, not only refers to new concepts or new methods but also covers
many well-known properties. Why not some deeper paper?

These are legitimate questions, and there are of course deeply original papers
that influenced me. But this is the precise paper that came naturally to my
mind as an answer to the question raised by the Editors of the Revista

∗Aline.Bonami@univ-orleans.fr.
1 I read later on the survey paper of Havin [10], which is also an excellent introduction

to the subject.
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Matemática Iberoamericana. Reasons of this are very subjective. I already
gave one: I like promenades in mathematics as well as in other areas of
activity. A second one is also related to my tastes in mathematics. Again one
can observe two categories of mathematicians: those who spend their time
reading papers and those who like most listening to talks. I belong definitely
to this last category2. When I read the paper of Folland and Sitaram in 1999,
I felt the same pleasure that an inspiring lecture usually gives me. There
were fascinating open questions, some of which have agitated me during the
last twelve years. I did recognize the kind of questions that were discussed
in Orsay in the seventies but they were approached from a different point
of view and I understood them better. The paper itself does not contain
tricky proofs, but looking a little further into the subject there are plenty of
them. It offers new perspectives and gives the desire to go further, which is
the best compliment one can give to a survey paper.

I cannot help adding some general comment on mathematical journals.
Even if there exists top level journals that contribute to select the best
papers, one has to deal with two characteristics of the present time: the
fact that there are an increasing number of institutions in the world where
some good mathematics is done3 on the one hand, and on the other, the
huge amount of documentation available on the web, with the permanent
launch of new journals and with arXiv as a daily instrument. In order to
help young mathematicians to make good choices within the literature that
is available, survey papers should play an increasing role.

The Uncertainty Principle as a fairy tale

The impossibility of measuring precisely both the position and the velocity of
a sub-atomic particle sounds like a mystery to most mathematicians4. They
rapidly need to go back to some clear mathematical setting. Folland and
Sitaram start from Quantum Mechanics to explain the Uncertainty Princi-
ple but refer hastily to a lecture of Norbert Wiener in Göttingen in 1925,
which may be taken as the first occurrence of the Uncertainty Principle in

2 Having been a young mathematician in Orsay in the late sixties and early seventies
has played a large role in this. My whole work has been primarily influenced by the course
of E. Stein on Singular Integrals in 1966-67, which has been transformed into the book
Singular integrals and differentiability properties of functions.

3 It is no more possible to hope that most young mathematicians will benefit from
word of mouth, as it was for me at Orsay in the sixties.

4 To quote Heisenberg: Any use of the words “position” and “velocity” with an accu-
racy exceeding that given by the uncertainty equation is just as meaningless as the use
of words whose sense is not defined (from Physical Principles of the Quantum Theory,
1930).



All that Math 59

Signal Analysis. Recall that, as Folland and Sitaram write, the Uncertainty
Principle may be seen as the fact that

a nonzero function and its Fourier transform cannot both be
sharply localized,

which is not a mathematical statement and deserves to be translated into
rigorous statements. This is the moral of the story but we need characters
and intrigue.

When speaking of this lecture in his autobiography I am a Mathemati-
cian, Norbert Wiener starts his explanation from the musical notation, which
gives the false impression that one can independently fix the pitch of a sound
(Do, Re, . . . , or C, D, . . . ) and its length (whole note, half note, quarter
note, . . . ). On the contrary if we quote Norbert Wiener, Precision in time
means a certain vagueness in pitch, just as precision in pitch an indifference
to time. (. . . ) You can’t play a jig on the lowest register of the organ.

Even if this looks more familiar than Quantum Mechanics, it holds some
mystery. The importance of the Uncertainty Principle in Signal Analysis
was only plainly felt twenty years later, even though Hardy says in 1933
that he was directly influenced by lectures of Wiener.

Historical aspects are sufficiently present in the paper of Folland and
Sitaram to arouse the curiosity of the reader without any risk of boring
him with long considerations. I would like to quote two stories that are
told in a few words. One concerns Benedicks’ Theorem [2] (and I quote
Folland and Sitaram) whose elegant proof, first circulated as a preprint in
1974 but not formally published for another decade. The other one concerns
Beurling’s Theorem, or Beurling–Hörmander’s Theorem depending on the
authors, whose proof was lost even though it is stated in the collected works
of Beurling, then published in 1991 by Hörmander [12]. These few words
were sufficient for me to feel an irresistible urge to look at proofs and papers.
Let me recall the two theorems.

Theorem (Benedicks) If a function f ∈ L2(Rn) and its Fourier transform
are supported on measurable sets of finite measure, then f vanishes a.e.

Theorem (Beurling) If the function f ∈ L1(R) satisfies the inequality∫
R

|f(x)| |f̂(y)| e2π|x||y| dx dy <∞, (1)

then f vanishes a. e.

Here the Fourier transform in R
n is defined by

f̂(y) =

∫
Rn

f(x) e−2πi x·y dx.
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These are two elegant statements, with very nice proofs. On the other
hand, they may seem incomplete and one does not have any definitive con-
jecture to describe the ultimate point up to which methods could be pushed
forward. This may be why their authors hesitated to publish these results.
In fact this is the charm of the Uncertainty Principle, to be broken down
into many mathematical statements that cannot be easily compared between
them. It is the great merit of the paper of Folland and Sitaram to transform
separate results into a coherent whole.

More to read, more to do

It is very difficult to read a mathematical paper extensively. We all have
our own way of picking this or that, then looking at the bibliography and
jumping to another paper, then coming back to read again and again the
same lines, as if there was some secret clue to find. The selection of the
theorems of Benedicks and Beurling corresponds to my own selection and
they are those that have piqued my curiosity the most.

For the first one, it is easy to see that the proof, which is given by Folland
and Sitaram and relies on Poisson Formula, can be adapted to some sets of
infinite measure, such as the interior of an hyperbola in R2. In general one
does not know at all for which kind of sets this type of property is valid. In
the case of two measurable sets of finite measure A and B, this implies easily
(see [3] for these comments) the existence of some constant c such that, for
all f ∈ L2(Rn), one has the inequality∫

Rn

|f |2dx ≤ c

(∫
Rn�A

|f |2dx+

∫
Rn�B

|f̂ |2dy
)
. (2)

This last inequality has also been proved through another method by Amrein
and Berthier [1]. In one dimension, there is a sharp estimate of the constant
given in a beautiful paper of Nazarov [16], which has not yet been entirely
exploited (see [13] for a partial generalization in higher dimension). At this
point, it is necessary to read carefully the book of Havin and Joricke.

As I said before, there is no clear conjecture that one can deduce from
Benedicks’ Theorem. Instead, there are a lot of possible directions, some of
them having already partially explored, while others have not. One of the
most fascinating recent approaches is due to T. Wolff (his former student
Kovrijkine [14] speaks of Wolff’s version of the Uncertainty Principle, even
though the corresponding theorem may be found in a joint work [17], where
it is used to prove the existence of a spectral gap). Wolff’s Principle asserts
that (2) holds for some constant c when ε is small enough, and A and B are
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ε-thin in the following sense: A is called ε-thin if, for each x0 ∈ R and for
δ(x0) = max(1, |x0|−1), one has∫

|x−x0|<δ(x0)
χA(x) dx ≤ ε δ(x0)

n.

The typical example of such a situation is given by A = {|q| < η}, where q is
a non degenerate quadratic form. Such inequalities give rise to Heisenberg
type inequalities. They have been considered later on by Demange [7] and
Kovrijkine [15]. It is striking that Wolff’s methods come from real analysis
and use a Littlewood–Paley decomposition of functions.

By contrast, the proof of Beurling’s Theorem given by Hörmander relies
on complex analysis and mainly on the theorem of Phragmén–Lindelöf as
does the classical proof of Hardy’s Theorem:

Theorem (Hardy) If the function f satisfies the two inequalities

|f(x)| ≤ Ce−π|x|
2

, |f̂(y)| ≤ Ce−π|y|
2

, (3)

then f is, up to a constant, equal to the function e−π|x|
2
.

Complex methods have been pursued in [4], then by Demange in [6],
where the use of Bargmann transforms allows to have Hardy type theorems,
but with a non degenerate bilinear form replacing the Euclidean scalar prod-
uct, under some supplementary assumptions.

Many other results concern Hardy type or Beurling type theorems in dif-
ferent contexts and especially in a non commutative setting, see in particular
the book of Thangavelu [19].

The general feeling was that complex methods were unavoidable for
Hardy type theorems. The development of real methods by Escauriaza,
Kenig, Ponce and Vega appears miraculous (see [8]). It is a real tour de
force to have achieved (jointly with Cowling) a new proof of the classical
Hardy’s Theorem [5] as a refinement of these methods. These may also
be used for unique continuation properties of Schrödinger Equation with
potential, while complex methods seem to be inadequate for this.

All this arises out of a partial and personal reading of the paper of Folland
and Sitaram, which contains many other results and references. Now fifteen
years have passed. Their overview is still valid, except that there are new
avenues to add to the promenade that they propose. I have spoken of Wolff’s
Uncertainty Principle, as well as of the entirely new methods of Escauriaza,
Kenig, Ponce and Vega. The Uncertainty Principle on finite Abelian groups
should be added, with, following Tao [18], the use of Chebotarev’s Lemma,
which allows to prove that the sum of the cardinalities of the support of
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a function and its Fourier transform is bounded below by p + 1 on the
group Z/pZ, when p is prime. This, in turn, proves that sparse signals
on Z/pZ are determined by a small number of Fourier coefficients, a central
issue in the mathematical theory of compressed sensing. No doubt it is a
subject full of life!
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Some work by Beurling

Joaquim Bruna
∗

1. Introduction

When the editors of La Revista informed me about their excellent idea for
this volume and asked for my contribution, it took me little time to decide
that I would chose some articles of Arne Beurling1.

Arne Beurling

I profess special admiration for
Beurling, for his work, his influence
and his taste in analysis. I did not
have the chance to meet him so I know
nothing first hand about his appar-
ently strong character, or about how
he viewed mathematical research. It’s
been said that he did not like to
publish articles that were not pol-
ished, definite and complete, and con-
sequently a substantial part of his re-
search have never appeared as papers
in scientific journals.

An immense gift to the mathematical community was delivered by Lennart
Carleson, Paul Malliavin, John Neuberger and John Wermer when they
edited and published The Collected Works by Arne Beurling in the eight-
ies [6], containing plenty of previously unpublished research material. Yet,
I have recently known from Misha Sodin that the Angstrom library in Upp-
sala still contains unpublished material of Beurling, which is supposed to be
available online in a near future. Sodin and Michael Benedicks reported in
September 2008 that they had gone through Beurling’s archives and have se-
lected 133 items “that might contain new results, observations and problems
that should be of interest for many mathematicians working in different areas
of analysis”. All of this says much about how Beurling looked about pub-
lishing original research. I know about Beurling’s work mostly through [6],
as I guess it is the case for most analysts. In spite of the impact that of these
two volumes have had, I think that Beurling’s work is not as well known as
it deserves.

∗bruna@mat.uab.cat.
1 He was born in Göteborg in 1905, and died in Princeton in 1986.
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The work of Beurling, centered mostly in the interplay between harmonic
and complex analysis, has been one of the most important and influential
in analysis in the second half of the last century, but I have the feeling
that maybe because of his personality his achievements have not gained the
recognition they deserve, and that they have been overshadowed by those of
a few no less important and influential analysts of his generation. Anyway,
although I am not in a position to analyze all of this, I want to emphasize
that I have decided to use this opportunity to pay homage to Beurling.

I have chosen two sets of papers by Beurling which have influenced my
personal work and that of my students too. They are not his most famous
results; probably his theorem on the description of shift invariant subspaces
is better known. The first set consists of the two papers that Beurling pub-
lished with P. Malliavin in the sixties providing the solution of the so called
radius of completeness problem [2, 3], which had been already proposed by
Paley and Wiener. As far as I know the proof was completed as early as 1961,
yet the Acta paper appeared later in 1967. This problem had been stud-
ied by many other authors, who have contributed some partial results, and
it has grown to become a central topic in classical harmonic analysis. My
choice is also due to the fact that these papers perfectly explain the interplay
between harmonic and complex analysis.

The second set consists of the two papers on Balayage and Interpolation
for Fourier–Stieltjes transforms, which constitute the basis, together with
the Shanon–Whittaker–Kotolnikov theorem, of modern sampling and inter-
polation theory. These two articles, as far as I know, were never published
as research papers, though they constitute chapters IV and V, respectively,
of the Mittag–Leffler Lectures on Harmonic Analysis (1977–1978), and are
included in [6]. Related to these is the paper of H. L. Landau [12], who
undoubtedly influenced by Beurling carried over a similar study for multi-
dimensional signals. This area of analysis has received renewed attention in
recent years, mainly because of its connections with wavelets.

2. The radius of completeness problem

Let Λ be a discrete sequence of non-negative numbers and let E(Λ) =
{eiλx, λ ∈ Λ} be the set of complex exponentials with frequencies in Λ.
The linear space (topologically) spanned by E(Λ) is thus what we can get
by superposition of sines and cosines with frequencies in Λ.

The question posed by Paley and Wiener was to describe, for a given Λ,
how big this space is. To be more precise, let us define the closure radius or
radius of completeness of Λ as

ρ(Λ) = sup
{
r ≥ 0 : E(Λ) spans L2(−r, r)

}
≤ +∞.
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It is easy to show that this quantity does not change if one replaces the L2

norm by any other reasonable norm. It does not change either if one adds or
removes from Λ a finite number of points; this means that ρ(Λ) is an asymp-
totic characteristic of Λ. Paley and Wiener wanted a description of ρ(Λ) in
metric or geometric terms, presumably using some appropriate notion of
density.

By its very definition, one has that E(Λ) spans L2(−r, r) for r < ρ(Λ)
and does not span it if r > ρ(Λ). For instance, Fourier’s classical statement
means simply that ρ(Z) = π. A dual formulation of the problem invokes
complex analysis. For E(Λ) does not span L2(−r, r) if and only if there
exists something nonzero orthogonal to it, that is, a function g ∈ L2(−r, r)
such that ∫ r

r

g(x)e−iλx dx = 0, for all λ ∈ Λ.

This means that the Fourier–Laplace transform G of g,

G(z) =

∫ r

r

g(x)e−izx dx, z ∈ C,

vanishes on Λ. By the Paley–Wiener theorem, the Fourier–Laplace trans-
form is one to one and isometric from L2(−r, r) onto the Paley–Wiener space
of entire functions of exponential type ≤ r, with L2 values along the real
line,

pwr = {G : G entire, |G(z)| = O(er|z|), G|R ∈ L2(R)}.
Hence it follows that

ρ(Λ) = sup{r ≥ 0 : Λ is a uniqueness set forpwr}.

Here we call Λ a uniqueness set for pwr if whenever G ∈ pwr and G
vanishes on Λ, then G ≡ 0.

Thus the Paley–Wiener question is a problem about zero sequences of
functions in Paley–Wiener spaces. It is intuitive then that the answer must
be given by some sort of density D(Λ), say, defined for a certain class Σ of
sequences; by dilation invariance, one should guess that ρ(Λ) equals cD(Λ)
for some constant c. Also note that if we agree that any reasonable notion
of density should be 1 on Z, then the constant c must be π. One has two
things to prove:

1. πD(Λ) ≤ ρ(Λ), i.e., if r < πD(Λ) and G ∈ pwr vanishes on Λ,
then G ≡ 0.

2. πD(Λ) ≥ ρ(Λ), i.e., if r > πD(Λ), then there exists a nonzero function
G ∈ pwr vanishing on Λ.



70 Joaquim Bruna

The first one amounts to say that if a nonzero G ∈ pwr vanishes on Λ
then D(Λ) ≤ r

π
. This is dealt usually with variants of Jensen’s formula,

which give information about the repartition of the whole sequence Z(G)
of zeroes of an entire function G. This means that it is rather the outer
density De associated to D the one to be considered,

De(Λ) = inf
{
D(Γ),Λ ⊂ Γ,Γ ∈ Σ

}
,

and that the result should read

πDe(Λ) = ρ(Λ).

Hence one must prove the above inequalities with De replacing D.

Of course, the hard work is to find the right definition of D. Every
result providing information about the zero sequence of a function in the
Paley–Wiener class in terms of some density D would lead to an estimate
πDe(Λ) ≤ ρ(Λ). For instance, the ordinary density or Pólya density is
defined as

D(Λ) = lim
t→∞

n(Λ, t)

|t| ,

whenever this makes sense, where n(Λ, t) denotes the number of points of Λ
between 0 and t. By Levinson’s theorem [9], the zeroes of a function G ∈
pwr satisfy

D(Z(G)) ≤ r

π
.

This leads to
πDe(Λ) ≤ ρ(Λ);

this much was known before Beurling and Malliavin.

The second type of inequality, πDe(Λ) ≥ ρ(Λ), is harder to prove, since
it requires constructing an adequate function and estimating, in general,
infinite products. At the time of Beurling and Malliavin it was known that

πDu(Λ) ≥ ρ(Λ),

with Du some kind of uniform density.

Beurling and Malliavin found the right density De, which they called
effective density. It turns out to be the outer density associated to what
Kahane [8] quotes as “densité maligne”. A sequence Λ is said to have evil
density D(Λ) if ∫ ∞

0

|n(Λ, t)−D(Λ) · t|
1 + t2

dt < +∞.
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Theorem 1 The radius of completeness is given by

ρ(Λ) = πDe(Λ),

with
De(Λ) = inf{D(Γ),Λ ⊂ Γ}.

As explained before, the proof of this result has two parts. The “easy”
one consists in proving that if G ∈ pwr vanishes on a sequence Λ with
D(Λ) > r

π
, then G ≡ 0. A proof using Jensen’s formula for ellipses can

be found in [9].
For the harder part one must show that if r > πDe(Λ) then there exists

a nonzero G ∈ pwr vanishing on Λ. A key role in this direction is played by
the so called Beurling–Malliavin multiplier theorem, which is the object of
their first Acta paper. Here the term multiplier is used in a sense different
from the one used in Fourier Analysis. A weight w(x) = eω(x) ≥ 1 is said to
admit multipliers if the translation operators are bounded in the weighted
spaces Lp(w) and if this latter space contains entire functions in pwr for
arbitrarily small r > 0. The characterization of the weights that they provide
involves a Lipschitz type condition on ω and, more importantly, the integral
condition ∫ +∞

−∞

ω(x)

1 + x2
dx < +∞.

What is relevant regarding the radius of completeness problem is that
the same proof works for a weight w(x) = |G(x)|, G being an entire function
of exponential type, leading to:

Theorem 2 Let G be an entire function of exponential type such that∫ +∞

−∞

log+ |G(x)|
1 + x2

dx < +∞.

Then for each r > 0 there exists H ∈ pwr such that the product G ·H is in
some Paley–Wiener space.

These results allow to replace everywhere entire functions in Paley–
Wiener spaces by entire functions of exponential type with finite logarithmic
integral. So given r > πDe(Λ) one must construct one such function G of
exponential type ≤ r vanishing on Λ. As a first step, one considers a se-
quence Γ containing Λ with evil density D(Γ) bigger and arbitrarily close
to De(Λ) and forms the Hadamard product with zeroes on Γ,

H(z) =
∏
σ∈Γ

(
1− z

σ

)
e

z
σ ,
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which has exponential type less than πD(Γ). The second step is to multiply
this infinite product by another function of exponential type making the
logarithmic integral finite. A careful analysis of this step (known as the
little multiplier theorem) reveals that this is essentially a question about the
behaviour of the Hilbert transform in L1, hence a question related to H1. It
is noteworthy that in their proof, Beurling and Malliavin exhibit an explicit
decomposition in what now are known as H1-atoms.

Since Beurling–Malliavin original one, a number of alternative proofs
have appeared. The papers by Beurling and Malliavin are very hard to
read; a number of alternative expositions based on the same ideas have
appeared since then, notably those by Kahane [8] and Koosis [9, 10] (see
also [4] and [7]). A historical overview is to be found in [25]. Among the
last ones, a broad generalization of the Beurling–Malliavin theory using the
language of Toeplitz operators has appeared recently in [16].

I would like to use this opportunity to comment on another classical
problem related to the Beurling–Malliavin theory, not yet completely solved.
We are interested in the following situation: φ is a function in Lp(R) and
Λ is a discrete set in R such that the family of translates φΛ = {φλ(x) =
φ(x − λ), λ ∈ Λ} span Lp(R). We say that φ is a generator for Lp(R) if
for some discrete Λ, φΛ spans; and that Λ is a spectral set for Lp(R) if for
some φ, φΛ spans.

In [5] it is proved that Λ is a spectral set for L1(R) if and only if
ρ(Λ) = +∞. That this condition is necessary is rather evident. First note
that obviously the Fourier transform φ̂ of the generator φ vanishes nowhere.
The Fourier transform of the linear span of φΛ is φ̂ times the linear span of
E(Λ), and it will be dense in the L∞-norm in the Fourier image of L1(R).
Since the latter is dense in L∞(I) for any interval I and φ̂ is bounded above
and below over I, it turns out that E(Λ) must be dense in L∞(I) for all inter-
vals I, whence ρ(Λ) = +∞. The situation is quite different in Lp, p �= 2, for
there are slight perturbations of the integers which are spectral for L2(R),
and Z is spectral for Lp(R), p > 2 (see [1, 20, 21]).

It is not hard to see that φ is not a generator for Lp(R) if and only if
there exists g ∈ Lq(R), q being the conjugate exponent of p, such that the
convolution φ ∗ g has compact support. It follows that φ is not a generator
for L2(R) if and only if φ̂ is the quotient of some function in a Paley–Wiener
space over an L2-function, a situation similar to that studied by Beurling
and Malliavin. This implies that∫ +∞

−∞

log |φ̂(ξ)|
1 + |ξ|2 dξ > −∞.
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The same conclusion can be proved for L1(R). The converse is not true
(private communication of A. Borichev). Hence together with φ̂(ξ) �= 0,
divergence of the above integral is a sufficient (but not necessary) condition
for φ to be a generator for L1(R).

3. Sampling and interpolation of band–limited signals

In the papers [6, 341–365], Beurling sets the grounds for modern sampling
and interpolating theory. Beurling uses an equivalent formulation borrowed
from potential theory. Here I will describe it using the notation employed to-
day.

The Bernstein space Br is the L∞ version of the Paley–Wiener space:
it consists of the entire functions F of exponential type less than or equal
than r, bounded on the real line. This space coincides with the space of
bounded continuous functions on R with spectrum (band-limited) in [−r, r].
A discrete set Λ in R is called a sampling set for Br if there exists a con-
stant K such that

sup
x∈R
|F (x)| ≤ K sup

x∈Λ
|F (x)|, for each F ∈ Br.

This means that the samples of F on Λ allow to reconstruct the whole func-
tion F in a stable way. The accompanying notion of interpolating set means
that every bounded sequence (cλ) can be interpolated by some F ∈ Br, i.e.,
F (λ) = cλ for all λ ∈ Λ.

Beurling gave a complete description of both types of sequences in terms
of uniform densities defined as follows. We denote by n+(t) the largest
number of points of Λ in a closed interval of length t; similarly n−(t) denotes
the smallest number. The upper and lower uniform densities are respectively
defined by

D+(Λ) = lim
t→+∞

n+(t)

t
, D−(Λ) = lim

t→+∞
n−(t)

t
.

Theorem 3 Λ is a sampling sequence for Br if and only if contains a sep-
arated sequence Λ′ such that D+(Λ′) > r

π
, and is an interpolating sequence

if and only if it separated and D−(Λ) < r
π

.

We recall that a sequence is called separated if the distance between two
points in the sequence is uniformly bounded from below.

Beurling proofs depends on his notion of weak limits of translates. Let
W (Λ) denote the collection of sets Γ for which there exists translation pa-
rameters τn such that the sets Λ + τn converges weakly to Γ. Here the weak
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convergence of sets means that for every compact K, the traces on K tend
to Γ∩K in the Fréchet distance. It turns out that Λ is a sampling set if and
only if all sets Γ ∈ W (Λ) are uniqueness sets for Br, meaning that there is
no nonzero function in Br vanishing on Γ. This shows the connection with
the problems discussed in the previous section and with complex analysis in
particular.

Of course, these notions can be defined if the interval [−r, r] is replaced by
an arbitrary set S in Rn of finite measure. The space of bounded continuous
on R

n with spectrum in S can be described as a space of entire functions
only if S is convex, so complex analysis techniques are not good anymore, in
general. In a marvelous paper [12] that I recommend every analyst to read,
Landau found a real analysis proof of the necessary conditions

D+(Λ) >
|S|
2π
, D−(Λ) <

|S|
2π
,

valid for an arbitrary bounded set. The sufficient conditions cannot hold in
general; no density can provide a complete solution of the problem.

The relation of all this with the previous work of Beurling and Malliavin
is best seen in the L2 context. The notion of sampling for the Paley–Wiener
space is ∫ +∞

−∞
|G(x)|2 dx ≤ K

∑
λ∈Λ
|G(λ)|2, for each G ∈ pwr,

while Λ is interpolating if every sequence (cλ),
∑

λ |cλ|2 < +∞, can be inter-
polated by some F ∈ pwr. For a set Λ being sampling for pwr amounts to
say that the family of exponentials E(Λ) is a frame of L2(−r, r), while being
interpolating means that this family is free; in particular, sequences that are
simultaneously sampling and interpolating in pwr (which, by the way, do
not exist in Br) correspond to Riesz basis E(Λ) of exponentials. Beurling’s
results give, for separated sequences,

D+(Λ) >
r

π
=⇒ Λ sampling =⇒ D+(Λ′) ≥ r

π
,

and analogously for interpolating sequences. In particular,

sup
{
r ≥ 0 : E(Λ) frame forL2(−r, r)

}
= D+(Λ).

The frames of exponentials in L2 were fully described in [23]. Riesz basis
occur at the critical density, and they were characterized in [24].

In my view, the two papers of Beurling and the one of Landau, both their
results and their techniques, have been very influential in this area of analy-
sis. I think that thanks to [6] many analysts discovered Beurling’s work and
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somewhat this sparked new interest. Also, the development of the theory
of wavelets, for which sampling is basic, attracted new interest. Beurling
uniform densities have been generalized to a number of different contexts.
For instance, by adapting Beurling ideas to the hyperbolic setting, Seip was
able to describe sampling and interpolating sequences for various function
spaces of holomorphic functions in the unit disc (see [26] and the references
therein). They were described as well for the Fock space, an isometric copy
of L2(R) via the Bargmann transform, in terms of the natural uniform den-
sities; in this case there is a critical density above which one has sampling
sequences and below which one has interpolating sequences. The non exis-
tence of sampling and interpolating sequences in the Fock space is equivalent
to the non existence of Riesz basis of the so called gaborlets (time-frequency
translates of the gaussian function), a particular case of the Balian–Low the-
orem. It is said that this result lead Yves Meyer to try to prove that wavelet
bases well localized both in time and frequency did not exist either, a hint
that fortunately turned out to be false and opened a whole new area. In the
electronic engineering community, Landau paper is a milestone. Altogether,
the impact of Beurling’s work is very noticeable nowadays.

I use the opportunity to call the attention of the reader to a couple of
basic problems that remain open in the area. For instance, it is not known
yet whether in the case where S is the unit ball in Rn there are Riesz ba-
sis of complex exponentials. In this case, the corresponding Paley–Wiener
space consists of entire functions F in Cn of exponential type at most one,
with F |Rn ∈ L2(Rn). The question is to decide whether there are sampling
and interpolating sequences in this space. In the Lp- version of this space,
p �= 2, this turns out to be false, as a consequence of Fefferman’s theorem
on the ball multiplier (J. Ortega-Cerdà, private communication). On the
other hand, in [14] it is shown that the answer is affirmative for a class of
convex polygons. In the case where S is a finite union of intervals, it is not
known in general whether Riesz basis of exponentials exist; this is known
as the multiband problem. Partial results appear in [15] and [27]. A very
interesting connection with quasicrystals is shown in [11], [13], [17] and [19].
Connections with compressed sensing through the notion of universal sam-
pling have been undertaken in [18] and [22].
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A lemma of De Giorgi

Luis A. Caffarelli
∗

In 1956, at age 28, Ennio de Giorgi [9]
solved the 19th Hilbert problem by proving
the regularity and analyticity of variational
(weak) solutions to nonlinear elliptic vari-
ational problems. More precisely, given a
variational integral

T (u) =

∫
Ω

F (∇u) dx ,

local minimizers, u0, of T (u) satisfy the
Euler–Lagrange equation

divFj(∇u) = 0

(with Fj = DjF ) in the sense that ∇u ∈ L2 and

Ennio de Giorgi

∫
Ω

∇ϕ Fj(∇u) dx = 0

for any ϕ compactly contained in Ω, and ∇ϕ ∈ L2.
The function F is supposed to be strictly convex and smooth, i.e., λI ≤

Fij(·) ≤ ΛI, and one observes easily that

a) divFj(∇u) = Fij(∇u)Diju

also that

b) if w is a directional derivative Dσu, then DiFij(∇u)Djw = 0 .

It follows from a) that if ∇u0 were Cα, then u0 would be C2,α (from
Schauder estimates), ∇u0 would be C1,α and so on. However, all we know at
this point is that∇u ∈ L2 and also the ellipticity estimate λI ≤ Fij(·) ≤ ΛI .

So, De Giorgi set out to prove a linear theorem.

If in B1 ⊂ Rn the function w satisfies

Diaij(x)Djw = 0 with λI ≤ aij ≤ ΛI ∀x

and ∇w ∈ L2 (this is attained by replacing w = Dσu0 by an incremen-
tal quotient),

then in B1/2, the function w is Cα.

∗caffarel@math.utexas.edu.
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Note that the theorem is linear, but it is in a higher invariance class.

If aij where smooth, under dilations of the space it becomes “constant”
coefficients (the Laplacian) and this was the basis of the existing regularity
theory (Schauder, Calderón–Zygmund, Cordes–Nirenberg).

But now, no matter how much we rescale the equation, the coefficients
from aij(x) to aij(εx) remain “bounded measurable” and far from constant.

The complete proof of Hilbert problem, of just 18 pages, is very ele-
gant and geometric and the underlying ideas have been used extensively
for regularity of solutions to integral equations [3, 6], the partial regular-
ity of solutions to Navier–Stokes equation, [8, 10], homogenization, phase
transitions [1], free boundary problems [2, 4].

The lemma referred to in the title is the first part of his proof, and
consists in showing that if w+|B1 ∈ L2, then w+|B1/2

∈ L∞ and

sup
B1/2

w+ � ‖w+‖L2(B1).

The main ingredient in the proof is that for all truncations wλ = (w − λ)+

of w, we have competing inequalities between ‖w‖L2 and ‖∇w‖L2 and they
have different homogeneities.

The first one is a general fact, Sobolev inequality: If ϕ is a cutoff function
in B1, i.e., ϕ ≡ 0 near ∂B1,

‖ϕwλ‖Lp ≤ C‖∇(ϕwλ)‖L2

for some p(n) > 2.

The second, instead, the energy formula, holds for solutions w of an
equation

DiaijDjw = 0.

It says that ∫
B1

∇(ϕw2
λ) ≤ sup

B1

|∇ϕ| ·
∫
B1

w2
λ .

A very original interplay between these two inequalities implies the lemma.

The underlying geometric idea in De Giorgi’s lemma is that if we have a
hypersurface (the boundary of a set, or a graph) where two “elliptic quanti-
ties” of different homogeneity compete, this imposes some “scale invariant”
control on the geometry of the surface.

Examples are:

1) The interaction between “Sobolev and energy inequalities” for problems in
the calculus of variations: by Sobolev “(the L2 norm of) derivatives control
the (Lp norm of the) function” while, for energy minimizers, the (L2 norm
of the) function controls the (L2 norm of) derivatives [9].
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2) “Volume and area”: By the isoperimetric inequality (“Sobolev”) area
controls volume (to the n−1

n
), and for a minimal boundary, locally “volume

of the set controls area of the boundary (from appropriate perturbations) [5].

3) “Harmonic measure and area”: For a free boundary problem where curva-
ture and harmonic measure interact, boundary curvature controls harmonic
measure (with different homogeneities) and from the free boundary condi-
tion, harmonic measure controls boundary area (and curvature) [2].

In this note, I would like to show how these ideas work in two completely
different circumstances, to provide important information.

The first example, from a work in collaboration with A. Vasseur [6]
(see also [3]), uses these ideas to prove that solutions to the surface quasi-
geostrophic equations, with initial data in L2, become instantaneously boun-
ded. It is a simple case since being an “all space” theorem it does not need
space truncations.

The second, in collaboration with Roquejoffre and Savin [5], concerns
“nonlocal” minimal surfaces, and it exhibits the fact that the De Giorgi
lemma has a geometrical underpinning beyond the apparent “functional
character” of his lemma.

1. The parabolic lemma

We assume that u(x, t) satisfies an integral heat equation

ut(x, t) =

∫
Rn

[
u(y, t)− u(x, t)

]
K(x, y, t) dy

• where the kernel K(x, y, t) is comparable to the s-fractional Laplacian
kernel

K(s)(x, y) =
(1− s)
|x− y|n+2s

in the sense that

λK(s) ≤ K ≤ ΛK(s) for all x, y, t

(this replaces the uniform ellipticity hypothesis: λI ≤ aij ≤ ΛI);

• and K is symmetric in x, y, i.e., K(x, y, t) = K(y, x, t).

We want to prove:

Theorem 1
u+(0, 1) ≤ C‖u+(x, 0)‖L2 .

As we pointed out before, this is obtained by the interplay of two com-
peting inequalities: Sobolev and energy.
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We assume that the weak solution u(x, t) is good enough so that we can
multiply by a truncation, uλ(x, t) = (u(x, t)− λ)+ and integrate by parts:∫ t2

t1

∫
Rn

uλ(z, t) ut(z, t) dz dt =

=

∫ t2

t1

∫
Rn×Rn

uλ(z, t)
[
(u(y, t)− u(z, t)

]
K(z, y, t) dz dy dt

We note that, from the symmetry of K we can interchange the roles of z
and y:

=

∫ t2

t1

∫
Rn×Rn

uλ(y, t)
[
u(z, t)− u(y, t)

]
K(z, y, t) dy dz dt

add and divide by 2:

=

∫ t2

t1

∫
Rn×Rn

[
uλ(z, t)− uλ(y, t)

]
·K(z, y, t)

[
u(y, t)− u(z, t)

]
dz dy dt

= −
∫ t2

t1

Bt(uλ, u) dt,

where

Bt(f, g) =

∫
Rn×Rn

[
f(z)− f(y)

]
K(z, y, t)

[
g(z)− g(y)

]
dz dy.

That is, we have now the formula∫
Rn

u2λ(z, t2) dz +

∫ t2

t1

Bt(uλ, u) dt =

∫
Rn

u2λ(z, t1) dz.

To complete the inequality, we note that Bt(uλ, u− uλ) ≥ 0 by considering
the four cases x, y ∈ {uλ > 0} or {uλ = 0}, and we get the final energy
inequality

Et1,t2(uλ) =

∫
Rn

u2λ(z, t2) dz +

∫ t2

t1

Bt(uλ, uλ) dt ≤
∫
Rn

u2λ(z, t1) dz

But, from the hypothesis

λK(s) ≤ K ≤ ΛK(s)

the bilinear form verifies

Bt(uλ, uλ) ∼ ‖uλ(·, t)‖2Hs
.
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We want to use now, complementary to the energy inequality, the Sobolev
inequality for some p > 2 (the important thing about p is p > 2):[ ∫ t2

t1

∫
Rn

uλ(z, t)
p dz dt

]2/p
≤ C

[
sup

t1≤t≤t2
‖u(·, t)‖L2 +

∫ t2

t1

‖uλ(·, t)‖2H2
dt

]
≤ C sup

t1≤t≤t2
Et1,t(uλ)

≤ C

[ ∫
Rn

u2λ(z, t1) dz

]
.

Finally, from Hölder inequality,∫ t2

t1

∫
Rn

uλ(z, t)
2 dz dt ≤

[ ∫ t2

t1

∫
Rn

upλ(z, t) dz dt

]2/p∣∣{uλ > 0}
∣∣(1− 2

p
)
.

Now, we reproduce the De Giorgi lemma.

We will choose t2 =∞, for a sequence of truncations of u: λk = 1− 2−k,
and for an appropriate sequence of times tk:

tk ∈ Ik =
(

1− 2−k, 1− 2−(k+1)
)

one has∫
Rn

u2λk(z, tk) dz = inf
Ik

[ ∫
Rn

u2λk(z, t) dz

]
≤ 2k

∫
Ik

∫
Rn

u2λk(z, t) dz dt

Finally, we will denote

Ak =

[ ∫ ∞

tk

∫
Rn

[
uλk(z, t)

]p
dz dt

]2/p
and obtain a recurrence relation for Ak (t0 = 0, λ0 = 0).

Then

A0 ≤ C

∫
Rn

u2(z, 0) dz

and

Ak+1 ≤ C1 · Etk+1,∞(uλk+1
)

≤ C2

∫
Rn

u2λk+1
(z, tk+1) dz

≤ C3 · 2k+1

∫ ∞

tk

∫
Rn

u2λk+1
(z, t) dz dt

≤
[ ∫ ∞

tk

∫
Rn

upλk+1
(z, t)dz dt

]2/p
|{uλk+1

> 0}|ε.

(1)
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But now, we jump from k + 1 to k:

a) uλk > uλk+1

b) {uλk+1
> 0} = {uλk > 2−k} and

c) |{uλk+1
> 0}| = |{uλk > 2−k}| ≤ 2pk

∫
(uλk)p

So we get

Ak+1 ≤ C 2εkp
[ ∫ ∞

tk

∫
Rn

upλk(z, t) dz dt

] 2
p
+ε

. (2)

All together we get the nonlinear relation

Ak+1 ≤ C 2MkA
(1+ε̄)
k .

If A0 is small enough (≤ D) (depending on C,M, ε̄), Ak → 0. That is,∫ ∞

1

∫
Rn

(u(z, t)− 1)+ dz dt ≡ 0.

Since the operator is linear, it follows that

‖u‖L∞(Rn,t>1) ≤
1

D
‖u(·, 0)‖L2(Rn).

2. Nonlocal minimal surfaces

The second application concerns nonlocal minimal surfaces in the context of
“minimal boundaries” [5].

The idea of minimal boundaries was also introduced by De Giorgi, fol-
lowing Cacciopoli:

Definition. A set Ω has locally finite perimeter if its indicator function has
locally finite bounded variation.

A weak definition can be given, for instance, by using formally Greens
theorem:

“
∫
∇χΩϕ+

∫
χΩ∇ϕ = 0

”

The first term does not make “Lp sense” but the second does, provided
that ϕ is C1:

Definition. Ω has finite perimeter in the unit ball B1 if, for any ϕ in
C0(B1), ∣∣∣ ∫ χΩ∇ϕ

∣∣∣ ≤ CB1‖ϕ‖L∞.

The optimal CB1 is the perimeter of Ω in B1.
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Then, we can define: The set Ω has “minimal perimeter” in B1, if any
other set Ω̃ that coincides with Ω outside B1. (Ω � Ω̃ ⊂ B1) has larger
perimeter than Ω.

Minimal surface theory of which De Giorgi was a main contributor then
shows that ∂Ω∩B1 is an analytic surface except for a set of (n−8)-Hausdorff
measure 0. An important property in the theory of sets of minimal perimeter
is the “uniform density property”: For any ball Bρ(x0) contained in the
domain of minimality (say B1), and centered on ∂Ω,

|Bρ ∩ Ω| and |Bρ ∩ ΩC | ≥ λ|Bρ|

for some λ > 0 depending only on dimension. Further, ∃ μ > 0 also depend-
ing only on dimension such that for some z1, z2

Bρ(x0) ∩ Ω ⊃ Bμρ(z1) and Bρ(x0) ∩ ΩC ⊃ Bμρ(z2).

In particular, Hn−ε(∂Ω) = 0 for some small ε.

There is also a compacity result within this family of sets having locally
finite perimeter, namely: given a sequence Ωk that converges to Ω0 in L1,
then it actually converges uniformily (i.e., in Hausdorff distance).

Nonlocal minimal surfaces (or sets of nonlocal minimal perimeter) arise
in geometry and in problems involving phase transition with long range
interactions.

In this case, the set Ω, instead of minimizing perimeter, minimizes the Hs

norm of its characteristic function:

Es(Ω) =

∫∫ |χΩ(x)− χΩ(y)|2
|x− y|n+2s

=

(∫∫
χΩ(x)χΩC (y)

|x− y|n+2s

)
.

Some remarks

1) Es(Ω) is infinite for s ≥ 1/2, even for Ω a ball. In fact, if we renormalize

Es to Ẽs = (1−2s)Es and Ω is a smooth and bounded set, then Ẽs(Ω)
converges to Perimeter(Ω) as s→ 1/2 (see [7]).

2) Let us define the bilinear form on sets

L(S, T ) =

∫∫
χS(x) χT (y)

|x− y|n+2s
.

Then, if Ω is a minimizer in B1, A ⊂ Ω ∩ B1 and we compare EΩ

with EΩ\A, a simple computation gives us that

L(A,Ω \ A)− L(A,ΩC) ≥ 0,
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while if A ⊂ ΩC ∩B1,

L(A,Ω)− L(A, (A ∪ Ω)C) ≤ 0.

3) If we dilate the sets by λ,

L(λS, λT ) = λn−2sL(S, T ).

4) L(B1, B
C
1 ) = C0 = C0(n, s) <∞ for s < 1/2.

5) If Ω is a minimizer in B1 and A = (Ω ∩B1), from 2) we get

L(Ω ∩B1,Ω \B1) ≥ L(Ω ∩ B1,Ω
C).

In particular, the “internal energy” verifies

L(Ω ∩ B1,Ω
C ∩B1) ≤ L(Ω ∩B1,Ω \B1) ≤ L(Ω ∩ B1,R

n \B1).

This inequality uses that Ω is a minimizer and replaces the “energy
inequality”.

The opposite one is Sobolev inequality: There exists a p = p(n, s) > 2 so
that for any bounded set Σ,

‖χΣ‖Lp ≤ C‖χΣ‖Hs .

We now show:

Density Lemma. There exists a small constant δ0, so that if Ω is a min-
imizer in B1, and |Ω ∩B1| ≤ δ0, then |Ω ∩B1/2| = 0.

Proof. We will consider a sequence of truncations

Ωrk = Ω ∩ Brk , with rk = 1
2

+ 2−k

and
Ak = ‖χΩrk

‖2Lp = (Vol Ωrk)2/p

In particular A1 ≤ δ0. Then, from Sobolev inequality for a generic r we have

Ar ≤ L(Ωr,Ω
C
r ) = ‖χΩr‖2Hs

But, from minimality (see 5) above)

L(Ωr,Ω
C
r ) ≤ L(Ωr,R

n \Br)

Next we estimate L(Ωr,R
n \Br) in terms of a(t) the area of Ωr ∩ ∂Bt.
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Note that if |x| = t < r∫
BC

r

1

|x− y|n+2s
dy = C(r − t)−2s.

Therefore, for r > 1,

L(Ωr,R
n \Br) ≤

∫ r

0

a(t)(r − t)−2s dt.

Together with the Sobolev inequality this gives us

Ar ≤ C

∫ r

0

a(t)(r − t)−2s dt.

Integrating in r from 0 to rk we get∫ rk

0

V 2/p(Ωr) ≤ Cr2−sk V (Ωrk).

Since V (Ωr) is monotone in r we get, as before, the recurrence relation(
V (Ωrk+1

)
)2/p

≤ C 2kV (Ωrk).

As before, this completes the proof of the lemma. It follows from here,
with appropriate covering lemmas that

a) There exists λ > 0 such that, if X0 belongs to the “minimal surface”,
∂Ω, then for any r, there are balls

Bλr(Y1) ⊂ Ω ∩ Br(X0),

Bλr(Y2) ⊂ Ω ∩ Br(X0),

and

b) Hn−2s(∂Ω ∩Br(X0)) ≤ rn−2s.
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Amplification and Quantum Chaos
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1. The paper and its importance to me

I am writing about the paper by H.
Iwaniec and P. Sarnak entitled L∞

norms of eigenfunctions of arith-
metic surfaces published in Annals
of Mathematics (see in [11] the full
reference). It establishes an up-
per bound for the absolute value
of the eigenfunctions of the Lapla-
cian (more properly, of the Laplace-
Beltrami operator) on some Rie-
mann surfaces with arithmetic sig-
nificance. This is a fundamen-
tal problem in the so-called Arith-
metic Quantum Chaos (after [18]),
a branch of Mathematics that em-
ploys number theoretical methods
to answer some questions coming
from Physics.

There are other papers more influential to me but, as far as I remember,
this was the first time in my career that I understood entirely a contemporary
paper in a top-level journal like Annals of Mathematics. Moreover, it dealt
with a very young topic (I was lucky attending some of the first lectures on
Arithmetic Quantum Chaos) that I considered highly technical. I felt self-
confident but I would not have understood anything without the expertise
guidance of Professor Iwaniec who, by the way, gave me the preprint and
whose explanations in his book [9] published in the Biblioteca de la Revista
Matemática Iberoamericana, were crystal clear.

Besides, I have chosen this paper because it gives me the opportunity of
writing some lines about the beautiful amplification method and exposing
some basic ideas about the spectral theory of automorphic forms escaping
from the technical details.
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2. The amplification method

Let me employ rigorlessly the term harmonic to mean something capable of
being included in some kind of spectral resolution.

Spectral completeness is crucial in analysis and in its applications to
number theory. Usually it turns out to be important and difficult to single
out the contribution of only one harmonic. A natural approach resides in
using peak functions in the spectral resolution to select a range of harmonics,
dropping all except one by some instance of positivity to get an upper bound.

The amplification method is a simple and effective method (or a trick
working several times, if we accept the definition in [17, p. 117]) that breaks
the analytic barrier established by the uncertainty principle in some conspic-
uous situations. To my knowledge, it was originally introduced in [8]. The
key idea is the definition of an amplifier, playing the role of the peak function,
given by the square of a (usually short) linear form depending on the har-
monics. Opening the square we expect interferences (quasi-orthogonality)
but on the other hand, with a suitable choice of the variables of the form we
can amplify the contribution of a single harmonic. This has some slight re-
semblances with Selberg’s technique in sieve theory in which squares of linear
forms are employed to imitate Möbius μ function minimizing upper bounds.

To specify the idea, I prefer to go through the note [1] that is the simplest
application to my taste of the amplification method.

Dirichlet characters to modulus q are the multiplicative periodic func-
tions χ : Z −→ C such that |χ(n)| = 1 if gcd(n, q) = 1 and χ(n) = 0
otherwise. They define homomorphisms from the multiplicative group of
Z/qZ onto S1 and they are the commonly employed harmonics to analyze
multiplicative periodic functions. An important problem in number theory
is to give non-trivial upper bounds for S(χ,N) =

∑N
n=1 χ(n) with N very

small in comparison with q. In [1] it is considered this problem for χ = χr0χs0
where the notation χk means a Dirichlet character to modulus k. Using the
orthogonality relations and some known character sum bounds it is possible
to prove ∑

ψ

∣∣∑
l≤L

clψ(l)
∣∣2∣∣S(ψχs0, N)

∣∣2 � ‖�c‖2F (N,L, r0, s0)

for certain F and with ψ running through all characters to the modulus r0.
We are not interested in an average bound of this kind but in selecting the

case ψ = χr0 . To this end one takes cl = χr0(l), then
∣∣∑

l≤L clψ(l)
∣∣2 amplifies

the value of
∣∣S(χr0χs0 , N)

∣∣2 multiplying it by something close to L2. Even
more, at least conjecturally the orthogonality suggests that the amplifier
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is very small for ψ �= χr0 and dropping these terms is not a big loss. In
this way the method beats uncertainty principle and indeed beats the best
known bounds for S(χ,N) in some ranges.

3. Arithmetic Quantum Chaos

In quantum mechanics the classical well-determined trajectories are substi-
tuted by something blur described by a wave function and the square of its
absolute value gives, according to Copenhagen interpretation, a probability
of detecting the particle. Using spectral analysis these wave functions are
expressed in terms of eigenfunctions of a second order self-adjoint differential
operator and the eigenvalues correspond to energy levels.

Quantum chaos asks about how some properties of classical dynamics are
reflected in the quantum picture, specially those corresponding to chaotic
features. It is a quite open subject and surprisingly arithmetic has provided
a number of results, examples and counterexamples [2, 18].

To mention an interesting instance of Arithmetic Quantum Chaos and
for the rest of the paper, we introduce the modular surface

X = Γ\H where Γ =
{
z → az + b

cz + d
with

(
a b
c d

)
∈ SL2(Z)

}
and H is the Poincaré upper half plane with the area element (invariant
measure) dμ(x + iy) = y−2 dx dy. The group Γ can also be described as
generated by the translation z → z + 1 and the inversion z → −1/z.

Laplace-Beltrami operator in X has a discrete spectrum {λj}∞j=0 (and
also a continuous spectrum). The corresponding L2-normalized eigenfunc-
tions are called Maass wave forms {uj}∞j=0. Conjecturally the multiplicity
is one and they are uniquely determined. A recent major advance in Arith-
metic Quantum Chaos is the proof of the QUE conjecture (see [14, 5, 21])
that reads

|uj(z)|2 dμ(z)→ dμ(z) as λj →∞.

In this acronym Q stands for Quantum, because we are dealing with eigen-
functions; U stands for unique, because the limit was known for a subse-
quence and one conjectures that it is the same for any other subsequence;
and E stands for ergodicity, because it shows equidistribution when the en-
ergy grows (large eigenvalues).

The proof of QUE depends heavily on the arithmetic symmetries of X
through the Hecke operators and on some techniques from analytic number
theory like sieve methods and subconvexity bounds for L-functions.



96 Fernando Chamizo

4. The result and its proof

The funny shape of atomic orbitals shows that eigenfunctions can have large
peaks. Quantum chaos heuristic suggests that the negative curvature pre-
vents hyperbolic surfaces from similar examples and we expect a kind of
boundedness of the eigenfunctions when the energy grows as a manifesta-
tion of the chaotic geodesic flow. This boundedness opposes scarring, the
situation of physical significance in which large values are concentrated along
a curve [4].

We expect for z in a compact set K ⊂ X

|uj(z)| ≤ Cε,Kλ
ε
j for every ε > 0,

where uj(z) is a Maass wave form with eigenvalue λj (see p. 178 of [10], the
second edition of [9], for the lack of uniformity in z). In the paper it is
proved that this is true for every ε > 5/24 and that it does not extend to
ε = 0, revealing the statistical nature of QUE. We focus on the proof of the
first part.

The spectral analysis in L2(X) implies a kind of Poisson summation
formula, sometimes called pretrace formula, that reads∑

γ∈SL2(Z)

K(z, γw) =
∑
j

h(λj)uj(z)uj(w) + · · ·

where the dots represent the contribution of the continuous spectrum and K
and h are related by means of an integral transform. Note that the right hand
side contains spectral information and the left hand side contains a certain
geometric information (Selberg trace formula captures in a very elegant and
appealing way the duality between analysis and geometry embodied in the
pretrace formula [10]). A suitably chosen peak function h would give, taking
z = w, a bound for |uj(z)|2. The idea is to employ the amplification method
to beat it.

The Hecke operators Tn are some arithmetically defined operators such
that Tnuj(z) = ηj(n)uj(z) (we depart from the usual notation to avoid
confusions). A fundamental point is that the numbers ηj(n) ∈ R satisfy the
multiplicative relation

ηj(n)ηj(m) =
∑

d|gcd(n,m)

ηj

(nm
d2

)
.

Consider the expression

S =
∑
j

h(λj)Aj|uj(z)|2 with Aj =
∣∣∑
n≤N

anηj(n)
∣∣2.
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Opening the square in the amplifier Aj, the multiplicative relation ex-
presses S as a sum of Hecke operators applied to the pretrace formula, giving
an upper bound for S (of course one needs to manipulate the exact definition
of the Hecke operators that we do not include here). It is conjectured but not
known that Aj is large for an = ηj(n). To avoid this insidious difficulty the
authors appeal again masterly to arithmetical properties: Choosing an = −1
if n is the square of a prime, an = ηj(n) if n is a prime less than

√
N , and

an = 0 otherwise. The multiplicative property assures ηj(p)
2 − ηj(p2) = 1

for p prime and the choice of an gives readily by the prime number theorem
Aj ∼

√
N/2 logN . In this way the value of |uj(z)|2 is amplified by this

amount. For other eigenfunctions, the amplifier is expected to be small (due
to some independence difficult to quantify) and they are anyway disregarded
by positivity. Combining all the estimates the result is proved.

The beauty of the paper stems from the explotation of the arithmeti-
cal properties in an analytic context. We only know so strong bounds for
eigenfunctions in hyperbolic surfaces using these techniques.

5. A glimpse on Kloostermania

Maass wave forms and their spectral theory play a role on the broader picture
of Langlands program and it can be employed to justify the interest of
number theorists on these topics but my little understanding of this point
of view, forces me to focus on the part that boosted the subject and is still
fruitful. I have recovered for the title the word Kloostermania that was in
use 20 years ago to express the boom of this approach (see the comments
in [3] and [16]).

Kloosterman sums are defined as

S(m,n; c) =

c∑
k=1

(k,c)=1

e2πi(mk+nk
′)/c with kk′ ≡ 1 (mod c).

They appear naturally when studying the distribution of the inverses mod-
ulo c. For instance, to localize simultaneously a class and its inverse one
uses

∑
w1(k)w2(k

′) for some bump functions w1, w2 and their Fourier se-
ries expansions lead to Kloostermann sums. Historically they appeared in
a different context, in a version of the circle method due to H. D. Klooster-
mann [12]. He gave a non-trivial bound for S(m,n; c) and two decades later
A. Weil [22] got |S(m,n; c)| ≤ d(c)c1/2 for m, n and c coprimes and d(c)
meaning the number of divisors, which is optimal in a certain sense accord-
ing to average results.
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On the other hand H. Maass introduced in 1949 [15] non-holomorphic
automorphic forms (in particular Maass wave forms) in connection with the
study of real number fields. Automorphic forms (from the arithmetical point
of view) are linked to the group SL2(Z), defined by the determinant equa-
tion ad − bc = 1. Fixing c and d (the lower row of the matrix) a and b
are determined by a choice of the inverse of d modulo c. With this idea in
mind one can cook up special automorphic forms (Poincaré’s series) hav-
ing Kloosterman sums as Fourier coefficients. Their generating properties
allowed A. Selberg in 1965 [20] to bound Fourier coefficients of “general”
automorphic forms (in the narrow arithmetic sense) through Weil bound.

The breakthrough came with a paper by N. V. Kuznetsov [13]. The
name Kloostermania was introduced by M. N. Huxley who wrote a nice
early survey explaining the main ideas [6]. Instead of writing Kuznetsov
formula fully I prefer just to outline the main terms∑

c

S(m,n; c)

c
f

(
4π
√
|mn|
c

)
=
∑
j

f̃(tj)ρ̄j(m)ρj(n) + . . .

where f ∈ C∞
0 [0,∞), f̃ is a certain Bessel transform and {ρj(n)}n∈Z are the

Fourier coefficients of the Maass wave form uj(z). It can be employed in
both directions. Our knowledge in spectral theory applied to the right hand
side implies ∣∣∣∣∑

c≤x

S(m,n; c)√
c

∣∣∣∣ < Cx2/3 log x.

This paradoxical improvement on Weil optimal bound comes from the vari-
ation of the sign of S(m,n; c). In arithmetical terms, we can control the
distribution of inverses for varying moduli and it has a profound impact on
many problems [7, 16, 19].
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In the search of Q-curvature

Sun-Yung Alice Chang
∗

In my career, there have been a number of outstanding papers by dis-
tinguished mathematicians which have greatly influenced the way I think
about mathematics. For example, during the years 1971–1974, when I was
a graduate student studying under the supervision of Donald Sarason at
the University of California, Berkeley, the whole field of analysis was ener-
gized by the result of Charlie Fefferman and Elias Stein on the duality of H1

and BMO. In particular, the linking of their result to the work of Carleson on
the Corona Problem have electrified a whole generation of mathematicians
working in the field of real and complex analysis. This greatly influenced
me as a young student studying the topic of bounded analytic functions in
the complex plane.

Here I would like to share an experience I have had, that by sheer good
luck, after many years working on a topic, when I learned a result which has
since played a most important role in my work.

Starting from mid 1980s, I began to do some joint work with my hus-
band Paul Yang –who was one of my fellow graduate students and who was
trained as a geometer. We had started seriously discussing mathematics
only after we had known each other for over ten years and eventually found
some common interests in a problem. The problem we were studying is the
problem known as the “Nirenberg problem” —when can a function K de-
fined on the sphere be identified as the Gaussian curvature of a metric on
the sphere? Denote the metric by ĝ = e2wg, where g denotes the surface
measure on the sphere. Nirenberg’s problem can be formulated as a PDE
problem, that is, when does the non-linear PDE

−Δgw +Kg = Ke2w (1)

allows a solution w on the sphere? (Here on the sphere Kg ≡ 1, K = Kĝ).

One of main tools Paul and I have used to study the problem is a sharp
borderline version of the Sobolev inequality which Jurgen Moser has in-
troduced earlier to study this problem; inequality nowadays called Moser–
Trudinger inequality. It is still one of the most important tools in the study
of curvature variational problems in both Riemannian and Kähler geometry.

The importance of Gaussian curvature in the theory of surfaces is partly
due to the role that it plays in the Gauss–Bonnet formula and in the Uni-
formization Theorem. In the late 1980s to mid 1990s, in the mathematical
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community there was also an intensive study of the “Yamabe problem” on
manifolds of dimension n ≥ 3. The problem can also be thought as a gen-
eralization of the uniformization theorem —that in each conformal class of
metrics, one can find a representative, whose scalar curvature is a constant
function. There are the celebrated important works of the solution of the
problem by Yamabe, Trudinger, Aubin and Schoen. On the other hand, the
sign of the integral of scalar curvature alone does not classify manifolds. In
the meantime, through the work of Tom Branson [1], Paul and I began to
pay attention to a new type of curvature called the Q-curvature, which was
initially defined on four manifolds. It is related to a fourth-order differen-
tial operator P discovered in 1983 by S. Paneitz [11]; the relation of the
pair (P,Q) on four manifolds is very similar to that of the pair (−Δ, K) on
2-surfaces:

Pgw +Qg = Qĝ e
4w (2)

on four manifolds, where ĝ = e2wg. The Q-curvature is defined as

Q =
1

6
(−ΔR +R2 − 3|Ric|2), (3)

where R denotes the scalar curvature and Ric the Ricci curvature on the
Riemannian manifold.

By the Gauss-Bonnet formula, the integral of Q is a conformal invariant;
and through the work of Matt Gursky [10] and others, the sign of this integral
has a geometric and topological implication on the four manifold. It also
turns out that on general n manifolds, there exists a pair of (P,Q) of n-th
order operators and curvatures as discovered by Graham, Jenny, Mason and
Sparling [8] with their construction based on an earlier work of C. Fefferman
and R. Graham [6].

Many of the tools in the study of Gaussian curvature can be extended
to study the Q-curvature and the effort still is going on today. There are
questions in the subject which really puzzled me for a long time.

On compact manifolds without boundary, the divergence term ΔR in
the expression of Q integrates to zero. Thus the term does not contribute
to the integral of Q; while in terms of the number of differentiation of the
metric, it is a 4-th order hence the highest order term in Q, what role does
it really play?

Is there a geometric meaning in the curvature term Q? For example, the
sign and the size of the scalar curvature compares the volume of the ball near
the point to that of a Euclidean ball, can one ask what does the Q-curvature
measure? One can also ask the same question for the quadratic polynomial
(R2 − 3|Ric|2) which appears in the expression of the Q-curvature.
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In 1998–99, after having been a faculty at UCLA for over 16 years,
I moved to Princeton. Almost immediately after my move, I happened
to have a talk with Jeffrey Viaclovsky, a graduate student at Princeton,
who at the time had just written his thesis. In this thesis, he pointed out,
through the angle of conformal geometry and Cartan’s computation, that
the full Riemannian curvature Rm on a Riemannian manifold (Mn, g) can
be decomposed into two parts:

Rm(g) = Wg ⊕ Ag©∧ g,
where Wg denotes the Weyl tensor and Ag denotes the Schouten tensor of
the metric g:

Ag =
1

n− 2

(
Ricg −

Rg

2(n− 1)
g
)
.

Since Weyl curvature is a pointwise invariant under the conformal change of
metric (g to ĝ), all the information of the conformal change of metric of the
full curvature tensor of Rm is contained in the change from Ag to Aĝ. This
led Viaclovsky [12] to study in his thesis the functional Fk

Fk : g →
∫
σk(Ag)dvg

for k < n
2
. Here σk(Ag) denotes the k elementary symmetric function of the

eigenvalues of Ag; e.g., when k = 1, σ1(Ag) = 1
2(n−1)

Rg, where Rg denotes

the scalar curvature of the metric g (thus the study of F1 is the study of the
Yamabe functional); when k = n, σn(Ag) = determinant ofAg.

It struck me that this notion is exactly what I had been searching for!
As when n = 4 and k = n

2
= 2 we have exactly

σ2(Ag) =
1

24
(Rg

2 − 3|Ricg|2), thus Q = −1

6
ΔR + 4σ2(Ag).

It also turns out that in this case, with the additional assumption that the
scalar curvature is either positive or negative, the sign of σ2(Ag) is the same
as that of the curvature tensor Ricg, thus has a strong geometric implication.

One can then use the techniques developed in the study of fully non-
linear PDE (in particular the Monge–Ampère equations) to study the equa-
tion σk(Aĝ) = constant. This study has since become an active branch of
research in itself.

Built on this piece of pure luck —knowing a crucial fact at a crucial
point— Matt Gursky, Paul Yang and I continued our program on the study
of the Q-curvature; this eventually led to some classification results of four
manifolds [2, 3]; thus confirmed our earlier belief that

∫
Qgdvg is an impor-

tant conformally invariant quantity on four manifolds, the sign and the size
of which both carry important geometric information.
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Later on we continued to learn more about the connection of this confor-
mal invariant to other invariants in the conformal compact Einstein setting
through the work of Fefferman–Graham [6], Graham–Zworski [9]. In partic-
ular, we finally understood more about the role played by the 4-th order cur-
vature term ΔR in the expression of the Q-curvature; that in the setting of
compact manifold with boundary (or in conformally compact manifold with
conformal infinity) it links the behavior of the metric on the boundary to its
interior. We are able to understand some global invariant quantity on the
manifold in the more recent work of Chang–Qing–Yang [5], Graham–Juhl [7]
and Chang–Fang [4]. The study of this very special geometric invariant has
been quite a fruitful adventure for me!
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All those rectangles
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∗

Among the different publications that I could have considered to fill the
goals of this issue, namely, to sustain that papers matters, there are three
which have specially influenced my early mathematical career:

• “Note on the differentiability of multiple integrals”, Fund. Math. 25
(1935), by B. Jessen, J. Marcinkiewicz and A. Zygmund;

• “Extremum problems with subsidiary conditions”, by F. John (pub-
lished in Studies and Essays, Interscience, NY, 1948);

• and “The multiplier problem for the ball”, Ann. of Math. 94 (1971),
by C. Fefferman.

Although one generally agrees with Simone Signoret who wrote that to
be nostalgic is always a mistake, let me mention that during the academic
year 71–72, I was a beginning graduate student at the Mathematics Depart-
ment of the University of Chicago, but the years before, as an undergraduate
at the Universidad Complutense of Madrid, was mostly fascinated by ab-
stract algebra and Grothendick’s approach to algebraic geometry. Neverthe-
less, I was fortunate to attend a series of lectures given by Antoni Zygmund
in Madrid in 1971, and also by Alberto Calderón, the year before, where he
presented his results on uniqueness for the Cauchy problem and his theory
of pseudodifferential operators. Miguel de Guzmán encouraged me to follow
those lectures which somehow changed my life, among other things because
I was offered a fellowship to become a graduate student at Chicago. But
before arriving at that university, I was exposed and grasped a certain un-
derstanding about the role of singular integrals, Fourier multipliers, maximal
functions, covering lemmas and all that.

As most students in the late sixties, I also participated in the efferves-
cence of ideas and cultural changes which spread around many university
campuses during those years, but that, in the particular case of Spain, were
entangled with the fight for democracy. Regarding science, there was a pub-
lication which produced a great impact in our vision of research, namely
The structure of scientific revolutions by T. Kuhn. We liked the idea of
“paradigm” and the description of “ordinary” science as the search for new
results following the established ones, together with some “contradictions”
which, eventually, will built up enough evidence helping us to discover new
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paradigms in a kind of revolutionary process. Naturally we were so young
and näıf to consider the idea of a scientific hero as the one who would lead
us in that project. At the university of Chicago, while following the grad-
uate program and sharpening my analytical tools, I wrote an essay about
Lebesgue’s integral being one of the best established paradigms of modern
mathematics, as it was the Calderón–Zygmund theory of singular integrals
in Fourier Analysis. It was then when I paid an special attention to the first
of the three articles mentioned above. Let me give a brief description of its
content:

An important tool in Harmonic Analysis is the Hardy–Littlewood max-
imal function, defined over locally integrable functions f as the “sup” of its
averages over all cubes containing x:

Mf(x) = sup
x∈Q

1

μ(Q)

∫
Q

|f(y)| dμ(y),

where μ denotes Lebesgue’s measure in Rn.
At the time when I read that paper it was well understood how quanti-

tative estimates for Mf imply the fundamental theorem of calculus in the
context of Lebesgue’s measure theory. Furthermore, the properties of the
maximal function were reduced to the understanding of the simple geometry
of cubes in R

n throughout the so called Vitali’s covering lemma. But also the
Calderón–Zygmund decomposition of a function f at a level α yields a fam-
ily of disjoint dyadic cubes {Qj} so that |f(x)| ≤ α a.e. in the complement
of their union ∪Qj and satisfies that

α <
1

μ(Qj)

∫
Qj

|f(y)| ≤ 2n α.

If we now paint each dyadic generation of
those cubes with a different colour, we will ob-
tain (in dimension 2) a Mondrian, and such
collection of neoplasticist paintings will help us
to understand the action of singular integrals
upon the function f .

That is the case for classical (isotropic) sin-
gular integrals but not, for instance, for the
double Hilbert transform. The paper of Jessen,
Marcinkiewicz and Zygmund affords the needed
extension introducing what they called strong
maximal function

MSf(x) = sup
x∈R∈Bn

1

μ(R)

∫
R

|f(y)| dμ(y),
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where the “sup” is now taken over all parallelepipeds containing the point x
and whose sides are parallel to the coordinate axes (Bn).

It was observed by E. Saks that Lebesgue’s differentiation theorem failed
for general locally integrable functions in Rn, n > 1, when we substitute
cubes by “rectangles” in Bn. However, the work of J-M-Z showed us that the
fundamental theorem of calculus remains true if we restrict our attention to
functions which are locally in the space L log+(L)n−1(Rn) and, furthermore,
that this is the best possible result.

In their proof, J-M-Z used in a crucial manner the product structure
of Rn but they left open the question about what kind of covering lemma
was satisfied by the class Bn.

In the year 1975, in collaboration with Robert Fefferman, we were able
to give a precise answer to that question showing that the family Bn satisfies
an exponential type covering property:

Given a collection of parallelepipeds {Rα} ∈ Bn, one can select a count-
able family {Rj}j=1,2... such that:

i) μ(∪Rα) ≤ Cn μ(∪Rj);

ii)

∫
∪Rj

exp
(∑

k
χRk

(x)
)1/(n−1)

dμ(x) ≤ Cn μ(∪Rj)

for some constant Cn.

Exponential overlapping

As a continuation of J-M-Z, Antoni Zygmund proposed a problem which,
for a long time, became an object of desire among harmonic analysts: Let
us consider, in Euclidean space R3, the basis Bφ of parallelepipeds whose
sides are parallel to the coordinate axes but whose dimensions are given
by (s, t, φ(s, t)), s, t ∈ R+ and φ is positive and monotonic on each vari-
able separately. The question asked by Zygmund was to decide if from the
differentiation point of view Bφ behaves like B2 or B3.
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In 1978, I was able to solve Zygmund’s problem showing that Bφ differ-
entiates integrals of functions which are locally in L log+ L(R3). That year
I was on leave from Princeton and had visited the universities of Paris (Or-
say), Complutense (Madrid) and also the Mittag–Leffler Institute. It was
at this last institution where I received a letter from Zygmund, dated at
Chicago, which started with:

Dear Antonio, May 25’78

Congratulations for solving my problem! [. . . ]

and ended asking for the more general question about parallelepipeds in Rn

whose dimensions are given by (φ1(t1, . . . , tk), . . . φn(t1, . . . , tk)), where φj is
monotonic in each variable separately.

In my answer, I told Zygmund that with that generality the conjecture
was not true, but the important particular case (t1, . . . , tn−1, φ(t1, . . . , tn−1)),
with n > 3, was then, and still is, an intriguing open problem.

As I said before, my first meeting with Zygmund took place in Madrid,
in June 1971. He was visiting the Complutense and I had recently been
admitted to the graduate school at Chicago. I had studied parts of his
monumental book on trigonometric series and considered him a living legend.
Walking with Zygmund the streets of Madrid was for me an unforgettable
experience and, among other advices, he gave me an excellent hint about
how to get an appropriate apartment in the campus of the university of
Chicago, very close to Eckhart Hall.

During the academic year 1973-74, Felix Browder, then chairman of the
Math Department, asked me to be Zygmund’s teaching assistant, which
implied, among other tasks, that I was supposed to help him with the or-
ganization of the analysis seminar. It happened that Alberto Calderón was
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in Argentina and Charles Fefferman enjoyed a sabbatical, so I was the only
available analyst. Besides the more rutinary tasks, Zygmund proposed me to
fill the gaps for those Monday’s afternoon (3:45 p.m.) when we did not have
an invited speaker. To that end he provided me with a series of his favourite
problems, and adequate references to be prepared for those occasions; he
also told me many interesting anecdotes and stories about his colleagues,
students and collaborators. We had many conversations, usually at his of-
fice, but also at his apartment where he offered me his excellent liquors.

One day, during the spring term of 1974, Zygmund said to me something
like “Antonio, we have the same names, why you do not call me Antoni?”
I was flattened because it was notorious that very few persons had that priv-
ilege and, frankly, was not easy for me at the beginning; nevertheless, with
time, and a certain effort from my part, I learned to use it. But, of course,
in the mathematical genealogy Zygmund is my great-grandfather, and the
members of my generation, now on their sixties, have already experienced
how one gets specially indulgent and tolerant with grandchildren.

The article of Fritz John about convex sets was the first serious mathe-
matical work that I read directly from its original source. I did it following
the suggestion made by Miguel de Guzmán in his lectures at the Univer-
sidad Complutense de Madrid, during the academic year 1969–70. Let me
point out that, at that time, Miguel had just returned to Madrid, after
completing his PhD at the University of Chicago under the advice of Al-
berto P. Calderón, and was beginning to display a very positive influence
in the development of mathematics in Spain helping and encouraging the
career of many Spanish mathematicians, like myself. He was then mainly
interested in understanding the properties of different differentiation basis,
and John’s lemma was the adequate tool to reduce a general “convex basis”
to the particular case of those consisting in parallelepipeds.

But the original proof given by F. John was rather complicated and
Miguel asked for a more geometric and easier one. Antonio Gallego and I
were among the students of that course that got interested in answering the
question. First independently, and later joining our efforts, we read John’s
paper and figure out a more elementary proof which had the advantage
of provide a better (sharp) constant. It was presented at the meeting of
the Spanish Mathematical Society (RSME) celebrated in Murcia during the
winter of 1970, and later published in the Springer Lecture Notes about Dif-
ferentiation of Integrals in Rn, written by Miguel in the year 1975. However,
at that time I was totally unaware about the importance of mathematical
journals and research articles. Reading textbooks was my main relationship
with scientific literature and the idea of writing a paper and publishing that
proof did not occurred to us.
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Our proof of John’s lemma, taken directly from the manuscript of 1970, is
very simple. A kind of mathematical haiku written in elementary Euclidean
geometry. But it was my first serious mathematical contribution and I can
still remember the excitement and pleasure that it gave to me.

Lemma 1 Let K be a convex, open and bounded set in the Euclidean space
R
n and let E be an open ellipsoid of minimal volume containing K. Then

the ellipsoid 1
n
E, obtained contracting E by the factor 1/n with respect to

its centre, is contained in K.

In the following I will sketch the proof in dimension 2.
First the existence of such an ellipse of minimal area containing K follows

easily by a compactness argument. Next let us consider the following facts
whose proof is immediate:

If C is an open circle in the plane and T is a triangle of maximal area
inscribed in C, then, necessarily, must be equilateral. Conversely, if T is an
open equilateral triangle and E is an ellipse of minimal area containing it,
then E must be its circumscribed circle.

As a consequence we obtain that if T is the isosceles triangle XY Z
(XZ = Y Z) and h is an affine map fixing the vertices X and Y and mapping
Z into W , so that the triangle XYW is equilateral, then the ellipse of
minimal area containing XY Z is the inverse image by the mapping h of the
circumscribed circle to the triangle XYW .

Suppose now that E is an el-
lipse of minimal area containing
K and assume the hypothesis that
1
2
E is not contained in K. There

must be then a point w in the in-
terior of 1

2
E which is also placed

at the boundary of K. Let h be
an affine transformation such that
the image h(E) is a circle. Then
h(w) is located in the intersection

of the interior of 1
2
h(E) and the boundary of h(K). Let us consider the sup-

porting line r to the convex set h(K) through the point h(w) which intersect
the circle h(E) at the points M , N and consider also the isosceles triangle
MNP (see figure).

But since h(K) lies inside the shaded region and the isosceles triangle
satisfies the conditions of our previous considerations, there must exists an
ellipse F containing the shaded region (and therefore containing h(K)) which
has strictly smaller area than h(E). But then the inverse image of F by h
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contains K and is an ellipse of smaller area than E in contradiction with
our original hypothesis. Q.E.D.

As I said before, neither Antonio Gallego or myself were at that time
aware of the importance of publications and the fundamental role played by
John’s lemma in different mathematical areas. We enjoyed reading John’s
article, getting involved in the search of a more geometrical proof and, of
course, answering the question of Miguel de Guzmán, someone we admired
and who was a constant reference for us. With the years I have learned that
such proof is now the standard one for experts in convex sets theory, and
that it belongs to the folklore literature. On a few occasions, however, we
have received public credit for the authorship of the haiku, but that is by
now totally irrelevant as it is very well expressed in a popular Spanish song:

Hasta que el pueblo las canta,
las coplas, coplas no son.
Y cuando el pueblo las canta,
las coplas del pueblo son.

Let me now turn to C. Fefferman 1972 paper. At that time it was a kind
of bomb destroying the established conjecture which asserted that the ball
multiplier in R

n, n ≥ 2, should be bounded on Lp(Rn), so long as

2n

n+ 1
< p <

2n

n− 1
.

Fefferman showed that this was not the case and that, in fact, T is bounded
only in L2(Rn). The method was brilliant: based on a clever observation
of Yves Meyer, Fefferman made use of the properties of Kakeya’s set to
disprove the conjecture. In the terminology of Littlewood that set was the
real enemy for the ball multiplier to be bounded on Lp, p > 2.

Shortly after Fefferman’s counterexample, L. Carleson and P. Sjölin
proved that if we smooth out a little the characteristic function of the disc,
namely if we consider the so-called Bochner–Riesz or spherical summation
operators given by the formula

T̂αf(ξ) = (1− |ξ|2)α+ f̂(ξ) ,
1

2
> α > 0,

then, in dimension n = 2, Tα extends to a bounded operator on Lp(R2)
whenever

4

3 + 2α
< p <

4

1− 2α
.
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Using a different approach, C. Feffer-
man obtained also the same result and pub-
lished it as a short note in the Israel Journal
of Mathematics. Those three papers had
a direct and strong influence in my math-
ematical career because my thesis prob-
lem was, precisely, to understand their hid-
den connections. That task leaded me to
study the properties of the Kakeya maximal
function and to consider different kinds of
“square functions” in order to extends the
paradigm of C–Z theory to this more com-
plicated setting, where cubes, or rectangles
having sides parallel to the coordinate axes,
are now substituted by rectangles with arbitrary directions, and the neoplas-
ticists painting of Mondrian changes into examples of Malevich suprematism.

In September, 1978, in
an important meeting in Har-
monic Analysis organized by
the AMS at Williamstown, I
had the opportunity to de-
liver a plenary lecture on those
topics. There I quoted the
great J. E. Littlewood who, in
1964, had published an arti-
cle on The Scientific Specu-
lates developing the idea of
the “enemy in mathematics”.
Following Littlewood, in order

to obtain a good theorem, one must find first the most dangerous enemy
of that property that one wants to be established, and then introduce the
hypothesis needed to kill him. What remains is the theorem. Littlewood
presents several examples of that principle, and applies it to the case of the
“three lines theorem” in complex analysis. But he also speculates and use
it to support that Lusin’s conjecture should be false!

It is now a common place to say that Kakeya’s set (i.e., sets of measure
zero containing a unit segment on each direction) are the enemies for the
theory of Bochner–Riesz operators and for the understanding of the inter-
action of Hilbert transforms in different directions of the space. They are
negligible from the point of view of Lebesgue measure theory, but not, in a
certain sense, for the Fourier transform.

Williamstown, 1978
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However, in dimension n = 2 we have achieved a rather complete theory
where one of its main characters is the Kakeya maximal function:

MNf(x) = sup
x∈R

1

μ(R)

∫
R

|f(y)| dμ(y).

Here the “sup” is taken over all rectangles of eccentricity=bigger side/smaller
side = N , but with arbitrary directions.

It happens that
‖MNf‖2 � (logN)1/2‖f‖2

and this estimate yields easily, among other facts, that a set containing a
rectangle of dimensions ε× 1 on every direction of the plane must have area
greater than C/| log(ε)|, implying that a Kakeya set in the plane has fractal
dimension 2. But the case n ≥ 3 remains as an outstanding open problem.

Understanding the ideas contained in those papers and trying to go fur-
ther has been an important leitmotiv of my own research, and I believe
that also of many others harmonic analysts. They have provided us with
a suggestive plan to go beyond the classical C–Z theory of singular inte-
grals, because either the singularity set of the kernels is more complicated,
or they involve many components with symbols lying in different regions of
phase space and whose Lp estimates need subtle cancellations. It is a very
suggestive but difficult plan whose success seems to need new, and perhaps
revolutionary, ideas.

To finish, let us point out that the paradigm of C–Z theory seems to
indicate that a really interesting proof must always have a good stopping
time. I believe that such a principle can be applied to many other aspects
of life: Let me stop here.
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Some mathematical influences

David Drasin
∗

1. Introduction

Many papers, lectures and contacts have inspired significant parts of my
mathematical career, but two topics stand out, both having their roots in
Picard’s famous theorem:

If f is analytic in the complex plane C with f �= 0, 1, then f is constant

(an alternate formulation is that if f is meromorphic nonconstant in the
plane, it can have at most two ‘Picard values’).

Figure 1: The Revista
was not available at the
time of this photograph.

The first theme (A) discusses the influence
of [8], especially its Chapter 7, on my appli-
cations of quasiconformal mappings to value-
distribution theory in C. Rolf Nevanlinna de-
veloped his value-distribution theory with Pi-
card’s theorem in mind, as the title to his ini-
tial paper [11] makes clear. The second subject
(B) focuses on the analogue of Picard’s theo-
rem in R

n, n > 2. Here analytic/meromorphic
functions must be replaced by K-quasiregular
mappings, where 1 ≤ K < ∞ (and K > 1 in
all nontrivial cases). I have already spent over
a decade studying Rickman’s surprising exam-
ple [15] which, although valid only in three di-
mensions, indicates, in contrast to the situation
when n = 2, that the number of Picard excep-
tional values depends on the distortion coeffi-
cient K, and can be large (if always finite).

These two themes illustrate different ways
that a mathematical publication can be influ-

ential. That in (A) concerns material that had been well-integrated into
the discipline for some decades, and I was lucky to study [8] with my own
orientation and several possible applications in mind (only [4] is discussed
here, but this technique is again a standard tool; [5] develops an alterna-
tive approach). In (B) the subject is less mature, and so the impact of [15]
less obvious.

∗drasin@math.purdue.edu. The author thanks O. Lehto, P. Pankka and P. Poggi-
Corradini for helpful comments.
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Figure 2: My ‘secret weapon’.

My generation learned
classical Nevanlinna theory
from [9] and [14]. Chap-
ter 4 of [9] introduced us to
some of A. A. Goldberg’s re-
cent work on Nevanlinna de-
ficiencies. Thus it was nat-
ural around 1970 for Allen
Weitsman and me to learn
scientific Russian in order
to study Goldberg’s papers.
This introduced us to excit-
ing new ways to handle an-
alytic functions. Questions
that seemed to resist solution by constructing explicit analytic expressions
(power series, infinite products) could be convincingly resolved by non-
analytic exhaustions or Riemann surface arguments. What was especially
exciting was his application of quasiconformal mappings to produce entire
and meromorphic functions and uniformize Riemann surfaces. We were very
fortunate that just at this time his carefully-prepared monograph [8] (written
with I. V. Ostrovskii) appeared, and our first dividend was [3].

While preparing this essay, I was reminded that quasiconformal mappings
were applied to questions relating to Picard’s theorem and value-distribution
theory very soon after Grötzsch’s paper (of 1928, considered the beginning
of the subject), see §2. Teichmüller’s celebrated habilitation thesis [18] gives
the first formal presentation of the theory of quasiconformal mappings as a
complete subject in itself, with starting point the application of quasicon-
formal mappings to the uniformization of some Riemann surfaces relevant
to Nevanlinna theory (§2).

By the 1960s, however, interest in the West was centered on other appli-
cations of this theory, many of which Teichmüller himself introduced later
(quadratic differentials, Riemann surfaces, extremal problems, Teichmüller
spaces), and neither [18] nor this original motivation are mentioned in the
survey [2]. Teichmüller had already published several papers in algebra and
operator theory, and Nevanlinna’s work was already well-known in Germany
when Nevanlinna arrived from Finland to Göttingen for the 1936-7 academic
year. Teichmüller spoke with Nevanlinna and attended his lectures [10],
and then made important contributions to value-distribution theory (as well
as [18]). Quasiconformal mappings with a variety of unanticipated applica-
tions became the thrust of many of his future papers: his interaction with
quasiconformal mappings had a decisive impact on complex analysis.
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In two dimensions a quasiregular mapping g, the theme of (B), may be
factored as

g = f ◦ ϕ,
where f is meromorphic in the plane ϕ a K-quasiconformal homeomorphism
of C with 1 ≤ K < ∞. Hence Picard’s theorem adapts immediately to
planar quasiregular mappings.

In higher dimensions, this theory has its special character [16], and is
distinct from that of several complex variables, although its (nonlinear) po-
tential theory retains much of the flavor of that associated to the Laplacian
in the plane. Rickman [16] proved that if f : Rn → Rn is K-quasiregular
and non-constant, then R

n \ f(Rn) has at most q(K, n) <∞ points, and by
now this is a nice application of nonlinear potential theory. More isolated
at present is Rickman’s stunning example [15]:

Let q < ∞ be given. Then there is K < ∞ and a (nonconstant) K-quasi-
regular mapping f on R3 with

f : R3 → R
3 \ {a1, a2, . . . aq}

(the {aj}q1 may be assigned arbitrarily).

After nearly 30 years, it remains the only evidence that Rickman’s form
of Picard’s theorem is precise, although at present is valid only in dimen-
sion 3 (an example of V. Zorich, based on the quasiregular analogue of
the two-dimensional exponential function had led to the conjecture that
q(K, n) ≡ 1 (n ≥ 2), and [16] begins with a discussion relating his example
to that of Zorich). Rickman’s paper is scrupulously written, in principle
has almost no prerequisites (an indication of its originality) and uses sur-
prisingly elementary techniques. It is the most impressive single work of
mathematics I have read, one which requires mastering literally every line
(see [7]). It remains a challenge to summarize its key ideas, to say nothing
of using them in other situations.

Today’s young mathematician has abundant opportunities to attend con-
ferences and obtain materials (usually via the internet); when my career
began, mail could be slow and contacts with mathematicians in much of the
world could be very difficult or even impossible. I was very lucky to have the
Purdue Mathematical Sciences Library as my mathematical portal. An un-
expected catalyst to my first post-thesis work was encountering a paper on
the New Journals shelf by the Chinese mathematicians Yang Lo and Zhang
Guang Hou on normal families; many years had to pass before we could
have personal contact. The book [8] also arrived unheralded to our library
at a perfect time. Of course, all standard books in the subject ([19] is a rare
exception) are now available in English.
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2. Quasiconformal compositions in value-distribution
theory

The ‘modern’ theory of value-distribution begins with Rolf Nevanlinna’s
fundamental papers [11, 12]. Nevanlinna obtained Picard’s theorem as an
immediate consequence of (in his words) “a general method to study the
roots of the equation”

f(z) = a, a ∈ Ĉ. (1)

Since the number of solutions to (1) will usually be infinite, Nevanlinna ap-
plies what is now considered standard potential theory to the δ-subharmonic
function log |f |, with f restricted to each disk B(r) := {|z| ≤ r}, and then
takes appropriate limits as r → ∞. Shelves of books and monographs are
devoted to this subject, but his striking and easily-stated defect relation (2)
(and its extension (3), a consequence of his Second Fundamental Theorem)
readily confirms its power. The theory has many applications, but the focus
here is only on (2) and (3).

Thus, let f be meromorphic (non-constant) in the z-plane. To each
a ∈ Ĉ := C∪{∞} Nevanlinna associates a number δ(a), 0 ≤ δ(a) ≤ 1, such
that δ(a) = 1 if (1) has no solution (in which case the number of solutions
to (1) is certainly ‘maximally deficient’). Nevanlinna proved∑

a∈Ĉ
δ(a) ≤ 2. (2)

This yields Picard’s theorem, but offers infinitely many variants, since the
possible values {δ(a)} form a continuum. Inequality (2) may be augmented to∑

a

δ(a) + θ(a) ≤ 2, (3)

where 0 ≤ θ(a) ≤ 1 measures the branching of f over a; M. Heins refers
to (3) as the ‘transcendental analogue’ of the Riemann-Hurwitz relation.

After completing [3], I returned to Chapter 7 of [8]. Since I knew
from [9] that (2) was sharp for entire functions (where δ(∞) = 1; Fuchs
and Hayman did not consider the more general (3) and their methods failed
in the meromorphic case), it was natural to suppose that restrictions (2)
and (3) were best-possible in general. Inverse problem: given sequences
{δn}, {θn}, {an}, 0 ≤ δn, θn, 0 < δn + θn ≤ 1, an ∈ Ĉ, find a meromorphic
function f with

δ(an) = δn, θ(an) = θn; δ(a) = θ(a) = 0 (a /∈ {an}). (4)

The solution is in [4]; a short proof for (2) using different methods is in [5].
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The treatment in [8], Chapter 7, presents a catalogue of examples from
several authors which show (4) possible in many situations. It is written in
a clear and leisurely style, with many examples and discussions that were
helpful to us novices, unlike the very condensed outline in Chapter VIII
of [19]. The examples begin with Nevanlinna [13] and lead to Goldberg’s
own contributions from the 1950s.

The solution to (4) in each of these cases has two steps. The first (α)
was to create a Riemann surface R which is presumed to be the image of
the z-plane by the map f , the simplest example being the familiar spiraling
surface associated to the exponential function, where δ(0) = δ(∞) = 1. The
surface would be constructed with appropriate branching over the {an},
but in enumerating these special cases, the procedure became increasingly
rococo. The exposition is enriched by a superb account of Speiser graphs,
for which [8] is still the best reference. The second step (β) is to find a
conformal map f : C → R such that when R is exhausted by f -images of
the {B(r)}, the data obtained solves (4).

Step (α) was present in all cases considered in [8]. Nevanlinna’s sur-
faces [13] were generalizations of the exponential function, with equality
in (2). Their uniformization relied on the theory of second-order differential
equations for step (β), but this approach could not work in other situa-
tions. In retrospect, the paper of Ahlfors [1], in the same volume of Acta
as [13], introduced the essential idea of constructing an explicit non-analytic
exhaustion of the class of surfaces {R} in [13]. These maps g : C → R
were no longer complex-analytic, but (in language not available at the time)
were quasiconformal with small average maximal dilatation. It was easy to
check that each g formally solved the inverse problem under consideration,
and Ahlfors then applied his length-area technique to show that the ana-
lytic map f : C → R imitated g sufficiently well that f also was a genuine
meromorphic solution.

This procedure (which by 1938 had also been used by other authors) was
formalized in Teichmüller’s famous [18]. In his opening remarks, Teichmüller
states as his goal to encompass these partial solutions in a unified orienta-
tion. This leads to the problem of transferring data from quasiconformal
to analytic mappings (β). Using simplifications allowed by later authors,
let g : C → R be a W 1,1 function whose value-distribution formally sat-
isfies (4) when data are computed with respect to the g-exhaustion. Set
μ(z) = gz̄/gz(z), and suppose that ‖μ‖∞ ≤ k0 < 1 for some fixed k0.
(Note: μ ≡ 0 ⇐⇒ g is analytic, and μ and K are related by ‖μ‖∞ =
(K − 1)/(K + 1).) Obviously g satisfies (Beltrami equation)

gz̄(z) = μ(z)gz(z), (5)
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but there is also a homeomorphic solution to (5) on C, say ϕ(z), which may
be taken to fix 0 and 1. If ψ = ϕ−1, it is easy to check that f := g ◦ ψ is
meromorphic, and the issue is to show that ϕ approximates the identity well
enough that data for f transfer to g relative to {B(r)}-exhaustions.

Teichmüller encapsulates his principle on the first page of [18]: if∫ ∫
{|z|>1}

|μ(z)|dxdy|z|2 <∞, (6)

then |ψ/ϕ| → A, 0 < A < ∞, as z → ∞. This makes transferring data
directly from g to f routine and applies to all surfaces considered in [8].

Unfortunately, (6) did not seem to hold for the surfaces studied in [3],
but after the usual period of floundering, we noticed that our dilatations did
satisfy ∫ 2π

0

|μ(reiθ)| dθ→ 0 (r →∞) (7)

An inspection of the proof of (6) showed (7) implied that for suitable func-
tions σ(r), η(r) = o(1) (r →∞) that

B
(

(1− η(r))

∫ r

1

(1 + σ(t))t−1dt
)
⊂ ϕ(B(r)) ⊂

⊂ B
(

(1 + η(r))

∫ r

1

(1 + σ(t))t−1dt
)

:

again ‘circles correspond to circles’, and so the {δ(a), θ(a)} transfer from g
to f (however, in retrospect (7) had been analyzed earlier).

3. Quasiconformal modifications

Now let data

{an}, {δn}, {θn} (8)

be given. From the repertoire in [8] (augmented by the classes in [3]), we can
readily select a sequence of meromorphic functions {fj} whose ‘Nevanlinna
data’ {δj,n, θj,n, aj,n} converge (as j →∞) to (8); in turn each fj arises from
a quasiconformal map gj : C→ Rj . This leads to another modification from
the scheme of §2: instead of constructing one Riemann surface R as some
sort of limit of the {Rj} and worrying about how R is to be uniformized

(as suggested in (α)), we directly produce g : C → Ĉ which, as r → ∞,
mirrors gj near {|z| = r}, so that j → ∞ with r. In this situation (7)
readily applies and the inverse problem is solved. Riemann surfaces never
appear, but (7) is essential.
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4. Quasiregular mappings

By 1986, most problems in classical Nevanlinna theory relating to (2) and (3)
were either settled or considered hopelessly difficult (although important
progress continued, albeit at a slower pace, e.g., [17, 20, 21]; in addition, there
was activity in other significant sub-areas). About this time the theory of
quasiregular mappings in space had entered its adolescence. In many ways
this subject was natural extension of the two-dimensional geometric and
potential-theoretic aspects of complex function theory. We avoid formal
definitions (see [16]), but note that in two dimensions Ahlfors in 1936 had
already shown these mappings were the natural setting for his theory of
covering surfaces.

This seemed an attractive area, since the relevant literature was modest,
and its antecedent lay in the geometric aspects of complex-analytic functions
in C. Unlike the classical theory, it lacks a catalogue of functions already in
the mathematical culture, although the Zorich function f : Rn → R

n \ {0}
has been mentioned.

Let us discuss a special situation in two and three dimensions to see
informally why the number of Picard values could well be different. With x =
(x1, x2) or x = (x1, x2, x3) the variable as appropriate, let U1 = {|x| > 1} and
for n = 2, 3 take U2 = {|x| < 1}∩{xn < 0}, U3 = {|x| < 1}∩{xn > 0}. Then
U1, U2, U3 are neighborhoods of y1 = ∞, y2 = −(1/2)en, y3 = +(1/2)en.
Notice that whenever x ∈ Û := ∩j∂Uj , any neighborhood of x intersects all

three Uj. Relative to R2, Û consists of two points, but Û is connected in

space: Û = S2 ∩ {x3 = 0} = S1. Let’s choose three points a, b, c equally
spaced on S1; these determine arcs {γi}31 ⊂ S1.

Now suppose f : Rn → Rn is K-quasiregular, nonconstant and f omits
all three yj. Let Wj = f−1(Uj), and note that each (component of each)
Wj must be unbounded. In R3, Rickman creates one domain W1 and W2,
lying respectively in the upper and lower half-spaces; these have obvious
antecedents the upper and lower half-spaces in R3 which are preimages of
{|x| > 1} and {|x| < 1} respectively of a Zorich ‘exponential’ function.
Rickman then inserts six cone-like symmetric domains between W1 and W2,
whose union is W3. His function f is quasiregular in R3, with f : Wj →
Uj \ {yj}, 0 ≤ j ≤ 3.

The linking of the boundaries of these domains is given explicitly in §7
of [15], so that f : ∩j∂Wj → Û , much as with the exponential function
in R2, ê(z) := e−iz, where ê : R(= ∂W1 ∩ ∂W2) → S1 ⊂ R2. Consider
the domain W1, similar observations hold for W2 and each of the {W3}.
The f -preimage of {|y| = r}, r > 1 is a surface inside W1 which can be
triangulated. As r ↓ 1, each triangle T ⊂ ∂W1 maps to U1 ∩ U3 or U1 ∩ U2,
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so that the images of triangles T and T ◦ with a side in common alternate.
Thus those of the first class have image in S2

+ := S2 ∩ {x3 ≥ 0}, the others
are mapped to S2

− := S2 \ S2
+, and the arrangement of the {U1}31 forces

similar correspondences of the images of triangles in ∂W2 ∪ ∂W3.

Suppose f : T → U1 ∩ U3. It follows that as x crosses ∂T in ∂W1, f(x)
must be able to access both domains U2 and U3. Let the sides of T be labeled
Γi, 1 ≤ i ≤ 3, with f : Γi → γi ⊂ S1. Rickman exploits R3 by viewing each
image γi as a ‘hinge’, so that triangles

T ′ ⊂ ∂W1 ∩ ∂W2, T ′′ ⊂ ∂W2 ∩ ∂W3

share Γi with T as a common boundary arc. Note that on other arcs
Γj ⊂ ∂T , the particular T ′, T ′′ may change (although not their classes).

While this final step is very hands-on, Rickman also needs a beautiful
deformation theory of two-dimensional surfaces to construct f : Wj → Uj
away from ∩jW . Modifying this to higher dimensions seems very difficult.

5. Concluding remarks

The two-dimensional theory in §2 has existed for nearly a century, and its im-
portance has multiple confirmations. But there remain at least two classical
problems relating to problems discussed here for which present technology
seems inadequate, both arising from the fact that it is hard to obtain stronger
conclusions than already mentioned when μ = μg satisfies (6) or (7).

(A) Examples with preassigned ‘moving targets’. The classical Nevan-
linna relations (2), (3) are sharp, but they also hold with the {an} replaced
by ‘small functions’ {an(z)} ([17, 20, 21]). To produce examples showing (2)
and (3) sharp in this setting at present seems out of reach (it is likely that the
method of Fuchs–Hayman [9] gives a partial solution for entire functions).
If the target a = a(z) is constant, the meromorphic function f = g ◦ ψ
approximates a ◦ ψ ≡ a, but this is no longer valid if a(z) is nonconstant.

(B) Examples with fast growth. The general solution to (4) must have
‘infinite order’, but the solution in [4] grows very slowly given this necessary
restriction. It seems very likely that given a growth function Ψ(r) ↑ ∞,
there should be a solution to the inverse problem having

T (r, f) > Ψ(r)

for all large r. The requirement of slow growth is to ensure that the defi-
ciencies and indices of ramification for g transfer to f .
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A reminiscence on BMO

Charles Fefferman
∗

As a grad student, I read a paper entitled “Singular integrals and differen-
tiability properties of functions” by Eli Stein. From that paper, I learned
that a singular integral operator carries L∞ into BMO. The proof was very
simple, and the result struck me as charming.

The author, circa 1985

In the fall of 1970, I arrived at Uni-
versity of Chicago as a new assistant pro-
fessor, and I met Antoni Zygmund (known
to me for the next several years as “Profes-
sor Zygmund”). Zygmund immediately of-
fered me an interesting problem to work on:
Find a non-trivial characterization of func-
tions f ∈ BMO(R) in terms of the Poisson
integral of f . (“Non-trivial” means that we
don’t merely say that the Poisson integral
u(x, t) has a bounded BMO norm as a func-
tion of x uniformly in t.)

I thought the problem was fascinating, and I couldn’t stop thinking
about it. My first thought was that since BMO is close to L∞, maybe
the right condition is the boundedness of the Lusin area integral

S(u)(x) =
(∫∫

|y−x|<t
|∇u(y, t)|2dydt

)1/2

.

That guess wasn’t very smart. Every student of Fourier analysis knows S(u)
needn’t be bounded, even when f is bounded. I quickly realized my mistake.

I remembered Eli’s paper: The Hilbert transform of a bounded function
belongs to BMO, and of course every bounded function belongs to BMO.
I wondered: Are there any more examples? Are there any functions in BMO
that could not be written in the form f + Hg, with f, g ∈ L∞ and H =
Hilbert transform?

I tried to find a function in BMO that could not be expressed as f +Hg,
but at the end of a frustrating day, I couldn’t find any such example.

The next morning I thought: What if every function in BMO could be
expressed in the form f + Hg? What could that mean? I quickly saw that

∗cf@math.princeton.edu.
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it would then follows easily that BMO is the dual of H1, thanks to the
Hahn–Banach theorem. That seemed exciting, and I sat out to prove it.

A natural strategy to relate H1 to BMO is to use the identity∫
R

f g dx =

∫∫
y∈R, t>0

t ∇u(y, t) · ∇v(y, t) dy dt (1)

(with u, v the Poisson Integrals of f, g), followed by the Cauchy–Schwartz
inequality∣∣∣ ∫∫

y∈R, t>0

t ∇u(y, t) · ∇v(y, t) dy dt
∣∣∣ = (2)

=
∣∣∣c ∫

x∈R

∫
|y−x|<t

∇u(y, t) · ∇v(y, t)dy dt dx
∣∣∣

≤ c

∫
x∈R

(∫
|y−x|<t

|∇u(y, t)|2dy dt
)1/2(∫

|y−x|<t
|∇v(y, t)|2dy dt

)1/2

dx

= c

∫
x∈R

S(u)(x)S(v)(x) dx.

I had learned that trick from Eli Stein’s wonderful grad course, that
subsequently formed the first half of his book Singular integrals and differ-
entiability properties of functions.

Alberto Calderón had recently proven that S(u) ∈ L1 for H1-function f ;
that was a big step in his great work on the commutator integral.

If only S(v) ∈ L∞ for g ∈BMO, then the identity (1) and the inequali-
ties (2) would imply that∣∣∣ ∫ fg dx

∣∣∣ ≤ C
∥∥f∥∥

H1

∥∥g∥∥
BMO

and thus establish the duality of H1 and BMO.

Damn it! S(v) needn’t be bounded for g ∈ BMO.

Duality of H1 and BMO hung on finding a good answer to Zygmund’s
question: How can we characterize g ∈ BMO in terms of the Poisson inte-
gral v?

After a few days without further progress, I hit on the right idea: Instead
of using the full area integral S(v), I should bring in a “partial area integral”

Spartial(v)(x) =
(∫∫

|y−x|<t<h(x)
|∇v(y, t)|2dy dt

)1/2

,

where the height h(x) is defined to be as large as possible subject to the
constraint that

Spartial(v) ≤ C1

for a large constant C1.
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Thus,
Spartial(v)(x) = min

{
S(v)(x), C1

}
≤ C1

automatically and h(x) may be a positive real number or +∞.

By replaying the argument (1), (2) using Spartial instead of S, one finds
easily that ∣∣∣ ∫ f g dx

∣∣∣ ≤ C‖f‖H1

provided the following holds:

Let (y, t) ∈ R × (0,∞), and let h(x) be the height function
defined above. Then the set {x ∈ (y − t, y + t) : h(x) > t}
has measure al least ct.

(3)

Thus, a function g may be paired with H1, provided its height function h(x)
satisfies (3).

A little further experimentation led to the condition∫
|y−x|<h, 0<t<h

t|∇ v(y, t)|2dy dt ≤ Ch for every x ∈ R, h > 0. (4)

It is easy to see that (4) implies (3), and that any BMO function with norm 1
satisfies (4).

Consequently g ∈ BMO ⇒ v satisfies (4) ⇒ g ∈ (H1)∗ ⇒ g = f1 + Hf2
(with fi ∈ L∞) ⇒ g ∈ BMO, answering Zygmund’s question and proving
the duality of H1 and BMO.

The whole thing took less than two weeks. It struck me that, for the first
time, I had proven an interesting result without hard work. I had simply
asked (and received) questions, and made conjectures until the conjectures
proved one another.

For many years, I’ve worked very hard to prove theorems. With luck,
I’ve found complicated proofs after much suffering. With extraordinary
luck, I found simple proofs after even more suffering. To find a simple proof,
without suffering for it, is a very rare success. I will always be grateful for
my incredible luck in reading Eli’s paper and hearing Zygmund’s question.
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¡Olé!

José L. Fernández
∗

To Albert Baernstein II, ¡maestro!, with appreciation and love

In the course of a general lecture, in Madison, certainly in 1984, Marc
Kac was recounting his training as a young mathematician in Poland. It
was a large lecture room in Van Vleck Hall, one of those devoted to massive
calculus classes.

Kac was a marvelous lecturer who dominated the scenario (no power-
point, mind you!) with elegant demeanor and dynamic rhythm sprinkled
with the appropriate theatrical stops here and there. I am quite certain
that he was grateful that so many young faces were present and attentive.
His hosts for that visit to Madison were the Rudin, Walter and Mary Ellen,
and quite probably they had spread the news among students that the great
man was around and that nobody could afford to miss the chance of being
enlightened by him.

For starters, he recalled that the very very first lecture he attended upon
entering college to study Mathematics was on . . . Dedekind cuts. Of course!,
what else!, if you plan to study Mathematical Analysis, you must come
equipped with a good functioning real line and not just with a näive intu-
ition1.

At that time, Kac was finishing writing his splendid Enigmas of Chance:
An Autobiography 2 and the lecture used liberally some of its mathematical
anecdotes. One of them, the one I recall, described his amazement when
Steinhaus, who was his thesis supervisor3, explained to him how to un-
derstand –following Borel– the probabilistic notion of infinite independent
throws of a regular coin by choosing a number at random (uniformly) in
the unit interval. Probability was not what it is nowadays, but a kind of
Cinderella in the realm of serious and respected Mathematics. To material-

∗a.k.a Josechu Fernández, joseluis.fernandez@uam.es.
1 By the way, that was also the customary way to start the math curriculum in Spain

in the early 70’s; the pendulum have shifted to the opposite extreme. Kac intention with
that opening, besides making an impression on the younger part of the audience, was to
emphasize that to study Mathematics at the University (which meant almost only Math,
with some courses in Physics) was reserved then to a few selected and very well trained
students.

2 Published posthumously; Marc Kac died shortly after, in 1985.
3 Whatever thesis supervisor meant then.
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ize that virtual coin model in such a precise and clear cut4 analytical way
seemed almost miraculous to him.

The coefficients ξj(x) in the dyadic representation of numbers x ∈ [0, 1],

x =
∞∑
j=1

ξj(x)2−j

form an infinite sequence of independent identically distributed functions in
[0, 1], with Lebesgue measure as the underlying probability; Borel’s (strong)
law of large numbers and consequently the fact that almost every num-
ber in [0, 1] is normal can be proved directly and analytically within that
model. This simple and beautiful fact is the starting point of Kac’s delight-
ful MAA Carus Monograph Statistical Independence in Probability, Analysis
and Number Theory 5.

Before I continue any further, a disclaimer seems appropriate. This is
not a historical article, but purely and simply truthful storytelling, nothing
else. It contains, subjectively ordered and subjectively chosen and subjec-
tively interpreted, some bits and pieces (or even, traces) of mathematical
history, precisely those that my story requires. It is just how I saw it or, as
Walter Rudin would put it, The way I remember it.

Random walk

Random walk sums ±1’s instead of 0’s and 1’s. For independent ±1’s, one
could use the Rademacher functions �j obtained by declaring �j(x) = +1,
if ξj(x) = 0, and �j(x) = −1, if ξj(x) = 1. The sequence of partial sums of
Rademacher functions: { n∑

j=1

�j(x)

}∞

n=1

is an arithmetic model for the symmetric random walk, encoded as a se-
quence of step functions in [0, 1].

Sine functions with exponentially (or lacunarily) growing periods

sin
(
2j−1 2πx

)
resemble Rademacher functions –actually the latter are just squared ver-
sions of the former: �j(x) = sign

(
sin (2jπx)

)
– and are very close to being

statistically independent.

4 Oops!, Dedekind.
5 One of the few books I am planning to take with me, for occasional consolation, to

that fabled isolated desert island, no kidding!
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rademacher and sine

This similarity naturally incites to look with probabilistic eyes at lacu-
nary trigonometric series; for instance, they satisfy a Central Limit Theorem:
the sequence of functions

SN(x) =
N∑
j=1

(
aj sin (2jπx) + bj cos (2jπx)

)
,

appropriately normalized with

σN =
( N∑
j=1

1

2
(a2j + b2j )

)1/2

converges in distribution to a standard normal variable asN →∞, assuming
the Lindeberg type conditions:

lim
N→∞

maxj≤N(a2j + b2j )

σ2
N

= 0 and lim
N→∞

σN = +∞ .

You may find a detailed exposition of this result of Raphaël Salem and
Antoni Zygmund in the latter’s Trigonometric series, or, as well, you may
not find it6,7. For lacunary series there is even a law of iterated logarithm

6 Zygmund’s Trigonometric series, that amazing book of cosmological proportions, is
so huge, intricate and russelian that it is almost unable to contain itself. I, or better, a
former version of myself, knew that this Central Limit Theorem was discussed at length
in it. Well, it is in there, but hidden: in the notes of the first volume, chapter V, page 380,
it is claimed that it will be proved in the second volume, chapter XV, §4; but no, it is
actually in chapter XVI. Now you know. Please, go to footnote 7.

7 Try the experience of describing what a trigonometric series is to anyone who is
cultivated enough, and show the book, or even better, ask him to hold it with one hand,
while you explain that the whole book is devoted to that single specific subject. Wait for
a while. Do not spoil the experience by talking about Joseph Fourier and the generality
of the concept.
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due to Mary Weiss8: assuming now that

lim
N→∞

maxj≤N(a2j + b2j )

σ2
N

/
ln ln σN

= 0 and lim
N→∞

σN = +∞ ,

then

lim sup
N→∞

SN(x)√
2σ2

N ln lnσN
= 1 ,

for a.e. x ∈ [0, 1].

Martingales

Lacunary series are, of course, very special: they correspond to sums of in-
dependent identically distributed variables. So, what about general power
series? From the probabilistic side, martingales furnish the appropriate gen-
eral language.

The kth generation of dyadic intervals consists of the intervals

Ik,j =
[j − 1

2k
,
j

2k

)
, j = 1, 2, . . . , 2k

and generates an algebra of sets Fk. The sequence {Fk} –the dyadic filtra-
tion– is the simplest model of information flow or of unveiling of uncertainty.
If Ik(x) denotes the kth generation interval that contains x, unveiling Ik+1(x)
given Ik(x) reduces the uncertainty of the location of x by half.

Martingales with respect to the dyadic filtration, although very concrete
example of martingales, are a natural test ground for general results, abstract
notions and fruitful connections. For instance, for a function f in L1[0, 1],
the sequence of averages

1

|Ik(x)|

∫
Ik(x)

f(u)du

coincides with the sequence of conditional expectations E(f |Fk)(x) and thus
Lebesgue (dyadic) differentiation corresponds to martingale convergence9.

8 In an obituary –M. Weiss died at age 35– Zygmund has this to say which pertains
to the story of this article: [...] she attended my class in trigonometric series, our
mathematical contact originating when she began working on her Ph.D. thesis on a topic
I suggested, lacunary trigonometric series; the behavior of these series resembles in many
ways that of series of independent random variables in the calculus of probability, a subject
which she had mastered while working for the Advisory Board on Simulation, a project of
the University of Chicago.

9,Martingales à temps discret, the book of Jacques Neveu, is simply elegant.
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A further, and relevant, illustration of this connection (or point of view, if
you prefer) is Kahane’s10 construction of a probability measure μ in the inter-
val [0, 1] which is singular with respect to Lebesgue measure but nonetheless
has certain smoothness, namely that |μ(I)− μ(I ′)| ≤ C|I|, for every pair of
contiguous intervals with |I| = |I ′|. Any primitive f of this μ belongs to the
Zygmund class11.

Kahane’s delightfully simple construction begins with the arithmetic
model for random walk starting from level 1, which he12 stops as soon as
it reaches 0. This procedure generates a positive martingale whose almost
everywhere limit is 0 and defines the sought after singular measure13.
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4th
step of Kahane’s martingale Kahane’s function

One can represent a general dyadic martingale {Xk}k≥0, or better its
successive differences, ΔXk = Xk −Xk−1, in terms of Haar functions. The
Haar functions χk,i(x), i = 1, 2, . . . , 2k−1, are given by

χk,i(x) =

⎧⎪⎨⎪⎩
−1, if x ∈ Ik,2i−1,

+1, if x ∈ Ik,2i,
0, otherwise.

10 In his own words: Nous développons ici un exemple qui avait été mentionné dans
[a paper of G. Piranian] sous le nom de Kahane’s example. . . what a lovely exercise in
self-reference!

11 The significance of the example of Kahane’s is that for appropriately small δ > 0,
Jochen Becker’s criterion of univalence shows that the holomorphic function given by

ln f ′(z) = −δ
∫ 2π

0
eiθ+z
eiθ−z

dθ is conformal, and, since μ is singular, the image under f of
the unit circle is not a Smirnov domain. Kahane’s was not the first example of such a
conformal mapping, but its simplicity is striking.

12 He, Kahane, himself, with enough power to personally stop a random walk at will.
13 It fulfills the required condition |μ(I)−μ(I ′)| ≤ C|I|, but only for contiguous dyadic

intervals of the same length whose union is also a dyadic interval. To get the general
result Kahane replaces, in an elegant twist, dyadic expansions with 4-adic expansions:

x =
∑∞

i=0
τi(x)
4i , defines ωi(x) = +1, if τi(x) = 0 or 3, and ωi(x) = −1, if τi(x) = 1 or 2,

and considers instead the random walk given by {
∑n

i=1 ωi(x)}n≥1.
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The representation is then

ΔXk =

2k−1∑
i=1

ak,i χk,i , or Xn = X0 +

n∑
k=1

( 2k−1∑
i=1

ak,i χk,i

)
︸ ︷︷ ︸

=ΔXk

for suitable constants ak,i. If all the a’s coincide, one has random walk, while
if, for each level k, the ak,·’s coincide, the differences ΔXk are independent,
and one has a weighted sum of Rademacher functions. Martingales appear
here as stochastic sums with respect to random walk or, if you wish, as
martingale transforms.

Now, let’s go back to power series to describe how the language of martin-
gales and the probabilistic lense14 illuminates them. Consider a function f
holomorphic in the unit disk with power series expansion

f(z) =

∞∑
n=0

anz
n.

Let us split15 the whole power series into a series of dyadic blocks:

f(z) =

∞∑
n=0

an z
n = a0 +

∞∑
k=1

( ∑
2k−1 ≤n< 2k

an z
n

︸ ︷︷ ︸
)

=Δk(f ;z)

.

Here is an excerpt from the renowned Dictionary for aficionados

from power series to martingales: consider the sequence of radii

rk = 1− 1

2k

tending to 1, and assume that the function f at |z| = 1 is properly defined.

14 As in The probabilistic method of Noga Alon and Joel Spencer.
15 Purely classical Littlewood–Paley approach.
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→ function f restricted to {|z| = rn}

1. as conditional expectation

The function f restricted to {|z| = rn} is very much like the conditional
expectation of f(e2πix) with respect to Fk. The value of f at a point z,
|z| = rn is a weighted average (Poisson, Cauchy) of its boundary values,
but those in the boundary interval, Iz , just in front of z and of length
1− rn have the most weight.

z

Iz

f(z) ≈ 1

|Iz |
∫
Iz
f

2. as dyadic martingale

Thus one may think of the sequence of functions

x ∈ [0, 1] → f(rke
2πix)

as sort of a dyadic martingale. Moreover, when restricted to |z| = rn,
the function f and the partial sum

∑
k≤n Δk(f ; z) are very close and

behave similarly; so that Δk(f ; rne
2πix) plays the role of the nth mar-

tingale difference of the martingale generated by f(e2πix).

3. as hyperbolic derivative estimate

Finally, to complete this round of intuitions, an estimate:

|Δk(f ; rne
2πix)| ≈ |f ′(z)| (1− |z|2); z = rne

2πix.

The term f ′(z)(1 − |z|2) is the hyperbolic derivative, the distortion
factor from hyperbolic metric in the unit disk to Euclidean metric in
the complex plane.

So there you have it; a sort of one way dictionary, shared by a number of
devotees and aficionados. At this point, this dictionary is just an analogy;
a fruitful, alternative and suggestive way of looking at power series and
holomorphic functions.

Geometric function theory

Loosely speaking, in good old classical Geometric Function Theory one tries
to deduce analytical properties of holomorphic functions from geometric
information on their range, or on their Riemann surfaces, or on their value
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distribution, or. . . De Branges theorem is one glorious example: the Taylor
coefficients {an} of conformal mappings defined in the unit disk verify that
|an| ≤ n, for any n ≥ 2.

In my second16 visit to Al Baernstein’s office, he first suggested that over
the incoming summer vacation I should read Rolf Nevanlinna’s Analytic
functions17 and Lars Ahlfors’ Conformal invariants: topics in geometric
function theory to get acquainted with the appropriate tools18 of the trade,

tools of the trade

and then afterwards, he took his pad (of paper, of course) and proposed to
me a question:

summer vacation

In a further side discussion in the blackboard, Al rewrote the statement
of the question and preceded it with the phrase “to prove:”, or maybe

16 The purpose of my first visit, just in case you care to know, was to ask Al if he would
not mind being my thesis advisor.

17 Also known at that time, and among the selected circle of disciples, and a few con-
verted aficionados like myself, as the New Testament; the Old Testament being Nevan-
linna’s Le théorème de Picard-Borel et la théorie des fonctions meromorphes.

18 By the way, the A stands for the area function which appears in the problem of the
second picture.
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just “TP:”, so I took it as sort of training problem, part of the initiation
that I was just embarking upon, and that just a week of my vacation devoted
to it should be enough; so I reserved it for the second week, to fully enjoy
it. How touchingly naive!; no, it took a bit longer.

That problem was closely connected19 with a question about Taylor co-
efficients and range of holomorphic functions. Assume that we know that
the range of a holomorphic function f lies in a certain domain Ω ⊂ C. If
the distance to the boundary of points in Ω is bounded, the f has bounded
Taylor coefficients, and the smaller the bound on the distance, the smaller
the bound on the coefficients; that much was known. But, assume further
that the distance to the boundary tends to 0 when ∞C is approached from
within Ω; in that case, is it true that the Taylor coefficients tend to 0? 20

A simpler looking –actually, more ambitious– challenge would be to
prove that holomorphic functions f in the unit disk whose hyperbolic deriva-
tive f ′(z)(1−|z|2) vanishes asymptotically as f(z) tends to∞ have vanishing
Taylor coefficients. Now, no restriction on the range of the function is im-
posed. A positive answer to this question would mean a positive answer to
the original one.

For this, Al suggested that I should consider first a convenient dyadic
martingale analogue, to wit: is it true that E(|Xn|) → 0 for a dyadic mar-
tingale Xn whose sequence of differences ΔXn tends to 0 whenever Xn tends
to infinity?

The answer turned out to be no: the key21 is to run random walk endowed
with stopping times at an appropriate sequence of barriers of, alternatively,
very large and very small levels22.

19 Only in Al’s mind, at that moment, and he was right.
20 It would be natural to expect so, since in a certain loose sense, Ω may be split into

a bounded part and a part with very small distance to the boundary, and the Taylor
coefficients of bounded functions tend to 0. Besides, the property was known to hold for
the universal covering map of Ω.

21 Or, at least, one key since this is just general construction of examples.
22 I must confess that this idea of iterating Kahane’s construction occurred to me while

attending a seminar lecture. I was really paying attention to the lecture. It was a good
lecture whose main thrust, completely unrelated to my interests at the time (or everafter) I
still remember –well, vaguely. I have to confess too that another good idea had occurred
to me during a lecture, but this time . . . I was the lecturer and again the subject was
removed from my most immediate research interest at the time. I am referring here to
this definite flash that occurs when you perceive a connection between two mathematical
ideas, the final step of an argument, the trick that will show you the way to conquer
a so far impenetrable calculation, clearly and distinctively, and that you know that it
is right. They, ideas, are temperamental by nature and may come to you at any time,
like Poincaré’s au moment où je mettais le pied sur le marchepied, l’idée me vint, or in
the shower, peripatetically, dozing away in a sofa, even. . . well, you know. . . and, still,
attending or delivering lectures, too.
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Starting from there, one could construct a holomorphic function which
mimicked the behavior of the martingale, thus resolving in the negative the
original question23. There was no operator transferring the martingale into
the holomorphic function, no canonical construction, only just building of ex-
amples by sheer imitation. More care was required if the holomorphic func-
tion should have a given range, but again the answer is no, quite generally.

Conformal mapping

It was24 a sunny, limpid, crispy morning day in Madison25,26. A few weeks
before, the news that a young Russian has done good work on boundary
distortion under conformal mappings have reached me. Nothing was said
about what kind of results, whether positive, partial or not, or counterex-
amples, just that it was a very good paper27. And then the reprint arrived
in the mail, with a polite note from the author hoping that I would find
the paper interesting. In those times, one wrote letters and got reprints by
regular mail.

The metric behavior of conformal mappings is clearly an interesting mat-
ter, basic and substantial28. It was not clear, at least not to me, if a re-
sult valid for all conformal mappings was to be expected, maybe a scale
of distortion results was possible. I had given some thought for a while to
the subject29. As a dutifully professional mathematician, I was awaiting
the paper with some expectation and was ready to devote time and effort to
read it and to understand and apprehend some new interesting techniques
to be added to my bag of tricks. I was expecting –with delectation, I must
confess– long chains of gruesome lemmas with careful and intricate estimates
of the angular derivative near prime ends30 of different colors and species
and convoluted fractal and tree like constructions of the appropriate simply

23 In the paper of mine pertaining this (counter-)example, martingales are not men-
tioned, while precisely that power series-martingale connection was the most interest-
ing part.

24 Well, maybe not, maybe it was a gloomy and rainy fall afternoon. But that would
be a simple and certain fact, and I, today, just want the truth. So it was sunny and
winter. QED.

25 A senior colleague in Madison angrily refused to praise those few gorgeous winter
days, he assured that the university claimed them as part of the salary and that each of
them costed him a thousand dollars per year.

26 1984, once again, shut up Orwell!
27 The news by letter probably came from Al, since I seem to remember that the

suggestion was interpreted by me as the command Josechu, read and learn.
28 It is not the kind of thing I would claim aloud in the bar next door, but you do

understand me.
29 Or lots of thought for quite a while.
30 That’s my sole aim in life: to become a prime end.
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connected domains which could serve, just in case the need arises, as coun-
terexamples. You know, as Littlewood claimed, pioneering work is (almost)
always clumsy.

I was stunned: the paper was a masterpiece, so elegant and graceful.
The main result was absolutely general, valid for any Jordan domain, no
scale whatsoever. I could read it almost effortlessly. I was well trained and
reasonably knowledgeable of the subject, I was ready for it, that helped a
bit. The arguments progressed smoothly, for long stretches I knew what
was coming next and could jump ahead but then once in a while there was
this sudden unforeseeable (for me) turn of ideas which shortly after seemed
unavoidable and inevitable and proper and so obviously right.31 I read the
paper in a continuos rupture, a few hours went by, but when I was through,
with just a few details to be assimilated ¡mañana, mañana!, I recounted
the whole argument just for myself, and decided enthusiastically that it was
worthy of the highest marks:

and ¡vuelta al ruedo! too
32,33

31 In the 1984 movie Amadeus, in a memorable scene near the end, a dying Mozart
wrapped in a blanket dictates a music score to Antonio Salieri, while he distractedly
keeps playing around with the cue ball over a pool table. The whole score is complete
in Mozart’s head; Salieri –played superbly by a marvelous Murray Abraham– is simply
amazed, since there is no hesitation, no turning back, no trial and error, no need for
that. Once in a while Mozart stops, waves his hand and mumbles and so on and so forth,
expecting Salieri to fill in the blanks, but Salieri simply cannot, and Mozart impatiently
and tiredly does it for him, and every time this happens Salieri is shocked to realize how
unavoidably right Mozart solution was.

32 Please, notice the enthusiastic triply underlined handwritten Olé! on the left margin.
One left exclamation mark (¡) is missing, maybe just the price of interculturality, or
intertextuality, or text deconstruction, or what have you.

33 Notice, please, the typesetting technology of the time. First you typewrited the
text leaving empty and appropriate spaces for all the mathematical symbols which are
afterwards meticulously handwritten; amazing craftsmanship.
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Stop! I almost forget: the author and the paper:

Nikolai G. Makarov

On the distortion of boundary sets under conformal mappings
Proc. London Math. Soc. 51 (1985), 369–384.

So, what’s in the paper? Bloch functions34 are those holomorphic functions g
in the unit disk whose hyperbolic derivative

g′(z)(1− |z|)2

is bounded. Recalling the dictionary for aficionados, Bloch functions would
correspond to martingales with bounded differences. First, Makarov estab-
lishes a law35 of iterated logarithm for Bloch functions:

lim sup
r→1−

|g(re2πix)|√
ln 1

1−r ln ln ln 1
1−r
≤ C · sup

z:|z|<1

|g′(z)|(1− |z|2) ;

C is an absolute constant. An unexpected and general result, with a direct,
clean, economical, almost functorial proof.

And? Well, if f is a conformal mapping in the unit disk, then ln (f ′)
is a Bloch function; that is the basic distortion theorem. The converse
(with a factor added for good measure) is also true; that is exactly the
content of Becker’s univalence criteria (see footnote 11). Bloch functions
conform a linear space; it is easy to work with them, but, amazingly, they
capture within the far more complex and nonlinear notion of univalence and
conformality.

And thus, Makarov’s law of iterated logarithm for Bloch functions fur-
nishes good (well, even sharp) general estimates of the derivative of con-
formal mappings near the boundary; you see: conformal mapping results
obtained via martingale thinking.

Next step is to combine, in purely geometric function theory style, those
distortion estimates with the extremal length techniques of Lars Ahlfors and
Arne Beurling to produce harmonic measure estimates. The final outcome
is the absolutely general (and quite sharp):

34 The class of Bloch functions was termed (because of its connection with André Bloch’s
theorem) and introduced in an elegant and pathbreaking paper of Milne Anderson, Jim
Clunie and Christian Pommerenke entitled On Bloch functions and normal functions.

35 Weaker, as it correspondes to martingales and not to i.i.d. sequences.
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Lennart Carleson, in a characteristic tour de force, had obtained some
ten years earlier that there exists some number β > 1

2
, so that harmonic

measure on any Jordan domain is absolutely continuous with respect to
Hausdorff measure Λtβ ; the case β = 1

2
was a trivial consequence of the

basic Beurling’s projection lemma.

Beautiful; no question. It fulfills to perfection Hardy’s canon for serious
(significance, generality, depth) and beautiful (unexpectedness, inevitability,
economy) Mathematics.

Coda

So now, I hope, you may appreciate how well founded was my enthusiastic
and irrepressible ¡Olé! Of course, there have been many, well, maybe not so
many, but at least a few, other occasions of such enthusiastic appreciation
of mathematical beauty in a new discovery of others, and, yes, if you ask,
my own work has also been a source of deep excitement36.

Appreciation of beauty is a cumulative cultural affair continuously evolv-
ing: you have to be prepared and ready to discriminate, to appreciate and
to share it. But to create beauty, well, that is altogether a different matter.
¡Olé, Makarov!

36 Actually, as I believe it occurs to any of us, any minor discovery –if one may use that
word, discovery– of oneself has been a much more profound source of joy, but that is, at
least in my case, a pretty partial perception.
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The Hamilton-Cartan formalism in the
calculus of variations

Pedro Luis Garćıa
∗

In 1973, Hubert Goldschmidt and
Shlomo Sternberg published with
this title an important survey pa-
per, [10], on the geometrical foun-
dations of the calculus of variations
on fibred manifolds. This arti-
cle was much celebrated among re-
searchers who were working at that
time on that subject, that emerged
in the process of renewal of the
foundations of differential geome-
try dating back to the 1950s af-
ter the rigorous definition of the
concept of differentiable manifold.
I was among them [3, 4, 5]. Thus,

I believe that this monograph and its influence on my subsequent research,
increased by the strong friendship that I shared with Sternberg, fits in per-
fectly with the purposes of this special issue of the Revista Matemática
Iberoamericana, on the occasion of the first centenary of the Real Sociedad
Matemática Española.

1. The formalism of Hamilton–Cartan in the calculus
of variations, following Goldschmidt and Sternberg

Let π : Y → X be a fibred manifold over an n-dimensional manifold X ,
oriented by a volume element ω. Let j1π : J1Y → X be its 1-jet extension
and let L be a differentiable function (the Lagrangian) defined on J1Y .

If A is a compact n-dimensional submanifold of X with boundary a
(n − 1)-dimensional submanifold ∂A, we can define a functional on the set
of sections s ∈ Γ(X, Y ) by the rule:

LA(s) =

∫
A

(L ◦ j1s)ω

where j1s is the 1-jet extension of the section s.

∗pgarcia@usal.es.
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In these conditions, we say a section s ∈ Γ(X, Y ) is stationary (for fixed
boundary values on ∂A) when:

d

dt
LA(st)

∣∣∣∣
t=0

= 0

for every 1-parameter smooth family of sections st ∈ Γ(X, Y ), t ∈ (−ε, ε),
ε ∈ R

+, such that s0 = s and such that for each t, st = s on ∂A.
The idea of Goldschmidt and Sternberg to characterise the stationarity

was to use the theory of linear differential operators, as follows:

If δs = dst
dt

∣∣
t=0
∈ Γ(X, s∗V Y ) and j1δs ∈ Γ(X, J1(s∗V Y )) is its 1-jet

extension (s∗V Y being the bundle induced through s by the bundle V Y of
π-vertical vector fields on Y ), there holds:

d

dt
LA(st)

∣∣∣∣
t=0

=

∫
A

Ps(δs)ω

where Ps : Γ(X, s∗V Y )→ C∞(X) is the first linear differential operator:

Ps(δy) = (dL ◦ j1s)(j1δs)

From here it follows that a section s ∈ Γ(X, Y ) is stationary if and only if:∫
A

Ps(δs)ω = 0 (1)

for every section δs ∈ Γ(X, s∗V Y ) whose support is interior to A.
Let us now consider the adjoint operator Es = P∗

s , that is, the only first
order linear differential operator:

Es : Γ(X,ΛnT ∗X)→ Γ(X, s∗V Y ⊗ ΛnT ∗X)

such that ∫
X

〈Psδs, α〉 =

∫
X

〈δs, Esα〉

for every α ∈ Γ(X,ΛnT ∗X) and every δs ∈ Γ(X, s∗V Y ) with compact sup-
port (where 〈 , 〉 is the bilinear duality product).

In these conditions, the “integration by parts” formula:

(Psδs)ω = 〈δs, Esω〉+ di[symbPs( , δs)]ω (2)

where symbPs is the symbol of Ps, and the fact that δs vanishes on ∂A
allow us to write (1) as: ∫

A

〈δs, Esω〉 = 0

for every δs whose support is interior to A.
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This allows us to conclude that

Esω = 0 on the interior of A (3)

which are Euler–Lagrange equations that characterize the stationarity of the
section s ∈ Γ(X, Y ).

Formula (2) is thus the key element to obtain Euler–Lagrange equations
of the variational problem. In this formalism, it expresses the first vari-
ation formula of the Lagrangian density Lω. From this formula we also
obtain the so-called Noether’s Theorem of the calculus of variations: If D is
a vector field on Y , π-projectable on a vector field D̄ on X and such that
Lj1DLω = 0 (infinitessimal symmetry), then for each stationary section s:

di[L(j1s)D̄ + (symbPs)( , Dv
s)]ω = 0 ,

where Dv
s = D ◦ s− s∗D̄ is the π-vertical component of D along s.

All this is explained in Sections 1 and 2 of the monograph. Section 3
constitutes the heart of the work, where the formalism of Hamilton–Cartan
is introduced by means of the concepts of momentum form, Poincaré–Cartan
form and Legendre transformation of a variational problem.

The momentum form is the (n − 1)-form on J1Y with values on the
bundle p∗V ∗Y (p : J1Y → Y the natural projection):

Ωj1xs = (i[symbPs]ω)x . (4)

The Poincaré–Cartan form is the ordinary n-form on J1Y :

Θ = θ∧̄Ω + Lω , (5)

where θ is the 1-form on J1Y with values on p∗V Y introduced in Proposi-
tion 1.1 of the monograph and where ∧̄ is the exterior product with respect
to the duality between p∗V Y and p∗V ∗Y .

Finally, the Legendre transformation is the bundle morphism Leg :
J1Y → π∗TX ⊗ V ∗Y (of bundles over Y ) defined by:

i[Leg(j1xs)]ω = Ωj1xs . (6)

With these new objects, the main observation in the Hamilton–Cartan for-
malism of the calculus of variations is the following:

Theorem 1 If the mapping Leg : J1Y → π∗TX ⊗ V ∗Y is an immersion
(regular problems) and u ∈ Γ(X, J1Y ) is a section such that:

u∗(iξdΘ) = 0, for every ξ ∈ X(J1Y )
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then, if s = p ◦ u ∈ Γ(X, Y ), we have:

u = j1s, Esω = 0 ,

that is, s is a stationary section of the variational problem.

From here the route is clear to complete the theory:

So, in Section 4 (the Poisson bracket), if V = {s ∈ Γ(X, Y ) : Esω = 0}
is the set of stationary sections and if for each s ∈ V we define the tangent
space TsV to be the vector space of solutions δs ∈ Γ(X, s∗V Y ) of the lin-
earized Euler–Lagrange equations, then the (n + 1)-form Ω = dΘ defines,
when restricted to those solutions, a hemi-symmetric metric on V with values
on the set of functions from V to closed (n−1)-forms of X, which represents
a generalization for the calculus of variations of the symplectic manifold
structure of analytical mechanics. This is the “multi-symplectic manifold of
solutions”, where the theory of Noether symmetries can be interpreted in a
dynamic way. More precisely: infinitesimal symmetries induce vector fields
on the multi-symplectic manifold of solutions, which are the multisymplectic
gradients of its corresponding conserved currents.

Section 5 is devoted to the theory of Hamilton–Jacobi. It is the first
formulation in the language of modern differential geometry of the theory
of geodesic fields of De Donder and Weyl [1, 13], in which criteria are given
for the minimality of a stationary section immersed in a geodesic field, gen-
eralizing to several independent variables results of Hilbert and Weierstrass
of the late 19th century. It must be pointed out that this formulation has
been the only one to be found in the modern literature until very recently.

Finally Section 6 deals with Morse theory of the second variation with
particular emphasis, as could be expected, on its Hamiltonian formulation.

2. Influence on my subsequent research

Shortly after its publication, I read with great interest the article by Gold-
schmidt and Sternberg, whose subject and results agreed with previous re-
search of my own while trying to formulate a symplectic quantum field the-
ory [4, 5]. I first noticed the interest of the subject itself in the framework
of the geometrical theory of the calculus of variations; a matter that I had
also studied in a work with the title “The Poincaré–Cartan invariant in the
calculus of variations”, which I presented at the Convegno di Geometria
Simplettica e Fisica Matematica, that took place in January, 1973, at the
Instituto Nazionale di Alta Matematica in Rome [3].
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Unlike the approach of Goldschmidt and Sternberg, the starting point
of [3] is the geometry of the 1-jet bundle, J1Y , defined by its structure 1-form

θ : j1xs → θj1xs,

where:

θj1xs(ξj1xs) = (dvs)x(p∗ξj1xs) = p∗ξj1xs − (s ◦ π)∗p∗ξj1xs , ξj1xs ∈ Tj1xs(J
1Y ) .

This is a 1-form on J1Y with values on the vector bundle p∗V Y , which
justifies as methodology the use of differential calculus on J1Y with val-
ues on the vector bundle p∗V Y and its various derived bundles (p∗V ∗Y ,
End(p∗V Y ), etc.).

In particular, in terms of this geometric structure we can characterize the
1-jet extension of sections and of vector fields on Y : a section u ∈ Γ(X, J1Y )
is the 1-jet extension of a section s ∈ Γ(X, Y ) (that is, u = j1s) if and
only if u∗θ = 0, and a vector field ξ on J1Y is the 1-jet extension of a
vector field D on Y (that is, ξ = j1D) if and only if there exists a section
f ∈ Γ(J1Y,End(p∗V Y )) such that Lξθ = f ◦ θ, where the Lie derivative is
taken with respect to any linear connection on p∗V Y and the product ◦ is
given by the natural duality product.

The idea now is to define the stationarity of a section s ∈ Γ(X, Y ) by:∫
X

(j1s)∗Lj1DLω = 0 (7)

for every vector field D on Y whose support projects onto a compact subset
of X, and to characterize this notion proceeding as follows:

We can define the momentum form associated to the Lagrangian den-
sity Lω as the unique (n − 1)-form Ω on J1Y with values on p∗V ∗Y such
that Ω = iFω, where F is any vector field on J1Y with values on p∗V ∗Y
solution of the equation:

iFd∇θ = dL
on p-vertical vector fields of J1Y , where the exterior derivative is taken with
respect to the connection on p∗V Y induced by any linear connection on V Y
and where the bilinear products are the obvious ones.

Using this notion, we can introduce the Poincaré–Cartan form and the
Legendre transformation using formulas (4) and (5), respectively.

The key point of the formalism is now the following:

Lemma 2 There exists a unique j1π-horizontal n-form F(∇) on J1Y with
values on p∗V ∗Y such that:

dΘ = θ∧̄(F(∇)− d∇Ω) , (8)
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where the exterior derivative d∇ is taken with respect to the connection on
p∗V ∗Y induced by a linear connection ∇ on V Y with vanishing vertical
torsion (that is, ∇D1D2 − ∇D2D1 − [D1, D2] = 0 for any pair of π-vertical
vector fields D1, D2 on Y ).

The n-form E(∇) = F(∇)− d∇Ω (Euler–Lagrange form of Lω with respect
to the connection∇) allows us to obtain the Euler–Lagrange operator Esω as:

Esω = (j1s)∗E(∇) . (9)

From here, the following results are readily obtained:

Theorem 2 (First variation formula) For each vector field D on Y there
exists an (n− 1)-form α with values on p∗V ∗Y such that:

Lj1D(Lω) = θ(j1D) ◦ E + d(i(j1D)Θ) + θ∧̄α ,

or, if we restrict to the 1-jet extension j1s of any section s ∈ Γ(X, Y ):

(j1s)∗Lj1D(Lω) = 〈Dv
s , Esω〉+ d(j1s)∗(i(j1D)Θ) .

Corollary 1 (Euler–Lagrange equation) A section s ∈ Γ(X, Y ) is sta-
tionary if and only if:

Esω = 0 .

Corollary 2 (Cartan equation) A section s ∈ Γ(X, Y ) is stationary if
and only if for every vector field ξ on J1Y we have:

(j1s)∗iξdΘ = 0 .

Corollary 3 (Noether theorem) If Lj1DLω = 0 and s ∈ Γ(X, Y ) is sta-
tionary then:

d(j1s)∗(i(j1D)Θ) = 0

Also, as we might expect, there follows Theorem 1 under the same regularity
assumption.

In 1974 I met Sternberg personally and since then we kept a good scien-
tific relation regarding the above described research and other related sub-
jects (geometric quantization, hamiltonian reduction, super-symmetry, etc.).
In those years he proposed me to generalize the Hamilton–Cartan formal-
ism to higher order variational calculus. He had done it for X = R (higher
order mechanics) with an axiomatic characterization of a Poincaré–Cartan
form that allowed him to prove the equivalence of the Euler–Lagrange and
Hamilton equations under a certain regularity condition [12].
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At the beginning of the 80’s, J. Muñoz-Masqué and myself solved the
problem by applying the methodology described above for the structure
1-form θk of the k-jet bundle JkY (k ≥ 1), which is now a 1-form on JkY
with values on the induced vector bundle (V Jk−1Y )JkY (where V Jk−1Y is
the bundle of vector fields on Jk−1Y that are vertical over X) [6, 11]. In those
works we obtained a family {Θ(∇)} of Poincaré–Cartan forms on J2k−1Y ,
parameterized by the set {∇} of linear connections on the base manifold X,
such that for each section s ∈ Γ(X, Y ) and each vector field D on Y the
following first variation formula holds:

(jks)∗LjkDLω = 〈Dv
s , Esω〉+ d

(
(j2k−1s)∗ij2k−1DΘ(∇)

)
,

where Es : Γ(X,ΛnT ∗X) → Γ(X, s∗V ∗Y ⊗ ΛnT ∗X) is the Euler–Lagrange
operator of the variational problem.

From this point on, it is easy to generalize Corollaries 1, 2 and 3 of first
order problems. In particular, for k ≤ 2 and arbitrary n, or for X = R and
arbitrary k, the family {Θ(∇)} consists of a single Poincaré–Cartan form,
that coincides with the ones that were already known for those cases. More
problematic was the regularity issue, since for k > 1, n > 1 there is no equiv-
alence between the Euler–Lagrange equations and the Hamilton equations.
This drove us into a closer study of this concept in [7, 8]. In particular, in
certain situations of “reducibility” it is possible to derive a complete equiv-
alence of the reduced Lagrange and Hamiltonian formalisms.

Let us finally say that this formalism, when appropriately combined with
the original one by Goldschmidt and Sternberg has more recently allowed us
to obtain new results on Stress-Energy-Impulse tensors of natural variational
problems [2] and on the problem of Lagrange on fibred manifolds [9], two
subjects of current interest in the non-holonomic and vakonomic theory of
fields of geometric mechanics.

This is, in outline, my personal experience with this magnificent mono-
graph by Goldschmidt and Sternberg, whose account I wish to dedicate to
the other researchers of those years (R. Herman, D. Krupka, J. Kijowski,
I. Kolar, M. Ferraris, M. Gotay, J. Marsden. . . ) for whom this work was
also a motive of inspiration.
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[8] Garćıa, P. L. and Muñoz-Masqué, J.: Higher order regular varia-
tional problems. In Symplectic geometry and mathematical physics (Aix-en-
Provence, 1990), 136–159. Progr. Math. 99. Birkhäuser, Boston, 1991.
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Some of the articles that influenced my work

Evarist Giné
∗

Mathematics research very seldom happens out of a social/scientific en-
vironment, and the scientific part of this environment is mostly defined by
one’s peers and colleagues, seminars, talks, conversations at meetings, and,
last but not least, the mathematics one reads.

I’ll try to make a short account of some aspects of my mathematics
experience, as it pertains to reading mathematics. Before starting however,
I should mention that oral, colloquial communication is at least as important
as reading. Interchange of ideas does often –or at least some times– generate
new ones, and conversation about mathematics very often provides insights
that are impossible to obtain by reading alone, or even from formal talks.

Seldom in my career have I read entire books in order to learn a whole
theory, except when I was a student. More often, I have read new papers
(new at the time) or preprints that were dealing with whatever subject I was
researching at the time, or I have read parts of many old and new papers in
order to become knowledgeable about what I was working on, or in search
of ideas or looking for clues to solve a specific problem.

My PhD thesis was on a very concrete and in a sense isolated problem:
use Sobolev norms to construct invariant tests of uniformity on the sphere
that can be effectively computed (say O(n) operations from n data). After
my thesis and some other work were completed in 1973 I did not have a clue
about what to do next, and remember naively asking my adviser R. M. Dud-
ley how should I go about finding problems on my own: I would have pre-
ferred to be part of a large team trying to complete a central and ambitious
program of research, but instead I was going back to Venezuela, where there
was only one more probabilist at the time, and wanted to know what to do
a few months from then. Of course, his answer was: READ the journals. I
read some of his work in search of open problems to solve, which was enough
to keep me going for a few months, until I went to Berkeley in 1974 and was
invited to Oberwolfach for a conference on Probability in Banach spaces.
Thanks to this conference and the preprint of a 1977 paper by Joel Zinn
(later my most frequent coauthor and a very good friend), where he was
showing how the relatively abstract methods of Pisier, Hoffmann–Jørgensen
and others would solve a problem I had worked on, about the central limit
theorem for processes with continuous trajectories, I ended up in the middle

∗gine@math.uconn.edu.
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of a subject that at the time was undergoing vigorous development: Prob-
ability in Banach spaces was a relatively large and unexplored field, and
this conference and Joel’s paper directed me to it. So, reading journals
did not help me acquire my first extensive research program, it was more a
question of the right conference at the right time, and a short but inspiring
preprint. I worked on this subject mainly with Joel Zinn and Aloisio Araujo.
The works that influenced us more in this area, besides Zinn’s, are Dudley
and Strassen (1969), Hoffmann–Jørgensen (1974), Pisier’s thesis (1976), his
paper with Hoffmann–Jørgensen (1976) and Jain and Marcus (1975).

The next large subject I worked on was empirical processes, and in this
case, yes, reading a published paper was determinant. Dudley (1979) had
written a landmark paper on the subject, and when in 1982 we moved to
Texas A&M with J. Zinn and M. Marcus, it happened that Zinn and I,
who had already written several papers together on Probability on Banach
spaces, both had the project of studying Dudley’s paper. We started reading
it together and never really finished since soon after we started, in the middle
of the proof of one of the main results, we got ideas on how the subject should
develop and started working on it, which we did for about ten years! I was
lucky to have the right paper to inspire me and I was even luckier to have the
stimulating company of my coauthor, which made ‘creative reading’ possible
and fun. Zinn and I ended up writing twenty five articles on Probability in
Banach spaces, empirical processes, bootstrap (a statitical method, whereby
one uses data to simultaneously make predictions and assess their quality,
in a very nice way), U-statistics, and other subjects, but mostly empirical
processes. While working on Probability in Banach spaces and later on
empirical processes we were part of a relatively large group of people, that
ranged from mathematical statisticians to pure mathematicians working on
Gaussian processes and more abstract probability. We were exchanging
papers and reading them before they would get published, and this was
a sort of an ideal situation to be in. One of the best results in this area
(to be commented upon below) is due to Michel Talagrand, and his first
contact with the subject were conversations with Zinn and I at a meeting on
Probability in Banach spaces held in New England: he asked both Joel and I,
separately, to explain to him our first main contribution to the subject, an
invited paper in Annals of Probability, including open problems. Very soon
we saw these problems solved, and more.

We moved again, in 1988, to New York and, in 2000, to Connecticut,
and I brought with me a very good student, Miguel Arcones (who passed
away two years ago). At least for me, subjects always end up losing their
appeal: it is like you end up tired and having nothing else to say about them.
When I thought that empirical processes and the bootstrap were exhausted
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for me, it was time to move to some other area. Two papers directed me
to U-processes and U-statistics, one by Jean Bretagnolle (on the bootstrap
of U-statistics, 1983) and two by David Pollard and Deborah Nolan (on
U-processes, 1987, 1988). Each of them had left things for others to do,
so to speak, and it also became clear, after looking at the field, that some
important basic questions on U-statistics had not been totally resolved –law
of large numbers, law of the iterated logarithm, for example–. I knew from
Zinn about a technique in martingale theory called decoupling and asked
V́ıctor de la Peña, who attended our seminar, whether it would be possible
to ‘decouple U-statistics’. He came up with a very nice solution to the
problem, that later was strengthened by himself and Montgomery–Smith,
and this gave great impetus to the theory of U-statistics, U-processes and
multinomial forms in independent random variables. I was once more in
a situation where I had no need to look for problems –the problems were
staring at my face– and could work with several people on different aspects of
the theory of U-statistics and U-processes for several years (Arcones, Lata�la,
Kwapién, Zhang, Zinn, Koltchinskii, and a book with De la Peña).

I like applications, or perhaps more exactly, I like for my work to have
applications, whatever this means –in my case, it mainly means applications
in mathematical statistics, itself still at some degrees of separation from
‘real world’ applications–. In this respect, empirical process theory is quite
rewarding as it is one of the main foundations of non-parametric statistics
(asymptotic or not). U-statistics are also applicable but a little less; they
appear mainly as higher order terms in Taylor developments of statistical
functions on a space of probability measures, and they are also related to
multilinear forms in independent random variables, like e.g., Gaussian chaos.
Even while I was working on U-statistics, I was looking for subjects where
they could be of use. I found more than one, but specially I could develop, or
several of us could develop, one of them, namely, density estimation (some
aspects of this large subject). Winfried Stute (1993) had been applying
U-processes to study the empirical distribution function for censored data.
I asked a graduate student to look at his papers and see if he could do better
and/or attack related problems using the new developments on the theory
of U-statistics. But he left for a well paying job in information technologies.
I took the subject with A. Guillou, a short term visitor from Paris. We
found a very good paper on the same subject (S. Csorgo, 1996), which
was inspiration for our first results. Then, after the distribution function
comes the density, and while obtaining a law of the logarithm for the density
in the censored data case, I discovered that a similar result did not exist
in the regular uncensored case, and was easier to prove given Talagrand’s
inequality! This was the start a new research topic that has lasted for more
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than ten years, density estimation, and which has generated several excellent
collaborations. When working in density estimation several papers have
been particularly useful. The main one is Talagrand (1996): he proved an
exponential inequality for tail probabilities of suprema of collections of sums
of independent random variables: they concentrate about their mean at the
same rate as the worst individual sum in the collection. I believe this result to
be one of the best in Probability in at least the last 25 years. I had used this
inequality in a paper about the Wasserstein distance between the empirical
and the true distributions with del Barrio and Matrán in 1999, but I have
used it in at least ten articles on density estimation since then. U. Einmahl
and D. Mason (2000) actually introduced the use of Talagrand’s inequality in
that subject. Their paper had an influence in may main article with Guillou.
I had my program, that overlapped with other people’s program and this
led to very nice and fruitful collaborations with Zinn and Koltchinskii once
more, and particularly, on this subject, with D. Mason and with R. Nickl. In
my work with Nickl on adaptive estimation of densities (the rate of uniform
or Lp approximation of a density estimator to the true density depends
on the smoothness of the true density, and an estimator is adaptive if it
estimates the density at the best rate even if you do not know its smoothness
–then you don’t know the rate, you only know that you are doing best
possible–) there were two articles that had a great influence on our work,
namely those of Donoho, Johnstone, Kerkyacharian and Picard (1996) and
Lepski (1991) together with Lepski and Spokoiny (1997) where the idea of
adaptation is put forward in different ways. Recently, the work of van der
Vaart and collaborators on frequentist properties of Bayesian estimation in
infinite dimensions has also influenced the work of Nickl and I.

I have only described the influence of other people’s work on the main
directions of research I have had over the years. Besides those, I have worked
on occasion on other problems either because a paper I refereed or reviewed
inspired me, or as a result of conversations with or questions from colleagues.
Among this type of collaborations, besides one with Koltchinskii about esti-
mating the Laplacian of a compact manifold by sampling from the manifold
according to the normalized volume element, perhaps the most notable is one
with F. Götze and D. Mason, where we proved that the Student t-statistic
is asymptotically standard normal if and only if the independent data come
from a distribution in the domain of attraction of the normal law. The ori-
gin of this problem were papers by Logan, Mallows, Rice and Shepp (1973),
where the problem we solved is more or less stated, and Griffin and Ma-
son (1991), where it is solved in the symmetric case, and the interesting
part of this collaboration is that it was specifically designed by F. Götze for
the solution of the problem.
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I conclude by listing the mentioned references, but not my work.
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Let the beauty of Harmonic Analysis be
revealed through nonlinear PDEs

A work of art in three sketches

Tadeusz Iwaniec
∗

Prologue

Mathematicians, like me, have the privilege to enjoy the ingenious ideas
and splendid theories imagined and brilliantly developed by previous math-
ematicians. Their beauty inspires us to ask questions to create our own little
theory with grace and prospective applications. And there is never an end
to new questions, which in effect is the key to advances in mathematics. But
advances come after hours and hours of intense work, trapping and holding
our attention for years. This can be a dream, sometimes immense plea-
sure, sometimes a breathtaking moment when we spot the underlying ideas
that are actually relevant to our aspirations. Genuine mathematics does not
abide in complexity but, contrary to what one might think, somewhere in
the unlimited beauty of applications of sophisticated ideas. Paraphrasing
Luciano Pavarotti on music, let me say:

“Learning mathematics by only reading about it is like making
love by e-mail”.

From the very beginning of my mathematical life I fell in love with logic
and later as a young scholar with geometry and harmonic analysis. There
are so many captivating topics in geometric analysis. I was especially fas-
cinated by the foundation of Geometric Function Theory (GFT, quasicon-
formal mappings), the mysteries in the Calculus of Variations (nonconvex
energy integrals) and Nonlinear Partial Differential Equations (PDEs, el-
liptic type). Nowadays, these fields are essential in material science and
nonlinear elasticity, which are critical in modern technology and many en-
gineering problems. Myriad practical problems of nonlinear elasticity and
numerous elegant conjectures are very appealing to me. But I cannot fully
treat these topics here. I will only indicate briefly a few adventurous mo-
ments of my studies on these topics by means of applications of maximal
functions due to Hardy and Littlewood, Fefferman and Stein, as well as non-
linear commutators which originated with Coifman, Rochberg and Weiss.

∗tiwaniec@syr.edu.
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The results presented here are not my best, though there is some element of
aesthetic beauty in them. It is for these reasons that:

Fefferman and Stein (the architects of maximal inequalities),
Coifman, Rochberg and Weiss (the founders of singular commutators)

became my mathematical luminaries.

Figure 1: During the Sier-
piński Medal lecture (War-
saw, 2009). Title of the lec-
ture: An Invitation to Qua-
siconformal Hyperelasticity.

Some further results (on quasiconfor-
mal mappings in even dimensions) are dis-
cussed in this issue by my amazingly imag-
inative colleague Gaven Martin1. We have
presented GFT in all dimensions in our
book [12]. Well, we did not make a fortune
with this book, nor did we become famous.
But I have heard someone say, “Hey, I have
read your book”. How satisfying!

As I share the beauty and joy of math-
ematics with you I also remember Polish
mathematicians whose glorious scientific ca-
reers came to a cruel end during Nazi-
Soviet occupation. Józef Marcinkiewicz,
Stanis�law Saks and Juliusz Pawe�l Schauder
were inspirations to me. I am mindful
of them not only as mathematicians [10].

Marcinkiewicz, along with 22 thousand Polish patriots who dared to exhibit
a love and pride of an independent Poland, were executed by the order of
J. Stalin, and buried secretly in mass graves in gloomy forested sites near
Starobielsk, Ostashkovo and the most documented Katyń.

Someday maybe a great musician will rise up,
will transform speechless rows of gravestones into a keyboard,
a great Polish song writer will compose a frightening ballad with blood
and tears.
[. . . ]
And there will emerge untold stories,
strange hearts, bodies bathed in light. . .
And the Truth again will embody
The Spirit
with living words-of the sand of Katyń.

Katyń Carol. Kazimiera I�l�lakowiczówna

(translated by the author of this article)

1 Gaven speaks of me as “After all, he has quite a good memory even if it is a bit
short”. Yes indeed, I have a good memory for masterpieces, but a short one for trivia.
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Professor Antoni Zygmund remarked once about Marcinkiewicz:

“[. . . ] his early death may be seen as a great blow to Polish
Mathematics, and probably its heaviest individual loss during
the Second World War.”

I have had the privilege of growing up in the environment these mathe-
maticians left for us.

1. The natural domain of definition

While singular integrals are naturally defined in L 2(Rn), there is also such a
thing as the natural space in which we look for the solutions of a differential
equation; just to mention a few of those readily seen as being natural:

• The Sobolev space W 1,2(Ω) for the Laplacian.

• The Sobolev space W 1,p(Ω) for the p-harmonic operator

div
(
|∇|p−2∇

)
= 0 .

• The space W 1,n(X, Y) for quasiconformal mappings f : X
onto−→ Y

between n-manifolds, in which the major player is the Jacobian deter-
minant J(x, f) dx = f �(dy) -pullback of the volume form in Y.

There is no genuine distinction between linear and nonlinear differential
operators. Indeed, once we depart from their natural domain of defini-
tion the application of singular integrals in the extended settings such as:
L p(Rn) → L p(Rn) , L 1(Rn) → L 1

weak(R
n) , H 1(Rn) → L 1(Rn) and

L ∞(Rn) → BMO(Rn) , becomes equally pressing in both cases. But first
we need some definitions.

2. Maximal operators

Maximal inequalities, traditionally discussed in the entire space Rn, can
actually be considered for functions f ∈ L 1

loc(Ω) on any open set Ω ⊂ Rn :

• Hardy–Littlewood maximal function [8] (1930),

Mf(x) = sup
{
−
∫
B

|f(y)| dy ; B = B(x, r) ⊂ Ω
}
, −

∫
B

=
1

|B|

∫
B

.

• Fefferman’s sharp operator [4] (1971),

M�f(x) = sup
B

{
−
∫
B

∣∣f(y) − fB
∣∣ dy ; B = B(x, r) ⊂ Ω

}
.
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• Spherical operator of E. Stein [21],

Sf(x) = sup
∂B

{
−
∫
∂B

|f(y)| dy ; B = B(x, r) ⊂ Ω
}
.

Theorem 1 (Three Fundamental Maximal Inequalities) For every
f ∈ L q(Rn) with 1 < q <∞ , we have2

‖ f ‖L q(Rn) � (q − 1) · ‖Mf ‖L q(Rn) � ‖ f ‖L q(Rn) . (1)

If f ∈ L 1(Rn) ∩L q(Rn) and 1 < q <∞ , then

‖Mf ‖L q(Rn) � ‖M�f ‖L q(Rn) � ‖Mf ‖L q(Rn) (2)

In both inequalities (1) and (2) the implied constants stay bounded as q
approaches 1.

If f ∈ L s(Rn) with s > n
n−1

, then

‖Sf ‖L s(Rn) � ‖ f ‖L s(Rn) (3)

This time the implied constant blows up as s approaches n
n−1

.

Our discussion of the Hardy space H 1(Ω) becomes somewhat simpler if
we confine ourselves to a rotationally invariant approximation to the identity.
Thus we choose and fix a function Φ ∈ C ∞

◦ [0, 1) such that
∫
Rn Φ(|x|) dx = 1,

and set Φt(x) = t−nΦ
( |x|
t

)
. Given any F ∈ L 1

loc(Ω) , we smooth it as

(
F ∗ Φt

)
(x) =

∫
Ω

Φt(x− y)F (y) dy , 0 < t < dist(x, ∂Ω).

A maximal operator that accounts for cancellations of positive and negative
terms is now given by

• MF (x) = sup
{ ∣∣F ∗ Φt

∣∣(x) : 0 < t < dist(x, ∂Ω)
}
.

• The Hardy Space H 1(Ω) consists of functions F ∈ L 1(Ω) such that∥∥F∥∥
H 1(Ω)

def
==

∥∥MF
∥∥

L 1(Ω)
< ∞ .

2 Hereafter the notation � refers to inequalities with the so-called implied constants
in the right hand side, which vary from line to line. Their precise values are readily
perceived from the context. We shall indulge in this harmless convention for aesthetic
reasons.
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The above maximal operators, brilliantly developed by C. Fefferman and
E. Stein, not only gave birth to a new discipline to effectively handle singular
integrals: they also provided Geometric Analysts, like me, with the means
of solving demanding problems in Geometric Function Theory (GFT) and
nonlinear PDEs. Maximal inequalities saved us from laborious computation
once used in a clever, sometimes artistic, way. Let us take on stage, as
the first sketch, the Jacobian determinant F = J(x, f) = detDf(x) of the
differential matrix Df(x) ∈ Rn×n of a mapping f : Ω→ Rn [13].

Sketch I: Let Hardy and Littlewood meet Fefferman
and Stein

It is quite easily seen that for the rotationally invariant approximation of
unity, we have

∣∣F ∗ Φt

∣∣(x) � CΦ

tn+1

∫ t

0

∣∣∣ ∫
B(x,r)

F (y) dy
∣∣∣dr , CΦ =

∥∥Φ′∥∥
L ∞[0,1)

(4)

It should be noted that the absolute value is administered only upon inte-
grating F over the ball B(x, r) . Such an observation, though elementary, is
vital when dealing with null-Lagrangians. Null-Lagrangians, like Jacobians,
are the nonlinear differential expressions whose integral mean over any sub-
domain reduces to the boundary integral, basically due to cancellation of
second order partial derivatives when integrating by parts.

Theorem 2 [13] Suppose f ∈ W 1,n−1
loc (Ω, Rn) and the matrix of cofactors

D�f ∈ L
n

n−1 (Ω,Rn×n) . Then the Jacobian determinant of f lies in the
Hardy space H 1(Ω) . Furthermore,∥∥ detDf

∥∥
H 1(Ω)

�
∫
Ω

|D�f(x) | n
n−1 dx (5)

Proof. We sketch the proof with emphasis on the spherical maximal func-
tion that comes into play. Let us commence with an isoperimetric type
inequality∣∣∣ −∫

B(x,r)

F (y) dy
∣∣∣ �

(
−
∫
S(x,r)

∣∣D�f(y)
∣∣dy ) n

n−1
, F (y) = J(y, f) (6)

Thus, in particular, |F | � |D�f | n
n−1 ∈ L 1(Ω) . A skillful reader with

patience can find it in Federer’s Book, see also [19] for a legible proof.

Trivially, we have a pointwise inequality MF � M
(
|D�f | n

n−1

)
, but it

does not yield the desired L 1 -integrability of MF . Combining (4) and (6)
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yields a better inequality MF � [S(D�f)]
n

n−1 . Unfortunately, we still find
ourselves in a borderline of the L p -theory of the spherical maximal oper-
ator [1, 21]. Neither Hardy–Littlewood nor Fefferman–Stein would ensure
us that MF ∈ L 1(Ω) . But together they actually come to the rescue.
To this effect we introduce a one-parameter family {Ms}1�s�∞ of maximal
operators,

MsF (x) = sup
0< t< dist(x, ∂Ω)

[ n

tn

∫ t

0

rn−1
(
−
∫
S(x,r)

|F (y)| dy
)s

dr
] 1

s
. (7)

The observant reader may wish to note that this family interpolates between
M = M1 and S = M∞ .

Theorem 3 The sublinear operator Ms : L p(Ω)→ L p(Ω) is bounded for
all exponents p > n

n−1+ 1
s

; thus for p = n
n−1

when 1 ≤ s <∞ .

Having this result in mind we now complete the proof of (5), by using another
straightforward consequence of (4) and (6),∣∣F ∗ Φt

∣∣(x) �
(
Ms|D�f |

) n
n−1

, where, incidentally or not, s =
n

n− 1
.

Thus MF �
(
Ms|D�f |

) n
n−1 . In conclusion,

‖F ‖H 1(Ω) = ‖MF ‖L 1(Ω) �
∫
Ω

|D�f | n
n−1 .

�
Exploring the BMO–H 1 duality. Two bonus results can readily be de-

duced from Theorem 2. First, since BMO(Rn) is the dual space to H 1(Rn)
(see [4]), we obtain for every ϕ ∈ BMO(Rn)∫

Rn

ϕ(x) J(x, f) dx � ‖ϕ‖
BMO

∫
Rn

∣∣D�f(x)
∣∣ n
n−1 dx , (8)

provided f ∈ W 1,n−1(Rn, Rn ) and |D�f | ∈ L
n

n−1 (Rn) .

Second, since H 1(Rn) is the dual of VMO(Rn) , we infer compactness
of the Jacobian determinants in the weak star topology of H 1(Rn) ,

lim
k→∞

∫
Rn

ϕ(x) J(x, fk) dx =

∫
Rn

ϕ(x) J(x, f) dx , ϕ ∈ VMO(Rn),

whenever fk ⇀ f weakly in W 1,n−1(Rn,Rn) and |D�fk| stay bounded in
L

n
n−1 (Rn) . Be cautious, this fails for ϕ(x) = log |x| .
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Other implications. Assuming that f ∈ W 1,n(Rn,Rn) we see that The-
orem 2 covers the popular result of [2] on H 1-regularity of the Jacobians,
because |D�f | n

n−1 � |Df |n ∈ L 1(Rn) . It also covers a very useful result by
S. Müller [18] on local L log L -integrability of a nonnegative Jacobian. In
fact we have, for every pair of concentric balls B ⊂ 2B ⊂ Rn ,∫

B

F · log
(
e +

F

FB

)
�

∥∥F∥∥
H 1(2B)

�
∫
2B

|Df |n , F = J(x, f) � 0 . (9)

Out of curiosity, the left hand side represents a norm in the Zygmund space
L log L (B) ; the triangle inequality holds. Many further inequalities are
to be found in [12]. One of the central problems in GFT is to determine
minimal regularity of a Sobolev map under which the nonnegative Jacobian
is locally integrable. In fact [7, 14], we have somewhat dual estimates below
the natural domain of definition of the Jacobian function,∫
B

J(x, f)dx �
∫
2B

|D�f | n
n−1 log−1

(
e +

|D�f |
|D�f |2B

)
�
∫
2B

|Df(x)|n dx

log
(
e + |Df(x) |

|Df |2B
)

The true value of these estimates goes beyond theoretical interest; they play
a significant role in establishing the existence of energy-minimal deforma-
tions in the theory of n-dimensional hyperelasticity.

Sketch II: The p -harmonic transform, a play with the

sharp maximal operator

We consider the nonhomogeneous p-harmonic equation, a prototype of many
nonlinear PDEs,

div
(
|∇u|p−2∇u

)
= div |f|p−2f , 1 < p <∞ (10)

The operator that carries a given vector field f ∈ L p(Rn ,Rn) into the
gradient of the (unique) solution u ∈ W 1,p(Rn) will be called p -Harmonic
Transform, denoted by

Rp : L p(Rn, Rn)→ L p(Rn, Rn) , Rp f
def
== ∇u

The linear operator R2 = −
[
Rij

]
1�i,j�n : L s(Rn,Rn) → L s(Rn,Rn) is

a matrix of second order Riesz transforms, Rij = Ri ◦ Rj . This is a device
for the L 2-projection of a vector field onto the gradient and divergence-free
components, known as Hodge decomposition:

f = ∇ϕ + h = R2f + Tf , T = I−R2 : L s(Rn,Rn)→ L s(Rn,Rn)
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Note that T vanishes on gradient fields. The idea in the sequel is to use ϕ
as a test function for a divergence type nonlinear differential expressions.

While the Sobolev space W 1,p(Rn) , together with the given vector field
f ∈ L p(Rn ,Rn), is considered the natural setting for the equation (10), we
shall depart from it and move into the realm of exponents s � p . We shall
show that the p -harmonic transform is bounded in L s(Rn, Rn) in the sense
of the following

Theorem 4 If f belongs to L p(Rn, Rn) ∩ L s(Rn, Rn) then so does Rp f .
Moreover, we have the uniform bound,

‖Rp f ‖s � ‖ f ‖s , s � p . (11)

Proof. We only sketch the proof of the uniform estimate (11), and stick to
the case p � 2 for simplicity. A laborious proof of L s-integrability of Rpf,
based on Gehring’s Lemma on reverse Hölder inequalities [6], can be found
in [9]. Choose and fix a ball B ⊂ Rn. The weak form of equation (10)
reads as∫

B

〈 |∇u|p−2∇u
∣∣ ∇ϕ 〉 =

∫
B

〈 |f|p−2f
∣∣ ∇ϕ 〉 , for ϕ ∈ W 1,p

◦ (B) . (12)

Let v ∈ u+W 1,p
◦ (B) be a (unique) function that agrees with u on ∂B and

has smallest p -harmonic energy Ep[v] =
∫
B
|∇v|p. Thus v is a p -harmonic

function, meaning that∫
B

〈 |∇v|p−2∇v
∣∣ ∇ϕ 〉 = 0 and −

∫
B

|∇v|p � −
∫
B

|∇u|p . (13)

We subtract this integral from the left hand side of (12) and test the resulting
equation with ϕ = u − v . From this it is straightforward to derive basic
local estimates

−
∫
B

|∇u−∇v|p � −
∫
B

| f|p . (14)

We aim to replace ∇v by a constant. For this we recall the C 1,α-regularity
of p-harmonic functions, 0 < α = α(n, p) � 1. Precisely, for every 0 < τ � 1,

−
∫
τB

∣∣∇v − (∇v)τB
∣∣p � τα p−

∫
B

|∇v|p � ταp−
∫
B

|∇u|p , (15)

where the implied constants in the inequalities � depend only on n and p .
On the other hand, (14) yields

−
∫
τB

∣∣∇u − ∇v ∣∣p � τ−n−
∫
B

| f |p , (16)
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whence it is readily inferred that

−
∫
τB

∣∣∇u − (∇u)τB
∣∣p � τ−n −

∫
B

| f |p + ταp −
∫
B

|∇u|p . (17)

From now on there are two ways to obtain the estimate (11), both via
a pointwise inequality between maximal functions. In the first approach,
we apply Hölder’s inequality to the left hand side of (17) and then take
supremum over all balls centered at a given point,∣∣M�∇u

∣∣p � τ−nM| f |p + τα pM|∇u|p , pointwise in R
n .

We raise this to the power s
p
> 1 and, with the aid of maximal inequalities,

obtain ∥∥∇u ∥∥p
L s(Rn)

� τ−n
∥∥ f ∥∥p

L s(Rn)
+ τα p

∥∥∇u ∥∥p
L s(Rn)

,

where the implied constant depends on n, p and s, but not on the param-
eter τ . The observant reader may be concerned that this constant blows
up as s approaches p . But still we can chose τ small enough so that the
last term in the right hand side will be absorbed by the left hand side,
establishing the desired estimate (11).

In the second approach, to avoid the undue anomaly near the natural
Sobolev space W 1,p(Rn), we relinquish the idea of using the sharp maximal
inequality (2). Instead, we appeal to the full force of Hardy–Littlewood
maximal inequalities near L 1(Rn) . For this purpose, we rewrite (17) as

−
∫
τB

∣∣∇u ∣∣p � τ−n−
∫
B

| f |p +
∣∣ (∇u)τB

∣∣p + τα p−
∫
B

|∇u|p , (18)

Taking supremum over the balls centered at a given point we capture a
pointwise inequality for maximal functions

M |∇u |p � τ−nM | f |p + |M∇u |p + τα pM |∇u|p . (19)

We now eliminate the operator M by computing the L q(Rn) -norm, q =
s
p
≈ 1 , of both sides. Maximal inequalities (1) yield∥∥∇u ∥∥p

L s(Rn)
� τ−n

∥∥ f ∥∥p
L s(Rn)

+ (s− p)
∥∥∇u ∥∥p

L s(Rn)
+ τα p

∥∥∇u ∥∥p
L s(Rn)

.

This time we are not troubled with the exponent s approaching p; the
implied constant remains bounded. Choose s = s(n, p) > p close enough
to p and τ sufficiently small so that the last two terms will be absorbed by
the left hand side. We obtain uniform bounds (11) for Rp near its natural
domain of definition. �
Remark. The unplanned bonus coming from the asymptotically precise
Hardy–Littlewood maximal inequalities (1) gives the above proof its beauty,
doesn’t it?
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Sketch III: The splendor of commutators

In any preliminary analysis of a differential equation, linear or nonlinear,
one often encounters undesirable higher order terms which eventually cancel
out. The instruments for rigorous performance of such an analysis are the
commutators of a singular integral T : L s(Rn) → L s(Rn) , 1 < s < ∞ ,
with suitable nonlinear algebraic operations on the gradient of the solution.
Let us look briefly at three commutators, together with their underlying
estimates:

• The linear commutator of Coifman-Rochberg-Weiss [3]∥∥T(λf) − λ(Tf)
∥∥

L s(Rn)
�

∥∥λ ∥∥
BMO(Rn)

∥∥ f ∥∥
L s(Rn)

.

• The Rochberg-Weiss commutator [20]∥∥T(f log |f |) − (Tf) log |Tf |
∥∥

L s(Rn)
�

∥∥ f ∥∥
L s(Rn)

.

• The commutator of T and a power type operation [15]∥∥T(|f |±εf)−|Tf |±ε(Tf)
∥∥

L s(Rn)
� |ε|·

∥∥ |f |1±ε ∥∥
L s(Rn)

, 0 � ε < 1−1

s
.

The proof of this latter estimate captures the ideas of the complex method
of interpolation originated in the celebrated work by G. O. Thorin [22]. Ac-
tually, it yields the estimate of the Rochberg–Weiss commutator through
the L’Hôpital’s rule, which in turn gives us Müller’s L log L -integrability
of nonnegative Jacobians in a stylish way [12].

Although the linear commutator of Coifman–Rochberg–Weiss has been
known for a long time, and numerous deep studies have been devoted to it,
its usefulness in solving PDEs still remains magical. For example, good
estimates of the p-norms of the tensor products of the Riesz transforms
combined with the Fredholm index theory (via compactness of the Coifman–
Rochberg–Weiss commutators) are elegant tools in elliptic PDEs with VMO
coefficients [16]; there is no need to go again and again through the founda-
tional details of singular integrals.

I have saved the best for last:

Very weak solutions of nonlinear PDEs. These are the solutions
weaker than those in the natural domain of definition. The chief difficulty
is to launch some estimates in order to take the very weak solution off the
ground. Let us return to the weak formulation of the p-harmonic equa-
tion (12) in which f ∈ L p−ε(Rn,Rn) , so we must look, naturally, for the
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solution u ∈ W 1, p−ε(Rn, Rn) . The legitimate test function ϕ must lay in

W 1, p−ε
1−ε (Rn). We steal it from the Hodge decomposition

|∇u|−ε∇u = ∇ϕ + h , where h = T(|∇u|−ε∇u)

to obtain ∫
Rn

|∇u|p−ε �
∫
Rn

|f|p−ε +

∫
Rn

|h|
p−ε
1−ε . (20)

Since the operator T vanishes on gradient fields we can write h as a
commutator of T and the power function

h = T(|∇u|−ε∇u) − |T∇u|−ε(T∇u) .

Our estimate for the power type commutator shows that∫
Rn

|h|
p−ε
1−ε � ε ·

∫
Rn

|∇u|p−ε .

Consequently, this term can be sucked up by the left hand side, which results
in the desired estimate of the p-harmonic transform slightly below its natural
domain of definition: ∥∥Rp f

∥∥
L p−ε(Rn)

�
∥∥f∥∥

L p−ε(Rn)
. (21)

A study of very weak solutions of nonlinear PDEs is largely motivated by
removability of singularities [11].

3. Moral of the story

If one dark rainy night you find yourself in the midst of Whitney cubes,
covering lemmas, Calderón–Zygmund decomposition, etc., then you should
remind yourself that instead you might cleverly apply singular integral stuff
and thereby see the light.

“Every block of stone has a statue inside it and it is the task of
the sculptor to discover it.”

Michelangelo di Lodovico Buonarroti Simoni

“No profit grows where is no pleasure taken; in brief, sir, study
what you most affect”.

William Shakespeare
3

3 An English teacher assigned a student to read some Shakespeare, and a week later
he asked: “How did you like it?” The student answered: “Well, nothing special; just a
collection of quotations”.
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However,

In order for something to remain beautiful, it must stay “long
enough to be noticed and enjoyed, never so long as to outstay its
welcome.”

“The Rainbow and Cartesian Wonder”
Philip Fisher

Finally, as Thomas Edison said,

“No sooner does a fellow succeed in making a good thing, than
some other fellows pop up and tell you they did it years ago”.4
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Mathematical encounters

Joseph J. Kohn
∗

This article, in celebration of the 100th anniversary of the Real Sociedad
Matemática Española, deals with my first encounters with mathematics and
mathematicians. I became seriously interested in mathematics in high school
inspired by dedicated teachers and competitive fellow students. I began my
college education in MIT in 1950 and ever since I have had the privilege of
meeting many remarkable mathematicians. Many were in the forefront of
their profession and I was fortunate in learning a great deal from them. They
were diverse individuals. However, as a group they had in common intense
dedication to and enthusiasm for mathematics. Some of them had reputa-
tions as eccentrics and many amusing (“se non son vere son ben trovate”)
anecdotes circulated about them in the mathematical community. Here I
will recall some of these individuals, their influence on me and some of the
amusing incidents which I witnessed.

In 1950 the most famous person at MIT was Norbert Wiener. He was
enormously erudite and very knowledgeable in vast areas of mathematics,
science, and engineering. He was also deeply interested in the impact of
science on society. He predicted the tremendous technological revolution
that would be brought by the development of computers.

During my last year at MIT I took Wiener’s course on Fourier Series and
Integrals. In many ways it was inspiring; it taught me a lot about analysis.
At the same time the course was disorganized. For example, one lecture was
a highly technical and advanced exposition of his Tauberian theorem. In the
next lecture he proclaimed that he will now apply this to number theory.
“And what is number theory?”, he asked. “Essentially number theory is the
study of prime numbers”. He then proceeded to give a lengthy definition of
a prime number and went on: “two is a prime number, let us now consider
the number three and determine whether or not it is prime”. He continued
in this vein systematically until he passed one hundred, then he said: “Now
that we have a feeling for prime numbers let us consider the infinite sum∑ 1

p

summed over all primes.” He wrote this on the blackboard, then he stepped
back looked at the sum and raising his voice dramatically said: “this series
clearly diverges because of its arithmetical character.” He followed this up

∗kohn@princeton.edu.
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by a speedy introduction to the Riemann zeta function. I was puzzled;
I couldn’t imagine what he meant by the “arithmetical character”; now,
over half a century later, I am still puzzled. One day Wiener started his
class saying that this time he will not talk about mathematics, instead, he
will tell us about his latest detective story. In a confidential tone he told us
that he writes detective stories under the name “W. Norbert”. The story
was a murder mystery in which all clues were mathematical, such as the
notation for a line integral, convolution, time derivative, etc. The detective
had to be well versed in the mathematical literature to decipher this and
then, by elimination, he could determine the nationality and mathematical
specialty of the murderer. This analysis led to the identification, capture,
trial, and conviction of the culprit.

Norbert Wiener

I first met Wiener when I was a fresh-
man. A number of us were playing a game
that involved drawing circles and lines on
a blackboard. Suddenly Wiener appeared.
It was an impressive sight. He was heavy,
smoked a cigar and wore extremely thick
glasses. It seemed that he would not be
able to see anything through those glasses
and cigar smoke but he gave the impres-
sion that he saw everything that mattered
in the world without paying much atten-
tion to his immediate surroundings. He
looked around for a moment and then in
a booming voice he asked: “who here is

working in binary arithmetic?” A few days later I was working on a chess
problem when I suddenly was startled to hear that booming voice again:
“young man, do you play the game of chess?” I was a mediocre player
and intimidated by the challenge of this famous person. “I am not a good
player”, I answered in a trembling voice. “No matter, let us have a game”,
he shouted. We played and right from the beginning I was puzzled, Wiener
was making some very strange moves. I assumed that he was playing at
some deep level which was beyond my understanding. Suddenly, in the ini-
tial stages of the game, Wiener moved his queen so that I could take it with
my knight. This was incomprehensible to me, I could not fanthom why he
would sacrifice his queen. I felt like a fool, I started to sweat, I didn’t know
what to do. Wiener was enjoying my distress and chuckled. I concentrated
very hard and tried to anticipate what possible advantage could Wiener
have if I captured the queen, I could not figure it out. Finally I said: “Pro-
fessor Wiener, I am sorry this is way above my head, I do not understand
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your queen sacrifice”. Wiener looked at the board and seemed bewildered:
“Oops, I will have to take that move back”. Then the game deteriorated
Wiener was making one bad move after another. Soon he decided to end
the game, it was not a good day and he had to go back to his office, he said.

Several other Wiener stories come to mind but to tell them would take
up a disproportionate part of this account.

Perhaps the best undergraduate course, the course in which I learned
the most, was the junior full year course in real analysis. The teacher was
John F. Nash. He was brilliant, arrogant, and eccentric. At this time he
was in the midst of his spectacular work on embedding theorems, neverthe-
less, his course was meticulously prepared and beautifully presented. The
course started with an introduction to mathematical logic and set theory
and covered, with great originality, the central topics of analysis culminat-
ing in the study of differential and integral equations. Nash is now known
by the public at large because of the movie “A Beautiful Mind” which is
loosely based on the book with the same name by Sylvia Nasar (Simon &
Shuster, 1998). The book recounts many incidents in Nash’s life including
some of the interactions that he had with me.

The most carefully organized course I took at MIT was in differential
geometry given by Warren Ambrose. Ambrose was a dynamic lecturer
and he followed the Bourbaki idea of keeping things invariant and very gen-
eral. It is in this course that I first learned about the Hodge theorem and
became fascinated by the applications of the theory of partial differential
equations to the study of manifolds. In particular it led me to study the
result known as the Weyl’s lemma (Weyl, H., The method of orthogonal
projection in potential theory, Duke Math. J. 7 (1940), 414–444). For me
this result opened a new and exciting vision of mathematics: the intimate
connections between partial differential equations and several complex vari-
ables. This vision was reinforced when, as a graduate student, I went to a
series of lectures by Hermann Weyl at the Institute for Advanced Study
on his work on Riemann surfaces.

Returning to Ambrose, he was a very colorful character with strong opin-
ions on mathematics, religion, and politics. In the case of mathematics he
had been an expert in functional analysis but later turned against this sub-
ject and talked about it with disdain, using expressions such as “trivial”, “ir-
relevant”, and “nonsense” to describe it. At this time the Unitarian Church
in Boston presented a weekly series of talks to promote religious tolerance
and understanding. The talks had titles such as: “Why I am a Catholic”,
“Why I am a Protestant”, “Why I am a Jew”, etc. Ambrose gave a talk in
this series entitled “Why I am an atheist”. Naturally many students in his
class came to the talk and the church was packed. The talk was not well
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received, a low point was reached when Ambrose elaborated on his reasons
for believing that all religions impede human progress. His thesis was that
religion inhibits scientific experimentation, especially in the social sciences.
For instance, he argued, all religions would object to the type of research
that Kinsey was doing.

In June of 1966 I went to give a series of lectures in Buenos Aires. Just
then there had been a military coup but the universities had not yet been
taken over. The atmosphere was tense, the military was not allowed to enter
the campus and outside there were confrontations between the police and the
students. Everyone expected that the military would take over the university
and one day it did. Many students and faculty members were terribly upset
and planning how to react. The university had a massive building in down-
town Buenos Aires and a group of students decided to “liberate” it. They
scheduled a protest meeting in that building for one night. That evening
I had dinner with Ambrose and Alberto González Domı́nguez, who was an
important figure in mathematics and in the academic community. Ambrose
said that he plans to join the students in the protest meeting. González
Domı́nguez and I tried to talk him out of it. We argued that he does not
know Spanish, that he doesn’t understand the political intricacies and that
this could be dangerous. We could not convince him, he went and we did not.
As soon as the meeting hall was full the organizers locked the massive doors
of the building and put up signs proclaiming that the building was liberated.
Soon the police came and demanded, with loudspeakers, that the building be
vacated. This building has very thick walls and the police demands were not
heard inside. The police broke in and the audience was lined up to go out of
the building through the exit where they were beaten, one by one, with rifle
butts. Late that night I got a phone call that Ambrose had disappeared.
I immediately called the American Embassy. The next morning Ambrose
came to the hotel. He told me that this was a fantastic experience; he was
thrilled to have been part in it. When he was in line waiting his turn to be
beaten he realized that there has to be a rhythm to beat so many people as
they passed. Ambrose had been a jazz musician so he was trained to move
rhythmically. Now he put the training to good use so that by going along
with the rhythm of the beating the blows he received were only glancing.
He said that he was happy not to have missed such a great adventure.

After the universities in Argentina were taken over by the military many
mathematicians fled to other countries. Ambrose was extremely helpful in
settling a number of them in the United States.

In 1953 I started graduate work in Princeton. The chairman of the Math-
ematics Department was the renowned mathematician Solomon Lefschetz.
He had been one of the foremost developers of modern topology and alge-
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braic geometry. After the war most of his work was in ordinary differential
equations. He was a very effective chairman, instrumental in building up the
department to its preeminent status. He could be very blunt. He gave the
entering class the following words of encouragement: “Congratulations, you
have been admitted to Princeton after a very stiff competition. There are
thirteen of you and you have a right to be proud of this accomplishment. I
have no doubt that if you work at the same level that enabled you to get in
here you will be able to satisfactorily complete the requirements for a doc-
torate. Soon most of you will get their PhD in mathematics. But how many
of you will become real mathematicians? Maybe one, perhaps even two, but
certainly not more than three.” Two other instances of the Lefschetz style
are the following. 1. One day Kodaira and Spencer told Lefschetz that they
finally were able to complete the proof of one of his major theorems. His
response was: “This is Princeton; we do not do baby mathematics here.”
2. When Zariski asked Lefschetz for advice on how to categorize an algebraic
geometry paper submitted to the Annals of Mathematics – should it be clas-
sified as algebra or geometry. Lefschetz answered: “If the paper consists of
a lot of symbol manipulation, then it is algebra. But if there is an idea, then
it is geometry.” To be fair, more often than not Lefschetz was very generous
and supportive. When Steenrod died, at the age of 62, Lefschetz was dis-
traught; he said that the world was not just and that he should have died
before Steenrod.

In my time, graduate students did not have offices; we were assigned
carrels in the library. Lefschetz had a huge office, he liked to have people
around so he invited a few graduate students to use it; there were several
spare desks and an elegant blackboard. The rule was that whenever he
had business there we had to vacate and whenever he held seminars or
mathematical discussions we were welcome to stay. One day I was studying
a beautifully written book by Norman Steenrod: “The Topology of Fibre
Bundles” (Princeton University Press). When Lefschetz saw this he said that
this is a great book and that there is a lot I could learn from it. However,
he said, it does not confront the main issue. The book is based on the
assumption of constant rank and the really interesting and relevant problems
arise when the rank degenerates. This view was reenforced by René Thom.
On a visit to Princeton, Thom had lunch with Spencer and me. He told us
that the trouble with current mathematics is that it is dedicated mainly
to describing phenomena that are smooth and regular whereas the exciting
phenomena happen when such regularity breaks down in the spirit of his
catastrophe theory. The remarks by Lefschetz and Thom had a profound
effect on my work. I was studying the ∂̄-Neumann problem on strongly
pseudoconvex domains. This is a boundary value problem in which the
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ellipticity breaks down. Nevertheless, the break down is controlled by the
fact that the Levi form has constant rank. A much more radical departure
from ellipticity is when the domains are weakly pseudoconvex. For such
problems in general, the solutions cannot be given by any explicit formulas
and have to be investigated by means of estimates. The study of these
estimates often leads to problems in algebraic geometry of the sort that
Lefschetz referred to.

Lefschetz was devoted to the development of mathematics in México.
He turned his organizational talent to building up Mexican mathematics.
He spent a lot of time lecturing there and brought a series of Mexican
students to do graduate work in Princeton. His efforts were spectacularly
successful, Mexican mathematics is flourishing in large part because of the
impulse from Lefschetz.

When Lefschetz found out that I speak Spanish he urged me to come
to México. Before I went, the well known Mexican topologist, José Adem
(who was one of the mathematicians that Lefschetz brought to study in
Princeton), asked me to give some lectures on sheaves since I had been
following a seminar on the subject in which the latest developments were
exposed. Just before my first lecture Lefschetz told me that whatever I do I
should not lecture on sheaves, he claimed that the audience was not prepared
for it. I stood in front of the audience not knowing what to do. Fortunately,
when the bell rang Adem walked in. I took him to a side and explained
my predicament. He told me not to worry, that I should start with a few
general comments and that within a few minutes Lefschetz would be sound
asleep after which I could start exposing sheaves. I followed his advise. It
was right on target.

Spencer (Bombay, 1963)

At Princeton, my thesis advisor was Don-
ald C. Spencer. He was enormously
enthusiastic about mathematics and also
about his students. He always made us
feel that our ideas were really important.
He was truly inspiring. When he lectured
he wanted to get to the important point
as quickly as possible and he did not mind
if the foundations that he presented were
somewhat sketchy. For example, in the
opening lecture of the above mentioned
seminar on sheaf theory, Spencer got very
frustrated with all the conditions in the def-
inition of a sheaf and after trying unsuccess-
fully to summarize them quickly, he said:
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“It is really very simple, a sheaf is just algebra this way (waving his hands
vertically) and topology this way (waving his hands horizontally).” The
intensity of Spencer’s enthusiasm was contagious. He often talked about the
great project of deformation of complex structures that he and Kunihiko
Kodaira were working on. The collaboration with Kodaira was extremely
fruitful. It had and continues to have enormous influence in a number of
mathematical fields. In the introduction to his remarkable book “Complex
Manifolds and Deformations” (Springer Verlag, 1981), Kodaira conveys the
nature of their work: “Spencer and I developed the theory of deformation
of compact complex manifolds. The process of the development was the
most interesting experience in my whole mathematical life. It was similar to
an experimental science developed by the interaction between experiments
(examination of examples) and theory. In this book I have tried to convey
this interesting experience; however I could not fully convey it. Such an
experience may be a passing phenomenon which cannot be reproduced.”

A great attraction to all those around Spencer was his weekly semi-
nar, called the “Nothing Seminar”. It was very informal and very stimu-
lating. A speaker presented some current work and the audience, led by
Spencer, interrupted with comments and questions. Spencer would usually
take the speaker to dinner to an out of town restaurant. Very often Kodaira
and I were in the back seat of the car and the guest in front. Invariably
Spencer had an urgent mathematical idea which he had to discuss with
Kodaira while driving. He would turn around to face Kodaira during this
conversation while driving full speed ahead. This made the guest and me
very nervous while Kodaira and Spencer did not seem to feel any danger.
Fortunately it always came out well, evidently Spencer’s peripheral vision
was extraordinary.

Spencer in Durango,

after retirement

Physically, Spencer was very strong,
he looked like of a western movie hero.
He could also hold his liquor. Spencer
told me that the most serious drinking
challenge he faced was when Lefschetz
invited him for a drink. When he got
there Mrs. Lefschetz told Spencer that
her husband would be late but that he
had instructed her to pour Spencer a
drink. She opened a bottle of scotch
and filled up a tall glass with it (Mrs.
Lefschetz was a midwesterner and not
familiar with liquor). Spencer managed
to drink it all without hesitation. Once



196 Joseph J. Kohn

when I had dinner with him, we started with double martinis. He was on
his fourth drink while I was still slowly sipping my first. I said: “Don, I
don’t know how you do it, I am still working on the first drink and I am
already dizzy.” He answered: “Joe, you don’t know how lucky you are, it
takes me at least six to get to that point.” Spencer retired at 65, three years
before the then mandatory age of 68. He said that he did not want to grow
old pontificating about mathematics, like many of his colleagues. He moved
to Durango Colorado and spent most of his time hiking and working on his
garden. He soon became known to everyone in town, he had a charismatic
personality. One year after his move to Durango his new friends threw a
birthday party for him with over 150 guests. In 2008, several years after his
death, one of his favorite lookout points near Durango was officially named
Spencer’s Peak in his honor.

Apart of the above mentioned paper by H. Weyl my early research was
greatly influenced by two papers. First, the ground breaking paper by Hans
Lewy: “An example of a smooth linear partial differential equation without
solution” (Annals of Math. 66 (1957), no. 1, 155–158). This paper moti-
vated my research in two directions. In several complex variables where it
leads to analysis on CR manifolds and in PDE where it has led me to study
hypoelliptic operators that lose derivatives.

The other famous paper that had a major influence on me was by Al-
berto Calderón “Uniqueness of he Cauchy problem for partial differential
equations” (Amer. J. Math. 80 (1958), 16–36). This paper motivates the
study of pseudo differential operators and especially their use in reducing
estimates in PDE to problems in algebra and algebraic geometry.

Of course I greatly benefited by studying many other seminal papers.
The three mentioned here come to mind as being particularly striking and
inspiring in my work.

I spent the summer of 1957 at Stanford as assistant to Stefan Bergman.
He was a very original mathematician. His introduction of the Bergman
projection and of the Bergman kernel function became a major tools in
the study of conformal mappings (see “The kernel function and conformal
mappings” by Stefan Bergman, Amer. Math. Soc., 1950). He then went on
to use these methods in the study of functions in several complex variables
and these ideas gave rise to many important developments. He was a very
generous man dedicated to his students and colleagues. He also was very
effective in helping Polish mathematicians during and after the war. At the
same time he was quite a character. When asked how many languages he
speaks he replied: “I shpeak sieven langvidges und Eanglish is de bestest”.
His wife told me that when they first arrived in Stanford, Bergman went to
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introduce himself to the local butcher. He told him that he was a well known
mathematician, one of the greatest experts in the theory of several complex
variables and that he had just been appointed to a prestigious professorship
at Stanford. The butcher was not impressed and said: “OK, but I bet that
I make at least twice as much money as you do.”

One day Bergman told me that the Soviet launching of Sputnik awakened
a great curiosity about space. He said that now the American public would
be eager to learn about the geometry of four dimensional space. Further he
said that the best way to understand this geometry is through the theory
of two complex variables. He felt that he was the ideal person to explain
this and he wanted me to go to San Francisco to set up a series of television
appearances for him in which he would lecture on this. I told him that, as
a recent Ph.D., I was unknown and that it would be very difficult for me
to see the right people. I suggested that, instead of sending me, he should
write a letter on official Stanford stationary making the suggestion. As a
world renowned scientist he could not be ignored. After thinking about it
Bergman agreed to this and asked me to draft such a letter. I did, Bergman
signed it and sent it. No reply came and the matter was forgotten.

This account concerns some of my early encounters with mathematicians.
The list is by no means complete, among the other inspiring mathematicians
that were my teachers are: Witold Hurewicz, Isidore Singer, William
Feller, Emil Artin, and Solomon Bochner. I could write a great deal
about each one of them but the limitations on the length of this note pre-
clude that.
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Good or not so good papers I have read or
have not read

Pierre Gilles Lemarié-Rieusset
∗

However simple the question raised by the Revista Matemática Iberoame-
ricana may look, I have met some trouble to find an adequate answer. I was
asked to write down a couple of pages on “the particular publications that got
my attention and affected my own personal research”. The aim was to “place
in a proper light the role that research journals play in the development of
Mathematics”.

There are many papers that have had a decisive role in my research.
However, when I look more closely at the question, there are very few ones
which play that role as publications in scientific journals per se. First of all,
the influence they have had on my research is due to the scientific content:
results and methods, and not the printed medium. The most influential
ones were so influential that I did not have to read them: I learned their
content through books, conferences, seminars, lectures, or derived papers,
and thus I actually did not have to read them, I only had to quote them in
the references at the end of my own papers (thus propagating their influence
a bit further). . .

Another problem was the fact that I most usually did not read them as
journal papers. I remember being thrilled as a student as I read an old paper
of Lebesgue in his Oeuvres complètes , but to know in which journal it was
originally released is no longer meaningful. For modern papers, this question
is even more meaningless: the most striking ones are widely disseminated
as soon as they are posted on the Internet, on arXiv for instance, and when
they are released on a specific copyrighted journal it is important to know
which journal for bibliographic or bibliometric reasons, but the scientific
impulse often has been exerted before the official publication. Even when
the scientific publisher is important in providing the paper, most often, it is
mediated through a data base of hundreds of journals (such as Science Direct
or Springerlink) more than through the production of a specific journal.

Even in the case of direct confrontation with the results (precluding any
use of the huge electronic data bases offered on the Internet, or a second-
hand presentation of the paper), most of the time, the actual journal is not
involved, as the direct confrontation is with the author, not with the journal:
either the author presents his results at a seminar or a conference, or he sends
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me his preprint, or his work is relayed to me by an enthusiastical co-worker.
In all cases, the journal does not seem to play a very important role.

For instance, the celebrated T (1) theorem of David and Journé had a
long (everlasting) impact on my research; first of all, the first draft of my
Ph.D. in 1983 thrown in the dustbin, then every paper of mine, or almost
every one, thereafter used this theorem. However, I never read the paper
which was published in 1984 in the Annals of Mathematics, since I had the
wonderful opportunity to meet Yves Meyer, Guy David and Jean-Lin Journé
on a regular basis throughout the years 1982 and 1983.

Another of my favorite papers which I did not read was the block spin
construction of ondelettes by Guy Battle, a paper which was published in
1987 in Communication in Mathematical Physics. I was drastically con-
cerned with this paper, as Guy Battle constructed his spline wavelet basis
in the heart of Texas in just the same week as I constructed my own basis
on the sun-bathed shore of Sidi Bou Säıd. Yves Meyer received my Tunisian
letter a short time after he received Battle’s Texan letter; Battle was kind
enough to retitle his paper as “Lemarié’s functions”, as I was a younger
student in a precarious status. The Battle–Lemarié wavelet basis was born.
I tried to read Battle’s paper, but it sounded so mysterious to me (and to
every co-worker of mine) that I cannot say I really read it. It was only three
years later that I understood Battle’s paper, not by reading it once more,
but when listening to a talk given by a young student at the École Poly-
technique, whose end of year’s work was to expose Battle’s paper: the poor
guy had great difficulties in explaining the paper, the audience in the room
was totally lost in perplexity, while I had the satisfaction to feel that a three
year long ripening of understanding eventually allowed me to understand
a physicist’s point of view. From time to time, I now find the answer to
some open questions I have trouble with just by trying to think “as Battle
would do”. . . But again, human mediation was stronger than printed rough
material.

Definitely, the top paper I have not read is Hedberg’s paper which, in only
six pages published in 1972 in the Proceedings of the American Mathematical
Society , established a pointwise inequality for Riesz potentials, allowing a
direct and simple proof of Sobolev embeddings. I find it a seminal paper;
I can track its influence in many important works in functional analysis and
partial differential equations. When I heard of this paper (I was very lucky:
randomly turning the pages of Adams and Hedberg’s book on potential
theory at my University’s library, I had the surprise to see the book open
just by itself to the very page where this inequality is recalled), I entered a
new dimension: now, there are distinctly two categories of analysts in my
opinion, those who know this inequality and those who don’t. In a recent
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paper of Adams about his “love affair” with Sobolev inequalities, I could
find another warm tribute to this short paper of Hedberg. But, one more
time, the actual journal did not play a special role, as even Adams heard
very late about Hedberg’s paper.

Thus far, I was at a total loss about which paper and which journal I
could cite. Journals do play a central role in the dissemination of science
and knowledge, peer review play a crucial role in the validation of results.
But which paper should I cite?

I finally chose two papers, which had a prominent role in my research
and which I encountered truly as papers published in a material journal.

The first one is a short paper by Yves Meyer: “Remarques sur un
théorème de J. M. Bony” (Supplemento ai Rendiconti del Circolo Matem-
atico di Palermo, Serie II 1 (1981), 1–20). This paper was the basis for
the T (1) theorem of David and Journé, introducing the paradifferential cal-
culus of J. M. Bony in the formalism of Littlewood–Paley decomposition.
This formalism has been a faithful companion to my own work for thirty
years now. But most of all, I was deeply attached to the reprint Meyer gave
me, a nice well-printed and perfectly binded bunch of pages that traveled
with me for years and that I read from time to time with an ever renewed
pleasure: it was the first reprint I had ever had, and I loved the object.
Nowadays, most “reprints” are electronic files, or hastily printed and stapled
pages, and this material pleasure of holding such a little treasure is vanish-
ing. One of my greatest pleasures in publishing in the Revista Matemática
Iberoamericana has always been the neatly designed reprints they send to
the authors. When you do some hard work, you definitely appreciate to see
it enclosed in a nice environment.

The second one is a paper published some six years ago in the Revista
Matemática Iberoamericana: Wang, W.-K. and Xu, C.-J., “The Cauchy
problem for viscous shallow water equations” (Rev. Mat. Iberoamericana 21
(2005), no. 1, 1–24). It is not “the most important” in the field, but
as a matter of fact we are not asked to quote the most important papers
in our field, but those which are special to us. So, why is that paper so
special to me? When I read the paper, I did not feel it as very striking:
the methods were not very new (they follow the formalism introduced by
J. Y. Chemin for studying the equations in fluid mechanics with help of
the Littlewood–Paley decomposition) and the results were far from optimal
(the optimal result was given in 2008 by Chen, Miao and Zhang in the
SIAM Journal of Mathematical Analysis). Thus, it could seem strange that
I retain this paper as my special paper. But, indeed, it is special paper for
me, published in a special journal. I work in a young University (it was
founded only twenty years ago), in a small mathematics department. Our
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library is very modest. Now, we may access to many papers online, but at the
beginning we had only few papers that our library received: in analysis, there
was only Annales de l’Institut Fourier, Potential analysis, SIAM Journal of
Mathematical Analysis. . . and Revista Matemática Iberoamericana.

With such a restricted choice, I had time to have a random look to the
new arrivals in the library. Thus, I found that paper on shallow water, and I
read it. It was a mixture of Navier–Stokes equations (a theme I had been
working on for ten years) and Euler equations (something which remained
mysterious to me) Then, I read it with growing interest and dissatisfaction:
clearly, the method was a method that I could understand and the result
was not optimal. I could try and get a better result. But I had no time
and when I tried to find some time, the optimal result had already been
published. However, it was the first time I was confident in my ability to
handle transport equations, and thereafter I developed my own approach
of Euler equations, as a remote answer to my first dissatisfaction. By now,
Euler equations have turned into a thrilling field of investigation for me.

I don’t think that the “googleized” situation we all know nowadays allows
such bifurcations. Finding some unexpected sources of inspiration (what
is coined as “serendipity” in the science of information, following a term
introduced by H. Walpole at the end of the 18th century) is not only a
matter of key words and data bases. The actual meeting with the material
support of ideas, such as books and journals, remains important for opening
new horizons, and I still hope that libraries will not wholly migrate into the
digital world.
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Looking back at “A Regularity lemma for
functions of several variables”

Rafael de la Llave
∗

We look back at the regularity result established in the paper quoted
in the title, presenting its context, as well as further developments and
related open questions. The presentation is rather informal.

1. Introduction

It is an honor to be invited by the editors
of “La Revista” to make a presentation
of an article that has been influential for
me. Since there were so many choices,
I decided to take a paper published in
Revista, [19], in which I was somewhat
involved.

Following the editors’ instructions,
I will try to explain why I was interested
in this paper and which are its repercus-
sions. I will propose several questions
that, to the best of my knowledge, still
remain open. I cannot give a compre-
hensive view of the problem, but I hope I
will be able to show some of the connec-
tions to other areas of mathematics.

As an modest personal note, let me mention that the article [19] was
written while Jean Lin Journé and I shared the exciting atmosphere of the
Mathematics Department at Princeton and had a good personal relation
outside the office. So, reflecting on these 20+ year old questions brings me
a bit of melancholy. I can also look back a few years earlier and remember
when I first heard about the project of having a first class journal in Spain.
It sounded exciting but somehow impossible. I think that one of the greatest
achievement of the creators of La Revista is that the new generations cannot
even imagine what an achievement it was to carry out at that time projects
that then seemed impossible, but that now look so normal.
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2. Description of the result in [19]

The problem considered in [19] is a very basic regularity question of functions
of several variables.

Roughly, we assume that a function is several times differentiable along
the leaves of two transversal foliations. Then we want to conclude that the
function is smooth. We assume that the leaves of each of the foliations are
uniformly smooth, but we do not assume any regularity of the leaves when
we change the point.

We note that the problem is local, hence, we can set it up in Rd and
consider only a neighborhood. As a matter of fact, as we will explain later,
we can reduce it to the case d = 2. See the end of Section 3.2.

More precisely. We assume:

H1) We are given two foliations in R2, that is, two collections W1,W2

of smooth curves indexed by the base points x ∈ R2, we assume that W i
x

are uniformly Cr+α. r ∈ N, r ≥ 1, α ∈ (0,Lip).

1) x ∈ W i
x

2) W1
x ∩W i

y �= ∅ =⇒ W i
x = W i

y

3) When parameterized by arc length the manifold are uniformly Cr+α.

4) The jets JrWx depend continuously on the point x.

5) The foliations are transversal. TxW1
x ⊗ TxW2

x = R
2.

Assumptions 1), 2) are the standard definition of foliation. Assump-
tion 3) formalizes that the leaves are uniformly differentiable. We denote
by Jr the r-jet of the manifolds. In this simple context, one could also
consider the r + α jet (say that the mapping t → W i

x is continuous when
the curves are given the Cr+α topology), but it is not geometrically natural.
Also note the case α = 0 will give difficulties later when r > 1.

An example to keep in mind about the foliations is as follows. Con-
sider increasing continuous real functions f1, f2 such that fi(x) ≥ x + 0.1,
fi(0) = 0.1 and fi(1) = 1.1. The foliationW1 will consist of the straight lines
joining (0, x) to (1, f1(x)) and the foliation W2 will consist of the straight
lines joining (0, f2(x)) to (1, x). They satisfy the assumptions in a open
neighborhood around (1/2, 1/2).

H2) We have a function ϕ : R2 → R such that

• ‖ϕ|W i
x
‖Cr+α ≤ K.

Theorem 1 Under assumptions H1 and H2 we have that ϕ ∈ Cr+α(R2).
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3. Some preliminary remarks

3.1. The case r = 1

The case r = 1 is classical. In this case, we can also allow α = 0,Lip. It is
classical that a function is C1+α if and only if it has Cα partial derivatives.
The proof, based on integrating the mean value theorem, can be very easily
adapted to the situation when, rather then having partial derivatives, one
has derivatives along a foliation.

For derivatives of higher order, the problem is that one has only deriva-
tives along several directions and has to reconstruct the mixed derivatives.

It should be remarked that this is false for C2 and that there are classic
examples (see, for instance, [22]) which show that there are functions whose
derivatives along coordinate axis are smooth but that lack mixed derivatives
(this is clearly related to the fact that the inverse Laplacian is not bounded
from C0 to C2).

3.2. Coordinate foliations

When the foliations are the coordinate lines, the result is classical. One can
find proofs in [35, 22].

Of course, when the foliations are C∞ (that is, the leaves are C∞ and
the jet depends continuously on the base point), we can reduce the problem
to the coordinate case.

The proofs of [35, 22] are based on the theory of singular integrals (Riesz
potentials), which is a natural way to reconstruct the mixed derivatives from
the derivatives along certain directions.

It is well known by specialists in harmonic analysis that the theory of
Riesz potentials is not simple in Cr+α spaces when α = 0,Lip. This is related
to the reasons why we eliminated α = 0 in our statements.

Note also that this allows us to reduce to the case d = 2. If the foliations
are in Rd, we just take intersections with two dimensional planes where they
are local. Once we conclude the regularity for arbitrary two dimensional
planes, we can use the coordinate argument.

4. Some idea of the proof in [19]

The proof in [19] is based on some elementary observations. For simplicity,
we will just describe it in the case of coordinate foliations. Then, we will
indicate the changes needed. Fix 0 < λ < 1.
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The goal is to show that we can approximate the function by a Taylor
polynomial in a neighborhood of a point, that we will assume, to simplify
the notation, it is at the origin.

We consider grids of points in R2 of the form

GN,M = {(λn, λm)| 0 ≤ n ≤ N +D, 0 ≤ m ≤M +D} (1)

Because the grid GN,M is a product, it is possible to find a polynomial of
degree D × D, PN,M(x, y) =

∑
0≤n,m≤D cn,mx

nym, that agrees with ϕ on
the grid.

The polynomial PN,M is found by using Lagrange interpolation on each
vertical line using polynomials in y. Therefore, we have a function from x
taking values in y-polynomials. Then, we can use again Lagrange inter-
polation and find a x-polynomial whose coefficients are y polynomials. Of
course, one could do the interpolation in x first and then the interpolation
in y. The result is the same. Indeed, there is a uniqueness lemma that states
that the interpolating polynomial is unique.

The key property to keep in mind is that, because the exponential sepa-
ration of the points, the coefficients of the Lagrange interpolation have good
stability properties (these stability properties are absent, e.g., if we take
equally spaced points, as it is well known).

Noting that ϕ is smooth along the x direction, we can compare PN+1,M

to PN,M because the interpolating polynomials along the horizontal lines do
not change too much. Then, the second interpolation in y does not change
much either. A similar argument, using the regularity along the y direction,
allows to compare PN,M + 1 to PN,M so that, by doing the process twice,
we can compare PN+1,M+1 to PN,M .

Of course, we have omitted the precise statement of the comparisons, but
in [19] it is shown that we can get enough control to show that as K →∞,
the coefficients of degree less or equal than D of PN+K,M+K converge.

An extra argument shows that this polynomial (which is independent of
the sequence of grid used and of λ) satisfies the same bounds as a Taylor
approximation.

Since the point is arbitrary, we have shown that in a neighborhood there
is a “Taylor approximation” around every point. It is not hard to show that,
because it is uniformly bounded and continuous (A compactness argument
and the uniqueness of the Taylor approximation gives that the graph of the
mapping (x, y)→ PD

x,y is closed, hence it is compact).

The argument is robust enough so that it can incorporate the fact that
the foliations are not exactly the product, but, of course, are close to the
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product in a small enough neighborhood. The stability of the interpola-
tion when we change the interpolation grid slightly is closely related to the
fact –that we mentioned without detail– that in exponential grid the coef-
ficients of the interpolation polynomial are controlled by the values of the
function.

Once one has a Taylor expansion at every point, it is an standard result
to show that the function is smooth. This is done in [1, 23], where it is
called Converse Taylor theorem. Note that there are more general results
in [6], where the approximation of Taylor’s theorem is just required to be in
the sense of Lp of a small ball.

4.1. The origins of the problem and some previous de-

velopments

The problem is, of course, a natural one and could have been asked hundreds
of years ago. But as a matter of fact it was originated in Dynamical Systems.
Since this origin also motivated several of the later developments, we will
try to discuss it.

When one considers a diffeomorphism f : M → M , M a manifold, and
η :M→R, the simplest natural and nontrivial linear equation one can form is

ϕ ◦ f − ϕ = η (2)

Indeed, these equations appear very frequently in dynamical systems, repre-
sentation theory, etc., and are called cohomology equations. Their regularity
theory opens the gate to many questions in stability, rigidity, inverse spectral
theory, etc.

If f is induced by algebraic operations, e.g., f is a rotation on a torus
or an automorphisms of a homogeneous space, one can consider using rep-
resentation theory (Fourier analysis in the case of rotations). See [26] for
a rather general use of representation theory methods in the study of (2)
and [33] for the case of rotations. The case of rotations is the basis of KAM
theory. For applications to rigidity theory, see [41].

One interesting case for dynamicists is when f is an Anosov system. That
is, there is a splitting TxM = Es

x⊕Eu
x invariant under f , Df(x)Es,u

x = Es,u
f(x).

and, for some N large enough ‖DfN(x)|Es
x
‖ ≤ 1/2, ‖Df−N(x)|Eu

x
‖ ≤ 1/2.

That is, one can find directions that contract exponentially either in the
future or in the past.

It was known very early in the theory of Anosov systems (certainly it is
reviewed in [2]) that one can find foliations Ws and Wu whose leaves are
tangent to Es and Eu respectively. The leaves are as smooth as the map,
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nevertheless, the dependence from point to point of the jets could be only
Hölder, even if the map f is analytic. The integrability of these stable
and unstable distributions is a very surprising fact, which depends a lot
on dynamic arguments. It does not follow from regularity properties of
the jets in the case that they are one-dimensional or –as far as we know–
from Frobenius theorem in higher dimension. Indeed, there are some other
dynamically defined distributions with very similar properties, which are not
integrable [18].

Equations of the form (2) over Anosov systems were studied in [24, 15] for
very different motivations. The paper [24] developed a theory of existence
of Cα 0 < α < Lip solutions that was extended to C1+α (0 ≤ α ≤ Lip)
solutions in [15] for general systems and for C∞ solutions for geodesic flows
on surfaces of negative curvature.

It was observed in [7] that the C0 solutions of (2) are differentiable along
the leaves of the stable and unstable foliations. Formally, if (2) holds, we
have

ϕ(x) = η(x) + η ◦ f(x) + · · ·+ η ◦ fn(x) + · · · (3)

Even if the formula (3) is quite formal, one can observe that the formula
that one obtains taking derivatives along the stable directions is very con-
vergent. Denoting by Dx the derivative along a vector field tangent to Es,

DSϕ(x) = Dsη(x) +Dsη ◦ f(x) + · · ·+Dsη ◦ fn(x) + · · ·
= Dη(x)vs +Dη ◦ f Df(x)vs + · · ·+Dη ◦ fn(x)Dfn(x)vs + · · · (4)

Since the factors Dfn(x)vs decrease exponentially fast with n, the above one
is a very convergent series.

Once one can justify (4) by taming the application of (3) (one justifica-
tion using approximation by periodic orbits can be found in [7], another one
using Cesàro sums in [8]), one can proceed to take further derivatives. Of
course, an analogue argument works in the inverse direction.

Hence we are in the situation of Theorem 1. So the Theorem 1 leads to
a regularity theory of solutions of (2), which as mentioned before leads to
quite a number of results.

4.2. Some previous results

It is interesting to compare the proof of Theorem 1 with other previous
proofs of similar results.
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4.2.1. The elliptic regularity approach

The first similar result appears in [7]. The main idea is that, because we can
take derivatives along the stable and unstable directions, we can compute
and find that given a� 1, ϕ satisfies

(−1)N [D2N
s +D2N

u ]ϕ+ aϕ = ν (5)

where ν ∈ C0(M).

It is amusing to note that the properties that in dynamical systems are
called hyperbolicity correspond closely to the fact that the operator above is
elliptic.

So, one can hope to use the regularity theory of the elliptic equations to
find the ϕ has to be smooth.

One has to be careful for several reasons: The first is that the coefficients
are not very smooth (only Hölder). The second one is that the equation is
satisfied in the sense of the old fashioned derivatives along certain leaves.

The fact that the coefficients are not smooth is not a problem for the
method of freezing of coefficients and it is possible to find a function Ψ
such that (−1)N [D2N

s + D2N
u ]Ψ + aΨ = ν. Now, the question is to prove

uniqueness to conclude that Ψ = ϕ.

There are several ways to prove uniqueness of elliptic PDE’s of high
order. All of them somehow require integrating by parts and that D∗

s =
−Ds + loworder.

To justify the integration by parts, the method of [7] was to improve on
a result of [2] called absolute continuity of foliations. This property shows
that there is mapping that sends the stable (resp. unstable) foliation into
the standard foliation and that this transformation has an absolutely con-
tinuous Jacobian. This absolute continuity is crucial to prove the ergodicity
of Anosov systems, in particular, geodesic flows of manifolds of negative
curvature following a classic argument of Hopf.

The method of [7] was to prove that the Jacobian of this transformation
can be chosen to be differentiable along the stable directions. So that using
the transformation Γ of Jacobian J , we can transform∫

ΨDsϕ =

∫
Ψ ◦ Γ

∂

∂x
ϕ ◦ Γ J

So that the integration by parts is possible.

The proof of the differentiability of the Jacobian in [7] follows by examin-
ing carefully the proof of absolute continuity in [2]. (The better known proof
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in [29] does not seem to yield so well to generalizations). Another method
was remarked in [8]. One observes that by the invariance of the parameter-
ization, one can get that the Jacobian satisfies in patches J ◦ f detDsf = J
and taking logarithms log J ◦ f − log J = − detDsf . In other words (ignor-
ing issues about patches, which are irrelevant to computing derivatives), we
obtain that log J satisfies an equation of the form (2) so that the argument
for existence of derivatives can be adapted.

Another proof of a similar regularity lemma appeared in [17]. The proof
is based on studying ϕ̂k ≡

∫
ϕ(x, y)ei(kx+ly) dxdy (of course, one has to use

cutoff functions etc.).

We can transform variables using the stable foliation and the smoothness
of the Jacobian (already established in [7]) and obtain that one can bound
|ϕ̂k| ≤ C|Πs(k, l)|−r and a similar argument in the unstable direction gives
a similar decay in the other direction. One, of course, is reminded of the use
of Fourier analysis to conclude regularity of elliptic equations.

Of course, using Fourier series and estimates on the coefficients rather
than integral representations leads to a loss of regularity which grows with
the dimension because the size of the Fourier coefficients of a function does
not capture very well its regularity. Even if one tries to obtain estimates of
the identity operator one gets a loss.

The elliptic approach was extended significantly in [8, 30]. Of course,
the use of the smoothness of the Jacobian remains.

4.2.2. Results for Hölder regular foliations

Before [19], there was another argument in [20], again based on proving
by induction in the degree the existence of a Taylor approximation. This,
however, required that the foliation was Hölder. The idea of the proof was
to consider the Taylor expansion at neighboring points. One shows that if
they were not differentiable with respect to the point, it would be impossible
that the original function has the assumed regularity.

5. Some further developments

5.1. Analytic regularity

The method using Fourier coefficients was revisited in [9] to deal with ana-
lytic regularity. This needs basically to be very careful because many of the
tools in elliptic regularity (cut-offs, partitions of unity) do not work.
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5.2. Results for more complicated sets

In [10] it was noted that the proof above can be extended to situations when
the assumption of foliations is somehow weakened.

It suffices that for points in thick sets, one has smooth curves that pass
through the point. The fact that these leaves intersect (and hence fail to be
a foliation) does not have a big importance.

A motivation for this generalization was the examples in [18], which show
that several distributions were not integrable by smooth leaves. Neverthe-
less, it was shown in [14] that one can find families of smooth leaves that
map into each other and have a dynamical meaning. They typically cross
and fail to satisfy part 2) of H1.

One of the thickness properties we require is that if p, p′ are points in
the set, then W s

p ∩ W u
p′ intersect (so that we can define the grid). This

property is well known to dynamicists in many situations and is called the
“local product structure”.

Another much more subtle property is that in the set, if we have approx-
imation by a Taylor polynomial, we can use the arguments in the converse
Taylor theorem and conclude that the function is smooth.

Note that for general closed sets, the fact that Taylor approximations
suffice to conclude regularity is false. One has to use the much more so-
phisticated Whitney extension theorem [38, 39, 35, 13]. The hypotheses of
the Whitney extension theorem require not only the existence of a Taylor
approximation, but also subsequent conditions that say that these Taylor
expansions are differentiable with respect to the basis.

Nevertheless, if the sets have sufficient densities, the Taylor polynomials
are unique and one can imitate the proof of the converse Taylor theorem.
Informally, the sets are so close to being the whole space that the Whitney
embedding theorem reduces to the Converse Taylor Theorem.

The motivation of [10] was the study of non-uniformly hyperbolic maps.
This is a very deep theory (also known as Pesin theory) [28, 32, 5]. It shows
that, in many circumstances, one can find the stable and unstable manifolds
of Anosov systems, but not defined everywhere, only on sets of large measure
(for any invariant measure). Furthermore, the foliations studied in Pesin
theory are only measurable, not continuous in general. Fortunately, thanks
to Lusin theorem, one can get large sets where they are continuous (and,
using dynamical arguments, bootstrap continuity to Hölder). Hence, the
arguments of [10] apply in closed sets of large measure, contained in sets of
density points of the Pesin sets, which are of measure 1− ε.

A remarkable improvement of these circle of ideas happened in [27], where
the analogue questions for hyperbolic sets in two dimensions were studied



216 Rafael de la Llave

(one example is the famous Smale horseshoe). These sets are rather thin
(they have Hausdorff dimension smaller than 2). Nevertheless, [27] show
that they have quite a number of very interesting geometric properties which
allow us to extend the argument.

In [27], the somewhat crude density arguments of [10] get replaced by
very remarkable delicate geometric properties that are then verified for hy-
perbolic sets in two-dimensional systems.

5.2.1. Partially hyperbolic systems

A very active area in dynamical systems is partially hyperbolic systems.
Two recent surveys are [16, 31], but the field is growing very fast. These
partially hyperbolic systems have stable and unstable directions, satisfying
the same properties as those in Anosov systems, but they do not span the
whole tangent space. These tangent spaces integrate to foliations.

One can also study the cohomology equations over these systems. In
particular, they appear naturally in the study of actions [21].

Studying the regularity of cohomology equations (2), one can adapt the
argument leading to (4) (the approximation by periodic orbits is iffy, but the
Cesàro means works) and obtain that the solution is indeed differentiable.
Now, one is left with the problem of concluding regularity. If one tries to
use the method of [7], one finds that the operator (5) is not elliptic.

The paper [21] considers systems of algebraic origin, so that the foliations
are very smooth. In that case, one can define the commutators of derivatives
along leaves and conclude that the operator (5) satisfies the assumptions of
the regular hypoelliptic theory.

Unfortunately, for general partially hyperbolic systems, the coefficients
are not smooth and one cannot study commutators. Nevertheless, there is a
natural property that has been widely studied by dynamicists. We say that
a system is locally accessible in order L when, starting at any point, we can
reach a whole neighborhood by walking along stable and unstable directions
(in such a way that to reach distance ρ one needs to travel Cρ1/L). It is
easy to see that this property is equivalent to the commutator property in
the case of smooth foliations, but it makes sense in general.

It would be very natural to try to prove the result of regularity when
one has regularity along foliations that allow one to move from one place
to another.

The question of regularity of solutions of cohomology equations for par-
tially hyperbolic stystems has been considered also in [40], but not following
the above route. It introduces some extra hypothesis (bunching) that show
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that one can get some invariant objects along the missing directions and
presents a remarkable argument that shows that one can get regularity along
these directions, so that one can resort to the already established papers.

6. Some open questions

In this section, I will describe some open questions that are suggested by all
the above developments. Some of the problems are more routine than others.

The problems are indeed problems in analysis, but the motivations of
some of them come from Dynamical Systems. The area of Dynamical Sys-
tems is really not a subject but a problem (humans have for a long time
tried to understand how to throw rocks efficiently or how the planets move),
and it feeds on and stimulates many other areas of Mathematics.

So, here it is a very small sample of the problems which seem to require
tools from analysis and that are closely related to [19].

6.1. The borderline cases

One straightforward problem is to study what happens in the borderline
cases of the regularity. In the above discussion, sometimes the cases α = 0
or α = Lip were left out.

Clearly, in the borderline case, the analogue is to use the Λr spaces. As
shown in [35], these are the right spaces for the theory of Riesz potentials.
One can also reconstruct the regularity in R2 from the regularity along
coordinate foliations. As it is well known, when r /∈ N, Λr = C [r]+{r},
but when r = N they are genuinely new spaces.

Sometimes, the study of the last cases is just an academic endeavor.
Nevertheless, there are some interesting cases of Dynamical Systems in which
the foliations have naturally Λ1 or Λ2 regularity. See [17, 12].

I should mention that one of the really frustrating issues in Dynamical
Systems is that there is a very large branch of knowledge establishing prop-
erties of C1 generic systems [25]. Unfortunately, all the work on smooth
ergodic theory (including the absolute continuity of foliations of [2] and the
theory of invariant manifolds in Pesin theory) requires C1+α. So that the
two programs do not have much common ground. It is clear that some of
the results of smooth ergodic theory are obtained with a modulus of continu-
ity for the derivative weaker than Hölder (which satisfies some summability
conditions), but there are counterexamples of may results of smooth ergodic
theory for C1 maps.

For the analysts working in dynamical systems this gap is a source of
frustration. Giving a proof of the result of [25] –or any similar result– in
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which C1 is replaced by any modulus of continuity acceptable to smooth
ergodic theory has been recognized as a great problem by many people.

6.2. Analytic regularity

A shortcoming of the proof in [9] mentioned in Section 5.1 is that the domain
of analyticity established is roughly half of the domain of analyticity of the
original function. This is unfortunate since one would like to use this argu-
ments in KAM theorems. The proof of [9] also requires that the Jacobian
of the foliations is analytic.

I think that it would be interesting to know if one can prove the analogue
of Theorem 1 for analytic regularities (without using the regularity of the
Jacobian) and obtain that ϕ has a radius of analyticity as large as that of
the restrictions.

6.3. Reducing the Whitney extension to the converse
Taylor theorem

We have seen in Section 5.2 that, in some sets, one can use only the Tay-
lor approximation to conclude regularity rather than the most complicated
conditions of Whitney extension theorem, that require that the Taylor ap-
proximations are also differentiable.

Remarkably, similar questions appear in other areas of dynamical sys-
tems such as studying the Whitney regularity of the KAM tori as a function
of the frequency (the frequency is required to range in a complicated set of
vectors satisfying Diophantine properties). A detailed study of this applica-
tion can be found in [37].

It would be interesting to study more systematically which sets have the
property that on them the converse Taylor theorem applies. In other words,
to determine the geometric properties of sets which make all the hypothesis
of Whitney’s extension theorem implied by just the first.

As suggested in [27] it would be interesting to study whether some classes
of hyperbolic sets in 3 or more dimensions satisfy these properties. It is
possible that the “solenoid” [34] and its perturbations are among the sets
for which the converse Taylor theorem applies.

6.4. Using several foliations

The argument in [19] is very tied up to the fact that we are considering only
two foliations. On the other hand, the elliptic regularity methods of [7, 17, 9]
can accommodate several foliations (provided, of course, that they satisfy
the regularity property of the Jacobian).
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I think that it would be very interesting to extend the method of [19]
to three or more foliations. The main problem is that one cannot really
construct a product grid unless the foliations integrate pairs. Maybe the
mismatch is so small in small scales that one can adapt the argument.

Extending the method of [20] to three or more foliations (which are
Hölder) seems more doable.

Either of them would have consequences for dynamical systems.

6.5. A hypoelliptic version

As mentioned in Section 5.2.1, the theory of partially hyperbolic systems
leads to the question of whether there is an analogue of [19] for foliations in
which one can reach all the neighborhood by moving along leaves.

We assume that a neighborhood of size ρ can be reached by segments
contained in leaves of total length no more than Cρ1/L

One suggestion that something like this should be true comes by com-
paring [26] and [11].

6.6. Anisotropic spaces

A very interesting recent development has been the systematic introduction
of spaces that take into account some dynamic properties [4, 3, 36].

These spaces allow one to establish properties of dynamical systems in
rather analytic ways. For example, the paper [36] allows to prove ergodicity
of Anosov systems without taking the step of proving explicitly absolute
continuity of the stable and unstable foliations.

The regularity lemmas could be a family of other results obtained some
regularity in the direction of the foliations and some transversal (smaller)
regularity.
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A paper by S. K. Donaldson and D. P. Sullivan

Gaven Martin
∗

The paper I’ve chosen to acknowledge in this volume is “Quasiconformal
4-manifolds.” I’ve also linked it to a wonderful period in my own career
when I first started working with Tadeusz Iwaniec.

This essay is not only about the paper [4] which has hugely influenced
the direction of my research, but also about a place and time. It’s also about
a collaboration starting twenty years ago and which continues to this day.

Figure 1: The Mittag–Leffler Institute

The place is Mittag–Leffler Insti-
tute in Djursholm, Sweden, and the
time, around March 1990. Those of
you who have been to Mittag–Leffler
will know what a wonderful place it
is, and those who haven’t should take
any opportunity they can to get there.
I was visiting for six months with a
good number of the quasi-world, our
term for that group interested in geo-
metric analysis, function theory, qua-
siconformal mappings and the like.

I’d arrived in January and was working at that time on a project in the
geometry of Kleinian groups with Fred Gehring, previously my PhD su-
pervisor at Michigan. That project was ultimately completed a few years
ago, solving a problem of Siegel in three dimensions –finding the minimal
co-volume hyperbolic lattice [5]. But this essay is not about that.

So, sometime in March 1990 this (at that time) skinny young chain-
smoking Polish mathematician Tadeusz Iwaniec shows up at Mittag–Leffler
waving about in his hands a recent paper of Simon Donaldson and Dennis
Sullivan [4] entitled “Quasiconformal 4-manifolds” published in Acta Math-
ematica (also run out of Mittag–Leffler). I’d seen the paper before and read
it through nodding my head –as you do. Ostensibly the paper generalises
some of Donaldson’s remarkable earlier work on smooth four manifolds, for
which he was awarded the Fields medal, to quasiconformal manifolds. These
are manifolds for which the coordinate charts can be chosen to be quasi-
conformal. A few years earlier Sullivan had proved that every topological
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n-manifold, n �= 4 admits such a quasiconformal structure allowing one to
do analysis on a topological manifold. A remarkable fact in and of itself.
He’d also proved the quasiconformal hauptvermutung and lots of other in-
teresting things generalising the “furling” technique of Edwards and Kirby
using hyperbolic geometry. The main theorems of Donaldson and Sullivan’s
papers were that there is a topological 4-manifold which does not admit a
qc-structure, and there are two homeomorphic qc 4-manifolds which are not
quasiconformally equivalent. Basically they showed that using qc maps and
Sobolev theory you could set up the Yang-Mills equations on a qc-manifold
and extract the same invariants from it that Donaldson had previously done
in the smooth case.

I’d met Tadeusz before, he arrived with his family in Michigan the year
I was finishing up there and lectured on quasiconformal mappings from the
analytical point of view –I was far more interested in the geometric stuff so
we didn’t really talk too much about math (his many stories of life in Poland
was another matter). I did give several research seminars at Michigan at
that time on Pekka Tukia and Jussi Väisälä’s “tidying up” of Sullivan’s work
mentioned above [9]. So it was sort of natural that we came together to talk
about the Donalson-Sullivan paper at Mittag.

At this point, as an aside, I have to say that Dennis Sullivan is a bit of a
personal hero of mine. So many of the things he has done have profoundly
influenced the fields I work in and around that it’s quite amazing. There
is a quote (attributed to Bernie Maskit) along the following lines. Talking
to Dennis, or listening to one of his lectures, is like getting a message from
Mars. You’d better listen carefully, because although you won’t understand
a word he says, you know its important and when you finally decode what
he means it is likely to change your view of the world.

So why was Tadeusz so excited about a paper that had been out for a
while and that a few of us had seen? Well what he had seen (and was not
telling anybody yet) was that embedded in the results of this paper was a
proof of Fred Gehring’s higher integrability result in four dimensions –a fact
needed for technical reasons. Donaldson and Sullivan, perhaps not appreci-
ating how hard this result is supposed to be, had more or less replicated in
four dimensions an argument, in two dimensions, due to Bogdan Bojarski
(Tadeusz’ thesis advisor) and given in Lars Ahlfors’ classic book “Lectures
on quasiconformal mappings” [1]. Here, to help with the discussion a bit
later, is a sketch of that idea –all the details (and much much more) can
be found in [3]. The Beurling transform S : L2(C) → L2(C) is a singular
integral operator defined by

(Sϕ)(z) =
−1

π

∫∫
C

ϕ(ζ) dζ

(z − ζ)2
. (1)
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It has the remarkable property that it is an isometry in L2 and intertwines
the z and z complex derivatives,

S ◦ ∂

∂z
=

∂

∂z
. (2)

Now, basically, the defining equation for a quasiconformal mapping f is the
Beltrami equation,

∂f

∂z
= μ(z)

∂f

∂z
, (3)

where μ is a measurable function (the Beltrami coefficient or complex di-
latation) and ‖μ‖∞ < 1. Here is how improved regularity can be obtained.
We put together (2) and (3) to get

∂f

∂z
= μ S ∂f

∂z
or (I − μS)

∂f

∂z
= 0 .

Of course this is too good since the qc-map, apriori assumed to have locally
square integrable first derivatives, does not have derivatives in L2(C) and so
we can’t apply S. To overcome this, we multiply f by a cutoff function and
rearrange terms leading to an equation of the form

(I − μS)
∂f

∂z
= nice . (4)

where “nice” means about as good as f is as all the derivatives have fallen
on the smooth cutoff function. Then of course ∂f

∂z
= (I−μS)−1(nice) and the

same for ∂f
∂z

from (3). Thus the degree of integrability of the differential of a
quasiconformal map depends on the invertibility properties of the operator
I − μS. Set k = ‖μ‖∞ and Sp = ‖S‖Lp(C)→Lp(C). Then, as a consequence of
the Neumann series expansion,

‖(I − μS)−1‖Lp(C)→Lp(C) ≤
1

1− kSp
, (5)

so the crucial thing are the p-norms Sp, but note that S2 = 1 and k < 1. Bo-
jarski realised that a weak-type estimate, along with the Calderón–Zygmund
theory of singular integral operators, shows Sp <∞ and interpolation shows
Sp → 1 as p→ 2. As k < 1 the equation (5) implies that Df is locally in a
better class than L2, this is improved regularity. The improvement depends
on the number k = ‖μ‖∞ which is regarded as an ellipticity constant.

For many decades complex analysts have been struggling to prove Sp =
p − 1, for p ≥ 2, so as to achieve the sharpest possible form of higher inte-
grability –the Gehring–Reich conjecture. Fortunately, Kari Astala decided
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this was not the way to prove the optimal regularity and in another great
Acta paper proved the sharp result Df ∈ Lploc for all p < 1 + 1/k (he proved
much more, [2]).

Why these regularity estimates are important will become clear when we
discuss what Tadeusz and I proved after reading Donaldson and Sullivan’s
paper.

So, back to Mittag. What Donaldson and Sullivan had done was identify
many of the two-dimension structures in four dimensions. All the “quasi-
world” were trying to make this stuff work in three dimensions first –bad
luck there. Donaldson and Sullivan knew that in four dimensions the Hodge
star ∗ acts as an isometry on 2-forms and ∗∗ = 1 and so there are plus and
minus eigenspaces giving the orthogonal decomposition Λ2 = Λ+⊕Λ−. Then
there are natural first order operators d+, d− : Λ1 → Λ2 obtained by pro-
jecting the exterior derivative into each eigenspace. Using this, Donaldson
and Sullivan wrote down the Beltrami equation for a mapping f as

d+f = μ d−f ,

where μ : Λ− → Λ+ is defined in terms of the differential of f acting on
2-forms (we later gave the explicit formula for μ). Now, an argument based
around the Hodge decomposition and the conformal invariance of Hodge ∗ al-
lowed them to follow the two-dimensional plan. The operators concerned are
going to be expressed in terms of Riesz transforms –in one way or another–
and so invertible near L2.

Well any-one who knows Tadeusz knows that he hates these sorts of ar-
guments. He wants (and loves) all the gory details. So we started going
through them. Everything was more or less OK until we got to the “con-
formal invariance” of Hodge star bit. This is obvious geometrically when
you are talking about multiplying a metric by a scalar function, but what
does it really mean when you are talking about putative higher dimensional
conformal mappings? It was the second or third night we’d been working
on this when around 2 or 3 am we figured out that when written in terms
of the differential of a Sobolev mapping the equations lead to the following
observation:

Let O be an even dimensional, n = 2�, orthgonal transformation, OtO =
Id. Partition O up into the four �× � submatrices

O =

(
A B
C D

)
.

Then
det(A) = det(D), det(B) = (−1)�det(C) . (6)
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Of course this is obvious in two dimensions since

O =
(

cos(θ) sin(θ)
− sin(θ) cos(θ)

)
.

But to us, having grown up (mathematically speaking) with conformal map-
pings, this was obviously false in higher dimensions. First, we’d never seen
anything like this before (and still haven’t) and second there’s the obvious
consequence. Interchange as many rows and columns as you like, this mixes
up A,B,C and D, yet leaves O orthogonal so the identity must still hold
(up to sign). One literally gets lots of linear equations between minors of an
orthogonal transformation.

Fred Gehring was the senior mathematician in residence at Mittag–Leffler
then, and I remember discussing with Tadeusz for a bit about talking to Fred
to ask advice about what we’d say to Donaldson and Sullivan to tell them
they made a mistake (and it was in an Acta paper!). Fortunately caution
prevailed and Tadeusz and I spent hours writing down even dimensional
orthogonal matrices in four and six dimensions and calculating and finding
the formulas working (miraculously). Then heading down the hill to bed
about 4 or 5 am shaking our heads (Mittag is basically a castle on a hill,
with the accommodation spread out below). The next day we were able
to work out a proof. We asked around and looked everywhere, but no-one
knew this crazy fact about orthogonal transformations.

At any rate, two things were clear. We had a lot of new identities for
(the differentials of) conformal mappings, and that one could control the
regularity of the differential if one could control the regularity of the minors.
But these minors were polynomials of degree � = n/2 in the derivatives
of f so we only needed to assume the derivatives of f were locally in Ln/2

is order to start working with them –as opposed to the usual assumption
that they should be in Ln. Tadeusz knew these were key facts missing from
the theory. From them we were able to proved the best possible form of
Liouville’s rigidity theorem in higher dimensions –roughly proving the higher
dimensional equivalent of the Looman–Menchoff theorem: a W 1,1 solution
to the Cauchy–Riemann equations is conformal.

We were then able to significantly refine and improve what Donaldson
and Sullivan had done. We then set off in new directions and developed
many new techniques. We found and gave explicit formulas for the operators
used, identified the Beurling transform and showed they arose from singular
integrals and identified the kernels –actually these are really nice tying in
perfectly with the two-dimensional case. We jazzed up the arguments to the
Dirac operators and more general mappings giving new and totally different
proofs –that came with good estimates– on higher integrability. Tadeusz also
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knew that estimates below the ambient dimension were key to the analysis
of singularities, and we had found them. Thus with a bit more work we were
able to prove sharp versions (in even dimensions) of Painlevé’s Theorem on
removable singularities in higher dimensions as well. All this was quite novel
and unexpected at the time –and certainly not foreshadowed in Donalson
and Sullivan’s paper.

There’s one more thing I’d like to talk about that Tadeusz and I did
during that time and after reading Donaldson and Sullivan’s paper –it’s a
real “Eureka” moment– and was another thing quite independent of what
they had done. It’s one of those things that happens when you start a
journey without a great idea of where you’ll wind up.

As I said at the beginning, Tadeusz was a chain smoker. At Mittag at
that time you were allowed to smoke in your office –provided you had one
of the special offices at the very top of the building– basically in one of the
Castle towers. Fortunately Tadeusz had such an office, and we could only
work there since my office was nonsmoking. Anyway, you really could see
the smoke coming out the window from the ground –so my wife knew where
I was– at all hours (well, at least where Tadeusz was).

Figure 2: Quasi-dinner at Mittag–Leffler apartments. Clockwise: Fred
Gehring (holding wine bottle); Dianne Brunton (my wife); Bruce Palka;
Shanshuang Yang; Kari Hag; David Herron; Lois Gehring; me; Tadeusz
Iwaniec (holding book).

By this time we had identified the higher dimensional Beurling transform
and shown how to use it for the regularity theory of the PDEs associated with
the geometric theory of mappings. We showed it’s p-norms (the operator
norm when it acts from Lp to Lp) precisely controlled the regularity of
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solutions to Beltrami systems both above and below the natural dimensions.
We had two conjectures about these norms. First, that the p-norm of the
higher dimensional operator was the same as that of the two dimensional
operator (so dimension free) and that these norms were equal to p − 1 for
p ≥ 2. So of course we hoped to solve the famous two-dimensional problem
by solving the apparently harder higher dimensional problem. We’d written
the Beurling transform as a product of Riesz transforms. But no-one even
know what the p-norms of the Riesz transforms were. Finding the precise
norms of integral operators is a tough business. Only the Hilbert transform
in one real variable by S. K. Pichorides and the Fourier transform by Bill
Beckner were known, even though there are many big thick books on the
subject of singular integral operators. We found there was some work of
Elias Stein in the 70’s which showed the p-norms of the Riesz transforms
were bounded independently of the dimension (but not necessarily dimension
free of course).

We were up in Tadeusz’ office trying to get an idea. He talked about
the classical method of rotations and I suggested we could generalise it and
get a good estimate. He of course challenged me with a piece of chalk and
so I started writing on the blackboard. The first sketch was OK, but then
Tadeusz homed in on the details. So we went through it correcting and im-
proving until about 2am when we had what we thought was a pretty good
estimate. We had a general theorem about lower bounds for the norms of
these operators already worked out. In this case we had the lower bound
cot(π/p), p ≥ 2. The bound we just has was a multiple λ cot(π/p). Unfor-
tunately λ came as a pretty complicated integral over a high dimensional
sphere (well this attempt wound up that way). Of course such integrals are
a real challenge for Tadeusz –probably from his math olympiad days– so he
started working on it. An hour later he still hadn’t figured it out, which
meant to me it couldn’t be done –only estimated. However, there is a great
old library at Mittag–Leffler, so out went the cigarette and we went down to
the Library, turned on all the lights (it was about 3am) and started looking
through all the old math books from the nineteenth century –since obviously
no new math book would have any integral formulas! About half and hour
later we stumbled across an old book from about 1870 and low and behold
there it was. Not only the calculation of λ but it said, in black and white,
this complicated integral was equal to one. We looked at each other, both of
our eyes went wide in surprise, a shiver went down my spine and an incred-
ible feeling of elation. Because λ = 1 and because of our lower bound, we
had identified the norms of the Riesz transforms, solving Stein’s problem. It
was a moment I will remember forever. That corner of the library at Mittag,
and Tadeusz surprised face is etched on my mind.
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All I’ve described above happened literally within the space of two and a
half months –even writing and submitting the papers. It was lucky that there
was a lot to do and see in Stockholm so my young family, which I simply
didn’t see over those few months, had things to do –I’d get up around 10 am
and head straight up the hill, then come down about 4 am. I’ve been back
to Mittag–Leffler a few times since (even to write a book with Kari Astala
and Tadeusz) and it still is a magical place in my mind.

Figure 3: With Tadeusz Iwaniec, in New Zealand, around 2005.

Also, these are only my memories. Tadeusz might have a different rec-
ollection. After all, he has quite a good memory even if it is a bit short.
He’s also given up smoking and gained significant prestige from doing so.
Finally, all I’ve talked about works in even dimensions [6]. The jury is out
on the odd dimensional case, though there are plenty of partial results [8]
and wonderful connections. But that’s another story.
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Marstrand’s theorems

Pertti Mattila
∗

1. Introduction

I would like to thank the editors for inviting me to write a short essay
describing a paper (or a couple of them) which, in one way or another,
made a deep impact on my own mathematical career. I have chosen for this
the following two papers of John Marstrand:

• J. M. Marstrand: Some fundamental geometrical properties of plane
sets of fractional dimensions. Proc. London Math. Soc. (3) 4 (1954),
257–302.

• J. M. Marstrand: The (φ, s) regular subsets of n space. Trans. Amer.
Math. Soc. 113 (1964), 369–392.

These papers have greatly influenced my work since the beginning of my
career and continue to do so. They have also had a great impact on many
other mathematicians. In the following, rather than describing Marstrand’s
papers in detail, I try to explain briefly why and how they have done that.

∗pemattil@mappi.helsinki.fi.
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There are many results that could be called Marstrand’s theorem but
the following two are probably most widely referred to as such:

Theorem 1 Let A be a Borel subset of the plane R2 with Hausdorff di-
mension dimA = s. Denote by pθ the orthogonal projection onto the line
{t(cos(θ), sin(θ)) : t ∈ R}.

1. If s ≤ 1, then dim pθ(A) = s for almost all θ ∈ [0, π).

2. If s > 1, then the Lebesgue measure L1(pθ(A)) > 0 for almost all
θ ∈ [0, π).

Theorem 2 Let s be a positive number. If there is a non-trivial Borel mea-
sure μ on some Rn such that the positive and finite limit

0 < lim
r→0

μ(B(x, r))

rs
<∞

exists for μ almost all x ∈ Rn, then s must be an integer.

Theorem 1 was proved in the paper [4] and Theorem 2 in the paper [6].
Much more was done in these papers, but I shall mainly restrict to discuss
these two theorems and their relatives.

In order not to make the reference list as long as the rest of the paper,
I only give a few of them. Many others can be found in the books [1] and [7]
and in the survey papers [8] and [9].

2. Marstrand’s projection theorem

The paper [4] was the first work where geometric structure of general fractals
in the plane was explored, about 20 years before Mandelbrot coined the term
fractal and a wider interest in them started to develop. A general fractal
here simply means a subset A of R2 which is measurable with respect to the
s-dimensional Hausdorff measure Hs and has positive and finite Hausdorff
s-measure: 0 < Hs(A) < ∞. Here s is any number with 0 < s < 2. In
the 1920’s and 30’s Besicovitch had in three papers laid the foundations of
geometric measure theory by investigating in great detail the case s = 1,
that is, subsets of the plane with positive and finite length. Marstrand did
the same for general s. In addition to the projection properties, he derived
fundamental results on line intersections and circular and conical density
properties of such sets.

Follow-ups on Marstrand’s paper came slowly; in those days Hausdorff
dimension mainly appeared as a size estimate for various exceptional sets and
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it did not yet have such an independent role as it does today for example in
dynamical systems. In 1968 Kaufman gave a new proof for Theorem 1 using
a potential theoretic method for the part (1) and a Fourier analytic method
for the part (2). Later on both of these techniques have played central roles in
various generalizations and analogs of Marstrand’s projection theorem, some
of which we shall discuss later. Kaufman also showed that the exceptional set
in (1) has Hausdorff dimension at most s. In 1975 I generalized Theorem 1
and Kaufman’s exceptional set estimate to higher dimensions, for orthogonal
projections into m-planes in R

n. The proof was rather straightforward using
Marstrand’s ideas with Kaufman’s potential theoretic method. In the same
year we proved with Kaufman that the exceptional set estimates are sharp.
In 1982 Falconer proved in general dimensions an exceptional set estimate
corresponding to the case (2), in the plane the upper bound is 2−s. Falconer
used Fourier transform, no proof without it is known.

Here is a brief sketch how to prove (1) of Theorem 1. If 0 < t < s =
dimA ≤ 1, one can put a Borel probability measure μ on A such that the
energy-integral

It(μ) :=

∫ ∫
|x− y|−tdμxdμy <∞

by classical results of Frostman. Letting μθ be the push-forward of μ under
the projection pθ; μθ(B) = μ(p−1

θ (B)), one finds by Fubini’s theorem that∫ π

0

It(μθ)dθ = c(t)It(μ),

where

c(t) =

∫ π

0

|pθ(0, 1)|−tdθ <∞,

since t < 1. Thus It(μθ) <∞ for almost all θ. Another reference to Frostman
yields dim pθ(A) ≥ t for almost all θ, whence also dim pθ(A) ≥ s for almost
all θ. The opposite inequality is trivial.

Soon it started to become clear that Marstrand’s projection theorem
is not only a single theorem but a basic case of a general phenomenom:
many parametrized families of mappings transform Hausdorff dimension in
a similar way as orthogonal projections, as one might anticipate from the
above proof sketch. This principle can be applied in various instances. One
such instant is that of Bernoulli convolutions, that is, the random sums∑

j

±λj ,

where 0 < λ < 1 is fixed. In 1995 Solomyak solved an old problem of Erdös
by showing that the probability distribution of these sums is absolutely
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continuous for almost all λ > 1/2. A little later Peres and Solomyak gave
a simpler proof interpreting this as a Marstrand type projection problem:
defining

Πλ : {−1, 1}N → R, Πλ(ωj) =
∑
j

ωjλ
j ,

the probability distribution in question is the push-forward, that is, a kind
of projection, of the uniformly distributed measure on {−1, 1}N and projec-
tion methods can be used, although highly non-trivially. Seemingly inspired
by this Peres and Schlag developed in 2000 in [10] a setting of general-
ized projections and analyzed them with deep Fourier analytic methods. In
particular, they estimated dimensions of various exceptional sets, sharpen-
ing the results on Bernoulli convolutions, orthogonal projections and many
others.

Another case concerns invariant measures under geodesic flows. Ledrap-
pier and Lindenstrauss proved in 2003 a Marstrand type result for such
measures on tangent bundles of two-dimensional surfaces when projected
onto the surface. Although there is only one projection, the problem can
still be interpreted as a projection problem for a family of mappings. Later
on this work has been continued by Ledrappier, E. and M. Järvenpää, Leikas
and Hovila, for references, see [2].

Sum sets A+B play important role in dynamical systems in many ways.
For A,B ⊂ R the question whether L1(A + tB) > 0 for almost all t ∈ R

is equivalent to L1(pθ(A × B)) > 0 for almost all θ ∈ [0, π). Hence it is
not surprising that Marstrand’s projection theorem and its analogs have
had many applications in dynamical systems by Palis, Yoccoz, Moreira,
Lima, Peres, Shmerkin, Hochman and others, some references can be found
in [3].

Also Falconer’s distance set problem has a projection type flavour. It
asks: for which 0 < s < n, n ≥ 2, is it true that for any Borel set A ⊂ Rn,
with dimA > s the distance set D(A) = {|x − y| : x, y ∈ A} has positive
Lebesgue measure? The projection type flavour becomes clearer when one
looks at the pinned distance sets Dx(A) = {|x − y| : y ∈ A}, x ∈ Rn.
Then Dx(A) is the image of A under the mapping y → |x− y| and x serves
as a parameter. Because of its connection to modern Fourier analysis the
distance set problem has been studied by many people including Bourgain,
Wolff, Erdogan, Katz, Tao, Iosevich, Sjölin and myself. The best known
value of s guaranteeing that dimA > s implies L1(D(A)) > 0 is n/2 + 1/3
due to Wolff for n = 2 and to Erdogan for n > 2. The conjecture is that
s = n/2 should suffice. The problem for pinned distance sets was studied
by Peres and Schlag in their generalized projections setting in [10].
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Other Marstrand type results and their applications include those of E.
and M. Järvenpää on projections of SRB-measures for coupled map lattices,
of Sauer and Yorke on dimension change under typical smooth mappings, of
Hunt and Kaloshin on projections in infinite-dimensional spaces, of Olsen on
multifractals, of Falconer, Howroyd, M. Järvenpää and myself on behaviour
of box counting and packing dimensions under projections. Recently I have
studied analogs of Marstrand’s projection theorem in Heisenberg groups with
Balogh, Durand Cartagena, Fässler and Tyson.

3. Marstrand’s density theorem

The result of Theorem 2 was already proved by Besicovitch in the 1930’s
for subsets of the line and by Marstrand in [4] for subsets of the plane. The
higher dimensional case was much trickier. It was preceded by the paper [5].
This is a third paper of Marstrand which had deep impact on my career,
and it was the first of these three which I became acquainted with. In 1947
Federer had generalized Besicovitch’s structure theory of 1-dimensional sets
to general m-dimensional subsets of Rn, m is now an integer, 0 < m < n.
The core of this theory is that any Hm-measurable subset A of Rn with
0 < Hm(A) < ∞ can be decomposed as a union of a rectifiable and a
purely unrectifiable part, and both of these parts can be characterized in
four different ways:

1) existence (or non-existence for purely unrectifiable parts) of Lipschitz
parametrizations from Rm,

2) the density property

lim
r→0

Hm(A ∩ B(x, r))

Hm(Bm(0, 1))rm
= 1 for Hm almost all x ∈ A,

3) almost everywhere existence of approximate tangent planes, and

4) integralgeometric properties.

Besicovitch had proved in the plane the equivalence of these four properties,
Federer was able to generalize all others to higher dimensions except that 2)
implies the other properties. Marstrand succeeded in doing this in [5] for
the case m = 2, n = 3.

I pause here for a brief personal account. Federer’s book Geometric
Measure Theory had come out in 1969 and when I as a graduate student
wanted go to US for a year, my supervisor Jussi Väisälä was far-sighted
enough to see that this was an area for future. By his suggestion I spent the
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Academic Year 1972-73 in Indiana University. There Bill Ziemer proposed
to me the problem of generalizing Marstrand’s result to general dimensions.
This was a good problem for a beginning graduate student in the area.
Marstrand’s proof contained ingenuous ideas and it seemed quite possible
that these with the addition of some technicalities could settle the general
case. This turned out to be so and I wrote my second paper (my thesis was
the first and on a different topic) on this. When I came back to Finland
I stayed attracted to this type of geometric measure theory and continued
to work on it. Later in the 80’s and 90’s I was also very fortunate to learn
to know Marstrand personally during my two visits to Bristol and his two
visits to Finland.

After proving that density one implies rectifiability the natural thing was
to try to show that already the existence of the positive and finite limit

0 < lim
r→0

Hm(A ∩ B(x, r))

rm
<∞ for Hm almost all x ∈ A

is enough to conclude rectifiability, a fact that Besicovitch had earlier es-
tablished in the plane. In [6] Marstrand had studied this question. It can
immediately be expressed as a question for general Borel measures μ: does
the existence of

0 < lim
r→0

μ(B(x, r))

rm
<∞ for μ almost all x ∈ R

n (1)

imply that μ is m-rectifiable, which means that it lives on countably many
m-dimensional Lipschitz surfaces? So Marstrand proved that if we start with
an arbitrary positive number m, then (1) implies that m must be an integer.
For integral m he also proved some partial results towards rectifiability but
was not able to solve the problem. Neither was I. It turned out to be very
difficult and was finally solved by Preiss in his remarkable paper [11] in 1987.

Preiss’s method was based on tangent measures. They were already
implicitly present in Marstrand’s paper. The idea is to take normalized blow-
up limits ν of a measure μ satisfying (1). They satisfy the much stronger
restriction:

ν(B(x, r)) = crm for x ∈ spt ν. (2)

Theorem 2 follows once one shows that such non-trivial uniformly distributed
measures can exist only if m is an integer. This is essentially what Marstrand
proved. Then the next task would be to show that for integral m they are
just Lebesgue measures on m-planes, which would imply the rectifiability
of μ by the results of Marstrand in [6]. In fact, this is true, as proven by
Preiss, only for m = 1, 2 and for other values of m a more delicate analysis of
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uniformly distributed measures was performed by Preiss in order to complete
the rectifiability proof, and by Kowalski and Preiss to characterize such
uniformly distributed measures when m = n−1. For positive integers other
than 1, 2, n− 1 no characterization is known. Another interesting problem
concerns characterization of the larger class of measures ν for which

0 < ν(B(x, r)) = ν(B(y, r)) <∞ for x, y ∈ spt μ.

Kirchheim and Preiss solved this in the plane in 2002 and some partial
results were proven earlier by Christensen in 1970.

A key how (2) is employed is that it implies identities like∫
g(|x1 − y|)dνy =

∫
g(|x2 − y|)dνy for x1, x2 ∈ spt ν.

For Marstrand’s density theorem 2 it is enough to use functions g(y) =
(r2 − |xj − y|2)χB(xj ,r)(y), that is, identities∫
B(x1,r)

(r2 − |x1 − y|2)dνy =

∫
B(x2,r)

(r2 − |x2 − y|2)dνy for x1, x2 ∈ spt ν,

and the geometric information derived from them. For the rectifiability
problem one needs also higher powers, such as∫

B(xj ,r)

(r2 − |xj − y|2)2dνy.

To get the full Preiss theorem one has to use moments of all orders which
are included in the expansions of exponential integrals∫

e−t|x−y|
2

dνy, t > 0.

It is natural to ask whether Theorem 2 holds for other norms in Rn. In
general this is open, but good partial results were proven by Lorent in 2007.
In 2003 he also proved partial results for the rectifiability problem with the
norm ‖x‖ = maxi |xi|, for which the balls are cubes, but the general result
is open even for 2-dimensional measures in R3.

There are also intriguing questions in general metric spaces. Some easy
examples show that both Marstrand’s density theorem 2 and Preiss’s theo-
rem are false in general metric spaces, but in which metric spaces do they
hold? No examples of metric spaces are known where ’density equals 1 im-
plies rectifiability’ fails. Neither are there examples of metric spaces where
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Besicovitch’s 1/2-problem for 1-dimensional sets would have a negative solu-
tion, this problem is open also for subsets of the plane. Good partial results
on it in metric spaces were obtained by Preiss and Tiser in 1992.

Inspired by the above type of results I investigated the corresponding
rectifiability problem for the principal values of the Cauchy singular integral
with a hope that it could be applied to problems on analytic functions. I
proved in 1990 that if μ is a finite Borel measure in the complex plane that
satisfies for μ almost all z ∈ C,

0 < lim inf
r→0

μ(B(z, r))

r
≤ lim sup

r→0

μ(B(z, r))

r
<∞

and

∃ lim
ε→0

∫
C\B(z,ε)

1

w − z dμw ∈ C,

then μ is rectifiable. Later we proved with Preiss that if μ is a finite Borel
measure in Rn that satisfies for μ almost all x ∈ Rn,

0 < lim inf
r→0

μ(B(x, r))

rm
≤ lim sup

r→0

μ(B(x, r))

rm
<∞

and

∃ lim
ε→0

∫
Rn\B(x,ε)

y − x
|y − x|m+1

dμy ∈ R
n,

then m must be an integer and μ is rectifiable. The density condition can
be weakened to

0 < lim sup
r→0

μ(B(x, r))

rm
<∞

for μ almost all x ∈ Rn by the results of Tolsa in 2008 and Ruiz de Villa
and Tolsa in 2010. Vihtilä proved in 1996 for Ahlfors m-regular measures
the necessity of m being an integer starting from the L2-boundedness of the
related singular integral operator, the corresponding rectifiability problem is
open except for m = 1. Recently I proved analogous results with Chousionis
in Heisenberg groups.

The hope of applications to analytic functions was never realized and the
problems have been solved by other methods by Melnikov, Verdera, David,
Tolsa and others. But there is still a chance that the higher dimensional
results could be applied to harmonic functions. A survey on this topic is
given in [9].

Applications of Theorem 2 to Gauss-Weierstrass and Poisson integrals
were given by Watson in 1994 and to Ginzburg–Landau type equations by
Wang in 2002.
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Supérieure de Cachan. His main research areas are harmonic analysis,
number theory, singular integral operators and signal and image pro-
cessing.





Two papers by Alberto P. Calderón

Yves Meyer
∗

Two papers by Alberto P. Calderón have been pivotal to my research
work. They have been published in the Proceedings of the National
Academy of Sciences which is unusual in mathematics. These two pa-
pers are extremely short notes (eight pages for [1] and four pages for [2]).
The most outstanding features in Calderón’s achievements are elegance,
concision, profoundness and a vision of the future of mathematics. As
much as real analysis, complex analysis, and operator theory are con-
cerned, these two papers changed everything. Twelve elegant pages by
Calderón gave rise to an intellectual revolution.

In the early sixties mathematicians were using a clumsy pseudo-differen-
tial calculus in which it was forbidden to multiply by functions which are
not C∞. Calderón wanted to overcome this limitation. His work was moti-
vated by three problems:

(a) In 1956 E. de Giorgi proved that every solution of a scalar elliptic
equation of second order in divergence form with bounded coefficients is
Hölder continuous. De Giorgi’s theorem is the crucial step to solve Hilbert’s
nineteenth problem, which consists in showing that a function which mini-
mizes a convex integral functional of the calculus of variations is analytic if
the functional is analytic. Calderón wanted to recover De Giorgi’s theorem
by using an improved pseudo-differential calculus in which the smoothness
assumptions on the coefficients are minimal.

(b) The second motivation of Calderón came from nonlinear partial dif-
ferential equations. Calderón was prophetic when he wrote:

The aim of this greater generality is to obtain stronger estimates and

to prepare the ground for applications to the theory of quasilinear

and nonlinear differential equations.

(c) The third issue Calderón had in mind is the solution of Dirichlet
or Neumann problem in Lipschitz domains by the method of the double
layer potential. This approach leads to operators defined as singular in-
tegrals [3, 4]. Such operators are not amenable to the standard pseudo-
differential calculus.

This is why in 1965 Calderón elaborated a new algebra of pseudo-diffe-
rential operators containing pointwise multiplications by Lipschitz functions.

∗Yves.Meyer@cmla.ens-cachan.fr.
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The key tool in this new calculus is a deep theorem which is proved in [1]
and will be discussed now:

Theorem 1 Let T be a pseudo-differential operator commuting with trans-
lations. Let us assume that the symbol τ(ξ) of T is homogeneous of degree 1
and is C∞ on the unit sphere. Let A be the operator of pointwise multiplica-
tion with a Lipschitz function A(x). Then the commutator [T,A] is bounded
on L2(Rn).

Calderón was entirely right when he predicted that Theorem 1 will be
pivotal to nonlinear partial differential equations. In a brilliant series of
papers Tosio Kato and Gustavo Ponce have been using similar commuta-
tor estimates in nonlinear partial differential equations. One should also
mention the para-differential operators by Jean-Michel Bony and the re-
fined version of the div-curl lemma by Pierre-Louis Lions [4]. Let us quote
Michael Taylor [6, 7]:

The work of Kato and G. Ponce in 1988 on the Navier–Stokes equa-

tions produced the Kato–Ponce estimate, a commutator estimate that

can be viewed as a microlocalized Moser estimate. This result can

be analyzed from the point of view of paradifferential operators, in-

troduced by J.-M. Bony as a tool for nonlinear analysis. This is

a connection I found particularly intriguing, and Kato and I corre-

sponded about related issues in paradifferential operator calculus as

recently as 1996.

Theorem 1 is an obvious consequence of the T (1) theorem by David
and Journé [3], [4]. Today everything reduces to checking that [T,A](1) =
T (A) ∈ BMO which is obviously true since pseudo-differential operators of
order 0 map L∞ to BMO. But the beauty of the proof given by Calderón
remains intact. Instead of trying to prove Theorem 1 in its full general-
ity, Calderón focused on a toy example which looked much simpler but
happened to be the magic key opening all doors. The toy example is the
“first commutator” [Λ, A]. Here we are in one dimension, A(x) is a Lipschitz
function of the real variable x. Therefore a = a(x) = d

dx
A(x) belongs to

L∞(R). The operator of pointwise multiplication by A(x) is denoted by A.
We set D = d

dx
, H is the Hilbert transform and finally Λ = DH is the sim-

plest pseudo-differential operator of order 1. The symbol of Λ is τ(ξ) = |ξ|
which is homogeneous of degree 1. The commutator [Λ, A] is defined by
[Λ, A](f) = Λ(Af)−AΛ(f) = C(a, f) where f is any testing function. This
commutator can also be computed as a singular integral operator

C(a, f) =
1

π
p.v.

∫
A(x)− A(y)

(x− y)2
f(y) dy . (1)
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Then C(a, f) can be studied as a bilinear operator, or as an operator de-
pending on a parameter a and acting on a function f, or as a singular integral
operator. This observation applies as well to the commutator [T,A] in The-
orem 1 and explains why the T (1) theorem can be applied. These three
options have been used by Calderón [5].

Let us write ã = H(a). If Leibniz rule applied to Λ we would have
‖C(a, f)‖2 ≤ ‖ãf‖2 which is not true. Instead Calderón proved the following
estimate in [1]

‖C(a, f)‖2 ≤ C‖a‖∞‖f‖2 . (2)

The operator norm of [Λ, A] is larger than ‖a‖∞ and (2) is sharp.

The proof of (2) given by Calderón is beautiful and unexpected. It
relies on complex analysis. The complex Hardy space Hp(R), 1 ≤ p < ∞,
consists of all holomorphic functions F (z) in the upper half-plane such that
supy>0

∫
|F (x + iy)|p dx = ‖F‖pp < ∞. Such a function has a trace on the

real axis given by F (x) = limy→0 F (x + iy). This limit exists a.e. and
in Lp and the Lp norm of this trace is the Hp norm of F. The Lusin area
integral S(F ) of F is the function of the real variable x defined by S(F )(x) =( ∫ ∫

v≥|u−x| |F ′(z)|2 du dv
)1/2

where z = u+ iv and F ′ is the derivative of F.

The equivalence between the the Lp norms of S(F ) and of F is standard
when 1 < p <∞. In [1] Calderón proved this equivalence when p = 1 :

Theorem 2 There exist two constants C1 and C2 such that for F ∈ H1(R)

C1‖F‖1 ≤ ‖S(F )‖1 ≤ C2‖F‖1 . (3)

One way in this theorem is almost obvious. If F ∈ H1(R), then F = GH
where G,H belong to the Hardy space H2(R). Then F ′ = G′H+GH ′ and the
proof of the second inequality in (3) reduces to well known facts on H2(R).
But the proof of the first inequality in (3) is much deeper as it can be seen
in [1].

For proving (2) Calderón defined a “left paraproduct” between two func-
tions G and H in H2(R) by F ′ = G′H and Theorem 2 implies ‖F‖1 ≤
C‖G‖2‖H‖2. One also defines a “right paraproduct” by F ′ = GH ′ and the
product GH is the sum between these two paraproducts as in Bony’s work.
Finally Calderón showed that the bilinear operator C(a, f) is a transposed
version of these paraproducts.

Using the “method of rotations” he created with Antoni Zygmund, Cal-
derón showed that the boundedness of the first commutator implies Theo-
rem 1 in full generality.

Calderón’s achievements paved the way to the modern theory of Hardy
spaces. The Hardy space H1(Rn) was defined by Elias Stein and Guido
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Weiss as the Banach space consisting of all functions f ∈ L1(Rn) such that
the n Riesz transforms Rj(f), 1 ≤ j ≤ n, belong to L1(Rn). Then Stein
extended Theorem 2 to H1(Rn) and proved that Marcinkiewicz multipliers
map H1(Rn) into itself. Charles Fefferman proved that BMO is the dual
space of H1(Rn). These were the two problems I addressed without much
success in my Ph.D. The modern theory of Hardy spaces culminated in the
discovery of atomic decompositions by Coifman and Weiss [3].

My first encounter with Calderón took place forty-five years ago. At that
time I was writing my Ph.D. On January 26th, 1966, I attended a lecture
given by Calderón at Institut Henri Poincaré in Paris. Calderón lectured on
Theorem 1. I do not remember if Calderón unveiled his research program at
the end of his talk or if he offered me this precious gift during a discussion
we had afterwards.

But I am certain that Cal-
derón raised the issue of the
continuity of the higher order
commutators. I took notes of
everything on a small copybook.
These higher order commuta-
tors were much too deep, much
too difficult to me. They were
out of reach since I was un-
able to improve on the spectac-
ular complex variable methods
used by Calderón to prove the
boundedness of the first com-
mutator. I had to do something
else. I fled. I moved to num-
ber theory. From 1967 to 1972
I worked on Pisot and Salem
numbers. This detour was
a very pleasant journey. But my
fate was to become Calderón’s
disciple. The day came when I
had to answer Calderón’s call. This happened in 1974 when Raphy Coifman
convinced me to attack Calderón’s higher commutators.

I have kept my precious copybook with an extreme care. Calderón is
still alive there.

Higher order commutators are defined as follows. We start again with
a Lipschitz function A(x) of the real variable x and we denote by A the
operator of pointwise multiplication by A(x) as we did above. The simplest
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pseudo-differential operator of order m is Λm = DmH. The higher order
commutators are then defined as m! Γm = [A, [A, . . . , [A,Λm]. The kernel
of Γm is

Km(x, y) =
(A(x)− A(y))m

(x− y)m+1
.

I began to work on Calderón’s program during my first visit to Wash-
ington University at Saint Louis, Missouri, in 1974. I was invited by Guido
Weiss. The first day I was there, Raphy Coifman entered my office and said
he was expecting my visit to attack Calderón’s commutators. I accepted and
we proved that the second commutator Γ2 is bounded on L2. Our proof did
not rely on complex analysis. Instead we considered all trilinear operators
T (a, b, f) commuting with simultaneous translations and dilations on a, b,
and f. We wanted to prove trilinear estimates. For that purpose we defined
the trilinear symbol of the operator T (a, b, f) and our strategy was to break
this symbol into a series of building blocks. For each piece we could prove a
basic estimate and the problem was to pile up these bounds. Moving from
Γ2 to Γ3 took us a year so that we thought we would never finish. We were
so awkward. Today the T (1) theorem by David and Journé provides for free
the required estimates for all higher order commutators. What took us years
takes a second of thought. Raphy told me that these years of intense work
on Calderón’s program have been the most exciting in his mathematical life.

A short letter by Calderón came as a thunderbolt.
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January 11, 1976
Dear Yves,

Stimulated by your work with Coifman, which renewed my faith in a
positive result, I tried the Cauchy integral once more, and this time I
was lucky. I am baffled by the condition ‖φ′‖∞ < a. I believe that the
method I employed, or something similar, will not eliminate it. On
the other hand, I have no reasons to believe that it can be eliminated.
What do you think?

Best regards, Alberto P. Calderón.

This letter announced [2]. What Coifman and I had been doing for years
was no longer needed.

Let me say a few words about the Cauchy integral in Calderón’s letter
and explain its connection with the commutators. Here is the story. Let Γ
be a closed Jordan curve in the complex plane C and let Ω1,Ω2 be the two
components of the complement of Γ, Ω1 being bounded. Let us assume that
Γ is rectifiable and let s denote the corresponding arc length. The Hilbert
space L2(Γ, ds) consists of functions f which are defined on Γ and are square
integrable with respect to the arc length s. The Hardy space H2(Ω1) is the
closure in L2(Γ, ds) of the vector space of polynomials P (z) in the complex
variable z, while H2(Ω2) is the closure in L2(Γ, ds) of the polynomial in 1/z
which vanish at infinity.

Calderón wanted to know whether

L2(Γ, ds) = H2(Ω1) +H2(Ω2) , (4)

where the sum is direct, but not orthogonal in general.

A similar problem can be asked when Γ is an open Jordan curve but the
Hardy spaces have a slightly distinct definition. The Hardy space H2(Ω1) is
the closure in L2(Γ, ds) of all rational functions P (z)/Q(z) which vanish at
infinity and have no poles on the closure of Ω1. The space H2(Ω2) is defined
similarly.

When Γ is a straight line, (4) is obviously true. The sum is orthogonal
and the projection operators are related to the Hilbert transform by

P± =
I ± iH

2
.

This identity extends to the general case, the Hilbert transform H being
replaced by the Cauchy integral CΓ. The Cauchy integral is defined by the
singular kernel

p.v.
1

π

1

z(s)− z(t) ,
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where z(s) denotes the arc length parametrization of Γ. Finally (4) is equiva-
lent to the boundedness of CΓ on L2(Γ, ds). This boundedness is the problem
Calderón was mentioning in his letter.

Let us now assume that A(·) is a real valued Lipschitz function. Let Γ
be the graph of A. We then write CA instead of CΓ. If the harmless factor
1 + ia′(y) is ignored, we have

CAf(x) = p.v.
1

π

∫ +∞

−∞

f(y)

x− y + i(A(x)− A(y))
dy . (5)

The boundedness of the Cauchy integral for Lipschitz curves reads

‖CAf‖2 ≤ C(A)‖f‖2 , (6)

where C(A) only depends on the Lipschitz norm ‖ d
dx
A‖∞.

We now arrive at a crossroads and several attacks to (6) have been pro-
posed. The one Coifman and I used was mocked by Lennart Carleson as
being “the pedestrian way”. It relies on the Taylor expansion of CA into a
series of Calderón’s commutators

CA =
∞∑
0

(−i)mΓm (7)

Calderón did not use this “pedestrian way” when he proved the following
theorem in [2]

Theorem 3 There exists a constant η0 > 0 such that for every Lipschitz
function A satisfying ‖ d

dx
A‖∞ < η0 the operator CA is continuous on L2.

In Calderón’s letter, this η0 is denoted by a and the Lipschitz function A(x)
is denoted by φ. Calderón was wondering whether ‖ d

dx
A‖∞ < η0 is actually

needed. Theorem 3 immediately implies that a constant C exists such that

‖Γm(f)‖2 ≤ Cm ‖a‖m∞ ‖f‖2 , (8)

where

a(x) =
d

dx
A.

The operator norm of Γm cannot be smaller than ‖a‖m∞ which suggests
that the optimal C might be 1. It is indeed the case, up to a polynomial
factor [3].

Theorem 3 implies (4) whenever Γ is a closed Jordan curve of class C1
or is a Lipschitz graph with a small Lipschitz constant. Calderón’s extraor-
dinary proof relies on a perturbation argument and stresses the analytic
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dependence on A of the Cauchy operator CA. Both Carlos Kenig’s work on
generalized Hardy spaces and some subtle estimates on the conformal map-
ping are playing an important role in the argument. Once more Calderón
used complex methods with an incredible virtuosity and once more I knew
I could not compete. But I did not give up. Instead of complex methods
I used a new magic trick provided by Alan McIntosh and coming from a
world which had been mostly ignored by harmonic analysis people. This
new world was familiar to those mathematical physicists who were opening
new avenues in operator theory and quantum mechanics. Alan discovered
that a very natural conjecture raised by Tosio Kato implies Theorem 3. This
conjecture says that the domain of the square root of a maximal accretive
operator coincides with the domain of the sesquilinear form defining this
operator [4]. How a conjecture which seems so abstract could be connected
with the Cauchy kernel on Lipschitz curves ? This is the magic of Calderón’s
program. This new perspective reshaped everything. The commutators Γm
were given a new decomposition into building blocks. I could prove (8)
with Cm replaced by (1 + m)6 which implies “the full theorem”, i.e., the
boundedness of the Cauchy kernel on every Lipschitz curve. But this de-
tour by mathematical physics was not needed. Guy David built new “real
variable methods” and deduced “the full theorem” from Theorem 3. If the
fundamental result proved by Calderón in [2] is nurtured with Guy David’s
version of the “good lambda inequalities” the boundedness of the Cauchy
kernel for all Lipschitz curves is obtained for free [3].

The story of the boundedness of the Cauchy integral did not stop there.
Indeed in 1995, M. Melnikov and J. Verdera found an extraordinary proof.
The starting point is a geometric identity due to Karl Menger and rediscov-
ered by M. Melnikov. Karl Menger (1902–1985) was living in Chicago in
these times but his work was not given the attention it deserved. M. Mel-
nikov and J. Verdera cleverly used the Menger curvature and gave us the
simplest and the most beautiful proof of the L2 boundedness of the Cauchy
integral on Lipschitz curves. Combining this new approach with some subtle
variations on the T (b)-theorem, Guy David proved the Vitushkin conjecture
which is a special case of Painlevé’s problem on analytic capacity and Xavier
Tolsa solved Painlevé’s conjecture [4].

I visited Eckhart Hall every year from 1975 to 1987. I enjoyed discussing
with Calderón. He treated me with irony and tenderness. Then a much
deeper relation took place and I wished I could visit Buenos Aires with him.
This never happened. In July 1989 Calderón sent me the following letter (in
French) together with a formal letter of invitation to the Instituto Argentino
de Matemática:
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Cher Yves,

Voici la lettre pour vous aider à obtenir le financement de votre voy-
age. Malheureusement je pars pour les États-Unis où je resterai pen-
dant six mois. Donc je ne serai pas ici pendant votre visite.

Affectueusement, Alberto
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Stochastic integrals in the plane

David Nualart
∗

One of the papers that has very much influenced the first steps of my
mathematical career in stochastic analysis was the article on “Stochastic
integrals in the plane” by Renzo Cairoli and John B. Walsh, published in
Acta Mathematica in 1975 (see [1]). This is a very long paper, and I still
keep the original reprint offered by the authors. I came across this paper
during my postdoctoral stay at the “Laboratoire d’Automatique et Analyse
des Systèmes”, in Toulouse, in 1976, in occasion of a seminar talk given by
Eugene Wong from Berkeley on multiparameter processes. At that time,
being at the beginning of my career, I was interested in stochastic analysis,
but I still had not found a suitable research direction. Reading this paper was
a discovery for me, and I found many sources of interesting open problems
and new leads to follow.

Figure 1: First pages of the old reprint offered by the authors with its
yellowing pages that I still keep in my files.

The paper [1] is considered a fundamental work on the theory of two-
parameter processes. This theory deals with stochastic processes

{Xs,t, (s, t) ∈ R
2
+}

which depend on two parameters, instead of the usual time parameter. Dur-
ing the 70’s, and starting from the pioneering work by Cairoli and Walsh, this
field was developed and got the attention of leading probabilists like Paul

∗nualart@math.ku.edu.

261



262 David Nualart

André Meyer. An important landmark was the conference on two-parameter
processes that took place in Paris in 1980, whose proceedings were published
in the volume 863 of the Lecture Notes in Mathematics.

A basic ingredient in this theory is the two-parameter Brownian motion
also called Brownian sheet. This is a two-parameter process

{Ws,t, (s, t) ∈ R
2
+}

defined in a probability space (Ω,F , P ), which is Gaussian, with zero mean
and covariance function given by

E(Ws1,t1Ws2,t2) = min(s1, s2) min(t1, t2) .

The trajectories of this process, that is, the mappings (s, t) → Ws,t(ω) are
continuous surfaces, and for any fixed s, t → Ws,t is a Brownian motion, and
likewise, s →Ws,t is also a Brownian motion. The purpose of the article [1]
is to construct a stochastic calculus for the two-parameter Brownian motion
similar to the classical Itô calculus developed by Kyoshi Itô in the 40’s for the
standard Brownian motion. New ingredients appear here, for instance, one
can define surface integrals and also curvilinear integrals. On other hand,
this calculus should be related to the theory of two-parameter martingales.

Let us introduce some basic notation of the theory of two-parameter
processes. For any point z = (s, t) ∈ R2

+ we denote by Rz the rectangle
[0, s]× [0, t]. Also, for any z ∈ R2

+ we denote by Fz the σ-field generated by
the random variables {Wξ, ξ ∈ Rz}. We say that a process {φ(z), z ∈ R2

+}
is adapted if φ(z) is Fz-measurable for each z. The notion of predictability
is stronger than adaptability and is required to define stochastic integrals.
The predictable σ-field P of subsets of R2

+ × Ω is generated by the sets of
the form (s, t]× (s′, t′]× Λ, where Λ ∈ Fs,s′. A two-parameter process X is
called predictable if the mapping (z, ω) → Xz(ω) is measurable with respect
to the predictable σ-field. These notions are similar to the one-parameter
case. The main difference is the fact that the parameter space R2

+ is partially
ordered and this creates new difficulties. In addition to the σ-fields Fz, one
can consider also the bigger σ-fields F1

z and F2
z , generated by the random

variables {Ws′,t, s
′ ≤ s} and {Ws,t′, t

′ ≤ t}, respectively, where z = (s, t).

Given z = (s, t) ∈ R2
+, the surface stochastic integral with respect to the

Brownian sheet W on the rectangle Rz∫
Rz

φ(ξ)dWξ ,

is defined for processes {φ(ξ), ξ ∈ R2
+} which are predictable and square

integrable, that is,

E

(∫
Rz

φ(ξ)2dξ

)
<∞ ,
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for each z ∈ R
2
+. This is the counterpart of the Itô integral. In the case of

a process continuous in L2(Ω), this integral is the limit in L2(Ω) of the Rie-
mann sums: ∫

Rz

φ(ξ)dWξ = lim
n→∞

n−1∑
i,j=0

φ(zi,j)W (Δi,j) ,

where zi,j = (is/n, jt/n), Δi,j = (zi,j, zi+1,j+1], and W (Δi,j) denotes the
increment of the process W on the rectangle Δi,j defined by

W (Δi,j) = Wzi+1,j+1
−Wzi,j+1

−Wzi+1,j
+Wzi,j .

This integral has zero expectation and satisfies the classical Itô isometry
property:

E
(∣∣∣ ∫

Rz

φ(ξ)dWξ

∣∣∣2) = E
(∫

Rz

φ(ξ)2dξ
)
.

This is a consequence of the fact that the process W has independent incre-
ments in disjoint rectangles, and we have considered Riemann sums based
on the value of the process in the lower left corner of the rectangle.

A fundamental result in Itô calculus is the Martingale Representation
Theorem that asserts that any square-integrable martingale relative to the
natural fields of the Brownian motion can be written as a constant plus a
stochastic integral. In order to extend this result to the framework of the
two-parameter Brownian motion, we need first to introduce the notion of
martingale for two-parameter processes. The simplest way to do this is to
use the partial ordering on the plane: z′ = (s′, t′) ≤ z = (s, t) if and only
if s′ ≤ s and t′ ≤ t. An adapted stochastic process M = {Mz, z ∈ R2

+}, is
called a martingale if E(|Mz|) <∞ for each z, and

E(Mz|Fz′) = Mz′

for each z′ ≤ z. It turns out that the Martingale Representation Theorem
is no longer true in the framework of the two-parameter Brownian motion.
More precisely, Wong and Zakai [5] proved the following result: If M =
{Mz, z ∈ R2

+} is a square integrable martingale, then for each z ∈ R2
+,

Mz = M0 +

∫
Rz

φ(ξ)dWξ +

∫
Rz×Rz

ψ(ξ, ξ′)dWξdWξ′ ,

where the second integral is a double stochastic integral, and the process
ψ(ξ, ξ′) vanishes except if ξ = (s, t) and ξ′ = (s′, t′) satisfy s < s′ and t > t′,
is square integrable and it satisfies a suitable predictability condition.
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The stochastic integrals{∫
Rz

φ(ξ)dWξ, z ∈ R
2
+

}
constitute a special type of martingales, called strong martingales. This
means that, for any z ≤ z′, the process Mz =

∫
Rz
φ(ξ)dWξ satisfies

E(M((z, z′])|F1
z ∨ F2

z ) = 0,

where M((z, z′]) denotes the rectangular increment of M , and F1
z ∨ F2

z de-
notes the σ field generated by F1

z and F2
z . The strong martingale property of

these integrals is a consequence of the fact that the two-parameter Brownian
motion W has independent increments on disjoint rectangles. Furthermore,
all strong square integrable martingales vanishing on the axes are stochastic
integrals of the form Mz =

∫
Rz
φ(ξ)dWξ.

The notion of quadratic variation plays a basic role in Itô calculus, and
it is the source of the complementary terms appearing in the classical Itô
formula. The quadratic variation of a one-parameter continuous process
{Xt, t ≥ 0} is defined, if it exists, as the limit in probability

〈X〉t = lim
n→∞

n−1∑
i=0

(X(i+1)t/n −Xit/n)2.

For example, if Bt is a Brownian motion, 〈B〉t = t. It turns out that any
continuous martingale M = {Mt, t ≥ 0} has an increasing and continuous
quadratic variation 〈M〉t. Now, the restriction of a two-parameter martin-
gale M = {Mz, z ∈ R2

+} to a continuous increasing path in the plane

γ = {γ(t), 0 ≤ t ≤ 1},

starting at the origin, defines a one-parameter martingale

Mγ = {Mγ(t), 0 ≤ t ≤ 1}

and we can compute its quadratic variation 〈Mγ〉t. We say that a two-
parameter martingale M={Mz, z ∈ R2

+} has path-independent variation if

〈Mγ〉1 = 〈Mγ′〉1 ,

for any two paths γ and γ′ such that γ(1) = γ′(1). This notion was intro-
duced by Moshe Zakai. Then, strong martingales have path-independent
variation, and Cairoli and Walsh said in their paper that “We have not suc-
ceeded in proving that, in general, the converse is true, that is, that each
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martingale with path-independent variation is a strong martingale. How-
ever, several indications let us believe that path-independence is a second
characterization of the strong martingales”.

This statement le me to be interested in this challenging open problem.
After working for a while, I was able to prove the surprising fact that this
converse result is not true, and there are path-independent variation mar-
tingales which are not strong. The construction of such martingales is very
delicate and it is obtained by an approximation procedure. I was very proud
of this result which I consider my first important contribution to stochas-
tic analysis. It was published in the proceedings of the conference in Paris
devoted to two-parameter processes (see [4]).

The paper by Cairoli and Walsh [1] was actually motivated by the study
of holomorphic processes in the plane. A process Φ is holomorphic if it has
a derivative φ, in the sense that

Φz = Φ0 +

∫ z

0

φ∂W ,

where
∫ z
0
φ∂W is a line integral taken over any sufficiently smooth curve

connecting (0, 0) and z. These processes turn out to have a structure which
is in some ways remarkably like that of classical holomorphic functions of a
complex variable, even though they are real. For instance, if Φ is holomor-
phic, so is its derivative φ, and there is even an analogue of the power series
expansion. Some years later, in collaboration with Ely Merzbach (see [2])
using techniques of Malliavin calculus, and more precisely, the Clark-Ocone
formula to represent Φz as a stochastic integral, I was able to obtain a con-
dition on the Malliavin derivative of Φ that characterizes holomorphicity.
This leads to a simple proof of the power series expansion of holomorphic
processes.

The line integrals together with the surface integrals allowed Cairoli and
Walsh to derive in [1] a Green formula for rectangles, and, as an application,
to show a two-parameter version of the classical Itô formula. An immediate
application of this formula was the existence and continuity of the local time
for W by means of a suitable version of Tanaka’s formula.

I continued working on two-parameter processes for a while, especially
on regularity properties of martingales and their two-parameter quadratic
variation. For instance, in [4], I was able to prove the continuity of the
quadratic variation of a square-integrable two-parameter continuous mar-
tingale, which was also an open problem. As other researchers in the field,
at the beginning of the eighties I shifted my research interests to other topics
like stochastic partial differential equations which are also connected with
multiparametric processes.
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Stable minimal surfaces

Antonio Ros
∗

Minimal surfaces in Euclidean space R3 have played a key role in the
development of differential geometry. They are linked to the Plateau Problem
(determine the shape of least area surfaces whose boundary is a given Jordan
curve) and are the mathematical model for soap films.

A surface S is minimal if any compact region R ⊂ S has zero first
variation formula (of the area), A′(0) = 0. This is equivalent to saying
that its mean curvature is zero. In the particular case where the surface is
the graph of a function f(x, y), it is characterized by the minimal surface
equation

(1 + f 2
y )fxx − 2fxfyfxy + (1 + f 2

x)fyy = 0. (1)

Stable minimal surfaces are the local minima of the area functional. An-
alytically, if the surface is two-sided and K denotes its Gaussian curva-
ture, stability means that for any regular function with compact support
u ∈ C2

0 (S) we have

A′′(0) =

∫
S

|∇u|2 + 2Ku2 ≥ 0, (2)

or equivalently, the operator −(Δ− 2K) is non-negative. At the same time,
fundamental results [17] give that a minimal surface S is stable if and only
if every compact region R ⊂ S has less area than any other with the same
boundary and close enough to R (in the C0-sense).

The global theory of stable minimal surfaces began in 1915 with the
Bernstein’s theorem, which states that the only entire solutions of equa-
tion (1) are affine functions. As a generalization, the theorem leads us to
study area minimizing properly embedded surfaces (since the graph of an
entire solution of (1) has these properties), and in the next step, we arrive
to the question we are interested in this note:

(�) The only complete stable minimal surface, i.e., with nonneg-
ative second variation formula A′′(0) ≥ 0, is the plane.

The papers by Do Carmo and Peng [1], Fischer-Colbrie and Schoen [5]
and Pogorelov [13] solved the above question in the affirmative for two-
sided surfaces around the year 1980. The proof of [5] also applies to ambi-
ent spaces with curvature greater than or equal to zero. It is not unusual
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that different authors reach the same result independently, but in this case
three different proofs appeared simultaneously figured out by some first class
mathematicians.

When we started to study these issues, the conjecture was already solved
(in the orientable case) and the previous works have exerted a great influence
on the geometry group of Granada and, in particular, in our training. In
fact its role has been crucial throughout the geometry of surfaces and it has
given rise to research lines which remain active nowadays, see for example
the recent survey [11].

The condition (�) is equivalent to the fact that there exists a positive
solution on S of the equation

Δu− 2Ku = 0.

Passing to the universal covering, we can assume that S is simply connected
and therefore, the surface is conformally equivalent either to the plane or the
disc (as a minimal surface cannot have the topology of the sphere). Since
the Gaussian curvature of a minimal surface is less than or equal to zero,
the Liouville theorem for subharmonic functions implies that, in the first
case, K = 0 and so the surface is a plane in R3. The case of the disc is more
delicate.

We started in the field of Geometric Analysis, the combination of ge-
ometry and partial differential equations, by studying these papers and,
following in his wake, joint with Francisco López we showed in [9] that an
orientable complete minimal surface has index one (i.e., it has nonnegative
second variation but only for deformations which are L2-orthogonal to a
certain direction on the surface), if and only if it is the Catenoid or the
Enneper surface.

Catenoid Enneper Surface

It is worth noticing an unexpected connection between stability and an-
other classic question in this area: The study of the image of the Gauss map.
Xavier [18] had shown that the Gauss map of a complete nonflat minimal
surface omits at most 6 points on the sphere. This is a geometric variant of
the Theorem of Picard on the values omitted by entire holomorphic functions
in one variable. The study of the above operators allowed us, joint with
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Paco, to combine these techniques with the one of [18] to improve the ex-
ceptional 6 values of Xavier’s theorem to 5. Our result was never published
(although it appeared in Paco’s thesis [8]) because in the meantime we knew
that Fujimoto [6] had found the complete solution of the problem of the
Gauss map, by showing that it omits at most 4 points (as the example of
the surface of Scherk), see also Ros [14]. Our approach depended on the fact
that if the Gauss map omits 3 values, then the operator −(Δ− aK) is non-
negative for some a > 0. This is a generalization of the concept of stability,
whose consequences in the theory of surfaces are of great interest, although
not sufficiently understood at the moment. A basic problem in this direction
proposes the study of the values of a > 0 for which any complete Rieman-
nian surface such that the operator −(Δ−aK) is nonnegative is necessarily
parabolic. The work [5] contains this result for a > 1 and it is known that
for the hyperbolic plane of curvature −1, the operator −(Δ − aK) is non-
negative just for the range a ≥ 1/4. The complete solution to this problem
was obtained by Castillon [2], who showed that if a complete Riemannian
surface admits a positive solution of Δu− aKu = 0 with a > 1/4, then it is
conformally equivalent to the plane or a quotient of the plane. The way in
which Castillon dealt with this problem depends on techniques introduced
by Colding and Minicozzi [3] that, in part, were a generalization of those of
Pogorelov [13] and Kawai [7] who had previously considered the case K ≤ 0,
a restriction that permits a more comfortable treatment as on these surfaces
the distance function to a given point is regular. This direction of research
is still active, Espinar and Rosenberg [4], and in particular the study of
stability in other ambient spaces, Manzano, Pérez and Rodŕıguez [10].

For nonorientable surfaces the conjecture about complete stable minimal
surfaces remained open until some years ago and, although several partial
results were known, we were lucky to find an argument that closed the
problem in the general case, Ros [15]: there are not one-sided complete stable
minimal surfaces in R3. This result is specific of R3 and does not extend
to spaces of positive curvature. In fact, there are one-sided compact stable
minimal surfaces with arbitrarily complicated topology in suitably chosen
quotients of the three-dimensional sphere. Another fundamental difference
with the orientable situation is that now, stability is not preserved when we
pass to a covering space. The deformations we use in [15] are related to
square integrable harmonic 1-forms over the surface.

There are complete one-sided stable nonflat minimal surfaces in quotients
of R3. Ross [16] showed that the periodic examples P and D of Schwarz are
stable and it would be interesting, both in geometric analysis and in mathe-
matical crystallography, to classify global stable surfaces in these quotients.
Such surfaces are necessarily one-sided and Ros [15] proved that the unique
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nonflat complete stable minimal surfaces in the quotient of R
3 by one or

two linearly independent translations are certain nonorientable quotients of
the Helicoid and the Scherk surface. If we consider quotients involving more
complicated rigid motions, then the question remains still open.

Of course it is natural to consider stable minimal hypersurfaces in Rn.
The study of Bernstein’s Theorem in higher dimensions and the theory of
absolute area minimizing hypersurfaces of Rn, [12], have largely influenced
both geometry and partial differential equations. However, the consequences
of stability on complete stable minimal hypersurfaces of R4 are still unknown.
Besides the importance of this problem in geometry, it represents a challenge
to develop the techniques that will allow us to understand the implications
of the nonnegativity of the operator Δ − aR on a complete Riemannian
manifold, where a is a positive constant and R is the scalar curvature.
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Relativistic stability of matter

Luis Ángel Seco
∗

I arrived at Princeton University as
a graduate student just as the paper
“Relativistic Stability of Matter–I”
(C. Fefferman and R. de la Llave,
Rev. Mat. Iberoamericana 2 (1986))
was being finished; I had no knowl-
edge of quantum mechanics, but lis-
tening to Charlie Fefferman’s lecture
about what would become this pa-
per make it clear to me that this
was a result unlike anything I had
ever read; this is not a strong state-
ment coming from a rookie gradu-
ate student but, many decades later,
I can say that this paper is unlike
any other mathematics paper I have
ever read. And this includes a lot of
papers now.

For me, this is a ground-breaking article not for any of the usual rea-
sons; of course, the result is important, the proof intelligent, the exposition
is instructive but what is most striking about this paper is that it created
an entirely new way of thinking about theorem proving in quantum me-
chanics, and for me it introduced a new way of thinking overall. In fact,
reflecting on my own experience, I have never personally worked on rela-
tivistic quantum mechanics, but I did spend ten years working on classical
quantum mechanics. Nevertheless, the concepts of this paper provided with
enough inspiration to deal with ten years worth of mathematical challenges
in quantum many body problems. This paper is rich with ideas, but I can
say that some of these ideas actually transcend the realm of quantum me-
chanics and offer deep insights about how to attach seemingly impossibly
hard problems, in mathematics and beyond. I confess that this paper has
had a critical impact, not just on my research in quantum mechanics, but in
my research in mathematical finance later in my life and in my activities as
an entrepreneur. It is my objective in this short introspective to show why
this is the case.
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The paper starts with an excellent summary of quantum mechanics, the
relativistic theory of matter, the concept of stability, but also introduces the
main philosophy of the paper, which represented a new approach to dealing
with kinetic energy and Coulomb potentials under a unique new common
roof: in this regard, the key sentence in the paper appears in page 4:

“More generally, we hope the ideas in our proofs will be useful
tools in understanding many body problems.”

and this really is the main achievement of this paper.

In a certain sense, this paper can be summarized as follows:

• Section 1 explains why is this problem is interesting and so hard.

• Sections 2 and 3 talks about what can we do about it.

• The rest (75% of the paper) are details.

The paper does not get obsessed with the problem, nor with the solution;
instead, it gives us hints, here and there, about where the difficulties lie,
and how to best approach them. That’s why, in my opinion, this paper ends
with section 3, after just 12 pages of a 40 page paper. I know the authors
will disagree, because I know how hard the rest of the article is, but, as
a consumer of this paper, my perspective is different and the first twelve
pages of this paper are not just brilliant to the point of overshadowing the
rest of the paper, but they are the ones that provide true insight into the
problem and constitute a point of reference to the universal topic to tackle
problem solving.

The problem is concerned with the relativistic stability of matter; from
a mathematical viewpoint, the authors express a relativistic Hamiltonian
of M nuclei of charge Zi at points yi and N electrons at points xj , where
j = 1, . . . ,M , and i = 1, . . . , N is given by

HZ,M,N =

N∑
k=1

(−Δxk)1/2 + α · VZ,M,N , (1)

where the Coulomb potential is given by

VZ,M,N =
∑
j<k

1

|xj − xk|
+
∑
j<k

Zj Zk
|yj − yk|

−
∑
j,k

1

|xj − xk|
. (2)

This Hamiltonian acts on the Hilbert space H of antisymmetric functions
in L2(R3N), antisymmetry reflecting the fact that our particles are fermions.
This model assumes the nuclei infinitely heavy so they do not move, sets the
mass of electrons equal to 1/2, ignores spin, α is the fine structure constant
(whose role is to emerge later) and a set of other mathematical licenses to
turn the original physical problem into this form. But the main assumption
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is the statement that the relativistic kinetic energy is given by the square
root of the Laplacian. The paper actually starts arguing in favour of this
representation, citing other authors who took similar approaches, and es-
sentially telling us that in relativity, kinetic energy becomes proportional to
momentum, not its square, in the high energy limit, which is the domain
of interest of this paper, which will focus on stability of matter and is a
property shared by the square root of the Laplacian.

After these beautiful arguments in favour of the justification of their
perspective, they present the objective of the paper: to prove the stability of
a large system of interacting nuclei and electrons, expressed as the inequality

〈HZ,M,Nψ , ψ〉 ≥ 0 . (3)

Here, the fine structure constant plays a critical role, which the authors
address pointing out the critical difficulty of the problem: both terms, the
Coulomb potential and the relativistic kinetic energy, scale in the same way
(they both have units of 1/inches), therefore (3) will depend critically on
the values of the fine structure constant α.

Since scale invariance will make the problem hard, they will turn to use
scale invariance to their advantage by rewriting the kinetic energy and the
Coulomb potential in a convenient form, in Section 2 of the paper, which is
one of the most brilliant gambits I have ever seen:

This is best explained thinking about the following expression:

1

|x| =
1

π

∫ ∫
R>0, z∈R3

{
1 if both x, 0 ∈ B(z, R)

0 otherwise.

}
dz dR

R5
. (4)

First, we must learn to think from the authors that in this expression, the left
hand side is the hard one (yes, the seemingly simple function function 1/|x|),
and that the easy one is the right hand side, which simply attaches the
number 0 or 1 to a ball, depending on whether a given point x and the
origin are both inside it. Second, we must realize that this expression is
practically trivial, since both sides are translation invariant, and they scale
under x in the same way (as inches−1); therefore, they must be equal up to
a multiplicative constant; therefore, the only difficulty in this expression is
the calculation of the proportionality constant 1/π.

This thought process leads to equations (1) and (2) in the paper, which
appear in page 6, use the translation and dilation invariants of the Lapla-
cian and the Coulomb potential (remember, the source of our main obsta-
cle) to rewrite the entire hamiltonian 1 as an integral over all balls in R3,
parametrized by all centers z ∈ R

3 and all radii R > 0, of two extremely
simple ball-dependent quantities. In the case of expression (2) in the paper,
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they show us how the Coulomb potential is an integral over all balls of a
function that most kindergarten graduates understand: counting of num-
bers of pairs of electrons and nuclei inside the ball. The contribution of the
kinetic energy is not as brutally simple, but it is still remarkably easy: it is a
type of electron density variance, as expressed in equation (1) in the paper.
The net result is that the ultimate objective, the stability inequality 3 will be
reduced to a single ball-based inequality. But in order to do this, the paper
needs to make another two critical steps: first, they will reduce the stability
problem over a single ball to one that involves just one nuclei: this is impor-
tant, since in hierarchy of difficulty in many body quantum problems, single
nuclei and many electrons is easier than a problem involving several nuclei;
second, they will break the problem further by considering a single nucleus
and a single electron, with a kinetic-type and a potential-type Hamiltonians
specific to a single ball; this double-tiered decoupling, from many nuclei and
electrons to a single nucleus and a single electron is a simple consequence of
their ultra-simple energy expressions derived for each ball in R3.

This crakes the nut open; what remains is very hard technically, and it
requires fine analysis, but at the end of the day is a problem of the simplest
type in the hierarchy of difficulty of many-body quantum systems: a single
nucleus and a single electron.

However, there is more; I was not completely accurate when I said the
paper ended after the first 12 pages (of course). There is a small hidden
detail, which actually makes up for the last 50 pages or so which are tech-
nically outside the paper proper. If the reader checks the article, about
half of its 95 pages are devoted to a computer printout. What happened in
the last section of the paper, the one I claimed were mere “details”, is that
the authors reduce the proof of their inequality 3 to a long but elementary
set of properties that, if checked by a human will take a very, very long
time, but if checked by a conveniently trained computer, they can be done
in a reasonable timeframe. Hence, the paper ends with a computer assisted
proof (emphasis on the word “proof”); a few years later, and with the help
of Rafael de la Llave, I was able to also do my own computer-assisted proof;
I have proved a lot of theorems in my life, but only two with the help of
a computer; however, those two took a disproportionately high amount of
my own human time; but more importantly, my computer-assisted activi-
ties emerged from my observation of the progress of this paper and, as with
this paper, were unavoidable at the time if one was to pursue the original
mathematical problem, and not a conveniently simplified version of itself.

In summary, this paper taught me several lessons, which have lasted
many decades and proved to be useful many times, but can be summarized
by saying that problem solving is not an end in itself, it is the school of life.
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Some reflections on papers by Heinonen and
Rubio de Francia

Stephen Semmes
∗

Let D be a simply-connected domain in the complex plane. By the
Riemann mapping theorem, there is a conformal mapping f from the unit
disk U onto D. If D is bounded by a Jordan curve, then a famous theorem
of Carathéodory states that f extends to a homeomorphism from the closed
unit disk onto the closure ofD. If in addition the boundary ofD is rectifiable,
then it is well-known that the boundary values of f determine an absolutely
continuous mapping from the unit circle to the boundary of D. Basically,
this is because the derivative f ′ of f is an element of the Hardy space H1,
as a consequence of the F. and M. Riesz theorem.

However, the analogous absolute continuity property on the boundary
does not work for quasiconformal mappings in the plane. More precisely,
there are examples of Beurling and Ahlfors [2] of quasiconformal mappings
from the unit disk onto itself whose boundary values on the unit circle are
not absolutely continuous. In a series of papers, Juha Heinonen [10, 11, 12]
considered similar questions for quasiconformal mappings in higher dimen-
sions. In particular, in the original version of [11], Juha asked about a certain
type of absolute continuity property of quasisymmetric mappings defined on
subsets of Rn.

Without getting too technical, a mapping between arbitrary metric spa-
ces is said to be quasisymmetric [23] if it does not distort relative distances
too much at any scale. This is a relative of the notion of a quasiconformal
mapping on Rn, which is defined classically in terms of the boundedness of
the ratio of the maximal and minimal stretching of the differential of a map-
ping. Under suitable conditions, well-known distortion theorems allow in-
finitesimal quasiconformality conditions to be “integrated” to get quasisym-
metry conditions at definite scales. However, quasisymmetric mappings can
also be considered when distortion theorems like these are not available.

For example, it does not really make sense to talk about quasiconformal
mappings on the unit circle, because the maximal and minimal stretching
of the differential would be the same automatically. It does make sense to
talk about quasisymmetric mappings on the unit circle, and indeed the main
result of [2] says that an orientation-preserving homeomorphism on the unit
circle corresponds to the boundary values of a quasiconformal mapping from
the unit disk onto itself if and only if it is quasisymmetric. Thus the ex-
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amples in [2] mentioned previously are actually examples of quasisymmetric
mappings on the circle that are not absolutely continuous.

Figure 1: Looking to the future of qua-
siconformal mappings (Djursholm, Swe-
den, 1983). Although the classical the-
ory was familiar to many of us studying
analysis at that time, we could not have
anticipated the developments to come,
in which Juha Heinonen played a very
important role.

By contrast, quasiconformal
mappings on Rn are absolutely
continuous when n ≥ 2. In
the original version of [11], Juha
asked about absolute continuity
of quasisymmetric mappings de-
fined on arbitrary subsets of Rn

when n ≥ 2. I was very inter-
ested in Juha’s question, in part
because I was already thinking
about some related matters, in
connection with the BPI (or “big
pieces of itself) theory of self-
similar fractals in [5]. Of course,
a key point in Juha’s question
is that quasisymmetric mappings
on subsets of Rn cannot normally
be extended to quasiconformal
mappings on Rn. The main idea
in my approach was to work with
measures instead of mappings,
corresponding to the Jacobians

of quasiconformal mappings. It is much easier to make various construc-
tions with measures instead of mappings, avoiding topological obstructions
in particular. At the same time, one has to keep track of enough of the
geometric information in the measures to get absolute continuity.

Fortunately for us, the editors at the Revista were quite sympathetic to
our situation. Thus we were able to publish our papers in the same issue
in [11, 12, 18]. It was also very nice in the way that so many aspects of
analysis and geometry came together.

Actually, Juha and I have been discussing questions related to absolute
continuity from the beginning. I think that our first contact was an email
that he sent me about a statement on pp. 102–103 in [4], to the effect that the
Jacobian of a quasisymmetric mapping of Rn onto an n-dimensional Ahlfors-
regular subset of Rm for some m > n is a strong A∞ weight. This extends the
case of a quasiconformal mapping of Rn onto itself, and Juha was asking if we
were inadvertently using results about absolute continuity of such mappings
without mentioning it. I remember reading his email and thinking to myself
“uh-oh”, wondering if we had overlooked something. Of course, the A∞
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condition for Jacobians of quasiconformal mappings comes from Gehring’s
well-known paper [9]. Gehring’s approach can also be used to show that
a doubling measure is absolutely continuous under certain conditions, with
a density that is an A∞ weight, by approximating the measure by weights
with bounded A∞ constants. This version of Gehring’s argument can be
applied to measures obtained from quasisymmetric mappings of Rn onto n-
dimensional Ahlfors-regular sets, including quasiconformal mappings of Rn

onto itself. At any rate, this was not explained very well in [4], and more
details can be found in in [17].

I would also like to say a few words about Rubio de Francia’s famous
paper [16] on square functions associated to arbitrary collections of pairwise-
disjoint intervals in the real line. Let {Ij} be a countable family of pairwise-
disjoint intervals in the real line. Alternatively, one can take the Ij ’s to
be closed intervals in R with pairwise-disjoint interiors, so that two such
intervals may have a common endpoint. If f is a reasonable function on R,
then let Sj(f) be the function defined on R by

(Sj(f))̂(ξ) = 1Ij(ξ) f̂(ξ). (1)

Here f̂(ξ) denotes the Fourier transform of f , and 1Ij (ξ) is the characteristic
or indicator function on R associated to Ij, equal to 1 when ξ ∈ Ij and to 0
when ξ ∈ R\Ij . Under these conditions, Rubio shows in [16] that for each
real number p ≥ 2 there is a nonnegative real number Cp such that∥∥∥∥(∑

j

|Sj(f)|2
)1/2

∥∥∥∥
p

≤ Cp ‖f‖p (2)

for every f ∈ Lp(R). This follows from classical results of Littlewood and
Paley when the intervals are of the form [2k, 2k+1] or [−2k+1,−2k], where k
is an integer. In this case, there is a similar estimate for 1 < p < 2, but this
does not work for arbitrary families of intervals with disjoint interiors. A
very nice overview of Rubio’s theorem and related work can be found on [6,
pp. 185-187].

Around that time, Rubio visted Yale University for a semester, while I
was a post-doc there. It was natural to try to find a project of common
interest, and certainly a wonderful opportunity for me. In particular, I
asked about the potential consequences of Rubio’s theorem for boundedness
of linear operators, since we all know that square functions are closely related
to that. Coifman, Rubio and I managed to obtain some results along these
lines in [3]. Rubio’s paper caused quite a stir when it came out, and hopefully
other contributors to this volume will comment on it as well.
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Some early mathematical reminiscences

Elias M. Stein
∗

Among my fondest mathematical remem-
brances are recollections of my teacher Antoni
Zygmund, both his personality and the effect
on me of his mathematical view-point. I can
relate this best in terms of two papers he co-
authored and a third paper, whose influence on
me was much more indirect.

I want to begin with the famous paper
“On the existence of certain singular integrals”
with Calderón, which appeared in 1952 in Acta
Mathematica. I know, both by what he said
to me and by what I understood later, that
his major mathematical goal at that time was
to develop “real-variable” methods to allow
extension to to higher dimensions of basic one-

dimensional Fourier analysis. He stressed that these methods would be
needed to supplant the “complex-methods” –involving analytic functions,
Blaschke products, conformal mappings, etc.– which had proved to be so
powerful in the one-dimensional theory, but that by their very nature were
restricted to that setting. In this paper, he and Calderón had achieved a
crucial break-through: the n-dimensional generalization of the L1 and Lp

theory of the Hilbert transform. Like all great works it of course owed a
debt to earlier ideas of others. In this case to the work of Giraud and
Mihlin in the formulation of the notion of singular integrals involved, and
to Besicovitch’s “real-variable” treatment of the Hilbert transform.

Antoni Zygmund

As we now know this paper had a major impact in the development
of analysis. In the main, its early thrust was its applications for partial
differential equations, both for elliptic and non-elliptic. For me it was in
a different direction. I had become intrigued by what was known as the
“Littlewood–Paley theory”, the treatment of one-dimensional Fourier series
by decomposing these series in dyadic blocks and obtaining Lp estimates
for related square functions. At first it was only the statements of the re-
sults in Zygmund’s “Trigonometrical Series”(the first edition of 1935 that
was available at that time) that fascinated me. There, in Chapter 10, sec-
tion 10.33, I read: “We shall state here without proof the most important of
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Littlewood–Paley results” (and in a footnote it is said that detailed proofs
had not yet been published). There followed statements of two of their the-
orems. The totality of these results seemed like a high and majestic peak
whose top was hidden in the clouds. When I later found the papers giving
the detailed proofs (written by Littlewood after Paley’s death) I marvelled
at the difficulty and ingenuity of the arguments, which relied heavily on
complex methods. I decided to try to redo the theory by real-variable meth-
ods, so as to extend it to higher dimensions. Here I was able to follow the
path laid out by the Acta paper, and use the Calderón–Zygmund decompo-
sition to prove a weak-type L1 estimate and Lp inequalities for various of
the square functions. My initial efforts here were later recast more elegantly
and systematically by others.

Another work of Zygmund that greatly influenced me was his paper with
Calderón “On the theorem of Haussdorff-Young and its extensions” (1950).
It gives a pithy version of Thorin’s proof of the Riesz interpolation theo-
rem, together with a multi-linear analogue that is applied to interpolation
of Hardy spaces Hp. At that time (circa 1953), Zygmund had the practice
of assigning his students the task of speaking about some recently published
paper, and he suggested me that I present the interpolation paper. I was
fascinated by the use of the maximum modulus principle (alias “three-lines
lemma”), and spoke about the paper with what I thought was great en-
thusiasm. I knew Zygmund liked my presentation because he smiled at me
during it; yet afterwards he asked me why I had paced back and forth so
much! This paper left a deep impression on me which I was only to realize
several years later.

During that time I had also become interested in the work of S. Bochner,
who among other things was a pioneer in the study of the n-dimensional
Fourier transform. I was particularly struck by his 1936 paper “Summation
of multiple Fourier series by spherical means”. In it, he pointed out the
existence of the “critical index” n−1

2
(for what we now call “Bochner–Riesz

summability”) for Fourier series and Fourier transforms in n dimensions. He
stressed that (at least for L1) that order of summability was the analogue of
ordinary convergence in one dimension. For example, summability of order
> n−1

2
is like Cesàro summability of positive order for one dimension, in that

it holds almost everywhere and in the norm for Lp, 1 ≤ p. However for the
order n−1

2
this fails; in fact, by an ingenious argument involving Kronecker’s

theorem he showed that the analogue of Riemann’s localization fails for L1.
However, upon further reflection it became clear that known arguments

for orthogonal expansions would prove that for L2, dominated convergence
(and almost everywhere results) would be valid for any strictly positive order
of summability.
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The question that occurred naturally was whether anything could be said
about summability below the critical index for functions in Lp, when p > 1.
I presented this as an interesting problem to Zygmund, asking for his opin-
ion. He seemed indifferent. Very likely it was the multitude of uninterest-
ing papers on summability of one-dimensional Fourier series that had been
published during the past twenty years that soured him on anything in-
volving “summability”. Nevertheless, I continued to be intrigued by this
question.

About a year later, in the summer of 1955, Zygmund went to Cornell to
visit his friend Marc Kac. He suggested that I also go to Cornell. I rented a
room near the campus, living a lonely life and spending much time thinking
about mathematics. One day, while at the library, I realized that the ideas
of the “Hausdorff-Young” paper would allow me to interpolate operators (of
part of a suitable analytic family) as well as Lp spaces. This led quickly to
results below the critical index for Lp. Thus two papers which had greatly
influenced me, the Calderón–Zygmund work on interpolation and Bochner’s
paper on summability, were joined.
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Calderón’s paper “On an inverse boundary
value problem”

Gunther Uhlmann
∗

1. Introduction

An article that made a profound impact in
my career is the short paper by Alberto P.
Calderón published in 1980 entitled “On an
inverse boundary value problem” [1]. In
this article Calderón started the mathemat-
ical study of the following inverse problem:
can one determine the electrical conductiv-
ity of a medium by making voltage and cur-
rent measurements at the boundary? It is
known in the community of mathematicians
working on inverse problems as “Calderón’s
inverse problem” or in short “Calderón’s
problem”. This seminal article has led to
the development of complex geometrical op-
tics that have had many applications [4].

It may come as a surprise that Calderón, one of the most distinguished
analysts of the 20th century, famous for his work on harmonic analysis and
partial differential equations wrote a paper on an inverse problem. Calderón
had a degree in engineering in Argentina and he worked in the late 40’s in the
geophysical research laboratory of the oil company of Argentina “Yacimien-
tos Petroĺıferos Fiscales” (YPF). Calderón in his speech accepting the Dr.
Honoris Causa from the Universidad Autónoma de Madrid in 1997, “Remi-
niscencias de mi vida matemática” [2], mentioned his appreciation for the
applications of mathematics:

Alberto P. Calderón

[. . . ] Estoy de acuerdo con el dicho de que las matemáticas son
la reina de las ciencias, y además créıa que toda buena reina
debe servir a sus súbditos.

A literal translation is:

[. . . ] I agree with the saying that mathematics is the queen of
science, and further I believed that every good queen must serve
her subjects.
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He apparently thought of the inverse problem when he worked at YPF
but did not publish his result until many years later. The motivation of
Calderón was oil prospection. For different uses of electrical methods in
geophysics see [5], for a recent study of the conductivity distribution under-
neath Yellowstone see

http://www.sciencedaily.com/releases/2011/04/110411083533.htm

In an interesting remark in “Reminiscencias de mi vida matemática”, he
said, referring to his work at YPF:

Como dije, el trabajo era muy interesante, pero me trataron mal.
Pero, como veremos, esto fue para mi bien. Si me hubiesen
tratado de otro modo, es casi seguro que me habŕıa quedado alĺı
el resto de mi vida activa. En cambio, renuncié.

A literal translation is:

As I said my work was very interesting but I was not well treated.
However, as we shall see this was good for me. If I would have
been treated better is almost certain that I would have remained
there for the rest of my active life. Instead, I resigned.

And then his brilliant mathematical career started.

Calderón’s problem is a form of tomography also known as Electrical
Impedance Tomography (EIT). In this method one is attempting to deter-
mine the conductivity, a different property of a medium than other forms
of tomography. X-ray tomography for instance attempts to determine the
density of tissue by probing it with X-rays.

EIT also arises in medical imaging given that human organs and tissues
have quite different conductivities. One potential application is the early
diagnosis of breast cancer [6]. The conductivity of a malignant breast tumor
is typically 0.2 mho which is significantly higher than normal tissue which
has been typically measured at 0.03 mho. See the book [3] for other medical
imaging applications of EIT.

We now describe more precisely the mathematical problem proposed
by Calderón. Let Ω ⊆ Rn be a bounded domain with smooth boundary.
The electrical conductivity of Ω is represented by a bounded and positive
function γ(x). In the absence of sinks or sources of current the equation for
the potential is given by

∇ · (γ∇u) = 0 in Ω (1)

since, by Ohm’s law, γ∇u represents the current flux.
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Given a potential f ∈ H
1
2 (∂Ω) on the boundary the induced potential

u ∈ H1(Ω) solves the Dirichlet problem

∇ · (γ∇u) = 0 in Ω,
u
∣∣
∂Ω

= f.
(2)

The Dirichlet to Neumann map, or voltage to current map, is given by

Λγ(f) =

(
γ
∂u

∂ν

) ∣∣∣
∂Ω
, (3)

where ν denotes the unit outer normal to ∂Ω.
The inverse problem is to determine γ knowing Λγ. It is difficult to find

a systematic way of prescribing voltage measurements at the boundary to
be able to find the conductivity. Calderón took instead a different route.

Using the divergence theorem we have

Qγ(f) :=

∫
Ω

γ|∇u|2dx =

∫
∂Ω

Λγ(f)f dS , (4)

where dS denotes surface measure and u is the solution of (2). In other
words Qγ(f) is the quadratic form associated to the linear map Λγ(f), and

to know Λγ(f) or Qγ(f) for all f ∈ H 1
2 (∂Ω) is equivalent. Qγ(f) measures

the energy needed to maintain the potential f at the boundary. Calderón’s
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point of view is that if one looks at Qγ(f) the problem is changed to finding
enough solutions u ∈ H1(Ω) of the equation (1) in order to find γ in the
interior. We will explain this approach further in the next section where we
describe Calderón’s paper on the linearization of the map

γ
Q−−−−→Qγ . (5)

Here we consider Qγ as the bilinear form associated to the quadratic form (4).

We now describe Calderón’s paper and how he used complex exponentials
to prove that the linearization of (5) is injective at constant conductivities.
He also gave an approximation formula to reconstruct a conductivity which
is, a priori, close to a constant conductivity.

2. Calderón’s paper

Calderón proved in [1] that the map Q is analytic. The Fréchet derivative
of Q at γ = γ0 in the direction h is given by

dQ|γ=γ0(h)(f, g) =

∫
Ω

h∇u · ∇v dx (6)

where u, v ∈ H1(Ω) solve{
∇ · (γ0∇u) = ∇ · (γ0∇v) = 0 in Ω

u
∣∣∣
∂Ω

= f ∈ H 1
2 (∂Ω), v

∣∣∣
∂Ω

= g ∈ H 1
2 (∂Ω).

(7)

So the linearized map is injective if the products of H1(Ω) solutions of ∇ ·
(γ0∇u) = 0 is dense in, say, L2(Ω).

Calderón proved injectivity of the linearized map in the case γ0 = con-
stant, which we assume for simplicity to be the constant function 1. The
question is reduced to whether the product of gradients of harmonic func-
tions is dense in, say, L2(Ω).

Calderón took the following harmonic functions

u = ex·ρ, v = e−x·ρ (8)

where ρ ∈ Cn with
ρ · ρ = 0. (9)

We remark that the condition (9) is equivalent to the following

ρ =
η + ik

2
, η, k ∈ R

n, (10)

|η| = |k|, η · k = 0.
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Then plugging the solutions (8) into (6) we obtain if dQ|γ0=1(h) = 0

|k|2(χΩh)∧(k) = 0 ∀ k ∈ R
n ,

where χΩ denotes the characteristic function of Ω and ∧ denotes Fourier
transform. Then we conclude by the Fourier inversion formula that h = 0
on Ω. However, one cannot apply the implicit function theorem to conclude
that γ is invertible near a constant since conditions on the range of Q that
would allow use of the implicit function theorem are either false or not
known.

Calderón also observed that using the solutions (8) one can find an ap-
proximation for the conductivity γ if

γ = 1 + h (11)

and h small enough in the L∞ norm.

We are given

Gγ = Qγ

(
ex·ρ

∣∣∣
∂Ω
, e−x·ρ

∣∣∣
∂Ω

)
with ρ ∈ Cn as in (2.4). Now

Gγ =

∫
Ω

(1 + h)∇u · ∇v dx (12)

+

∫
Ω

h(∇δu · ∇v +∇u · ∇δv) dx+

∫
Ω

(1 + h)∇δu · ∇δv dx

with u, v as in (8) and

∇ · (γ∇(u+ δu)) = ∇ · (γ∇(v + δv)) = 0 in Ω

δu
∣∣∣
∂Ω

= δv
∣∣∣
∂Ω

= 0.
(13)

Now standard elliptic estimates applied to (13) show that

‖∇δu‖L2(Ω), ‖∇δv‖L2(Ω) ≤ C‖h‖L∞(Ω)|k|e
1
2
r|k| (14)

for some C > 0 where r denotes the radius of the smallest ball containing Ω.

Plugging u, v into (2.7) we obtain

χ̂Ωγ(k) = −2
Gγ

|k|2 +R(k) = F̂ (k) +R(k) (15)

where F is determined by Gγ and therefore known. Using (14), we can show
that R(k) satisfies the estimate

|R(k)| ≤ C‖h‖2L∞(Ω)e
r|k|. (16)
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In other words we know χ̂Ωγ(k) up to a term that is small for k small
enough. More precisely, let 1 < α < 2. Then for

|k| ≤ 2− α
r

log
1

‖h‖L∞
=: σ (17)

we have
|R(k)| ≤ C‖h‖αL∞(Ω) (18)

for some C > 0.

We take η̂ a C∞ cut-off so that η̂(0) = 1, suppη̂(k) ⊂ {k ∈ Rn, |k| ≤ 1}
and ησ(x) = σnη(σx). Then we obtain

χ̂Ωγ(k) η̂

(
k

σ

)
=
−2Gγγ

|k|2 η̂

(
k

σ

)
+R(k)η̂

(
k

σ

)
.

Using this we get the following estimate

|l(x)| ≤ C‖h‖αL∞(Ω)

[
log

1

‖h‖L∞(Ω)

]n
(19)

where l(x) = (χΩγ ∗ ησ)(x) − (F ∗ ησ)(x). Formula (19) gives then an
approximation to the smoothed out conductivity, χΩγ ∗ ησ, for h sufficiently
small.
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Singular integrals survival in bad
neighborhoods

Alexander Volberg
∗

The book of Guy David and Steven Semmes “Analysis of and on uni-
formly rectifiable sets” is a pioneering text on the behavior of singular
integrals on quite bad sets. In fact, it claims that analytic information,
expressed in terms of the boundedness of a wide class of singular integrals
of Calderón–Zygmund type, can be transferred into geometric informa-
tion. From such analytic information one could infer very distinctive
geometric consequences: it turns out that sets which a priori seem to
be very bad cannot be hopelessly bad if such operators are bounded
on them; such sets must have a special structure. These “analysis-
to-geometry” structural theorems have become now the mainstream of
modern “low regularity” Harmonic Analysis. We want to reflect here on
certain ideas and problems from this book.

1. Introduction. David–Semmes’ problem, its variants

I have selected the book of Guy David and
Steven Semmes because it made a big impact
on me and because I consider it to be the most
important in the area of non-homogeneous har-
monic analysis. It made a deep impact on my
career because thinking about it has taken me
10 years at least. I am coming back to that stuff
repeatedly after those many years. The inter-
esting thing is that the book itself has noth-
ing to do with “non-homogeneous” harmonic
analysis. It is completely within the realm of
homogeneous Calderón–Zygmund theory as ex-
tended by Michael Christ in [1]. In other words,
the underlying measure μ, with respect to which
the singular integrals are considered in [5], is al-
ways doubling. In fact, μ = Hs|E, where E is assumed to be regular in the
sense of Ahlfors:

c rs ≤ Hs(B(x, r) ∩ E) ≤ C rs , x ∈ E, r ≤ diamE
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uniformly. However, the feeling is that this regularity is not really needed
and that it can be assumed “without loss of generality”. And this is indeed
the case. It is not a simple fact, but it is true that non-homogeneous T1
theorems as in [17], [29] –see also the discussion in [6] and below– (often)
allow us to reduce the general case to the case of Ahlfors regularity.

In fact, it is interesting how ubiquitous [5] was in my research and the
research of my friends. I remember that during Lars Hedberg’s conference
in 1996, Mark Melnikov asked me whether I knew the description of mea-
sures μ for which Cauchy integral is bounded in L2(μ). Immediately [5] came
to my mind, where this is exactly the question, except that the Cauchy inte-
gral is replaced by its direct multi-dimensional analog called Riesz integral
operators of singularity s, and μ is Hs|E, where 0 < Hs(E) <∞. This ques-
tion of Mark, and the analogy with [5], brought very fruitful outcomes. Two
or three years later, such measures were described by Nazarov–Treil–Volberg
and Tolsa in [18] and [23], respectively.

These theorems opened the road to subsequent non-homogeneous non-
accretive Tb theorems [3, 4, 20, 29], and turned out to be indispensable for
Tolsa in his crown achievement [25] of solving Painlevé’s problem.

Let me finish this introduction with a joke, which I heard from Peter
Jones. He said that “there are exactly four people who have read [5]. These
are: Guy David, Steven Semmes, him (Peter Jones). . . and somebody else”.
As the reader knows now, [5] had a deep impression on “somebody else”.

Let E be a compact set in R
d such that 0 < Hs(E) < ∞, 0 < s ≤ d.

Let Rs = (R1,s, . . . , Rd,s) be the vector Riesz kernel of singularity s: namely,
Ri,s = xi/|x|1+s, i = 1, . . . , d. The question that David–Semmes posed in
the book [5] is the following:

let E be Ahlfors regular, that is,

c rs ≤ Hs(B(x, r) ∩ E) ≤ C rs , ∀x ∈ E, 0 < r < diamE . (1)

Let Rs : L2(E,Hs|E) → L2(E,Hs|E) be bounded, with s = d − 1. Is
is true that E is uniformly rectifiable?

Uniformly rectifiable means here that

for all x ∈ E and 0 < r < diamE, there exists a Lipschitz image Γx,r
of Rd−1 into Rd with Lipschitz constant independent of x, r such that
Hd−1(B(x, r) ∩ E ∩ Γx,r) ≥ c rd−1.

David–Semmes proved this “analysis-to-geometry” result under a stricter
assumption, namely, boundedness is required for all Calderón–Zygmund op-
erators –not only for Riesz transforms.
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Mattila, Melnikov and Verdera [11] answered this question in the affir-
mative for d = 2. But it is known that in the case of the plane there is a
miracle: Melnikov’s formula, which introduces Menger’s curvature as a tool
into analysis, see [15, 16, 24]. The higher dimensional version seems to be
one of the leading questions now. Let us now elaborate on David–Semmes
question and consider several variants and reformulations.

Acknowledgements. 1) I am grateful to Nestor Guillén and Ryan Hynd
for very valuable conversations, especially those concerning non-local free
boundary problems with gradient constraints. I am also grateful to MSRI
program on Free Boundary for the hospitality.

2) All purely mathematical content of this note is joint with Vladimir
Eiderman and Fedja Nazarov. However, all mistakes are mine.

2. Variants of David–Semmes question

2.1. Integer s = n

The first natural thing to do is to consider s = n �= d− 1, where n ∈ Z+ is
an integer, 0 < n < d. Then the question is exactly the same as before, only
that uniform rectifiability becomes n-uniform rectifiability, namely, now Γx,r
is a Lipschitz image of Rn into Rd with Lipschitz constant independent of
x, r such that Hn(B(x, r) ∩ E ∩ Γx,r) ≥ c rn. It is widely believed that the
answer is correct: if the set E, with 0 < Hn(E) < ∞ is n-Ahlfors regular
(see (1) with s = n) and if all Riesz transforms of singularity n are bounded
in L2(E,Hn|E), then E is n-uniformly rectifiable. Again, if one assumes
that all Calderón–Zygmund operators of singularity n are bounded, then
the conclusion follows ([5]).

2.2. Integer s = n, but Ahlfors regularity (1) is dropped

Let s = n ≤ d− 1 be integer, but let us drop the assumption of Ahlfors reg-
ularity. The conclusion must be obviously altered. Instead of the existence
of big pieces of Lipschitz images in all scales, one should hope for just one
such Lipschitz image. So the assumption of the boundedness of all Riesz
transforms in L2(E,Hn|E) remains, but the conclusion must be changed to

there exists a Lipschitz image Γ of Rn into Rd

such that Hn(E ∩ Γ) > 0.
(2)

This follows from [24], combined with [9], for d = 2, n = 1. The proofs are
quite difficult and they use the ubiquitous Melnikov’s formula and Menger’s
curvature, the tool which, in the the words of Guy David, “is cruelly missing”
in d > 2, s ≥ 1; d = 2, s > 1.
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2.3. What if s is not integer?

For non-integer s, 0 < s < d, there is no “Lipschitz images of Rs into Rd”,
because there is no R

s, and there is no good way to express the structural
condition on E saying that E has good “Lipschitz smooth” pieces. There-
fore, it is natural to think that the Riesz transforms of singularity s /∈ Z+

are not bounded in L2(Hs|E) if E is such that 0 < Hs(E) <∞.

This is actually proved in the case of s-Ahlfors regularity (1) of E by
Vihtila [28]. In fact, more is proved in [28]. Instead of imposing a strong
estimate from below as in (1), Vihtila in [28] requires only that for Hs-a.e.
point x ∈ E the lower density is strictly positive:

lim inf
r→0

Hs(B(x, r) ∩ E)

rs
> 0 . (3)

The technique of tangent measures then allows her to prove the non-
existence of such sets having bounded Riesz transforms on them. However,
dropping (1) and (3) completely seems to represent huge difficulties. We will
further elaborate on this. Even the case d = 2, 1 < s < 2 is difficult and was
open till very recently, see [6]. On the other hand, we already mentioned
that the case d = 2, s = 1 was solved by Tolsa [24] (see algo Léger’s [9]);
again, these are very difficult papers. For d = 2, s < 1, one can use Prat’s
paper [21], and again the problem is solved: no such E exists. Here one uses
the same Melnikov’s approach but for Riesz kernels of singularity s < 1. A
small miracle –a miracle known to the experts– happens: the symmetrization
trick works and gives a positive kernel. As we already mentioned, this is
“cruelly” false for s > 1, d = 2 and s ≥ 1, d > 2.

Remark. This note is devoted much more to non-integer s > 1 than to the
initial question of David–Semmes with s = d− 1. But notice that the main
difficulty lies in both cases in the “cruel” lack of positivity of kernels after
symmetrization, see [7]. Therefore, from now on we want to focus on the
following implication of analysis-to-geometry type:

E is a compact in R
d, 0 < Hs(E) <∞, such that

Rs : L2(E,Hs|E)→ L2(E,Hs|E) is bounded ⇒ s is integer .
(4)

For s ∈ (d − 1, d) this is proved in [6]. Namely, if s is strictly between
d−1 and d, then the assumption of the above claim leads to a contradiction
independently of the fact that the bounds in (1) hold (then it is Vihtila’s
case, the technique of tangent measures) or not. We never have boundedness
of Rs, s ∈ (d− 1, d), on L2(E,Hs|E) if Hs(E) <∞!
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However, looking at our approach in [6], one can see that it leads to the
following claim, which includes integer s = d− 1 as well:

E is a compact in R
d, 0 < Hd−1(E) <∞, such that

Rd−1 : L2(E,Hd−1|E)→ L2(E,Hd−1|E) is bounded , and

lim inf
r→0

Hd−1(B(x, r) ∩ E)

rd−1
= 0 Hd−1 − a.e. on E ⇒ contradiction.

(5)

3. Using T1 theorem to reformulate the problem

Let us consider in what sense the boundedness of operators with kernel
Rs on L2(E, μ) is understood, where μ stands for μ := Hs|E, and where
0 < Hs(E) < ∞. After all, the kernel Rs is singular with respect to such
a measure, so the integral cannot be understood as absolutely convergent.
There are two (non-trivially) equivalent senses in which this boundedness is
dealt with. In the first sense, boundedness means that for two real smooth
functions with compact support φ, ψ the form below is bounded by the right
hand side with constant independent on φ, ψ:∣∣∣1

2

∫∫
Rs(x− y)(φ(x)ψ(y)− φ(y)ψ(x)) dμ(x) dμ(y)

∣∣∣ ≤ C ‖φ‖L2(μ)‖ψ‖L2(μ) .

This form actually would be equal to the form (Rsφ, ψ) –just by anti-
symmetry of the kernel– if (Rsφ, ψ) would make sense. But the above form
by itself makes perfect sense, because it is absolutely convergent.

Another way to understand the boundedness of the operator with ker-
nel Rs on L2(μ) is to regularize it by, e.g., considering

Rs
εφ(x) :=

∫
y:|y−x|≥ε

Rs(x− y)φ(y) dμ(y)

and requiring that the operators Rs
ε are uniformly bounded in L2(μ).

It is well-known (see, e. g. [18], [29] and many other places) that both
versions of boundedness imply that

μ(B(x, r)) ≤ C rs . (6)

We denote by Σs(E) the class of positive measures satisfying (6).

Let us introduce the maximal singular operator Rs
∗: let σ be a measure

on our compact set E, for example (but not necessarily) σ = f dμ. Then

Rs
∗σ(x) :=

∣∣∣∣ sup
ε>0

∫
y∈E:|y−x|≥ε

Rs(x− y) dσ(y)

∣∣∣∣ .
We use the notation Rs

∗f(x) if σ = f dμ.

We want to present the following result.
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Theorem 1 Let E ⊂ R
d be a compact set and 0 < Hs(E) <∞, 0 < s < d,

s being integer or not. As always, let μ denote Hs|E. Let Rs : L2(μ) →
L2(μ) be bounded.

Then there exists a strictly positive measure σ ∈ Σs(E) such that Rsσ is
uniformly bounded in Rd \ E (or we can say, essentially uniformly bounded
in R

d). Moreover, σ = h dμ, where h ∈ L∞(μ), h ≥ 0 and h > 0 on a
subset E ′ such that μ(E ′) > 0.

Interestingly, the inverse claim is also true to a large extent. Namely,

Theorem 2 Let E ⊂ Rd be a compact set 1 < s < d and 0 < Hs(E) <∞,
s being integer or not, μ = Hs|E as always. Let σ ∈ M+(E) be a strictly
positive measure such that Rsσ is bounded in Rd \ E.

Then σ ∈ Σs(E), Rs : L2(E, σ) → L2(E, σ) is bounded, and there exists
a piece Ẽ ⊂ E such that μ(Ẽ) > 0 and such that Rs : L2(μ|Ẽ) → L2(μ|Ẽ)
is bounded.

Theorem 2 is proved in [20, 29], see also [17]. It is a very difficult theorem.
A slightly more sophisticated variant (when σ is allowed to be complex-
valued) led Nazarov–Treil–Volberg to a solution of Denjoy’s problem (which
was different from the solution in David–Mattila’s [4] and David’s [3]) and
led Tolsa to the final solution of Painlevé’s problem [25, 27].

On the other hand, the proof of Theorem 1 is not that difficult.

Proof of Theorem 1. We will restrict ourself to the case s ≥ d − 1, as
the main goal is to show the use of the maximal principle. The first step
is non-homogeneous Harmonic Analysis. The Calderón–Zygmund operator
Rs on the metric space with measure (E, μ) is bounded in L2(E, μ). If the
measure is doubling we can invoke Coifman–Weiss argument [2] to deduce
that

Rs : L1(μ)→ L1,∞(μ) . (7)

For non-doubling measures (but satisfying μ ∈ Σs(E)) the work [19] claims
that (7) holds as well. Let us imagine for a second that in the right hand side
above we also have L1(μ). Then by duality (and the fact that the adjoint
verifies (Rs)′ = −Rs) we would have that for any function h ∈ L∞(μ) one
would have that Rsh := (Rs)(h dμ) is in L∞(μ). An amazing fact, see
Christ’s paper [1], is that if we, however, have L1,∞(μ), as it is the case in
the relationship above, then there exists at least one non-negative, non-zero
function h ∈ L∞(μ) such that Rsh ∈ L∞(μ) ! Therefore, for this h,

|Rsh(x)| ≤ C1 for μ− a. e. point x ∈ E . (8)



All that Math 311

This inequality is not enough to use a maximal principle we are heading to.
So we invoke [19], where it is proved that (8) implies

|Rs
∗h(x)| ≤ C2 ∀x ∈ E . (9)

Now we use Lemma 3 of [28] to conclude that Rsh(x) is bounded on Rd. �

4. Maximum principle for fractional Laplacian

Let us consider α ∈ (1
2
, 1], s = d− 2α+ 1 ∈ [d− 1, d), and a compact set E

such that Hd−2α+1(E) ∈ (0,∞). For u ∈ S(Rd) (Schwartz class) we have

Lαu := (−Δ)αu = (|ξ|2αû(ξ))ˇ.

There is a nice formula for Lαu in [8]:

Lαu(x) = c(d, α)

∫
u(x+ y) + u(x− y)− 2u(x)

|y|d+2α
dy . (10)

Here c(d, α) * 1− α as α→ 1.

This holds not only if u is a Schwartz function; it holds, for example, if
u is a potential of a measure lying on our compact E (or even the derivative
of such a potential):

v(x) = Pασ := c

∫
E

1

|x− y|d−2α
d σ(x) ,

which is the solution of the distributional equation

Lαv = σ .

Definition. If Lαv = 0 in an open set Ω, we say that v is α-harmonic in Ω.

Formula (10) is a corollary of an amazing equality to be found in [8]: For
α ∈ (1

2
, 1),∫ (

1

|x+ y|d−2α
+

1

|x− y|d−2α
− 2

|x|d−2α

)
1

|y|d+2α
dy = 0, x �= 0 .

So for a potential v as above,∫
v(x+ y) + v(x− y)− 2v(x)

|y|d+2α
dy = 0 ∀x ∈ R

d \ E . (11)



312 Alexander Volberg

Let σ be a measure absolutely continuous with respect to Lebesgue mea-
sure md and with bounded density. Let u := (∇v)i, i = 1, . . . , d, where v is
as above. Then we conclude that∫

u(x+ y) + u(x− y)− 2u(x)

|y|d+2α
dy = 0 ∀x ∈ R

d \ E . (12)

We want to deduce from this that∫
u2(x + y) + u2(x− y)− 2u2(x)

|y|d+2α
dy ≥ 0 ∀x ∈ R

d \E . (13)

If (13) were proved then assuming that u = ∂iv has a maximum at x0
outside of the support of σ we would get

0 ≤
∫
u(x0 + y) + u(x0 − y)− 2u(x0)

|y|d+2α
dy ≤ 0 ,

meaning that u is constant md-almost everywhere. But it goes to zero at
infinity. So we would conclude that u is identically equal to zero.

Now let σ be a finite positive measure with compactly supported C∞

density with respect to md. Applying the above to u = Rs
iσ = ∂iPασ we

would come to a contradiction, as it is not at all identically zero near infinity.
Therefore, we have established that, if R := Rs and s ∈ (d− 1, d),

max
Rd
|Rσ| = max

suppσ
|Rσ| . (14)

Also, clearly maxRd Rs
iσ ≥ 0 (since it is zero at infinity). So if this maxi-

mum is strictly positive it should be attained at some point x ∈ Rd. Using
formula (12) we get that

max
Rd

Riσ = max
suppσ

Riσ , (15)

if the left hand side is strictly positive (again R := Rs, s ∈ (d− 1, d)).
To prove (13) notice that∫
u2(x + y) + u2(x− y)− 2u2(x)

|y|d+2α
dy =

= 2u(x)

∫
u(x+ y) + u(x− y)− 2u(x)

|y|d+2α
dy

+

∫
(u(x+ y)− u(x))2

|y|d+2α
dy +

∫
(u(x− y)− u(x))2

|y|d+2α
dy ,

So at a point x such that∫
u(x+ y) + u(x− y)− 2u(x)

|y|d+2α
dy = 0,
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we must have∫
u2(x + y) + u2(x− y)− 2u2(x)

|y|d+2α
dy =

=

∫
(u(x+ y)− u(x))2

|y|d+2α
dy +

∫
(u(x− y)− u(x))2

|y|d+2α
dy ≥ 0 ,

which is exactly (13).

Let R′ denote the formal adjoint of R = Rs (namely, R′η :=
∑d

i=1Riηi
for any d-tuple of measures), then in [6] the following variant of the maximal
principle (14) was essentially used: Let σ and s be as above. Then,

max
Rd

[
|Rσ|+R′((Rσ) σ)

]
= max

suppσ

[
|Rσ|+R′((Rσ) σ)

]
, (16)

provided that the left hand side is positive.

We can now say –alas only very schematically and not at all accurately–
how in [6] the relationship (16) was applied. It was applied to σ essentially
minimizing the functional∫

|RΣ|2 dΣ→ minimize

under conditions like 1
2
μ ≤ Σ ≤ 2μ, Σ(Rd) = μ(Rd), where μ was a nice mea-

sure for which we wish to obtain the estimate from below for
∫
|Rμ|2 dμ (see

the true statement in [6]). In fact, if the minimum is not too small (in terms
of parameters depending on μ), then we are done. If it is small, then the ex-
tremal measure σ is proved to have the property that [|Rσ|+R′((Rσ) σ)] is
sufficiently small uniformly on the support of σ (extremal measures have
certain structure, see [24] or [29, pp. 33–36]). Then the maximum over Rd is
also estimated by (16). But for RΣ with Σ in our class of measures, there
is a weighted estimate from below of

∫
|RΣ|2 Ψ dmd in terms of parameters

of μ (Ψ depends on μ itself, see its precise description in [6]). This brings
the contradiction.

5. A theorem related to (4) in terms of fractional har-

monic functions

Let α ∈ (1
2
, 1). A function u, Lipschitz in Rd and zero at infinity, is α-

harmonic in Rd \ E if it is a potential

u = c
1

|x|d−2α
� S,

where S is a distribution with compact support in E.
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After playing a little bit with the theory of Nazarov–Treil–Volberg [17,
20, 29], the claim (4) for s = d− 2α + 1 ∈ (d− 1, d) becomes exactly

Let E be a compact set in Rd such that Hd−2α+1(E) <∞.
Then there exists no function u, Lipschitz in Rd and
α-harmonic in Rd \ E which is a potential u = c 1

|x|d−2α � ν

of a positive measure ν on E.

(17)

So the function u (which we want to show can be only a zero function) has
the properties:

1) u is Lipschitz.

2) u is α-harmonic in Rd \ E.

3) u is α-superharmonic: (−Δ)αu = μ ≥ 0.

Notice that in the previous sections we have reduced problem (4) to the
existence of such an α-harmonic, Lipschitz function

u =
1

|x|d−2α
� (h dHs|E),

which, because of its α-harmonicity in Rd \ E and lipschitzness in Rd, it is
also a potential of a positive measure ν = h dHs|E. On the other hand, the
existence of non-zero positive ν (and so of its potential u) in (17) would give
a measure from (4).

For α = 1
2
, s = d − 1, such functions do exist, but only if E has a

Lipschitz piece –this is yet another form of David–Semmes’ conjecture. The
only if part is open.

Requirement 3) on u appears naturally, but equally natural is the ques-
tion whether a non-zero function u exists satisfying only requirements 1)
and 2).

If such a function exists, and Hs(E) <∞, then one can show that

u =
1

|x|d−2α
� ν

with ν a complex satisfying

dν = b dHs|E, ‖b‖L∞(E,Hs|E) <∞.

Then Nazarov–Treil–Volberg’s “restricted” Tb-theorem [20, 29] for non-
homogenous measures shows that there is a piece E ′⊂ E, Hs(E ′) > cHs(E),
such that

Rs : L2(E ′, Hs|E ′)→ L2(E ′, Hs|E ′)
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is a bounded operator. We are back to (4), which, as we just saw, can be
reduced to the existence of u with 1), 2), and 3)! Hence, we have reduced
the question of the existence of non-trivial Lipschitz, α-harmonic outside
of E function, to the question of the existence of such a function with the
extra property of being α-subharmonic. This is (17). We know that there is
no such non-trivial function if s ∈ (d− 1, d), see [6]. One should prove that
there is no such non-trivial function for all non-integer s ∈ (0, d).

6. Related conjectures in terms of singular maximal
function Rs

∗μ

Let E ⊂ Rd be a compact set and 0 < Hs(E) < ∞, 0 < s < d, s being
integer or not, μ = Hs|E as always.

We want to mention that Nazarov–Treil–Volberg theory [17, 20, 29] im-
plies that the problem of David–Semmes –even in a non-homogeneous situ-
ation (no (1))– and for any s ∈ (0, d) has an

Equivalent formulation: Let E, μ be as above, μ ∈ Σs(E), let h ∈
L∞(μ), h ≥ 0, h �= 0, and let Rs

∗(h dμ) < ∞ μ-a. e. Then s must be an
integer and E must have a piece of Lipschitz image of Rs into Rd.

Even for h = 1 this is a problem, and even for E’s having the extra
property (1). And even for one special s = d − 1. However, as we already
mentioned above, this has been proved for s ∈ (d− 1, d), see [6].

On the other hand, there is a great progress if the assumption

sup
ε
|Rs

εμ(x)| =: Rs
∗(dμ)(x) <∞ for μ− a.e x ∈ E (18)

is replaced by the seemingly only slightly stronger assumption (in fact it
turns out to be much stronger):

∃ lim
ε→0

Rs
εμ for μ− a.e x ∈ E . (19)

Probably the first such results were those of Mattila [15] and Mattila–
Preiss [12]. In the latter paper, given the regularity (3) and the existence of
principal values, the authors proved that s must be an integer and E must
be s-rectifiable (the former paper is devoted to the case d = 2, s = 1, which
is equivalent to the existence of principal value of the Cauchy integral; (3) is
assumed). Getting rid of regularity condition is tough. Only the existence
of principal values allowed Ruiz de Villa and Tolsa [22] and Tolsa [26] to
prove that s is integer and to prove the existence of s-Lipschitz piece in E
(s-rectifiability).
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There are subsequent papers, [13, 14], where the existence of principal
values is replaced by the finiteness of square function –with the same con-
clusions. But this is still far from the finiteness of maximal singular function
as stated in (19), which remains the heart of the matter in all cases where
we do not have the reduction to Menger’s curvature, namely d > 2, s ≥ 1
and d = 2, s > 1. In [6] the case s ∈ (d− 1, d) has been settled.
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Some recollections

Stephen Wainger
∗

When I was a teenager, I came across several books written by Eric
Temple Bell. While I was already interested in mathematics, I became
fascinated with these treatises, especially “Men of Mathematics”.

I found engrossing both the biographies of these great mathematicians
and the little of the mathematics that I could understand at the time.

As for the historical information, I
have heard that “Men of Mathemat-
ics” contains what Mark Twain called
“stretchers” (stretchings of the truth).
But it certainly made good reading.
Perhaps two of the most interesting bi-
ographies were those of Abel and Ga-
lois. Gauss threw away Abel’s proof
that the general fifth degree equation
can not be solved by radicals. Also
Cauchy seems to have neglected the
work of both Abel and Galois on this
subject. Abel was the luckier of the
two. He was befriended by a Norwe-
gian mathematician called Bernt Mi-
chael Holmboë and later by Crelle. Ba-
sically Galois’ genious was neglected.
He failed the entrance examinations for the École Polytechnique twice. Ba-
sically his talents were neglected although eventually Galois met a man Louis
Paul Emile Richard, who recognize Galois’s genius.

On the mathematical side there was much that I could not understand at
all –such as the beginnings of group theory or the theory of elliptic integrals.
On the other hand there were items that I found truly amazing. I had
studied Euclidean geometry, and I knew how to construct a tangent line to
a circle through a point on the circle. I remember being thunderstruck by
the procedure of finding the tangent line to an “arbitrary” curve through a
point on the curve. In fact I learned the basic idea of both differential and
integral calculus from “Men of Mathematics” –though I could actually do
only the simplest– if any of the problems that appearing a standard text.
I have from time to time wondered if I had learned calculus the traditional

∗wainger@math.wisc.edu.

321



322 Stephen Wainger

way –learning the “rules”– whether I would have appreciated the subject as
much as I have.

I also learned about non-Euclidean Geometry, the contributions of Can-
tor, and the impossibility of solving the general fifth degree equation by
radicals from this book. Of course, Fermat’s conjecture is also there.

My recollection is that I also learned there the statement of the prime
number theorem, but I couldn’t find it in the book later; although in the
article on Riemann, Bell mentions the zeta function and the fact that it
was used to study the number of primes less than x. Perhaps I read the
statement of the prime number theorem in another of Bell’s books. For
example, I found a statement of this theorem in his “Mathematics, Queen
and Servant of Sciences”.

Looking back at “Men of Mathematics” I discover a few other surprises
besides not finding a statement of the prime number theorem. I notice now
that the statement that every integer is the sum of four squares is in that
book. I don’t remember seeing it there when I was young. In “Men of
Mathematics”, the statement of this result appears in the article on Jacobi,
and I missed it. I might have skipped over much of the article on Jacobi
because of the discussion of elliptic integrals –which of course I could not
understand at all. (I first learned of this theorem in a year long course in
complex variables which I took during my junior year in college. I remember
being hardly able to believe it.)

On the historical side, I was surprised to see the modern beginnings of
differential calculus was attributed to Fermat rather than to Newton or Leib-
niz. Another surprise was about the beginning of group theory. According
to Bell, group theory had its origins in the work of Cauchy and Cayley.

One final surprise. Bell asserts that when Abraham Lincoln was a young
trial lawyer in Illinois, he spent many nights studying Euclid in order to
improve his skill in giving logical arguments. And it might be argued that
the logic in Abraham Lincoln’s speech at The Cooper Union in New York
City, April 27, 1860, propelled him from a little known midwesterner to the
Republican candidate for president in 1860, and further that the logic of his
arguments in the Lincoln Douglas debates played an important role in his
winning of the presidency in 1860.

Twice I found distant cousins who showed an interest in mathematics,
and I bought copies of “Men of Mathematics” for each of them. One works
now with computers. I think that the other is still in high school, but her
grandfather told me that he loved the book.
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Semmes spaces

Jang-Mei Wu
∗

To understand the underlying structure of a metric space, one seeks a
parametrization of a special type. For example, every Riemannian manifold
homeomorphic to the 2-sphere is conformally equivalent to S

2.
In his 1996 Revista Matemática Iberoamericana papers [12, 13], Stephen

Semmes gave unexpected counterexamples to several natural conjectures on
the bilipschitz and quasisymmetric parametrizations of metric n-spheres. His
examples are geometrically self-similar manifolds modeled on the decompo-
sition spaces associated with the Whitehead continuum, Bing’s dogbone, or
Bing’s double; these spaces admit metrics that are smooth Riemannian out-
side a totally disconnected closed set and, in some sense, indistinguishable
from the standard metric on S3 geometrically and measure theoretically, and
yet are not quasisymmetrically equivalent to S3.

Through these examples, he addresses the roles of wildness, shrinkability
and linking in questions of parametrization, and expresses his philosophical
views on mappings and spaces. The usefulness of Semmes’ construction is
not limited to the problems at hand. Work on Semmes-type spaces there-
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after by Heinonen and Rickman [5] and by Pankka and Rajala [8] further
highlights the topological properties of the spaces that admit or receive ge-
ometrically controlled branched covering maps.

In these papers of Semmes, ideas linking analysis and topology unroll in
a story-telling style –more like a novel than a textbook. One can relax and
watch Semmes effortlessly connecting the dots and unfolding the facts. In
the end, the reader is rewarded with a mystery solved.

We now give a sample of Semmes’ ideas and their implications.

Semmes metrics. Despite considerable attention in recent years, the prob-
lem of characterizing metric n-spheres that are bilipschitz or quasisymmetri-
cally equivalent to the standard S

n is still far from understood. There exist fi-
nite 5-dimensional polyhedra (double suspension of homology 3-spheres with
nontrivial fundamental groups) homeomorphic to the standard sphere S5

but not bilipschitz equivalent to S5 –an observation of Siebenmann and Sul-
livan (1979) based on deep work of Cannon (1978) and Edwards (1980). It is
unknown whether these polyhedra are quasisymmetrically equivalent to S5.

When Rn is equipped with a path metric Dω(x, y) associated with a
continuous strong A∞ weight ω (ω dx a doubling measure and Dω(x, y)n

comparable to the ω-measure,
∫
Bx,y

ω, of the smallest Euclidean ball Bx,y

containing x and y), the geometry of the space (Rn, Dω) is in many ways
indistinguishable from Rn (David and Semmes 1990, Semmes 1993). For
example, the metric Dω is quasi-equivalent to the Euclidean metric in the
sense that every Dω-ball B contains a Euclidean ball and is contained in a
Euclidean ball of comparable radii (in general very different from the radius
of B); the ω-measure of any Dω-ball of radius r is comparable to rn (Ahlfors
n-regular); and every Dω-ball contains a definite portion in ω-measure that
is uniformly bilipschitz equivalent to a subset of Rn in the Euclidean met-
ric. Moreover (Rn, Dω) supports Sobolev and weak (1,1)-Poincaré inequali-
ties which are crucial for differential calculus. Must (Rn, Dω) be bilipschitz
equivalent to Rn?

In [13] Semmes found a strong A∞ weight ω so that the associated space
(R3, Dω) is not bilipschitz equivalent to R3.

Semmes’ idea is to create a metric in R3 in terms of the distance function
to a geometrically nice but wild Cantor set. Under Semmes’ metric this Can-
tor set has a small Hausdorff dimension. Precisely, let N be a geometrically
self-similar Antoine’s necklace constructed in such a way that all tori used
are similar and all tori in the same generation are congruent as illustrated
in [10, p. 73]. The complement R3 \N is non-simply connected. Then, for a
fixed s > 0,

ω(x) = min(1, dist(x,N )s)
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is a strong A∞ weight in R
3. The Hausdorff dimension of the necklace N in

(Rn, Dω) is at most (1+s/6)−1. On the other hand, every homeomorphism h
of R3 maps N to a set with non-simply connected complement; this implies
that the Hausdorff dimension of h(N ) is at least 1 for the Euclidean metric.
The spaces (R3, Dω) and R3 therefore are not bilipschitz equivalent.

Jacobians of quasiconformal mappings are classical A∞-weights. The
problem of characterizing weights in R

n that are comparable to a quasi-
conformal Jacobian is related to the bilipschitz parametrization problem.
Semmes’ example can be rephrased to give a counterexample the conjecture
that every strong A∞-weight is a quasiconformal Jacobian.

The topological obstructions above are restricted to dimension 3 or higher.
Good metrics on 2-spheres that do not admit bilipschitz parametrization
by S2 have been constructed later by Laakso (2002) and Bishop (2007).

The idea of constructing metrics based on distance is versatile. It can be
adapted to create new metrics on subsets of R3 exploiting their topological
characteristics in such a way that the obstruction to a particular problem
caused by the Euclidean metric disappears and the solvability is determined
by the topological nature of the sets. We call any metric constructed with
this goal a Semmes-type metric.

Non-Euclidean Picard Theorem. Non-constant quasiregular mappings
(higher dimension analogues of analytic functions or multivalent analogues
of quasiconformal maps) from Rn to Rn can omit only finitely many values;
and for any finite set of points in R3 there exists a quasiregular mapping
from R

3 into R
3 omitting exactly those points –striking theorems of Rickman

in 1980 and 1985.

Equipped with a Semmes-type metric, subsets of S3 become more ame-
nable to receiving quasiregular maps. A sharp non-Euclidean Picard-type
theorem in dimension 3 of Pankka and Rajala [8] inspired by Semmes’ con-
struction says that if L is either an unknot (flat circle) or a Hopf link (two
flat circles linked once) in S

3, then there exists a Riemannian metric g in
S3 \ L so that (S3 \ L, g) receives non-constant quasiregular maps from R3,
i.e., is quasiregularly elliptic; on the other hand, if L is a link in R3 and there
exists a Riemannian metric g in S3 \ L so that (S3 \ L, g) is quasiregularly
elliptic, then L must be an unknot or a Hopf link.

In the case of the classical Picard theorem, the non-existence of (non-
constant) analytic functions into a twice punctured plane is due to the fact
that the fundamental group π1(C \ {0, 1}) is a free group on two generators.
The same topological obstruction occurs in the non-Euclidean theorem: the
fundamental group of π1(S

3\L) contains a free group of rank 2 as a subgroup
if L is any link except the unknot or the Hopf link.
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It is unknown however whether S
3 \Wh, the complement of a White-

head continuum, can be equipped with a Semmes-type metric so that it is
quasiregularly elliptic [8].

Semmes spaces. When is a metric n-sphere (X, d) quasisymmetrically
equivalent to Sn? A complete characterization is known only for dimen-
sions 1 and 2 ([14], [2]). Conditions of Semmes [11] and of Bonk and
Kleiner [2] imply that if a metric 2-sphere is linearly locally contractible
(every ball of radius r is contractible in the ball of radius Cr with the same
center) and Ahlfors 2-regular (there exists a measure μ on the space so that
the μ-measure of every ball of radius r is comparable to r2 uniformly) then
it is quasisymmetrically equivalent to S

2.

Could a metric n-sphere which resembles S
n geometrically (linearly lo-

cally contractible) and measure-theoretically (Ahlfors n-regular) fail to be
quasisymmetrically equivalent to Sn?

Semmes’ negative example in dimension 3 is a geometrically self-similar
metric space (R3/Bd, d) modeled on the decomposition of R3 with respect to
Bing’s double [12].

The classical construction of R. H. Bing in geometric topology gives an
involution in S3 whose fixed point set is a double horned sphere. Bing’s
double is a set constructed following Bing’s procedure topologically, not
necessarily geometrically. One construction of Bing’s double Bd starts with
a solid smooth torus T standardly embedded in R3 and two smooth tori T1
and T2 linked and embedded in the interior of T as illustrated in [1, Fig. 3,
p. 357], or in [3, Fig 9-1, p. 63]. Let φj : T → Tj , j = 1, 2 be diffeomorphisms,
Sl = {1, 2}l, α = (α1, . . . , αl) ∈ Sl and φα = φαl

◦ · · · ◦ φα2 ◦ φα1. Bing’s
double is

Bd =

∞⋂
l=0

⋃
α∈Sl

φαT .

The complement R3\Bd is not simply connected, and as a topological space
R3/Bd is R3 for nontrivial reasons.

Semmes’ idea is to embed R3/Bd into R4 by unknotting and resizing the
tori in the construction geometrically. As a first step, R3 \ T is embedded
in R3 × {0} by inclusion, and the linked tori T1 ∪ T2 are mapped diffeo-
morphically onto tori, similar to T and of size λ times that of T , which are
contained in two mutually disjoint Euclidean balls in (intT ) × {0}. The
embedding is then extended to a diffeomorphism θ from R3 into R4 by an
unknotting argument. Careful construction of θ allows θ(T1) and θ(T2) to as-
sume the role of T and the unknotting and resizing procedure to be iterated
geometrically. At the limit we obtain a map that descends to a homeomor-
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phism from R
3/Bd into R

4. Semmes’ geometrical realization of R3/Bd is a
3-dimensional submanifold of R4 smooth outside a Cantor set Bd∗.

The space (R3/Bd, dλ) with the metric induced by the ambient Euclidean
metric in R4 through the embedding is quasiconvex, linearly locally con-
tractible and Ahlfors 3-regular and smooth except for well-controlled degen-
eracies near Bd∗. Moreover it satisfies the Sobolev and Poincaré inequalities
needed for analysis.

However the Semmes space (R3/Bd, dλ) is not quasisymmetrically equiv-
alent to R3.

Semmes’ elegant explanation of this fact goes as follows. Suppose h is
a homeomorphism from R3/Bd onto R3. All l-th generation tori in R3/Bd
are similar to T and have diameter λl. Their images in R

3 circulate around
h(θ(T )) at least 2l times. Therefore at least one of 2l image tori, call it τl,
must have a longitude of length at least c0 > 0, for every l ≥ 1. Since
diam τl → 0 as l→∞, the tori τl can not be uniformly well-shaped, therefore
h can not be quasisymmetric. This heuristic argument can be made precise
by a lemma of Freedman and Skora (1987) using relative homology.

Any number of linked tori may be used in the first step of defining Bing’s
double. In case one torus T1 is self-linked in T in such a way that a meridian
of T and a longitude of T1 form a Whitehead link as in [3, Fig. 9-7, p. 68] or
in [10, p. 72], the resulting intersection is called a Whitehead continuum Wh.
In case k (≥ 3) tori

⋃
1≤j≤k Tj are linked in T as in [3, Fig. 9-9, p. 71] or in

[10, p. 73], the resulting set is an Antoine’s necklace.

Semmes’ geometrization extends to all decomposition spaces of R3 defined
by an initial package with a topological self-similarity. With an additional
contractibility condition, the resulting spaces are generalized manifolds pos-
sessing all metric properties mentioned above for the space (R3/Bd, dλ). We
call these spaces and other non-self similar ones constructed in this spirit
Semmes-type spaces.

Branched covering maps. It seems that the existence of a bilipschitz
parametrization for metric spheres is a rarity and that a concrete geometri-
cal characterization is difficult. Heinonen and Rickman [5] however showed
that all spaces constructed in a geometrically self-similar manner from ini-
tial packages of Semmes on S3 with an additional contractibility condition,
admit BLD-maps (maps of bounded length distortion –multivalent analogues
of bilipschitz maps) onto S3.

The example arising from the Bing’s double decomposition space leads
to a space (S3/Bd, dλ) that is homeomorphic to S3, although quasisymmet-
rically inequivalent to S

3, but can be mapped onto S
3 by a BLD-map whose

branch set contains a wild Cantor set. This particular example shows a
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sharp contrast between the finite-to-one and injective cases and the power
of Semmes-type metrics.

It follows from the above that there exists a branched cover F : S3 → S3

(discrete open map) so that for no homeomorphism h : S3 → S3 is F ◦ h :
S3 → S3 quasiregular. An important question remains open: whether every
such branch covering map F is topologically conjugate to a quasiregular
map, i.e., there exist homeomorphisms g, h : S3 → S

3 so that g ◦ F ◦ h is
quasiregular [5].

Quasisymmetric parametrization. At a meeting in 2005, Juha Heinonen
suggested that we work on the question of quasisymmetric parametrization
of the double suspension of homology 3-spheres Σ2H3 [6, Question 12]. With
no idea whether the answer would be yes or no, we set out in Fall 2006 to
read Edwards’ explicit construction of a homeomorphism between S5 and a
particular Σ2H3 (work of 1980, arXiv 2006). Our hope was that Edwards’
map could be modified to be quasisymmetric; this task turned out to be more
ambitious than originally expected. On the other hand, there is a subtle
connection between the double suspension problem and the decomposition
theory at the topological level [3, p.103].

As we struggled to make progress in quasisymmetric parametrization,
experimenting with Semmes-type spaces built from classical examples in
decomposition theory was fascinating. With Heinonen [7] we showed that
the natural conditions mentioned earlier for good parametrization are also
insufficient in dimension 4 or higher. More specifically, the decomposition
space R3/Wh associated with the Whitehead continuum admits a Semmes-
type metric that is linearly locally contractible and Ahlfors 3-regular but
(R3/Wh)×Rm is not quasisymmetrically equivalent to R3+m, for any m ≥ 1.

The complement of the Whitehead continuum Wh in S3 is a contractible
non-compact 3-manifold that is not homeomorphic to R

3. The decomposi-
tion space R3/Wh is not R3, but (R3/Wh)×R is homeomorphic to R4. The
nonexistence of the quasisymmetric parametrization is due to the different
roles of the meridians in the homotopy and the homology in the Whitehead
construction and their roles in estimating moduli of surface families.

R3/Wh is only one case of a non-trivial manifold factor of R4. By
a theorem of Edwards and Miller [4], cell-like closed 0-dimensional up-
per semicontinuous decomposition spaces R3/G are manifold factors of R4,
R3/G × R ≈ R4. Decomposition spaces satisfying Edwards and Miller’s
conditions are definable by defining sequences consisting of unions of cubes-
with-handles (handlebodies), see Lambert and Sher (1968) and Sher and
Alford (1968). This class provides a natural environment for testing qua-
sisymmetric parametrization.
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With Pankka [9] we consider a subclass of decomposition spaces R
3/G

that are manifold factors and admit defining sequences (Xk) consisting of
handlebodies of controlled topological complexity. As self-similar spaces
these spaces may be equipped with Semmes-type metrics with controlled
geometry that are linearly locally contractible and Ahlfors 3-regular.

We have noted that the existence of a quasisymmetric parametrization
of R3/G×Rm by R3+m for any m ≥ 0 imposed a necessary constraint on the
geometry (growth of the handlebodies and the scaling factor of the metric) in
terms of the topology (genus, welding and circulation of the handlebodies),
which is needed for the quasi-invariance of the modulus. On the other hand,
a strong self-similar welding structure on the decomposition suffices to guar-
antee the existence of a quasisymmetric parametrization of (R3/G, d) for a
properly chosen Semmes-type metric. Here, the growth defines how fast the
handlebodies propagate; the welding describes an embedding relation be-
tween handlebodies of two consecutive generations; and the circulation, in
some sense, sums up the (unsigned) winding numbers of handlebodies of one
particular generation inside the previous one. Even for this subclass the gap
between the known necessary and the sufficient conditions remains wide.

Semmes spaces combine a new kind of metrization with classical topology
in a subtle and mysterious manner. In the field of quasiconformal analysis,
if one searches, Semmes-type spaces exist everywhere.
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[14] Tukia, P. and Väisälä, J.: Quasisymmetric embeddings of metric
spaces. Ann. Acad. Sci. Fenn. Ser. A I Math. 5 (1980), 97–114.



Paul Yang (Changhua, Republic of China, 1947) obtained his PhD
in mathematics at the University of California, Berkeley in 1973 (advi-
sor: Hung-Hsi Wu). He is Professor at Princeton University. His main
research areas are conformal and CR geometry.





CR Geometry

Paul Yang
∗

1. Introduction

Cauchy–Riemann geometry is concerned with the geometry of a smooth hy-
persurface inherited from the geometry of its ambient space. The study of
CR geometry began with the work of E. Cartan who determined a complete
set of local invariants associated with the geometry of a hypersurface in C2.
In the mid 1970s, there followed the publication of several important papers
which laid the geometric as well as the analytic foundation of CR geometry.
In [6], Chern and Moser extended the work of E. Cartan to general dimen-
sions and at the same time determined a normal form of a hypersurface
in Cn and identified the coefficients with the curvature invariants. In the
remarkable series of papers [7, 8, 9] C. Fefferman laid the ground work for
future development in CR geometry as well as conformal geometry for many
years to come. In [7], he proved the regularity of biholomorphic maps at the
boundary of strictly pseudo-convex domains and thus making the previous
work relevant for the study of geometry of strictly pseudo-convex domains.
In [8], C. Fefferman introduced a complex Monge–Ampère equation:

J [u] = (−1)n+1det

(
u uj̄
ui uij̄

)
= 1 . (1)

There soon followed the solution of this equation by Cheng–Yau ([5])
which provides the existence of a complete Kahler–Einstein metric in the
interior of a spc domain. Around the same time the existence of global
embedding of abstract CR structures was given by [1] Boutet de Monvel
in dimensions greater than three leaving open the question in dimension
three. In 1984 ([9]) Fefferman and Graham gave an outline of the ambient
metric construction for conformal invariants which preceded the idea of ADS-
CFT correspondence by some twenty years, and set the stage for much of
subsequent work in conformal geometry. I had been fascinated by these
developments for many years. In this short note, I discuss some aspects of
the ensuing work.

I wish to thank the editors for the kind invitation to contribute to this
volume.
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2. Approximate solutions of (1) and the Kahler–Eins-
tein metric

In [8], an iterative computational procedure is given to find approximate
solutions of the equation (1) that is accurate to order n+1 near the boundary:
let ψ be any smooth defining function, that is ψ = 0 on ∂Ω and dψ �= 0 on
∂Ω; set

u1 = ψ/J(ψ)1/3,

us = us−1(1 +
1− J [us−1]

(n + 1− s)s), for 2 ≤ s ≤ n+ 1.

This approximate solution gives the correct asymptotics of an actual
solution to this nonlinear partial differential equation. In fact, the proof of [5]
used this approximate solution as the initial step in a continuity argument
to find the actual solutions.

An example of an explicit solution is found for the tube domain given by
x21 + x22 − 1 < 0 where the complex coordinates are z1 = x1 +

√
−1y1, z2 =

x2 +
√
−1y2. The exact solution is given by u = x21 + x22 − 1.

3. Q curvature and the Szegő kernel

Given any defining function u there is an associated contact form θu = dcu =√
−1(∂̄u−∂u). All other contact form giving rise to the same contact struc-

ture are obtainable from this particular one by scaling: θ = e2vθu, in exact
analogy with conformal geometry. In [15] and [14], a connection compatible
with the underlying CR structure is determined and it gives associated cur-
vature invariants. In dimension three, Hirachi [11] determined a fourth order
curvature invariant which we shall call Q-curvature: Q = −ΔbR− 2ImA11

11.

The analytic significance of Q curvature lies in its relation to the Szegő
kernel. Recall the holomorphic functions which belong to L2 have their trace
on the boundary, and when a contact form is given, one may form L2 inner
product on the boundary. The Szegő kernel gives the projection relative
to this L2 to the boundary. In [2] Boutet-de-Monvel and Sjöstrand proved
the expansion of Szegő kernel in terms of the defining function u near the
boundary:

S(z, z) = φ(z)u(z)−2 + ψ(z) log u(z),

where φ, ψ are smooth functions on Ω̄. Hirachi identified ([11]) the value
of ψ at the boundary with the Q-curvature.

Remarkably, the Q curvature behaves in a completely analogous way as
the Q curvature in conformal geometry in dimension four. It is related to
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the following fourth order operator:

Pu = divbP3u, (2)

where P3 is the third order operator used by Lee [13] to characterise pluri-
harmonic functions. The operator P enjoys conformal covariance property
under conformal change of contact form θ′ = e2wθ:

P ′ = e−4wP.

Hirachi had also verified the following transformation rule for Q curvature:

Pw +Q = Q′e4w.

In case when the CR structure in 3D is the boundary of a strictly pseu-
doconvex domain, for the contact form given by θ = dcu where u is a third
order approximate solution of the equation (1), the associated Q curvature
vanishes. According to the transformation rule above, making the confor-
mal change of contact form θ′ = e2wθ where w is pluriharmonic, the new
contact form also has vanishing Q-curvature. As a consequence, there is a
large number of solutions of the equation Q = 0.

4. Embeddability and the CR-Paneitz operator

Recently [3] we had found the following CR-invariant condition for embed-
dability of CR structure in 3D. If the CR-Paneitz operator P is nonnegative,
and the CR Yamabe operator is strictly positive, then the non-zero eigen-
values of Kohn’s operator �b is strictly bounded below by a positive con-
stant. As a consequence of Kohn’s work [12], such structures are realizable
as boundaries of strictly pseudoconvex manifolds. The condition P ≥ 0 is
a subtle condition since the kernel of the operator P contains the plurihar-
monic functions which is often infinite dimensional.

This embedding criteria also has nice consequences for the underlying CR
structure: in a forthcoming article, [4], we formulate a positive mass theorem
for CR structures in 3-D, a rigidity result characterizing the standard CR
structure on the three sphere. We reduce this result to a solution of the �b

equation, which is solvable due to the embeddability of the CR structure.
This is being carried out by P. Yung and H. Hsiao.

This extra condition P ≥ 0 is in a strict sense necessary, since there exists
many CR structures near the standard S3 for which the mass is negative.
As a consequence, the CR Yamabe problem will have a minimizing solution
in case these two sign conditions are satisfied. This completes the previous
work of Gamara [10], who proved existence of solutions via a topological
method.
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Why I became especially interested to work
from F. Spitzer’s paper about the asymptotics
of planar Brownian windings

Marc Yor
∗

1. First of all, I find the idea
of writing a short note about
“the very personal reasons why
’that particular publication’, i.e:
Spitzer’s 1958 paper, got my at-
tention and affected my personal
research” very appealing. In-
deed, I have written, quite in-
dependently from this project,
notes about ten research themas
in Probability [22], which are close
–in spirit– to the aim of the
present volume.

My attention got attracted
to Spitzer’s paper as I was writ-
ing my “Mémoire de DEA” (this
would now be called: Master The-
sis) in the summer of 1972, under
the guidance of J. Azéma.

The title of this Memoir was: “Brownian Motion and Newtonian Po-
tential Theory”1. For this purpose, I read L. Helms’ classical treatise on
Potential Theory [6] as well as about 40 pages I managed to understand
from the “Bible”: Itô–McKean [9]. At least, I thought I understood most
of the results around p. 270 of [9], among which computations about the
distribution (or the asymptotics) of the winding number of planar Brow-
nian motion; in that “famous” p. 270, Itô and McKean present, in their
own way, some of Spitzer’s computations. Thoughts about this page liter-
ally haunted me for years, and indeed this page has been my starting point
for years of investigations connected with planar Brownian windings. See,
e.g., Yor [18, 19], and 20 years later, [20]. Throughout the 80’s, J. Pitman,
J. F. Le Gall, P. Messulam and I kept ploughing this field. See below.

∗deaproba@proba.jussieu.fr.
1 This theme was very much in the air at that time; a few years later, the now well-

known books by Port and Stone, and M. Rao –independently– appeared on this subject.
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2. Spitzer’s paper contains a few gems, among which:

a) A standard Cauchy process (Ct, t ≥ 0) may be constructed by subor-
dination of a Brownian motion γ with the first passage process of another
independent Brownian motion β, namely:

(Ct, t ≥ 0)
(law)
= (γσt, t ≥ 0) , (1)

where, on the right hand side, (γu, u ≥ 0) denotes a real-valued Brownian
motion, independent from another real-valued one (βs, s ≥ 0) say, and

σt = inf{s; βs ≥ t}

(In fact, it may be that this representation goes back to Bochner (1955), but
anyhow (1) plays an important role in Spitzer’s paper).

Moreover, the representation (1) also plays an essential role in the study
of level crossings of a Cauchy process, done in [14].

b) If (Zt, t ≥ 0) denotes a planar (i.e: C-valued) Brownian motion,
starting from Z0 = 1 + i0, then almost surely the path (Zt(ω), t ≥ 0) does
not visit 0. Hence, there exists a continuous determination (θt(ω), t ≥ 0)
of the windings of {(Zu(ω), u ≤ t); t ≥ 0} around 0. One of the gems of
Spitzer’s paper is the following convergence in law result:

2θt
log t

(law)−→
(t→∞)

C1 , (2)

where on the right hand-side C1 denotes a standard Cauchy variable.
In fact, Spitzer [16] computes the characteristic function of θt, and de-

duces (2) from it.

3. I was very impressed by Spitzer’s paper because, apart from the re-
sults (1) and (2) above, that paper was telling the reader that, although
the planar Brownian motion trajectory is extremely complicated, it is pos-
sible to get a hand on the distribution (exact, or asymptotic) of an equally
complicated functional of this trajectory, namely the winding number pro-
cess. As an undergraduate student, I had learnt that the winding number
around a point of a closed continuous curve avoiding that point could be
computed from an integral –which was not a Riemann–Stieltjes integral–
of (dz/z) along that curve. I started wondering whether, in case the curve is
the Brownian one (Zs(ω), s ≤ t), that integral might be related to the Itô in-
tegral

∫ t
0
dZs/Zs. It turned out that this was indeed true (see my derivation

in [19]; at the same time, Ikeda–Manabe [8] discussed this kind of identities
between stochastic line integrals and Itô integrals in a much more general
geometric framework; finally, see also P. A. Meyer [11]). This opened –for
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me, at least– the possibility of using stochastic calculus to recover Spitzer’s
result (2), say. In fact, the stochastic Itô integral(∫ t

0

dZs/Zs, t ≥ 0
)

also allowed to consider quantities such as:∫ t

0

Hs
dZs
Zs

,

for some interesting adapted processes (Hs, s ≥ 0), showing once again that
stochastic integration is more flexible than “ordinary” integration. Other fa-
mous examples are provided by the proofs via Brownian motion and stochas-
tic calculus of the classical inequalities for harmonic functions, as well as the
beautiful derivation by K. Carne [4] of the two main theorems of Nevanlinna
theory about meromorphic functions f , taking advantage of the strict (mar-
tingale) locality of (f(Zt); t ≥ 0). Nowadays, SLE theory (see [1] for an
up to date exposition) is yet another masterful example, pushing forward
vastly B. Davis’ exploitation of the conformal invariance of planar Brownian
motion to recover Picard’s big theorem [5].

Following the above remark about stochastic integrals w.r.t dZs/Zs,
P. Messulam and I [10] realized that Spitzer’s theorem (2) could be refined
as follows: for any pair 0 < r < R <∞ of radii,

2

log t

(∫ t

0

1(|Zs|≤r)dθs ,
∫ t

0

1(|Zs|≥R)dθs
)

(3)

converges in law towards:(∫ σ1

0

1(βs≤0)dγs ,

∫ σ1

0

1(βs>0)dγs

)
(4)

(note that, in (4), r and R have disappeared!), where β and γ are two
independent real valued Brownian motions, and σ1 = inf{t : βt = 1}. Of
course, taking the sum of the two components in (4), one recovers: γσ1 ,
which, by (1), is Cauchy distributed, thus recovering (2).

The above (simple!) remark could even be further exploited by consid-
ering the possibility of extending Spitzer’s theorem (2) to the asymptotic
study of Brownian windings around a finite number of points: z1, . . . , zk.
However, this was not so simple to do!

Nonetheless, it turned out that developing the small and large windings
strategy as in (3), but now for the k windings simultaneously, it was possible
to show that the vector:

2

log t
(θz1t , . . . , θ

zk
t )
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converges in law towards a vector of linked Cauchy variables. This was
obtained jointly with J. Pitman ([13], [15]), along with many other limiting
results. The short story of our joint work is told in [12].

4. To summarize, my interest in Spitzer’s paper was startled by the
fact that tools from stochastic analysis might be well adapted when dealing
with (geometric) quantities related to the planar Brownian trajectory, viz:
winding numbers of planar Brownian motion and were the counterparts of
tools I had learnt in classical analysis.

It was the same feeling which guided me when I became interested in
Cauchy’s principal value:

Ht
def
= lim

ε→0

(
1

π

)∫ t

0

ds

Bs
1|Bs|≥ε (5)

where, this time, (Bs, s ≥ 0) denotes real-valued Brownian motion.
Again, I found the definition (and existence!) of Ht in Problem 72 of

Itô–McKean [9]; see also Yamada’s paper [17], in which the author marvels
about the rich offspring generated by this problem!

In the study of (5), the role of Brownian local times is essential. Using
both stochastic calculus and excursion theory, P. Biane and I ([3]) were able
to obtain the law of Ht, and a number of exact distributions for related
quantities.

There is a striking connection/relationship with Spitzer’s representation
of the Cauchy process (1), namely: if (τt, t ≥ 0) denotes the inverse of the
local time at 0 of B, then

(Hτt , t ≥ 0) is a standard Cauchy process. (6)

However, an essential difference between (1) and (6) is that in (1), the pro-

cess (σt, t ≥ 0)
(law)
= (τt, t ≥ 0)) is independent from the Brownian motion

(γu, u ≥ 0) whereas in (6), the processes (Hu, u ≥ 0) and (τt, t ≥ 0) depend
on each other.

Despite this difference, I could not prevent asking myself whether, given
τt = u, Hτt might be distributed as γu, which would indeed explain (6).

It turned out that this “hope” was much too naive, and indeed com-
pletely wrong, but it motivated the authors in [3] to compute the joint
Fourier–Laplace transform of (Hτt , τt), which then revealed some close con-
nections with Lévy’s stochastic area formula. . . Several authors (Bertoin,
Fitzsimmons, Getoor, etc.) generalized this result by replacing Brownian
motion by a general Lévy process. See, e.g., Bertoin–Caballero [2] for the
most advanced results to date and a number of references.
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5. A fascinating feature of scientific research, and in particular math-
ematical research, is that “the symphony never ends”, to quote (roughly)
D. Williams.

The two topics which I very briefly outlined in Sections 3 and 4 above
follow the rule:

• the asymptotic study of windings to which I participated is of homo-
logical nature, but homotopical studies were also developed by H. Mc-
Kean, T. Lyons, J. Gruet, T. Mountford. . .

• principal values such as (5) were studied for symmetric Lévy processes
by R. Getoor and P. Fitzsimmons, then in complete generality for Lévy
processes by J. Bertoin; they also play a key role in some asymptotic
studies of Brownian motion in random environments [7].

But the symphony echoes further: when, at the end of 1988, I was asked,
by both H. Geman and M. Chesney independently to find the “price of Asian
options”, I realized that the knowledge accumulated about Bessel processes
for the asymptotic study of planar Brownian windings could be used as a
key tool; in other words, the Brownian windings problem and the Asian
options problem are in a kind of duality. See, e.g., the monograph [21], and
especially, paper �7 there. The exploration of this duality keeps me busy to
this very day.

Finally, I apologize in advance for related works (and authors) which
(whom) I have not (unintentionally) mentioned.

References

[1] Alberts, T. and Sheffield, S.: The covariant measure of SLE on the
boundary. Prob. Th. Rel. Fields 149 (2011), 331–371.

[2] Bertoin, J. and Caballero, M. E.: Regularity of the Cauchy principal
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