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[1] GENERAL REMARKS

In the following we shall be concerned mainly with the analysis
. . . . n
of certain operators acting on functions defined on R . These are
"multipliers" or translation invariant operators T 1.e. operators
n

which conmute with the family of translations of R and

are bounded with respect to some NOTMS H H H Hq' Such operators

P

can be represented in two equivalent forms, that is Tf = K* £ or

f} = m.% for every f 6 iR]Rn), where K, the Kernel, is a tem-
pered distribution and m = R is a measurable function. We shall
consider mainly the case p=q, obviously such an operator T
has a bounded extension to Lp(IRn) and we shall design by ]Tlp

or lm[p the norm of the extension. A duality argument shows that
if T is bounded on LP(m®™) then it must also be bounded on
Lp'(Rn), 1/p+1i/p' =1 and, therefore, by interpolatiom, on every
LS(IRn), s between p and p'. We shali consider also the periodic
analogue, that is operators % bounded on some Lp(Tn) and, simi-

larly to the nonperiodic case, we may realize such T as convolution

with an appropiate tempered distribution or as a multiplier, we have:

T bounded from P (et to Lq(Tn), 1 < p,q < => there

. . n .
exists a bounded function m(v), v &6 Z such that if

eZWiy.x 2MiVv.x

f ~ I a

. then Tf ~ ¢ m(v)av

The first problem
that we may ask is to characterize these operators, more concretely:

given the kernel K or the multiplier m, how can we decide the

boundedness properties of the associated operator T7?.
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We list general results which throw some light on this problem.

Theorem 1. Tf = K % f is a multiplier of LZ(EF) if and only if

~

o
K € L , furthermore ]T]Z = HK[[W.

1
Theorem 2. T is a multiplier of L (IRn) if and only if there exists
v, a finite Borel measure, such that Tf =y %f and ]T[l = Total va
riation of .

Theorem 3. Given m 6 LP(mr"), m, 6 LY(®r®), 1/p + 1/q = 1, then

. . . . r n 2p 2p
my &m, is a multiplier of L (IR") for every r, 3p-2 <r < 7-p

n+m

Theorem 4. If w( , ) is a Fourier multiplier of LP(R ) then for

almost every &, m(§&,——) 1is a multiplier of LP(Rm) and

m& =1, < Inl,

Theorem 5.
(a) Let m(§) be a bounded continuous function on R s.t.
A ~ . P n o .
TE(E) = m(§) f£(&) is bounded on L"(R "), then T defined

is a bounded operator and [f] < iTi

by {m(\))}\)ezn p = P

(b) Suppose that for every € > o the operator TE given by

{m(ev)} 0 is bounded on Lp(Tn) and Sup |T

1
VEZ £> o E'p

L N ° n
then the multiplier Tf = m.f defined on ‘f (R”) has a

bounded extension to LP and satisfies fT| < sup |T
€>o0

€]p'
Proofs ol 1,2 and 5 can be found in [1], [2] and [3], theo-

rem 3 is an exercise in interpolation [4}; here we present the proof

of de Leew's theorem 4 given by M. Jodeit [5].
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Proof of Theorem 4.

Suppose first themt m(§,n) 1is continuous, and take

£ ¢ Y®Y),

1081
m
£.8, ¢ TE™

Then H]Rn LR“‘ m(&,n) %1(5) gz(n) g,(8) g,(n) dE dn| <

<lml, lell, Meylly leyll, Heylly  1/e+1/a -1

P P

Writing the first part of this inequality in the form
”]R“ (LRm n(E,m £, () g, (mdn) F(©) & (€)ag

we may conclude that

M(E) = J n m(&E,n) %z(ﬂ) éz(n)dn is a multiplier of L™,
R

with norm < [l U6yl gyl -

Since every multiplier M satisfies

HM”OO = IMIZ =< Mp, 1 < p <o, we get

H]an(i,n) B, gy (mdn| < ml e, 0l eyl

that is, |o(e,—)| < [=f .

To remove the restriction about the continuity of m we proceed

as follows: Let £ 6 R" so that (£,n) is a Lebesgue point of mn
for almost every n € r™ and write mg(g,n) = m * ¢E(g,n).

Where ¢_ = %;(n+m) XQ( % s 2~), and Q 1is the unit cube in
Rn+m centered at the origen.

By the preceeding argument we get
Hmm moe,m) EBy(m) Ey(man| < mo| 5,01, eyl <
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< nl gl eyl

P q

An application of the dominated convergence theorem vyields,

H]Rm m(E,m T gy emdn| < Inl leyll eyl

for every, f. 6 Lp(Rm), g, 6 Lq(Rm).

2 g.e.d.

The important information contained in these theorems is, never-
theless, very unsatisfactory for p differentfrom 1 or 2. And
for these two cases is very hard, in general, to decide when a boun-
ded function is the Fourier transform of a finite measure or when a
tempered distribution has Fourier transform in the space L7, Since
the Fourier transform of an Ll—function is continuous, at least we
have a necessary condition for an Ll—multiplier m(£): m has to be
continuous. Nevertheless the Hilbert transform in Rl given by
n(E) = 1 sig(§) is bounded on Lp(E), 1 < p < o, and therefore,
our necessary condition is only valid for Ll. However this example
leads us to the next stage of the theory which contains the important
contributions of Marcinkiewicz, Besicovitch, Calderdn-Zygmund, Paley-

Littlewood, Mihlin, Hormander, etc. and which we shall englobe under

the name of Calderdn-Zygmund theory.
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[II] The Calderdn-Zygmund Theory.

This theory has been discussed at length in many places (see
[7], [6], [2],... for example). Here we just mention some important
features of it, as a motivation and reference for the further develop

ments of section [III].

Theorem 6. Suppose that K 1is a tempered distribution which coinci-
des with a Cl—function outside the origen verifying lK(E)[ < B,

vk | < /x|

. Then the operator Tf(x) = p.v. JK(x—y) f(y)dy
has a bounded extension to LP(Rn), 1 < p < ®©, and it is of

weak type (l,1).

(* The second condition |V K(x)| < B/}x]n+l can be replaced by the
more general J lK(x—y) - K(x)| dx < B, [y[ > 0).
lx|>2]y]

Theorem 7. Suppose that m 6 L”@®") satisfies the following estima-
tes

0% m(g)| < plg| ol

for every o such that o] < 8(n) =[

[S1i=]

] + 1. Then m dis a mul-

tiplier for P @M, 1 < p < o,

Important multipliers which may be considered as examples of thgv

se two theorems are given by homogeneous kernels:

K(x) = 1(x) , where @ 1is homogeneous of degree zero, has mean value

n
x|
zero on the unit sphere and is smooth outside the origen, like the

Riesz's transform defined by Rj(x): on n

n+1
x|
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Theorem 8. Let K be a tempered distribution on Rn, with compact

support, equal to .a locally iﬁtegrable function away from zero and

~

such that K is a function. Assume that

_ nf
. N 2
(1) R < (1 + g , for £ 6 R®
(ii) |K(x) - K(x-y)|dx < B, for all y 6 R" (|y| < 1).
1-6
[x[>2]y|
Then the operator Tf = K =*f has a bounded extension to Lp(Rn),

1 < p <®® and it is of weak type (1,1).

An example of a multiplier which falls under the scope of this
theorem but is not an application of the preceeding is the following
-n i!x]_r . n

e 5

one: f >~ K=xf, where K(x) = |x| in R, and r >0.

In the proofs of these results, plays an important role the
socalled Hardy-Littlewood maximal function, which is defined on

locally integrable functions by the formula:

Mf(x) = sup ~i-J | £(y)]dy, where the supremum is
x6Q |af ‘o

taken over all the cubes which contain the point x. This positive

operator which is bounded on Lp(Rn), p > 1, and satisfies a weak ty

pe (l,1) inequality, is used to control the more complicated opera

tors considered in the above theorems, together with an orthogonality
argument. Perhaps the next theorem that we list contains the more

clear expression of the orthogonality that we have just mentioned.

Consider in R"™ the family of dyadic rectangles A (in Rl

A is given by the family of intervals (Zk, Zk_l), Q—2k+l, —Zk),

-@ < k < 4o, the dyadic rectangles of R" are then obtained as pro-

ducts of these intervals). Consider for each pe6A the operator
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PN ~
Spf(g) = XD(E).f(E), where Xp stands for the characteristic func
. 2. 12
tion of the rectangle P, and Sf(x) = (7} |Spf(x){ ) , we ha-
pEN
ve.
Theorem 9. For each p, 1 < p < o there exist constants 0 < A ,

B < o so that A £}l < sell < _|l£]l_.
P p P - P — P P

The operators which fall wunder the scope of these theorems (except
perhaps for theorem 8) have, basically, kernels with singularities near
D9 or «©. There are however other operators with .more complicated
sets of singularities which may be consider as "composition" of ope-
ratorsof that class, like the double Hilbert transform:

fen oo f(x- -t)
Hf(x,y) = p.Vv { J ———v§é4%4w~ ds dt
o .

o

The following thecrem takes care of this situation.

Theorem 10. Let m be a bounded function in Rn such that:

(a) for each 0'< k < n

8k m
(%) sup J l Xm"'ka < B < o
Xk+l""’xn o) axl sz...axk
. . k ) k
as © ranges over dyadic rectangles of R (we consider R em-
bedded in R" in the following way (Xl,...,xk,O,...O)).

(b) The condition analogous to (*) is valid for every permutation
of the variables KysKgseeosX

n’

Then m is a multiplier of LP(RP), 1 < < oo,
P P
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One can find proofs and excellent discussions of these theorems
in [6], [2], [7]. Here we do not resist the temptation of presen-
ting a proof of theorem 6 under the (irrelevant) hypothesis

1 2

KeL + L, in order to illustrate such an important paradigm as

the Calderdon-Zygmund decomposition.

Proof of theorem 6. T 1s bounded on LZ(RD) because e [ Lw(Rn).

We will show that T is of weak type (1,1) and the theorem will

follow from the Marcinkiewicz's interpolation theorem.

. 1 .
Given f 6 L (Rn) and o > 0, we can find a closed set F

and an open set  satisfying:

FN Q = 0, R = FuU Q, Q= 1J Qj’ where Qj's are
3
disjoint cubes such that,
1 n
o < 9 [£(y)ldy < 27 a
la [ 75
3
[£(x)] < a, a.e. in F.
Then we decompose the function f as follows: f = g+b.
f(x) if x 6 F
g(x) =-
1
S [ f(y)dy, if x € Q.
la. [ 7% ’
]
0 if x 6 F
b(x) =
1 .
f(x) - — J f(y)dy, if X 6 Q.
la. ] Yo, ’
] 3
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(i) g 6 LZ(RR), because J g(x)2 dx = [ g(x)zdx + z I g(x)zdx <

¥ i ‘Q.
J
1

in

o [ lg(x)dx + §
. .

j ol

J F0) do’ o, <
Q J
Ny

l£(x)ldx + § 227 o? Q.| < o {J [£(x) dx +
] ’ F

IA
Q
3]

+ 220y f [f(x)]dx} < 22m uj [ £(x)]dx
i ‘q, R"
’ £l
£
Therefore [{x : |re(x)| > %}| 5722n B2 3 1
(ii) Let b(x) = b)) xo (), then Tb(x) = ) T bj<x%
j i
with Q% =\ Q? (Q* is the double of Q) and F* = R" - o,
we have,
(1) F*cC F, N+ Q  and [ax] < 2™ ||

(2) TIf x ¢ Q?, then |X—yj| > ZIy—yj!, for every vy 6 Qj where
yj is the center of Qj'
Then Tb.(x) = J K(x-y) b.(y)dy = { (K(x-y) -
1 Q. J Q.
J J
- K(x-y.)) b. d
(x yJ) J(Y) y

and
f [Tb(x)|ax < ¥ { { [K(x-y) - K(x-y.)| |b(y)|dy dax
F* 3 x¢Q* v6Q. J
3 j
< Z J |b(Y>{dy {( . IK(X—y) - K(x—y.)[dx} <
3 Q. /x¢q7 hi
i
<3 3 | Ivolay <2l
i Q.
! el ]
Therefore |{x : |Tb(x)| > %~}[ <|ax| + 4B - 1 < (2+4B) . 1
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Proof of theorem 7.

400
By choosing an adequate partition of unity 1= 3 ¢(2k€),

—00

¥¢ # 0, where ¢ 1s a smooth function with support in the annulus

% < ]EI < 2 we decompose the multiplier m = ij, where
mj(E) = ¢(ij£).m(£). It is easy to see, using the hypothesis of the
theorem, that each piece is a nicét—multiplier, that is:
Kj = ﬁj [ Ll(mn) and HKjill < C.B, for every j, where C is a
universal constant. Next we need an "orthogonality" argument in or-
der to put together those estimates and, in this case, we may use
the previous theorem and observe that

+N

KN(X) = ) Kj(x) satisfies:
-N

¥ (x-y) - ®M(x)|dx < cB

[=[>2]y]
uniformly on N and [yl # o.
(a) We have {IKj(x)|dx < CB uniformly on j:
J ]Kj(x)fdx = J ) ]Kj(x)jdx + 3 J {Kj(x)|dx _
[x] <277 O T2 x| 2%
and observe that
AT p(s=3)n/2 } J Ik | x| V2
[x[~2"71 [x]~2%7]
Cete e 1/2
] ~2%7 J
(s-)[3 -1al] s - lab
2
< c 2 [ HDOLij2 < CB 2 2 s for every,

a, 0 < la] < @(n) = [5] + 1.
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(b) Want to estimate I !KN(x—y) - KN(x)ldx. We shall
lx[>2]y]
consider for each j the integral J [K.(x~y) - Kj(x)|dx
Ix[>2]y]
and observe that "roughly speaking"” we may consider Kj "supported"
on [ x] < Z‘j. Therefore if Zjly] > 1 one should not expect
cancellations in Kj(x-y) - Kj(x) and we must evaluate each term

separately:

. (5 n - e(n))
Claim k. Goldx < ¢ (29 |y])
Ix|>2]y]

The proof is contained in the computations of part (a).

Assume now that 2J|y] < 1. Then one expect that the integral of
the difference [Kj(x—y) - Kj(x)l should be "smaller" than the

integral of each term separately. We have

IKJ. Geoy) = K G <

3 s oo 1y ol
- 15;§1<e[n] ar [P G0l Iy

0% Gemey) fae [y]907]

1
S
 Ja=8[a] * Jo

let us consider a typical term ]DaKj(x)I 1yl'ul, fa] < 6[n]
we have:

: o o af.,s n/2 o 2 V2

@ e lax < 10 )2 [ R o0 e e

1+
27yl 2]x]>2%] y|
-1n
. iz . G n/2
<on Pylel ooy )iz prilel T2 o 23151 (2°15127)

which is a good estimate in the case 2° |y| 27 <1 ... [x| < 273
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(ii) On the other hand,

) .0 .
D% (x) = 1 [ e E DB w e)yae, (g < ofa
3 (i x)f Jgn J oz ol
which implies
Iv1® R R O N 0% oy | 2ax | 112
[x]~2%]y] [x]~25]y]

<c.B |y]® (2Sfy[)n/2 (2S{y[)‘9[n]f 2j()a!—8fn])+%

—6[h]-+2
< C.B [IYJ Zj}’a‘ . [ZSfy[Zj] ’

which takescare of the cases 28 [y] 24 > 1.

The remainder can be treated in the same way, therefore me have from

(a) and (b):

IKj(x~y) - Kj(x)l < C.B. min {zjly" [Zj!y”—efn]+ 2}
lx[>2]y]

which implies for each N:

fKN(x—y) - KN(x)Idx < E.B uniformly
Ix]>2]y]

We shall be concerned now with certain developments connected with
the so called weighted inequalities. That is, we study the boundedness
Properties of singular integral and maximal operators with respect to
absolutely continuous measures dy = w(x)dx ‘ (dx = Lebesgue's measure
in Rn). Roughly speaking, the history of this subjecf begins with the
1960 paper of Helson and Szegd [8] where they proved that the Hilbert

transform is
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TRANSLATION INVARTIAWNT OPERATORS

f bounded on Lz(du) iff dp = wdx and w = exp(u + Hv), where
i
§1 u 6 L and HVHOO < /2. Hardy's inequality
o X P ]-/P o
—r-1 —r-1 1
J U f(y)dy] x T dx <5 J (v £(ynP 77" dy /e
o Lo o

may also be considered as a precedent of the modern theory. Then we have

[91 where the following theorem is proved.

Theorem 11. There exists a constant c Lo 0 < c. < o such that

fRn [£%(x) | T wix)dx < c_ J G [T wr () ax

R
for locally integrable functiéns f, ,.and r >1. Where * denotes
the Hardy-Littlewood maximal function. Furthermore,
C
for every a >0, w(x)dx < = [f(x)] w* (x)dx
= -

{x:f*(x)>a}

Proof.

Since f — f* is bounded from Lw(w*(x)dx) to
Lw(w(x)dx) it is enough to prove the weak-type estimate part of the

theorem. To simplify the geometry we shall consider only dyadic cu-

bes in R". Given a >0, {f*(x) > a} = L]Qi, where the Qi's

are disjoint dyadic cubes such that

For «x G‘Qi we have

J f(x)w*(x)dx > 1 J ) J f > a J w
Q leil ‘o, ‘o Q;
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therefore

j E(x) w*(x)dx > o 5 { w = o J wx)dx

ooy {f*(x)>a}l
qg.e.d.

Definition. w 6 Ap if there exists a constant ¢ such that
wr{x) < ¢ w(x).
The previous theorem can be rephrased as follows: A1 o= Maximal
function is weak type (l1,1) with respect to w(x)dx, and bounded
on each Lp(w dx), p > 1.
This observation has a converse: if f* 1is weak type (1,1) with

respect to Wdx then W & Al.

Proof.

Let X 6 Q1 C‘QZ where Ql’ Q2 are cubes and x 1is a Lebes

gue's point of w, with f = XQ we have
1
fx(z) > |Ql| if 6
SN : © 8%
2

therefore

that is
1 I w <o —L f N
lo,] o, lo,| o,
which implies (making Ql =  x)
B w < ¢ w(x), that is wx(x) < ¢ w(x)
IQZI QZ g.e.d.
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Remark. Given a locally integrable w and s, 0 < s < 1, then

g = (w*)® gatisfies A1 with bounds independent of w.

The next step was taken in [10] (weshall follow [11] very close

1y).

Definition. w & A , 1 < p < o if there exists ¢ < o guch that

. <
1
AR R b
! sup — w — w

f Q [a] g lQ] ‘q '

| A
e}

Theorem 2. f —— f% is bounded on Lp(w dx) 1if and only if

i w 6 A .
p
Proof.
(A) Assume that the max.function is bounded on Lp(w dx) .
Given a dyadic cube Q and a locally integrable function £, we
have
: - 1
f*(x) > f(y)dy XQ(X)
el ‘q

therefore,

P
~l—'f f( J w < c { |f(x)1'p w(x)dx
2] ‘q Q

(B) Assume now that ® satisfies Ap. Given a locally integra-

ble function f we have (1/p + 1/g = 1),
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/
R N LA [ e
R R
{—JQ HIEN
that is
< - L

l/p
fx(x) < ¢ ]Mw fp(x)l P

1

where M g(x) = sup
w x 6 Q j w
Q

The theorem is an inmediate consequence of the following lemmas:

J lg(x)| w(x)dx
Q

Lemma 1. Assume that for each cube Q we have u(Q*) < c u(Q)
where C is a universal constant. Then f —— Muf is bounded on

LP(a u), I < p < =,

(The proof is the same as in the case 4 = Lebesgue measure). Obser-
ve that lemma 1l added to the previous discussion yields the following
partial result: w 6 Ap = f — f%* bounded on L' (w dx) for

each r > p).

Lemma 2. If w 6 Ap then,

(a) w 6 A, that is, there exists § > 0 so that if E ¢ Q (E

measurable, Q cube) me have

El]S
u(E) !
— s = wdx
w(Q) - IQI H
(b) There exists € > 0 such that w 6 A .
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This lemma is itselfl a consequence of the following.

Lemma 3. Given w6 A there exists ¢ > 0 and a finite constant
.cmma__o S I

C such that

1
[ 146
e < [¥]
A ! L) b < C A J{ W
Lol o ] lal ‘o
(reversed Holder's inequality).
Proof: Lemma 3 =—> Lemma 2.
( [ 1+ 1/148 14
(a) We have W(E) = J| w < [—l J Wl*o |E 6F1+8 |Q[1/1+6£
E {1al ‘o
/ X
¢ ‘iT' ( wih‘!‘5’1+é EQ|1/1+6, that is
ol o
ITE R A L1 A
u(a)y - lQ[
L

(b) Consider vo=ow P7 then w & Ap implies Vv 6 Aq where

1/p + 1/q = 1. Lemma 3 applied to v give us,
1
| ( g 7%
!~lw E I d 1 <« L [ v(x)dx
Hal e ‘ 1l ‘g
which means that w & A with e = {(p-1) S because
' o ' p-€ - 1+6 °
148 p-1 L e
i 4 1 ! 4 - R “‘“":" -
B O I AR
ap ot Ta) g | lal Ja
{ 1 J V1+5’1+ P
s‘l‘)! Q !

In order to prove Lemma 3 let us make-first the following obser

vation: "Given w in Ap there exists a constant 0 < c < 1 such
1
that if A €-Q and fal <5 [Q] then p(A) < ¢ p(Q), where
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4 = w dx and Q denotes a cube'.

Proof
X" (x) o] L L . k
Given x 6 ( we have x) > > et us take
0-a TS o 72
1 > p, we have,
1, P1 ([, = Py _
(E) f w < J{XQ—A (x)] w(x)dx < Cp J XQ_A(X) w(x)dx =
Q L -qQ
= C; w(Q-4)
p 1 Pl _
That is, w(Q-a) > (1) ' cpi b i.e. w) < [1 - D Cpi]u(Q).

. . . . n
Proof of Lemma 3. Due to the invariance under dilations of R or

multiplication of ®w by a real number, we may assume that |Q| =1
+ . -
and J w = 1. For each Ak = 2(n D).k we apply the Calderdn-Zyg
q :
mund decomposition to obtain a family {Q?} of dyadic subcubes of

Q so that:

. +1)k
(i) 20FDE Lo< o (ntl)kdn for each QF
i
%
.. (n+1)k c k
w < 2 = -
(ii) (x) < on Dk Q kj Qi
i
o . ) K+l k
It is easy to see that each cube in Qj is a subcube of some cube Q.
i

and that QA D, .| < L |Q¥]  for each cube of the k i

5 K+l 5 i ube o e -generation,

. . L 1
which implies: 1Dk{\ Dk+1[ <5 ‘Dk[.
By the previous observation we have J w < ¢ [ w < ck J &
Pk Pr-1 Po
Therefore
1+6 1+6 T
J w - J Wit o3 EJ  w(xydx| 2 (FD (1)
-D = - ’
Q Q o k=0 Dk Dk—l
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< 58 [ b ] oK , (n+1) (et 1) J N
Q—DO k=0 DO

< 2<3+ E ck 2(n+1)(k+1)6

- k=0

which converges for some & >0.

We have finished the proof of Lemma 3 and Theorem 12.

Let T be a Calderdn-Zygmund operator Tf = K% f, Hﬁ]lm < B,
9> | < Blx] ™! 1like in Theorem 6.
Theorem 13. For every w 6 Ap, 1 < p < =, the operator T is

bounded on Lp(w dx) .

Proof.
(A) The Theorem follows from the following statements:
(a) For every s >1 there exists C(s,T) < » guch that

ref o< e, [(9)% o] e

(b) Tf w6 A, and £ 6 \J LP®") then
p>1

J LGP w0 dx < c(pLw) J . !f#(x)|p w(x)dx
R R '

where
§#<x) = sup I lf(y) - f_|dy
X6 Q | I Q Q

We have:

LRanf(x>lp w(x)dx < c(p,w) f et eo P weoax <
R
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< c(p,w) C(s,T) J o l(fs)*(x)lr"/S w(x)dx
) R

Since we Ap we know that w 6 for some € >0. Taking

Ap—E

s > 1 so that p-€ < p/s we have

J I Tf(x) |Pw(x)dx < c¢(p,w) c(s,T) f ) [P w(x)dx
r" r"

(B) Part (a) is a standard exercise. Given TF 6 \j Lp(Rn)

p<e
we shall prove the following inequality:
* i
[11  w{r (x) >a, F(x) <vyo} g
S * o
< ¢ Yy ui{r*(x) > — 1, for every Y, > 0
— 2n+1
where C is a finite constant and u = w dx satisfies:

pc o,  wm®a@ < c [lel/]al)?
From [1] we may get the theorem in the following way,

[ n|F*(x)|p w(x)dx = p f ap—l p {F%(x) >a}lda =
R o

n+1 n+1

cf oy (e > 2™ o, PP < y2"ladda +
o

]

n+1

<+

c J otp-I u {F#(x) > v 2 alda <
0

In

0
c yp_l J ap-lu{x : F#(x) > alda +
o
fee]
+ ¢ Yﬁ [ ap?l u{F#(x) > a}QQk and we choosé
o

Y in such a way that c yé < %.
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We shall present now a proof of inequality [l].

Let us consider the family {Qj} of dyadic cubes corresponding to

the Calderdn-Zygmund decomposition

a n o a
—— < F < 2 = =
2n+1 Qj 2n+l 2
and let us also consider the family {Qi} corresponding to
o < F (1) 2" a. We know thath each Qsl) is a subcube of some
Qy

Qj‘ It is enough to prove, for each j, the following inequality:
{ R #, §
uerj.F(x)>a,F(x)<¥a}5cYu(Qj)

Using condition A_ it is enough to prove

[tx 6 q; : F*G0) > o, F'G0) < vel < e v oy

To see it, let.us take Q € {Qj}, {QU} (- {Qt} s.t. QUC; Q,

we have two cases:

(i) 1If —}—J |[F-7 | > vao, then {x 6Q; F*(x) >0L,F#(x)<ya}
el Jq Q ,

is empty and there is nothing -to be proved.

(ii) Otherwise we have,

5 L - 5 L N -
T2 T IQ I7-rol 2 T4 E [QUIF(Y) Foldy
1 o ¢ 1%
“Tor bl TR Tl 2 2 Loy

.which implies the desired estimate since

VQUD{xGQ:F*(x)>a}
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We shall consider certain applications of the theory which follow

from the following observation.

Lemma. For every r > 1 and locally integrable function g the
. r.*}1/r . . s .

function Ar(g) = 1(g) satisfies condition Al with bounds

independent of g. (Here & denotes the dyadic Hardy-Littlewood

maximal function).

Proof.
Let Q be a dyadic cube containing the point x and let us de-
note by h — n the maximal function "restricted" to dyadic sub-

cubes of Q. Then the mapping £ — f+ is bounded from Ll(Q) to

LP(Q) 0 <p < 1.

We have a decomposition Q = EW (¢ - E) where
*
(eH¥ /e = HY/E
r %
(g7) / Q-E = constant.

Therefore,

1 J> | ¢ r,% 1/ 1 I T+ 1/x
g ) (y)] dy = —— [ g™ () dy +
lel o || JE |
% 1/
+ ~—Lf LD ol ey <
Q] Jo-k
1/x
= by _—I_J g (v) dy « it DT |F
el /o y6Q-E
But observe that: sup (gr)*(y) < inf ‘(gr)*(z)J
y 6 Q-E z6 E
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Thus

1 * 1 = 1 r 1

—{ D T ay < ¢ Hngdl“f_

lal Q lal Q

~ * 1
<o 1ehHt @t
And since this is true for every Q 3 x, property A1 follows.
q.e.d.

Let ij = Kj * £ be a family of singular integrals with uniform
bounds id.e. ;ﬁj(g)[ < c, [VKj(x)I < c 1x|_n_1 for every j.

Theorem 14. The operator {fj} —r {Tj fj} has a bounded exten

sion to Lp(lr), 1 < p < o 1 < r < o,

Proof. We have to show that

Pz foge IDYEIL < e ez DY

P p

for every {fj}.

A duality argument shows that if T is bounded on LP(z") then it
must also be bounded on Lq(ls), 1 + % =1, % + é = 1. Therefo
re it is enough to prove the theorem in the case p > r.
The case p=r follows from the Calderdn-Zygmund theorem. If p>r
we have,
. r/p
U n[—z]ij. (x)[r]p/r dx} =
R J
r r 1
= sup ZlT.f. (x)| g(x)dx, where — + — = 1,
rY 3] ' p q
=1
lell,
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and
r r
% LRn lijj(x)] g(x)dx gjz LRH |ijj(x)[ Asg(x)dx <
= Crs Jnflfj(x)lr A g(x)dx <
R
p/r r/p 1/
< CLg {[n X[f.(x)[r dx} H A g(x)|9 ax
s R ] Rn s
Choosing s > 1 so that g > 1 we have
1/q 1/q
]J n!AS g(X)‘q dxl = ’[ nl(gs)* (X)[q/s dx
R R
<eg lelly =<
q.e.d.
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[III] Beyond The Calderdn-Zygmund Theory.

Our preéent knowledge of multipliers whose Kernels have more
complicated sets of singularities than the Calderdén-Zygmund's Kernels
is rather rudimentary. Here we shall discuss two examples related
with the spherical summation of multiple Fourier series one and with

properties of trigonometric series with gaps the other.

[1] The Spherical Summation Multipliers.

In this section we are concerned with the family of multipliers

n

T A > 0, defined on functions of R by the formula

A’
' A

PN . a-1g]H" ie gl <1

T, = m ()F(@E), where m (£) = {

0 otherwise

If A 1is bigger than a critical exponent depending of the dimension

n~1

i > 5 ), then the Kernel of TX is integrable and therefore TA
is bounded on each LP@®™). The problem arises when we consider
A< n;l We can summarize the state of affairs in the following

known facts:

1°) Tk is unbounded outside the range
- . 2n _2n N
PO = remn P S qoioa - PO
2°) TO is never bounded on Lp(Rn) except for the obvious ca

ses n=l or p=2.

3%) In R™, T is bounded on LP(RZ) whenever X >0 and

p(X) < p < p'"(M).
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4°) Ty, is bounded on LP@®R"™) provided that p(X) < p < p'(})

n-1
and A > 5EEAy

To prove the first observation it is enough to compute the ker-
nel of TA and this is done by using Bessel's functions (see Stein

and Weiss {1], Theorem 4.15).

A ~5-A
K, (x) = @i, (x) = m " T(l+x) |x] J (2 m|x|)
A A n
=+ A
2
P pD . . 2n
Therefore KX 6 LY (R) if and only if p > TEiioy
Let ¢ be a smooth function with support in [EI < 2 and such
that  ¢(£) = 1  for [&] <1, rthen T, = K,, which implies
that T, cannot be bounded outside p(A) < p < p'(N).
Theorem 15. T  is only bounded on LZORn) (n > 1).

It is enough to show that TO is not bounded on LP(RZ) (p #2),
because LP-boundedness of TO on R" implies boundedness on Rn—l

by Theorem 4.

(The Proof. will follows by contradiction with the following chain

of lemmas).

Assume that HTf[[p <c Hf!lp where p>2. From this we have,
Lemma 1. Let {vj} be a sequence of unit vectors in Rz; and let
Hj be the half-plane {x 6 Rz x.vj > 0}. Define a sequence of

operators {Tj} on LPORZ) by setting

AN N
ij(E) = X, (§)£(£). Then for any sequence of functions {fj}

J

H

the following inequality holds:
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2.1/2 2.1/2
CE. C f.
G 1 DY < el e DA
J 3 -
Proof. It is enough to show the inequality when {fj}
are smooth function with compact support.
N . r
Let Tj f(E) = X r(i) £(&) where Dj is the disc of radius
D.
J
¥y and center rv., then T.f(x) = 1lim Tt f(x).
j j row  J
Therefore:
2.1/2 . . 2.1/2
I Ty D2, < 1imoine TG [2fe 152
3 P r > j JKJ p

So it is enough to prove that:

b1 ond E N ORI I e 152

with € independent of r.

Next we observe that it is enough to show [l] when r=1, and

that

1 ivj.x —ivj.y
T.f. = T f.
p J(X) e (e J(y))

So that the left-hand side of [1] is nothing but

iv, .

y
I Irce 77 e omH2)
J

P
But since T 1is bounded on Lp(Rn), then T is bounded in Lp(ZZ);

that is

iv..

y ;
I 1T e 37 e DR <o g e H
j i

P
Q.e.d.
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Suppose that {Rv} is a sequence of rectangles whose directions

lie in the set {Vj} and satisfying the following property:

. 1
w,  Ix,A U Rl < g IRy
H<y

then, under the hypothesis of the previous lemma, we have:

Lemma 2. ||} Xvatp/Z < c hJvaz/p, where C is a constant de-
pending only upon C (¢ < 2c4).

. 1
Proof. Consider Ev = R, - \J RU’ then IEv1 5 le[’ by hypo-

[ERY
thesis, which implies that

1

ol 25 IR

2

on Ei where IE

EE 1/
Xg, ) > 15

is a union of straight line segments (see the figure). If we denote
n!
v

.
v
the "Hilbert transform" in the perpendicular direction, we ob

tain,

1

4 3 2 1 1
X, (x) < (100) " |HI {XJ .H. {X; .H. (x, .H. X }
Rv i, RV 1v[ RV i, Rv 1, Evﬂ\

Therefore we can invoque lemma ! to conclude the proof.

" Lemma- 3. For each integer N > 1 there exists a family of rectangles

‘{R.}

ili=1, 0w with the following properties:
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N
(1°)y  uwi{\J R.} < 1log N
=1
(2°) vj,. u {R;f\ \Vj Ri} < %’ U {Ri}, where R? is a rec

k#j
tangle which contanis Rj, and such that u(R?) = ZM(Rj)

for each j. Furthermore U{\J R?} = N.

Proof.
(a) We start with a triangle AO of base with length equal to 1

and height h_=1, then we "Sprout" AO to height h, =2 to get

1
the tree P, composed of two triangles Ai, A? (as in the figu-
re). We have the estimate
1 .
plp b <o} + 4 0 zula ) = ZU{AQ}
b=
b=t
o
(b) By iteration of the process we can get a tree PN composed
of ZN triangles of height hN =N and base Z_N. Furthermore
uip b <pf{a } {1 + 2 (l + L Ly oz log N;
N® — o 2 3 N
(c) Now for every triangle T on the tree P we consider the

k

region T and the rectangles Rk and ﬁk (see the figure),
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And the point is that the regions
T corresponding to the different
triangles of the tree are pairwise

disjoints.

Proof of the theorem.

Assuming that T is a bounded multiplier on LP(RZ), p > 2,
we have lemmas 1, and 2 for each family of direccions. In particular

for the families {R;} of lemma 3.

Now,
N o= p{y R;} <2 J {z XR* (x)]dx <
3
1 x,2
< ¢ ouipd /a u{URj} /v , 1/q + 2/p = 1
Therefore.
N < C(log N)l/q Nz/p, (with a universal constant C)
which it is false.
We shall discuss now the case of TX’ A > 0 on LP(RZ).
2 A
The multiplier mx(i) = (1 - |g] )+ seems very complicated

and one of our first tasks is to find Jdut which are the basic blocks
of the Calderdn-Zygmund theory corresponding to mk. Since my is

radial and basically constant on thin annulae it seems reasonable
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to decompose

m (&) = I G- el e deD
o

where ¢k’ k > 1, 1is a smooth function supported in the interval
[1—2*k, I;Z—k_%] such that lDa¢kl < Cu Zka, wCa independent of
k, and § ¢, =1 on /2, 1], ¢ =1- 1 4.
kel k [ o k=1 k
2. A -kA
Then (1 - elDy e e = 270 ¢ e

and the problem is reduced to get good estimates for the growth, as
k - <, of the norm of the multipliers associated to the functions

¢k(|€{). For example, the result for TA’ A > o, will follows ve-

ry easily i1if one can show that the operador

7 A ‘
T (&) = ¢k(lgl) £(&) satisfies the
inequality

L/4

r*ell, < ¢ &% Qe wroe Fwh

because then interpolation with the obvious estimate

/2

k k
Nroell, <2 hell,
k(1-t) |
yields, |1%¢]] < c k% 2 2 €]
p - P
if Lot and 4 <p<—" then l-t < 2\ - and, theref
= i P Ty . efore,
- k(l-t)
. ~-kA 1/4 2
the series Z 2 k 2 converges, proving the theo-

rem.
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Statement and Proofs of some Results

(a) Suppose that ¢ : R — r R is a smooth function supported
in [~l, +1] and consider the family of Fourier multipliers Saf

where 6 >0 is small, defined by the formula

P -1 AL, .
Sdf(i) = ¢ (6 (Jgl-1)) . £(&) for rapidly decreasing
smooth functions f.
Theorem 16. There exists a constant C, independent of &, such that
1/4
Iseell, < ¢ (os /0" gl
2
for every £ e’f(m ).
(b) Given real numbers N > 1 and a > 0, consider the family

. 2 . . . . .
B of rectangles in R with dimensions a and Na but with arbitra
ry direction. For a locally integrable function £ let us define the

maximal function

Mf(x) = sup

[E(x) [du(x)
Xx 6R 6B u(R) JR

where | denotes Lebesgue measure in the plane.

Theorem 17. There exists a constant C, independent of a and N,

such that

2

ME < C (log ZN)l/ £ , for every £ 6 LZ(RZ)
2 2

(¢) Given two positive real numbers N1 and NZ let us consider

the family of intervals in the y-axis, {Ij}—w<jg¢w whose length
is equal to N1 and such that the distance between two consequtive

intervals is equal to NZ'
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. . . 2 : .
Denote by Ej the horizontal strip in R whose projection over

the y-axis 1is the interval Ij.

Given f Q%Rz) we may define the g-function

N ~
g = (] e D where  PEE) = g (9T
J J
Theorem 18. For every p > 2 there exists a constant Cp such that
2
f £ .
e, = ¢, el vi 6 fw")

(d) Corollary. The operator Ty » 1/2 > x>0, defined by

Txf(E) = (1—|E|2)i £(8) for rapidly decreasing and smooth functions

£, has a bounded extension to LP(RZ) if and only if
4 4
EES) W S WU VY
Proofs

(a) Using smooth cut off functions we may decompose

3 .
o = 3 ¢j’ where supp (¢j) {z : - %~+ l; < arg(z) <
j=o
mo, v
- +
< 3t
Since we may consider ¢j, j=1,2,3, as a rotation of ¢O and

the Fourier transform commutes with rotations, it is enough to prove

that the multiplier ¢O satisfies the estimate of theorem 1.

Next we consider a smooth partition of unity {®j} [ “1/2 in
]
3

the unit circle, such that:

®j(6) = Q(G‘I/Z(e - T—%%ézi-)) where & is a smooth
)
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function, supported on the unit interval, with bounds independent
of 6.
i6
Therefore ¢ () = ¢ ([&] ™) = [ ¢ (&) 2.(6) = § m_(&).
] ’ i

PN A
If we define ij(E) = mj(E) £(&), then we have

4 _ 2 _
£R2 [% ij(x)[ dx = JRZ ]'Z ij(x).ka(x){ dx =

v NN,
& < ¢} ) |T.f =« T £(E) | dE
i,k ‘R J
This last inequality holds because no point belongs to more that 64
P N
sets of the family supp (ij) + supp (ka).

Therefore

2)1/21

17 76l e N Ingeco| .

with ¢ independent of §.

Next we split the sum (Z ]ij(x)lz)l/z < (z [szf(x)fz)l/2
3 ]

2)1/2

+ (Z |T2j+1f(x)[ and we estimate each one of then,
J

Since the supports of the multi-
pliers mj are bassically perpen-

dicular to the direction of the

Xx-axis, we may find a configura-
tion of horizontal strips, like in

theorem 3, {Elj} with the proper

ty that

g (8) + my (E) = my . (©)

Fig. 1 23
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1/2

Therefore () ITij(x)iz)l/z = ‘sz sz f(x)‘z) where

ey fi(
sz (&) = XEZj (&) £).

An elementary integration by parts computation shows that the

kernel Ko of TO satisfies the following: for every pair of inte
gers p,q > 0 there exists a finite constant Cp q’ independent
of §, such that
3/2 -p 1/2 _,-¢q
K (x, < C § 8x §
[k, Goyd | < ¢y | 6x| | v

Therefore the operator TO is majorized by the positive operator who

se kernel is given by

s 1
c { ¥ 27— (x,y)}
z ) ~
n=o u(Rn 0
where Rz = {(x,y) & |x| < 2" 6_1, Iyl < 2" 6-1/2} for a suita-
ble constant C independent of & >0. By an appropiate rotation we

may get an analogous majorization for every operator Tj.

Due to the exponential decay 2™ it is enough to show that, for

4 .
each n, the L -norm of the function

1 2.1/2
23 * szf(x) )

—3. X is dominated
p(r: R
n n

by c(log 6)1/A Hf[‘a, for every f 6 LA(RZ).

Given w >0 in LZ(RZ) we have

N [ I L kP f(x) |2 w(x)dx <
ioR? ey TRY 23
<} [P, ¢ )‘2 L * w(y)d <
< b o [Pt 75, X2 y)dy <
n
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3

where M
n

=< z J]RZ !szf(y)lz an(y)dy < H<§ Iszfl )

2.1/72y,2
202 el

is the maximal function of Theorem 2 with

N = 6_1/2 and a = 2"
Therefore ”(Z!szf|2)1/zlli < su J Z Iszf(X)IZ w(x)dx
Nwll, < j
<l 27" (og Y |I(] P, f] VPN <& reg /) kIl
n J
by Theorems 2 and 3.
An analogous argument works for the odd sum.
q.e.d.

(b) The exponent 1/2 in Theorem 17 can not be improved as the case

1

£(x) = (1 + |x[)" " i1 |x|] <N and f(x) =0 il

a=1, < x| >N

shows.

Proof of Theorem 17.

First of all it is enough to prove the estimate for rectangles
Lo, m/4].

We divide the plane,

whose direction lies in the interval By using a conve-
nient dilation we may also assume that a=1l.
by vertical and horizontal lines, into a grid of squares of side N.
The operador M acts "indepently'" on the squares of the grid and
therefore we can simplify the problem by considering only functions
f supported on one of the squares of the grid. So let Q be a
square with sides parallél to the coordinate axis and length = N

and suppose that f € LZ(Q).
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1
Then Mf(x) = 0 if X ¢ Q* ().
. 2
We decompose the square Q% 1into 9N small squares {Qip}
of side = 1, by vertical and horizontal lines. The point is that

for every square Q.p one
i

Lo,m/4]

in the interval

QM Ry # ¢  and

Therefore, if for f fixed

T, (g) (x) = )
i,p
we have
it is enough to prove that

¥e 6 L2(Q%), with C

ME(x) < 2 T ([£]) (%)

independent of £

can find a rectangle Rip (of direction

and dimensions 1 xN) such that

ME(x) < 2 £y [dyax, ()

1p

we define the linear operator:
1
— g(y) Xq (%)
IRipl JRip ip
and, in order to prove the theorem,

IT,(e)ll, <c (tog 3m)'/?

lell,

and N.

Thus we have linearized the problem and we can consider the adjoint

of Tf, T;, which is given by:
1
T? (h) (x) = ) TE-—T (J hiy)dy) X, (%)
i,p ip Qip ip
Now given h € LZ(Q*) we have the d.composition h =hl + ... +h3N
where hi = h/Ei is the restriction of h to the vertical strip
Ei' of width 1. Then, in orden to prove that
% 1/2 A
HTf(h)[[z < ¢ (log 3N) HhIIZ it is enough to show that:
% -1/2 1/2 .
frzpfl, <c N (log 3N) fngll, . i=1,....,3N

because then

(1) Qq*

denotes the expaﬁded square by the factor 3.

155



A.CORDOBA

% -1/2 1/2
Irgeell, < 1 i, <cn (log 3N) % Inll, <
< e (og 37 |[n],.
Suppose that the function h 1lies on the strip Ei' We decom
pose Ei into 3N squares {Qip}p=l IN of side 1 and also
N

we decompose the function h = 2 hp where hp = h/Qipﬁ We have

% _ * - 1 ‘
Te(m) G =] Toh ) (x) = ] T J by (Ddy Xg o ()
p P ip 1ip
which implies
1 3N
%
T <y T Il X
p=1 ip

Therefore

[TEm o Pax <5 T el nll, TR AR

f - 2 p't2 p''2 ipr\ iq
N° ps,gq
. N
and an easy computation shows that IRipf\ Riq‘ < C T;TE:ET
which implies
3w i, il »
Iyl < ey 1 A ST L (1 5
p,q=1 1+ |p-q]
qg.e.d

(e) We have used a two dimensional version of Theorem 18 to prove

Theorem 16 but that theorem is, bassically, one-dimensional. In the

following we sketch the proof and, without loss of generality, we

may'assume that Nl=2’ N2=N and the first interval Io is cente
red at the origin: Ij = (mj-l, wj+l), where wj = j(N+1).
Let 1 be a smooth function such that Yy =1 on IO and Y =0
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outside the interval

ay ~
and let Wj(t) = y(t - wj) and ij(E) = wj(E) f(E).

2. 1/2
Lemma. || (¥ S.f(x)| ) / I < C Nell ., for every p > 2
. j J - P p
Proof.
Consider for every 8, 0 <8 < 27, the multiplier
N\ 1037 ~
Tef(i) =) e wj(i) £ (&) and observe that its kernel
3 :
Hg is a measure of finite total variation, uniformly on 0. There-—

fore for every O we have

. P 1/p
Tof d < C £
<[ [Tt G [Pdx) < o Helly
We integrate in O and observe that if p > 2 then

e
CE J[f(x)|de > 5a { (( ITgf (x)[Pax) 46 >
0]

1 2m
J 5w L} [Tef ) [P de dx >

|v

q.e

The proof of Theorem 18 is now easy to obtain.

Let us consider now a sharper version theorem 16. Let

denote the characteristic function of a regular polygon of

in Rz and consider the Fourier multiplier defined by

It

A A~
TE(E) = xp(8) £(E).
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Theorem 19. For every p, 413 < p < 4, there exist constants

Cp, a(p), independent of N, such that HTfllp <

< Cp(log N)a(p) Hf||p for every f 6 j?Rz).

This theorem is a consequence of the following maximal function re-
sult: define

ME(x) = sup L { [£(y) ldy
x6RrR IRl Jg

. . 2 . .
where the "sup" is taken over all rectangles in R having sides pa

rallel to one of the sides of the polygon, then,

Theorem 20. There exists a constant C, independent of N, such
that

lel)?

uz

wix @ Mf(x) > a} < C(log N)

These results are sharp and explain the different behavior of SO

and Sy A >0, in theorems AL, i@,

Theorem 19 suggests, naturally, the following question: is there
a polygonal region D, whose sides have infinitely many directions,

such that the operator given by

A A
TE(E) = xp(8) £(£) is bounded on some P, p #2292
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Let 6., > 6, > ... be a decreasing sequence of angles,

m . .
0 < 6 < 7o and consider the region Pe of the figure.

N A
the multiplier Tgf(8) = Xp (&) £(&)
)
and the maximal function
1
Mef(x) = sup —— If(y)|dy
x 6 R € By [R] g

Where Be = {rectangles of arbitrary eccentricity oriented in one

of the directions Gi}.
Claim. Boundedness properties of M6 and T8 are equivalent on a

very precise sense.

(A) The boundedness of the operator Te.

We shall show now that under the assumption that Me is a boun
' (p/2)" ;12 .
ded operator on L ®rR7), we have that Ty, 1is also a bounded

opérator on Lq(Rz), but on the range q 6 (p',p).
One of the main ideas here is to invoke the inequality
P 2 2
[f(x)[ w(x)dx < cq [f(x)[ AS w(x)dx
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where AS w(x) = [(ws)*(x)]l/s and * denotes the Hardy Littlewood

maximal function.

Wwith B, = {(x,y) 6 RZ, Zk < x < 2k+l} let us consider the ope-
rators

N\ ~

SEE) = x, (6) B

k

Then we can use the Littlewood-Paley theory to obtain:

i 2,1/2
Tf = ( S, TE{7)
el = 0T Is, Tl D2
But if Hy is the multiplier operator corresponding to the half-pla-
ne Fk tangent to PB along its kth side, we have,
Sk TE = Hk Tf

Therefore

/2
19 1, sy 1200, -

= up ¥ ( inSk f(x)[2 w(x)dx <
lek(p/2>' A k
< ¢ sup J f 15612 wrcoax < o [[g]f2
© K = p p
where w* = Sup [m;(wl+€)]l/1+€ and my denotes the Hardy-
~Littlewood mgximal function in the direction ek'
q.e.d.

(B) We shall show now that if Te is bounded on Lp, p > 2, then
Mg is of weak type ((p/2)', (p/2)'), modulo some tauberian condi-

tion.
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. 2
First we show that assuming that Te is bounded on LP(R ) we have

the following Meyer's Lemma.

P p

2.1/2 . 2.1/2
I« 12( g, £ 0577 < e IC E e 1500

where Hk represents the Hilbert transform in the direction ek'

To see that it is enough to work with finite collections of
: ~
smooth functions fl""’fN and we may also assume that fj have

compact support. Then we look for estimates with constants Cp inde

pendent of these assumptions.

Let us expand Pe by a convenient factor p so that

sup (diam (supp of fj)) < p/2
]

Then for every j=l,...,N there exists wj so that

PN ) ~
H., f. (&) = ¥ o (£+wj) . fj(é) =

J J
Py
= +0 . (E+w . S
XPp (& wJ) e fJ(E wJ) —_—
0
iwj.x 0 »iwj.x
ijj(x) = e Te(e fj)
where Tg is the multiplier associated to the characteristic func-
tion of Pg.
Therefore
2.1/2 o, TR a1y
H, £ = T f. <
H(%Ikki) I, H(g_jle(e I <
<o T e D2
- P H J P
J
qg.e.d.
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Suppose now that {Rk} is a collection of rectangles in By

satisfying the following property
1
(P) ¥k, &R, O }%!k Rj\ < 5 IRy

Then the following estimate must be true

2/p
(vl HEXRRHP/Z < oy TUR
1
Proof. Consider E, = Ry - ;“{k Rj then ‘Ekl > 5 [ R, | by hypo-
thesis (P), which implies that
>(1) .
|2, ¥ (x)| > 1/100 on R (see figure)
i “E k
k k
where Hi denotes the

k
Hilbert transform in the

direction of Rk'

If we denote by H; the Hilbert transform in the perpendicular di-
k

rection, we obtain

(3) 2 1 1
X H. X (H, X (H. X, 1|} x)
Rk [ Ty Rk i TRy 1y Ek ]

(x) < (100)* (u]

k k

xR

Therefore we can invoke the Meyer's lemma to conclude the proof of

the covefing lemma {Vi].

Suppose, for example, that we know that Me verifies the following
estimate: [{Me XE(X) > 1/2}|§ c [E| for every open set E. Then
property {Vi] will imply that Me is of weak type (p/2)' auto-
matically.
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Therefore, it is an interesting question to decide for which families

{Gk} the operators MO and Ty are bounded on some Lp—spaces. Is

there any geometric characterization of good sets of directions?.

Bassically, our present knowledge is contained in the following exam

ples:
(1°) 1If the sequence {Sk} is lacunar then T6 is bounded
on every Lp—space, 1 < p < @, and M6 on every Lp,
p > 1.
(2°) 1f 6, = K™%, (k=1,2,....) then T, is bounded only
2 2 . w 2 : .
on L7(R") and Mg in L ®7). Here the ennemy is
again the Kakeya set.
Theorem 20. If {8, } is lacunar ( > p > 1) then T is boun-
- k 8k+1 o

ded on every LP, 1 < p <o and Mg is bounded on P, p o> 1,

(see [14]).

This theorem can be used to prove the following version of the Little

wood-Paley Theorem 9:

Let 61 > 82 > L. > Ok > L. be a lacunar sequence with
lim Gk = 0. Consider Ok to be the characteristic function of the
k>
. 2

angle (ek’ ek—l) in R and o, = 1 - z O

AN\ ~
Define S, f(&) = o, (£) £(&).

k k
Theorem 21. For each p, 1 < p < o, there exist finite constants
0 < A, B < o such that

P P

a, el < NCDIs elDY20 < el
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2
for every f 6 ﬁQR ).

Proof.

For each k let O be a smooth function, homogeneous of de-

gree zero and such that O, .0 = Ok’
supp(ok)<: supp(ok_l)\J supp(Ok)\J supp(0k+1)

k+2

~ i0
9 et )! < 2 . Let us denote by {rn(t)}

55 (o) (

the orthonormal system of Rademacher's functions on the interval
fee]

[0,1]. For each t 6 [0,1} the multiplier mt(g) = 7 rn(t)gn(i)
n=1
satisfies the hypothesis of Theorem 10 wuniformly on t. Therefore
if
AN\ ~ N . R
T EE) = m (8) £(8), §,.£(8) = 0, (8) £(&),
we have:

[IreeolPax < o el
integrating on t we get

~ 1
[ a1 ac- |

) f [T, £G)|P dx de < c'|]fH§

Finally, let us observe that

2)1/2 2)1/2

(1[5 £ = (I8, S G0

12 wiodx = g J s, §kf(x)[2 w(x)dx <

S, f(x)
J 115

<o, ) [ 15, 5G 17 [y W o |1/ ax.

And we are in conditions to apply the previous observation together
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with theorem 20.

Remarks. Recently A. Ruiz {21] has obtained versions of Theorems

15 and 16 for more general types of curves enabling him to give a

negative answer to a problem of N. Riviere: The fundamental solu-
1 .
tion, given by the multiplier n(x,y) = T of the Schrodinger
x —-y+i
operator is not a Fourier multiplier of Lp(m2), P # 2. This result

have been obtained indepently by C. Kenig and P. Tomas [2d] by a

sligthly different method.

The best estimates known for the Bochner-Riesz operators in
. . . 2 L
higher dimensions follow fron the (L ,Lp) restriction theorem pro-

ven by P. Tomas [19].
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2 Trigonometric Series with gaps.

The history of lacunary Fourier series goes back to Weierstrass
and Hadamard if not to Riemann. Here we shall be interested in the
1 )

following type of statement: suppose that f 6 L (0, 1) has a Fourier

2T 0.
series of the form f ~ 5L a_ e where n_ /n

Y \Y V-1
then f 6 Lp(O,ﬂ.) for every p < ® (In fact more is true:
exp (fz) is integrable and, of course, f 6 B.M.0.). This pheno-
menon may have different explanations: the arithmetical properties
of such sequences {nv}; the fact that the functions

exp (2Ti nv.x) behave very similarly to independent random varia

bles, or from the point of view of the Calderdn-Zygmund theory.

Consider the multiplier defined by - m(k) =1 if k 6 {n,} and

~ 2mTq
m(k) = O otherwise: Tg ~ Z m(k) g(k) e 1kx. Then the preceding

statement is equivalent to the following multiplier theorem: T is

a bounded operator from L2 to B.M.O.

Given an integer k > 1l let us consider Fourier series of the

form:

- 2 a eZWink.x

£
n

It is easy to see that f does not have to be, in general, in BMO

if f 6 Ll. In fact for each p > 2k there is a sequence {an}
.k
m
such that ZIanlz < © and E a e2 X is not in LP(O, 1).
~ Ty
To see this let us consider the multiplier Tf'v}jm(\J)f(V)e2 1VX,
where .m(v) = 1 if Vv 6 {nk} and m(Vv) = 0 otherwise. We want

to show that T is not bounded Zfrom L2 to Lp, p > 2k. By duali
1
ty it is enough to show that T is unbounded from LP to LZ,

1/p + 1/p' = 1.
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® 27inx
Consider the series fB(X) = Z ——~§A< s 0 < B < 1. By the
- n=1 n

Poisson's summation formula (see rIS]) we know that

' N B-1 . _ L )
fB(x) = CB x . x + 0. If we take B K we see that
£, 6 Lr[O 1} "for every r < (1 - *L)'l = 2K Nevertheles
B ? 2k 2k-1
@ 2'rrinkx
TE, o~ Y LA is not in LZ(O 1.
B ~ 1/2 - i
n=1 n

In the case k=2 we can see that even the end point LA(O,ZH)

N
is not allowed by observing (see [16]) that ¥ r(k)2 = C NZ log N+
1

+ o(N2 log N), where r(k) denotes the number of representation of
the integer k as sume of two squares. The following conjecture had

been made long ago:

Conjecture. If f has Fourier series of the form

-k
1
£y a_ e2ﬂ1n * then llf”p ~ (3 [an|2) /2 for p < 2k.

Here we shall prove the following result.

Theorem. Suppose that {an} is monotonically decreasing and
ZWinzx 1 P

) a, e is in L (0,.1), then it is in LT (0, !} ) for

each p < 4,and]|f”p = ]If“z.

In particular we have,

. 2
e2W1n . X
Wo(x) = )
€ n>2 nllz(log n)

T755c €>0, is in LP(0, 1)

for each p < 4.
The proof will be based on the following lemmas:

Lemma !. Let f be continuous on [0,1] and satisfying
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. 1/2
@ el <~ dlell, < N
. ' 1 1/k N
(ii) 1f |x - %l <5 then [£(x)] < q e
q q
Then f is in Weak (LZk) and [l £l e S C Nl/2 for some uni-
WL
versal constant C.
Proof. Want to show that ¥a < 0
1/2 2 1
WHE Y = ul]f(x)] > 28072 a3 < ¢ L
a - 2k
o4
with C independent of N.
N2
* Observe that it is enough to show it for 5 > oa > 1
Given x 6 [0,1) let
1
x =
ay + 1
a2 + L
a4 +
P\)
be its continuous fraction development and denote by {6~} the se
v
quence ‘of .convergents.
P\)
If X 6 Ea is irrational the following is true for every 9
v
I/k N 1/2
QV + 1/ > 2N a
Q
that is, for every v
either Qllk > Nl/2
N 1/2
or Ql/k > N
\%
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(1°) Case. Suppose that

Ql/k > Nl/2 = Q > Nk/2 uk
1 - 1 =
and x < L = x &6 I = [b S
- Q o ’ k/2
N
k
1 2
and WL ) = e < S
o Nk/Z qk 0L2k
v
(2°) Case. In general dv such that
—%%E > Nl/2 a and
Qy
LQl/kiNl/Zu
V+1
that is
Nk/Z
Q, = n
o
k/2 k
Qe > N o
But then
x - Y] I 1
Qy Qy Qv+1 Qy Nk/2 ok
Therefore
AV U S S SR
Qv QV Nk/Z OLk ? Qv QV Nk/2
Given integers r,sS s.t. r < s, (r,s) =1
. Nk/Z
s = k
o
denote
r 1 1 T 1 1
I = ( L3 ol
r,s s Nk/2 ak s s Nk/Z k
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The previous observation shows that

=

- {rationalst Low va 1

o r,s
r,g .
. ‘ k/2
therefore ﬁvl_
k
5=l 1
s b o< ) {1 } <
pl{E, )l < () + 3 ) 1 Ir’s} <
r=1 g=1
(r,s)=1
[Nk/Zw
Tk
co20 T .
— 1 o T/ —
QZK s=1 =1 ° Nk/z ak
k
< 'jvi d
(e 4-€
N 2
. 211 +
Given the trigonometriu series SN(x,y) E e i(nxtny) let us con-
i 1
sider,
= max ESN(x,y)g

I <M <N

Lemma 2. Let x have a rational approximation of the form

fx - p/q| < ‘%’: 1 < q < NZ, (p,a) = 1.

Then we have

A
(@]
rh
e}
+
|

S;(X,y)

for some universal constant C.

This result was known to Hardy and Littlewood who proved it using
the approximate functional equation_.of the fi-function. Here we will
follow [18] to emphasize the relationship between number theory and

Fourier analysis via the use of the Carleson's theorem.
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- Proof.

a 1 L :
17 Fact. Let |x—x | < - and ]y—y | < = then we have
S o' — 2 o' — 4N

4N
* \ *
SN(X, y) < 100 sj (xo yo)
Za Fact. If I <M <N then we have
* < 2 sh 2Mx)
SN(X,y) < oy (Fs ¥ - x
Proof. Clearly
1 1
’%: eZﬂi(n2x+ny)‘ _ M {M eZﬂi«n~M)2x + (n-M)y)
1

n=M+1

1
M amia®x 4 (v -2 W

2 sg (x, y - 2Mx)

n=M+1

Therefore we have

N L
[S; (x,y)]2 < % zl IS;N (x, y -ZMX)I2 [Fact ﬁ
M=
But by [Fact ﬂ
2 2 * 2
|shy (x,y -2ux) |7 < (100)7(2M) f |85 (ks vy ) 17 dy
I(y-2Mx)
where 1(z) = {w : Iz—w!ljrg% }
Therefore
E3 2 N * 2
ISN(X,y)I <cC Z !SZN (X,yo)l dyo
M=l T (y-2ux)

Observe that the overlapping of the family of rectangles is given

by the number P of solutions of the system

L

IZMX -y - z| < 8N
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Therefore:

k 2 . * 2
¥ < o) ~
lsyGuy) ™ < ¢ ¥ . sy )17 dy
< CPN by Carleson's theorem.
let us denote by [Ixl] = distance from x to the integers.
P < -
Lemma. Suppose that C > 1 and o -~ ql < = (p,q) = 1, B6R
—— 0’
and m > 1 is an integer. Then the number of solutions of the sys-—
tem
Im o+ gll < g
{ e
L
x| < x
. mC C 1
< me mL L q
is ~16X{Y+q+X+X.Y}

(The proof is an easy exercise with the well-known Dirichlet's pigeon

hole principle).
If we apply the lemma with m=2, X=N, Y = 8N, we obtain:

ENERIEEEN S

N oo
Corollary. i =rin X‘|p = Nl/z, p < &4
: 1
Proof of Theorem.
Let us assume
2ﬂik2X
£ -~ z a, e ak\y 0
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n+1
A (x) = 22 eZWikzx
n x0= 2 k
K =2"41
~ T 2.1/2
Hflg l|<nzl la, G5 Hp

2/py1/2
I

1 <}
[ 1 TP ax
0 =1

| A

1 1/2
SRR

® 2 1/2
= 2 a1l
n=1 P
Enough to show that ¥ HAnlli < @
n= -
_ 2Tik"x
AH(X) = 22 k & =
2nik <2n+1
= 2 a ls (x) -5 (0]
kGIn k k k-1
In = (Vv
i 2TiVTx
where S.(x) = Z e
J V=1

Therefore

v
‘ 1
6 G) = kzv als, G - s Gl =
o
Y] v
z1 Z1
= a, S, (x) a, S (x)

=y k “k Koy, k k-1
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! vyt
= y a, S, (x) - ) a
K=V k Tk v -1 k
o o
vli1
- L (apmagyg) 8,060 + a
Vo
< (a_ -a_ ) S (x,0) + a S
- o vl 1 Vl

- a[én/Z}

Which implies

v
ol <
< 2n/4
- P
< E Zn/é
- P

S[Zn+l/2]

(x,0)

174
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