A Maximum Principle Applied to Quasi-Geostrophic Equations

Antonio Córdoba*, Diego Córdoba**
1 Departamento de Matemáticas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
2 Instituto de Matemáticas y Física Fundamental, Consejo Superior de Investigaciones Científicas, Serrano 117, 28006 Madrid, Spain

Received: 8 July 2003 / Accepted: 18 September 2003
Published online: 16 March 2004 - © Springer-Verlag 2004

Abstract

We study the initial value problem for dissipative 2D Quasi-geostrophic equations proving local existence, global results for small initial data in the super-critical case, decay of L^{p}-norms and asymptotic behavior of viscosity solution in the critical case. Our proofs are based on a maximum principle valid for more general flows.

1. Introduction

The two dimensional quasi-geostrophic equation (QG) is an important character of Geophysical Fluid Dynamics, see [9, 17 and 15]. It has the following form

$$
\begin{align*}
& \left(\partial_{t}+u \cdot \nabla\right) \theta=-\kappa(-\Delta)^{\frac{\alpha}{2}} \theta, \tag{1.1}\\
& u=\nabla^{\perp} \psi, \quad \theta=-(-\Delta)^{\frac{1}{2}} \psi
\end{align*}
$$

where ψ is the stream function. Here θ represents the potential temperature, u the velocity and κ is the viscosity. In this paper we examine existence, regularity and decay for solutions of the initial value problem. We will consider initial data $\theta(x, 0)=\theta_{0}(x)$, $x \in R^{2}$ or T^{2}. The parameters $\alpha, 0 \leq \alpha \leq 2$, and $\kappa \geq 0$ will be fixed real numbers.

The inviscid equation ($\kappa=0$) was studied analytically and numerically by Constantin, Majda and Tabak [9]. They showed that there is a physical and mathematical analogy between the inviscid QG and 3D incompressible Euler equations. For both equations it is still an open problem to know if there are solutions that blow-up in finite time. For further analysis see [11, 13 and 3].

If $\kappa>0$, Constantin and Wu [10] showed that viscous solutions remain smooth for all time when $\alpha \in(1,2]$. In the critical case $\alpha=1$, under the assumption of small L^{∞}

[^0]norm, the global regularity was proven in [8]. Chae and Lee [4] studied the super-critical case $0 \leq \alpha \leq 1$ proving global existence for small initial data in the scale invariant Besov spaces. Many other results on the dissipative 2D Quasi-geostrophic equation can be found in [18, 2, 22-24, 19 and 14].

Ref. [18] contains a proof of a maximum principle for (1.1):

$$
\|\theta(\cdot, t)\|_{L^{p}} \leq\left\|\theta_{0}\right\|_{L^{p}} \quad \text { for } 1<p \leq \infty \quad \text { for all } t \geq 0 .
$$

For $\kappa=0$, the L^{p} norms $(1 \leq p \leq \infty)$ of θ are conserved for all time. In particular, that implies that energy is also conserved, because the velocity can be written in the following form

$$
u=\left(-\partial_{x_{2}} \Lambda^{-1} \theta, \partial_{x_{1}} \Lambda^{-1} \theta\right)=\left(-R_{2} \theta, R_{1} \theta\right)
$$

where Λ represents the operator $(-\Delta)^{\frac{1}{2}}$ and R_{j} are the Riesz transforms (see [20]).
In Sect. 2 we give a different proof of Resnick's maximum principle (see ref. [8]), showing a decay of the L^{p} norms. In Sect. 3 we present several estimates leading to local existence results. Section 4 contains one of the main results, namely the decay of the L^{∞}-norm.

The case $\alpha=1$ is specially relevant because the viscous term $\kappa \Lambda \theta$ models the so-called Eckmann's pumping (see ref. [1] and [7]) which has been observed in quasigeostrophic flows. On the other hand, several authors (see ref. [18] and [10]), have emphasized the deep analogy existing between Eq. (1.1) with $\alpha=1$ and the 3D incompressible Navier-Stokes equations. In Sect. 5 of this paper we consider the notion of viscosity solution for the Eq. (1.1) adding an artificial viscosity term $\epsilon \Delta \theta$ to the righthand side, and taking the limit, as $\epsilon \rightarrow 0$, of the corresponding solutions with the same initial data. We prove that for the critical case ($\alpha=1$) there exist two times $T_{1} \leq T_{2}$ (depending only upon the initial data θ_{0} and $\kappa>0$), so that viscosity solutions are smooth on the time intervals $t \leq T_{1}$ or $t \geq T_{2}$. Furthermore for $t \geq T_{2}$ we have a decay of the Sobolev norm $\|\theta\|_{H^{s}}=O\left(t^{-\frac{1}{2}}\right)$.

Now we list some notations that will be used in the subsequent sections. As usual, \widehat{f} is the Fourier transform of f, i.e.,

$$
\widehat{f}(\xi)=\frac{1}{(2 \pi)^{2}} \int f(x) e^{-i \xi \cdot x} d x
$$

And $I^{\alpha}=\Lambda^{-\alpha}, J^{\alpha}$ denote the Riesz and Bessel potentials, given respectively by

$$
\widehat{I^{\alpha} f}(\xi)=|\xi|^{-\alpha} \widehat{f}(\xi) \quad \widehat{J^{\alpha}} f(\xi)=\left(1+|\xi|^{2}\right)^{-\frac{\alpha}{2}} \widehat{f}(\xi)
$$

Throughout the paper we will make use of Sobolev's norms $\|f\|_{H^{s}}$ and of the duality of B.M.O. (bounded mean oscillation) with Hardy's space \mathcal{H}^{1}. We refer again to [20] for the corresponding definitions and properties. Besides the " \leq " symbol which has a very precise meaning, we will make use of the following standard notation: " $a \ll b$ " if there exists a constant $C>0$ (independent of all relevant parameters) so that $a \leq C b$.

Finally, it is a pleasure to thank C.Fefferman for his helpful comments and his strong influence in our work.

2. Maximum Principle

In this section we present a proof, using fractional integral operators, of the maximum principle and decay of the L^{p} norms for the following scalar equation:

$$
\left(\partial_{t}+u \cdot \nabla\right) \theta=-\kappa \Lambda^{\alpha} \theta
$$

Throughout this paper it will be assumed that the vector u satisfies either $\nabla \cdot u=0$ or $u_{i}=G_{i}(\theta)$, together with the appropriate hypothesis about regularity and decay at infinity, which will be specified each time, in order to allow the integration by parts needed in our proofs.
Proposition 2.1. Let $0<\alpha<2, x \in R^{2}$ and $\theta \in S$, the Schwartz class, then

$$
\begin{equation*}
\Lambda^{\alpha} \theta(x)=C_{\alpha} P V \int \frac{[\theta(x)-\theta(y)]}{|x-y|^{2+\alpha}} d y, \tag{2.2}
\end{equation*}
$$

where $C_{\alpha}>0$.
Proof. We write Λ^{α} as an integral operator (see [20])

$$
\begin{aligned}
\Lambda^{\alpha} \theta(x) & =\Lambda^{\alpha-2}(-\Delta \theta)=c_{\alpha} \int \frac{-\Delta_{y} \theta(y)}{|x-y|^{\alpha}} d y \\
& =c_{\alpha} \int \frac{\Delta_{y}[\theta(x)-\theta(y)]}{|x-y|^{\alpha}} d y \\
& =\lim _{\epsilon \rightarrow 0} c_{\alpha} \int_{|x-y| \geq \epsilon} \frac{\Delta_{y}[\theta(x)-\theta(y)]}{|x-y|^{\alpha}} d y \\
& \equiv \lim _{\epsilon \rightarrow 0} c_{\alpha} \Lambda_{\epsilon}^{\alpha} \theta
\end{aligned}
$$

where $c_{\alpha}=\frac{\Gamma\left(1-\frac{\alpha}{2}\right)}{\pi 2^{\alpha} \Gamma\left(\frac{\alpha}{2}\right)}$.
An application of Green's formula gives us

$$
\begin{aligned}
\Lambda_{\epsilon}^{\alpha} \theta(x) & =\tilde{c}_{\alpha} \int_{|x-y| \geq \epsilon} \frac{[\theta(x)-\theta(y)]}{|x-y|^{2+\alpha}} d y \\
& +\int_{|x-y|=\epsilon}[\theta(x)-\theta(y)] \frac{\partial \frac{1}{|x-y|^{\alpha}}}{\partial \eta} d \sigma(y) \\
& -\int_{|x-y|=\epsilon} \frac{1}{|x-y|^{\alpha}} \frac{\partial[\theta(x)-\theta(y)]}{\partial \eta} d \sigma(y) \\
& \equiv I_{1}+I_{2}+I_{3},
\end{aligned}
$$

where $\frac{\partial}{\partial \eta}$ is the normal derivative and $\tilde{c}_{\alpha}>0$. Furthermore

$$
\begin{aligned}
& I_{2}=\frac{1}{\epsilon^{\alpha+1}} \int_{|x-y|=\epsilon}[\theta(x)-\theta(y)] d \sigma(y)=O\left(\epsilon^{2-\alpha}\right), \\
& I_{3}=\frac{1}{\epsilon^{\alpha}} \int_{|x-y|=\epsilon} \frac{\partial[\theta(x)-\theta(y)]}{\partial \eta} d \sigma(y)=O\left(\epsilon^{2-\alpha}\right),
\end{aligned}
$$

therefore

$$
\lim _{\epsilon \rightarrow 0} I_{2}=\lim _{\epsilon \rightarrow 0} I_{3}=0
$$

which yields (2.2).

Proposition 2.2. Let $0<\alpha<2, x \in T^{2}$ and $\theta \in S$, the Schwartz class, then

$$
\begin{equation*}
\Lambda^{\alpha} \theta(x)=C_{\alpha} \sum_{\nu \in Z^{2}} P V \int_{T^{2}} \frac{[\theta(x)-\theta(y)]}{|x-y-v|^{2+\alpha}} d y \tag{2.3}
\end{equation*}
$$

with $C_{\alpha}>0$
Proof.

$$
\Lambda^{\alpha} \theta(x)=\sum_{|\nu|>0}|\nu|^{\alpha} \widehat{\theta}(\nu) e^{i v \cdot x}=-\sum_{|\nu|>0}|v|^{\alpha-2} \widehat{\Delta \theta}(\nu) e^{i v \cdot x}
$$

Let $\Phi_{\epsilon}(x)=\left(|x|^{\alpha-2}\right)_{\epsilon} * \varphi_{\epsilon}(x)$, where $\left(|x|^{\alpha-2}\right)_{\epsilon}=\left[|x|^{\alpha-2} \cdot \chi\left(\frac{|x|}{\epsilon}\right)\right]$ with $\chi \in$ $C^{\infty}(0, \infty)$,

$$
\chi(x)= \begin{cases}0 \text { if } & |x| \leq 1 \\ 1 \text { if } & |x| \geq 2\end{cases}
$$

and $\varphi_{\epsilon}(x)=\epsilon^{-2} \varphi\left(\frac{x}{\epsilon}\right)$ is a standard approximation of the identity: $0 \leq \varphi \in C^{\infty}, \operatorname{sop} \varphi \subset$ B_{1} and $\int \varphi=1$. Now we can write

$$
\begin{aligned}
\Lambda^{\alpha} \theta(x) & =-\lim _{\epsilon \rightarrow 0} \sum \Phi_{\epsilon}(v) \widehat{\Delta \theta}(\nu) e^{i v \cdot x} \\
& =-\lim _{\epsilon \rightarrow 0}\left(\sum \Phi_{\epsilon}(v) e^{i v \cdot x}\right) *\left(\sum \widehat{\Delta \theta}(v) e^{i v \cdot x}\right)
\end{aligned}
$$

Poisson's summation yields:

$$
\begin{aligned}
\Lambda^{\alpha} \theta(x) & =-\lim _{\epsilon \rightarrow 0}\left(\sum \widehat{\Phi}_{\epsilon}(x-v)\right) * \Delta \theta(x) \\
& =\lim _{\epsilon \rightarrow 0} \sum \int_{T^{2}} \widehat{\Phi}_{\epsilon}(x-y-v) \Delta(\theta(x)-\theta(y)) d y \\
& =\lim _{\epsilon \rightarrow 0} \sum \int_{T^{2}} \Delta\left(\widehat{\Phi}_{\epsilon}\right)(x-y-v)(\theta(x)-\theta(y)) d y
\end{aligned}
$$

Since

$$
\begin{aligned}
\widehat{\Phi}_{\epsilon}(\eta) & =\left(\mid \widehat{\left.x\right|^{\alpha-2}}\right)_{\epsilon}(\eta) \cdot \widehat{\varphi}_{\epsilon}(\eta)=\left(\widehat{|x|^{\alpha-2}}\right)_{\epsilon}(\eta) \cdot \widehat{\varphi}(\epsilon \eta) \\
\Delta \widehat{\Phi}_{\epsilon}(\eta) & =\Delta\left(\left(\left.| | x\right|^{\alpha-2}\right)_{\epsilon}\right)(\eta) \cdot \widehat{\varphi}(\epsilon \eta)+O(\epsilon), \\
\left(\mid \widehat{\left.x\right|^{\alpha-2}}\right)_{\epsilon}(y) & =\frac{c_{\alpha}}{|y|^{\alpha}}-\int e^{-i y x}|x|^{\alpha-2}\left(1-\chi\left(\frac{|x|}{\epsilon}\right)\right) d x, \\
\Delta\left(\left(\mid \widehat{|x|^{\alpha-2}}\right)_{\epsilon}\right)(y) & =\frac{\tilde{c}_{\alpha}}{|y|^{\alpha+2}}-\int e^{-i y x}|x|^{\alpha}\left(1-\chi\left(\frac{|x|}{\epsilon}\right)\right) d x,
\end{aligned}
$$

We get easily

$$
\sum_{v} \Delta\left(\widehat{\Phi}_{\epsilon}\right)(y-v)=\tilde{c}_{\alpha} \sum_{v} \frac{1}{|y-v|^{2+\alpha}}+O\left(\sum_{v} \frac{1}{|y-v|^{2+\delta}} O\left(\epsilon^{\delta}\right)\right)
$$

for some $\delta>0$.

Therefore:

$$
\begin{aligned}
\Lambda^{\alpha} \theta(x) & =\lim _{\epsilon \rightarrow 0} \sum \int_{T^{2}} \Delta\left(\widehat{\Phi}_{\epsilon}\right)(x-y-v)(\theta(x)-\theta(y)) d y \\
& =C_{\alpha} \sum_{\nu} P V \int_{T^{2}} \frac{[\theta(x)-\theta(y)]}{|x-y-v|^{2+\alpha}} d y
\end{aligned}
$$

Proposition 2.3. Let $0 \leq \alpha \leq 2, x \in R^{2}$ and $\theta \in S$ (the Schwartz class). We have the pointwise inequality

$$
\begin{equation*}
2 \theta \Lambda^{\alpha} \theta(x) \geq \Lambda^{\alpha} \theta^{2}(x) \tag{2.4}
\end{equation*}
$$

Proof. When $\alpha=0, \alpha=2$ the result is well known. For the remainder cases Proposition 2.1 (for the periodic case we use Proposition 2.2) gives us:

$$
\Lambda^{\alpha} \theta(x)=P V \int \frac{[\theta(x)-\theta(y)]}{|x-y|^{2+\alpha}} d y
$$

Therefore,

$$
\begin{aligned}
\theta \Lambda^{\alpha} \theta(x) & =P V \int \frac{\left[\theta(x)^{2}-\theta(y) \theta(x)\right]}{|x-y|^{2+\alpha}} d y \\
& =\frac{1}{2} P V \int \frac{[\theta(y)-\theta(x)]^{2}}{|x-y|^{2+\alpha}} d y+\frac{1}{2} P V \int \frac{\left[\theta^{2}(x)-\theta^{2}(y)\right]}{|x-y|^{2+\alpha}} d y \\
& \geq \frac{1}{2} \Lambda^{\alpha} \theta^{2}(x) .
\end{aligned}
$$

For a more general statement of Proposition 2.3 see [12]. The inequality (2.4) also holds in the periodic case.

Lemma 2.4. With $0 \leq \alpha \leq 2, x \in R^{2}, T^{2}$ and $\theta, \Lambda^{\alpha} \theta \in L^{p}$ with $p=2^{n}$ we get:

$$
\begin{equation*}
\int|\theta|^{p-2} \theta \Lambda^{\alpha} \theta d x \geq \frac{1}{p} \int\left|\Lambda^{\frac{\alpha}{2}} \theta^{\frac{p}{2}}\right|^{2} d x \tag{2.5}
\end{equation*}
$$

Proof. The cases $\alpha=0$ and $\alpha=2$ are easy to check. For $0<\alpha<2$ we apply inequality (2.4) k times

$$
\begin{aligned}
\int|\theta|^{p-2} \theta \Lambda^{\alpha} \theta d x & \geq \frac{1}{2} \int|\theta|^{p-2} \Lambda^{\alpha} \theta^{2} d x=\int|\theta|^{p-4} \theta^{2} \Lambda^{\alpha} \theta^{2} d x \\
& \geq \frac{1}{4} \int|\theta|^{p-4} \Lambda^{\alpha} \theta^{4} d x \geq \frac{1}{2^{k}} \int|\theta|^{p-2^{k}} \Lambda^{\alpha} \theta^{2^{k}} d x
\end{aligned}
$$

Taking $\mathrm{k}=\mathrm{n}-1$ and using Parseval's identity with the Fourier transform we obtain inequality (2.5).

Lemma 2.5 (Positivity Lemma). For $0 \leq \alpha \leq 2, x \in R^{2}, T^{2}$ and $\theta, \Lambda^{\alpha} \theta \in L^{p}$ with $1 \leq p<\infty$ we have:

$$
\begin{equation*}
\int|\theta|^{p-2} \theta \Lambda^{\alpha} \theta d x \geq 0 \tag{2.6}
\end{equation*}
$$

Proof. Again the cases $\alpha=0$ and $\alpha=2$ are easy to check directly. For $0<\alpha<2$ we have

$$
\int|\theta|^{p-2} \theta \Lambda^{\alpha} \theta d x=\lim _{\epsilon \rightarrow 0} \int|\theta|^{p-2} \theta \Lambda_{\epsilon}^{\alpha} \theta d x=\lim _{\epsilon \rightarrow 0} \int|\theta|^{p-2} \theta I_{1} d x
$$

where I_{1} was defined above in (2.4). Then a change of variables yields

$$
\begin{aligned}
\int|\theta|^{p-2} \theta I_{1} d x & =c_{\alpha} \iint_{|x-y| \geq \epsilon}|\theta|^{p-2}(x) \theta(x) \frac{[\theta(x)-\theta(y)]}{|x-y|^{2+\alpha}} d y d x \\
& =-c_{\alpha} \iint_{|x-y| \geq \epsilon}|\theta|^{p-2}(y) \theta(y) \frac{[\theta(x)-\theta(y)]}{|x-y|^{2+\alpha}} d y d x
\end{aligned}
$$

And we get

$$
\begin{aligned}
& \int|\theta|^{p-2} \theta I_{1} d x \\
&=\frac{1}{2} c_{\alpha} \iint_{|x-y| \geq \epsilon}\left(|\theta|^{p-2}(x) \theta(x)-|\theta|^{p-2}(y) \theta(y)\right) \frac{[\theta(x)-\theta(y)]}{|x-y|^{2+\alpha}} d y d x . \\
& \quad \geq 0
\end{aligned}
$$

Corollary 2.6 (Maximum principle). Let θ and u be smooth functions on either R^{2} or T^{2} satisfying $\theta_{t}+u \cdot \nabla \theta+\kappa \Lambda^{\alpha} \theta=0$ with $\kappa \geq 0,0 \leq \alpha \leq 2$ and $\nabla \cdot u=0$ (or $\left.u_{i}=G_{i}(\theta)\right)$. Then for $1 \leq p \leq \infty$ we have:

$$
\|\theta(t)\|_{L^{p}} \leq\|\theta(0)\|_{L^{p}} .
$$

Proof.

$$
\begin{aligned}
\frac{d}{d t} \int|\theta|^{p} d x & =p \int|\theta|^{p-2} \theta\left[-u \cdot \nabla \theta-\kappa \Lambda^{\alpha} \theta\right] d x \\
& =-\kappa p \int|\theta|^{p-2} \theta \Lambda^{\alpha} \theta d x \leq 0
\end{aligned}
$$

where we have use the fact that $\nabla \cdot u=0\left(\right.$ or $\left.u_{i}=G_{i}(\theta)\right)$ and the positivity lemma.
Remark 2.7. When $p=2^{n}(n \geq 1)$ we have by Lemma 2.4 the following improved estimate:

$$
\begin{aligned}
\frac{d}{d t}\|\theta\|_{L^{p}}^{p} & =-\kappa p \int|\theta|^{p-2} \theta \Lambda^{\alpha} \theta d x \\
& \leq-\kappa \int\left|\Lambda^{\frac{\alpha}{2}} \theta^{\frac{p}{2}}\right|^{2} d x
\end{aligned}
$$

In the periodic case this inequality yields an exponential decay of $\|\theta\|_{L^{p}}, 1 \leq p<\infty$. For the non-periodic case Sobolev's embedding and interpolation will give us the following

$$
\begin{aligned}
\frac{d}{d t}\|\theta\|_{L^{p}}^{p} & \leq-\kappa\left(\int \theta^{\frac{2 p}{2-\alpha}} d x\right)^{\frac{2-\alpha}{2}} \\
& \leq-C\left(\|\theta\|_{L^{p}}^{p}\right)^{\frac{p-1+\frac{\alpha}{2}}{p-1}}
\end{aligned}
$$

where $C=C\left(\kappa, \alpha, p,\left\|\theta_{0}\right\|_{1}\right)$ is a positive constant. It then follows

$$
\|\theta(\cdot, t)\|_{L^{p}}^{p} \leq \frac{\left\|\theta_{0}\right\|_{L^{p}}^{p}}{\left(1+\epsilon C t\left\|\theta_{0}\right\|_{L^{p}}^{p \epsilon}\right)^{\frac{1}{\epsilon}}}
$$

with $\epsilon=\frac{\alpha}{2(p-1)}$.
Remark 2.8. The decay for other $L^{p}, 1<p<\infty$, follows easily by interpolation. However, the L^{∞} decay needs further arguments that will be presented in Sect. 4.

3. Local Existence and Small Data

The local (in time) existence theorem has been known (see refs. [9 and 3]) for the inviscid quasi-geostrophic equation when the initial data belong to the Sobolev space H^{s}, $s>2$. Here we will improve slightly those results making use of well known properties of the space of functions of bounded mean oscillation (B.M.O.), namely the following:
a) $J^{\alpha}, \alpha>0$, maps B.M.O. continuously into $\Lambda_{\alpha}\left(R^{2}\right)$. Let us recall that when $0<$ $\alpha \leq 1$ we have (see [21])

$$
\Lambda_{\alpha}\left(R^{2}\right):\|f\|_{\Lambda_{\alpha}}=\|f\|_{L^{\infty}}+\sup _{x y} \frac{|f(x)-f(y)|}{|x-y|^{\alpha}} .
$$

b) If R is a Calderon-Zygmund Singular Integral and $b \in B . M . O$., then we have the "commutator estimate":

$$
\|R(b f)-b R(f)\|_{L^{2}} \ll\|f\|_{L^{2}}\|b\|_{B M O} .
$$

It then follows that if R has an odd kernel and $f \in L^{2}$, then $f R(f)$ belong to the Hardy space \mathcal{H}^{1} and satisfies (see [5]):

$$
\left\|f R_{j} f\right\|_{\mathcal{H}} \ll\|f\|_{L^{2}}^{2} .
$$

We shall also make use of the following, calculus inequality (see [16]): If $s<0$ and $1<p<\infty$, then:

$$
\left\|J^{s}(f \cdot g)-f J^{s}(g)\right\|_{L^{p}} \ll\|\nabla f\|_{L^{\infty}}\left\|J^{s-1} g\right\|_{L^{p}}+\|g\|_{L^{\infty}}\left\|J^{s} f\right\|_{L^{p}} .
$$

This inequality follows from the estimate for the bilineal operators considered by R. Coifman and Y. Meyer [6] (Operateurs multilinearies (Ondelettets et Operateurs III), Theorem 1, p. 427): Define

$$
T(b, f)=\iint e^{i x(\xi+\eta)} p(\xi, \eta) \widehat{b}(\xi) \widehat{f}(\eta) d \xi d \eta
$$

where the symbol p satisfies

$$
\left|D_{\xi}^{\alpha} D_{\eta}^{\beta} p(\xi, \eta)\right| \ll(1+|\xi|+|\eta|)^{-|\alpha|-|\beta|}
$$

for $|\alpha|+|\beta| \leq 2 n+1, \xi, \eta \in R^{n}$. Then we have the estimate:

$$
\|T(b, f)\|_{L^{2}} \ll\|b\|_{L^{\infty}}\|f\|_{L^{2}} .
$$

In our case, where $n=2(2 n+1=5)$, it implies the following inequality:

$$
\left\|\Lambda^{s}\left(R(\theta) \cdot \nabla^{\perp} \theta\right)-R(\theta) \cdot \nabla^{\perp} \Lambda^{s} \theta\right\|_{L^{2}} \ll\left\|\Lambda^{s} \theta\right\|_{L^{2}} s u p_{|\alpha| \leq 5}\left\|R^{\alpha} \Lambda \theta\right\|_{L^{\infty}},
$$

where $\widehat{R^{\alpha}} f(\xi)=\frac{\xi^{\alpha}}{|\xi|^{\alpha \mid}} \widehat{f}(\xi)$ are higher Riesz transforms. Therefore

$$
\left\|\Lambda^{s}\left(R(\theta) \cdot \nabla^{\perp} \theta\right)-R(\theta) \cdot \nabla^{\perp} \Lambda^{s} \theta\right\|_{L^{2}} \ll\left\|\Lambda^{s} \theta\right\|_{L^{2}}\left(\|\theta\|_{L^{2}}+\left\|\Lambda^{2+\epsilon} \theta\right\|_{L^{2}}\right)
$$

for every $\epsilon>0$.
Theorem 3.1 (Local existence). Let $\alpha \geq 0$ and $\kappa>0$ be given and assume that $\theta_{0} \in$ $H^{m}, m+\frac{\alpha}{2}>2$. Then there exists a time $T=T\left(\kappa,\left\|\Lambda^{m} \theta_{0}\right\|_{L^{2}}\right)>0$ so that there is a unique solution to (1.1) in $C^{1}\left([0, T), H^{m}\right)$. Furthermore, when $\kappa=0$ the same conclusion holds for $m>2$, and in the critical case $\alpha=1(\kappa>0)$, we have local existence for all initial data θ_{0} such that $\left\|\Lambda \theta_{0}\right\|_{L^{4}}<\infty$.

Proof. If $\kappa>0$ we have:

$$
\begin{aligned}
\frac{1}{2} \frac{d}{d t}\left\|\Lambda^{m} \theta\right\|_{L^{2}}^{2} & \ll\left|\int \Lambda^{m} \theta\left\{\Lambda^{m}\left(R(\theta) \cdot \nabla^{\perp} \theta\right)-R(\theta) \cdot \nabla^{\perp} \Lambda^{m} \theta\right\}\right|-\kappa\left\|\Lambda^{m+\frac{\alpha}{2}} \theta_{0}\right\|_{L^{2}}^{2} \\
& \ll\left\|\Lambda^{m} \theta\right\|_{L^{2}}^{2}\left(\|\theta\|_{L^{2}}+\left\|\Lambda^{2+\epsilon} \theta\right\|_{L^{2}}\right)-\kappa\left\|\Lambda^{m+\frac{\alpha}{2}} \theta\right\|_{L^{2}}^{2}
\end{aligned}
$$

for every $\epsilon>0$. Taking $\epsilon=m+\frac{\alpha}{2}-2$ we get

$$
\frac{1}{2} \frac{d}{d t}\left\|\Lambda^{m} \theta\right\|_{L^{2}}^{2} \ll \frac{1}{\kappa}\left\|\Lambda^{m} \theta\right\|_{L^{2}}^{4}+\|\theta\|_{L^{2}}\left\|\Lambda^{m} \theta\right\|_{L^{2}}^{2}
$$

which yields the desired results.
In the case $\kappa=0, m>2$, we proceed in a similar manner:

$$
\begin{aligned}
\frac{1}{2} \frac{d}{d t}\left\|\Lambda^{m} \theta\right\|_{L^{2}}^{2} & =\int \Lambda^{m} \theta\left\{\Lambda^{m}\left(R(\theta) \cdot \nabla^{\perp} \theta\right)-R(\theta) \cdot \nabla^{\perp} \Lambda^{m} \theta\right\} \\
& \ll\left\|\Lambda^{m} \theta\right\|_{L^{2}}^{2}\left(\|\theta\|_{L^{2}}+\left\|\Lambda^{2+\epsilon} \theta\right\|_{L^{2}}\right) .
\end{aligned}
$$

Therefore taking $\epsilon=m-2>0$ one obtains:

$$
\frac{1}{2} \frac{d}{d t}\left\|\Lambda^{m} \theta\right\|_{L^{2}}^{2} \ll\left\|\Lambda^{m} \theta\right\|_{L^{2}}^{3}+\left\|\Lambda^{m} \theta\right\|_{L^{2}}^{2}\|\theta\|_{L^{2}}
$$

Finally if $\alpha=1, \kappa>0$, let us consider:

$$
\begin{aligned}
\frac{d}{d t} \sum_{j}\left\|\frac{\partial \theta}{\partial x_{j}}\right\|_{L^{4}}^{4} & =4 \sum_{j=1,2} \int\left(\frac{\partial \theta}{\partial x_{j}}\right)^{3} \frac{\partial}{\partial x_{j}}\left(R(\theta) \cdot \nabla^{\perp} \theta\right)-4 \kappa \sum_{j=1,2}\left\|\Lambda^{\frac{1}{2}}\left(\frac{\partial \theta}{\partial x_{j}}\right)^{2}\right\|_{L^{2}}^{2} \\
& \leq 4 \sum_{j=1,2} \int\left(\frac{\partial \theta}{\partial x_{j}}\right)^{3}\left(R\left(\frac{\partial \theta}{\partial x_{j}}\right) \cdot \nabla^{\perp} \theta\right)-C_{1} \kappa \sum_{j=1,2}\left\|\frac{\partial \theta}{\partial x_{j}}\right\|_{L^{8}}^{4} \\
& \leq C_{2} \sum_{j=1,2}\left\|\frac{\partial \theta}{\partial x_{j}}\right\|_{L^{5}}^{5}-C_{1} \kappa \sum_{j=1,2}\left\|\frac{\partial \theta}{\partial x_{j}}\right\|_{L^{8}}^{4},
\end{aligned}
$$

where C_{1}, C_{2} are some universal positive constants.
Since

$$
\left\|\frac{\partial \theta}{\partial x_{j}}\right\|_{L^{5}} \leq\left\|\frac{\partial \theta}{\partial x_{j}}\right\|_{L^{4}}^{\frac{3}{5}}\left\|\frac{\partial \theta}{\partial x_{j}}\right\|_{L^{8}}^{\frac{2}{5}}
$$

one obtains:

$$
\begin{aligned}
\frac{d}{d t} \sum_{j}\left\|\frac{\partial \theta}{\partial x_{j}}\right\|_{L^{4}}^{4} & \leq C_{2} \sum_{j}\left\|\frac{\partial \theta}{\partial x_{j}}\right\|_{L^{4}}^{3}\left\|\frac{\partial \theta}{\partial x_{j}}\right\|_{L^{8}}^{2}-C_{1} \kappa \sum_{j=1,2}\left\|\frac{\partial \theta}{\partial x_{j}}\right\|_{L^{8}}^{4} \\
& \leq \frac{C_{3}}{\kappa}\left(\left\|\frac{\partial \theta}{\partial x_{j}}\right\|_{L^{4}}^{4}\right)^{\frac{3}{2}}
\end{aligned}
$$

for some positive constant C_{3}. And from this estimate the results follow easily.
In the supercritical cases, $0 \leq \alpha \leq 1$, we have the following global existence results for small data.

Theorem 3.2. Let $\kappa>0,0 \leq \alpha \leq 1$, and assume that the initial data satisfies $\left\|\theta_{0}\right\|_{H^{m}} \leq$ $\frac{\kappa}{C}$ (where $m>2$ and $C=\bar{C}(m)<\infty$ is a fixed constant). Then there exists a unique solution to (1.1) which belongs to H^{m} for all time $t>0$.

Proof. We have

$$
\begin{aligned}
\frac{1}{2} \frac{d}{d t}\left(\|\theta\|_{L^{2}}^{2}+\left\|\Lambda^{m} \theta\right\|_{L^{2}}^{2}\right) & \leq-\kappa\left\|\Lambda^{\frac{\alpha}{2}} \theta\right\|_{L^{2}}^{2}+C\left(\|\theta\|_{L^{2}}\left\|\Lambda^{m} \theta\right\|_{L^{2}}^{2}+\left\|\Lambda^{m} \theta\right\|_{L^{2}}^{3}\right) \\
& -\kappa\left\|\Lambda^{m+\frac{\alpha}{2}} \theta\right\|_{L^{2}}^{2} .
\end{aligned}
$$

Since

$$
\left\|\Lambda^{m} \theta\right\|_{L^{2}}^{2} \leq\left\|\Lambda^{\frac{\alpha}{2}} \theta\right\|_{L^{2}}^{2}+\left\|\Lambda^{m+\frac{\alpha}{2}} \theta\right\|_{L^{2}}^{2}
$$

we obtain the inequality:

$$
\frac{1}{2} \frac{d}{d t}\left(\|\theta\|_{L^{2}}^{2}+\left\|\Lambda^{m} \theta\right\|_{L^{2}}^{2}\right) \ll\left\|\Lambda^{m} \theta\right\|_{L^{2}}^{2}\left(C\left(\|\theta\|_{L^{2}}^{2}+\left\|\Lambda^{m} \theta\right\|_{L^{2}}^{2}\right)^{\frac{1}{2}}-\kappa\right)
$$

for some fixed constant $C<\infty$, and the theorem follows.

In the critical case $\alpha=1, \kappa>0$, we have the following:
Theorem 3.3 (Global existence for small data). Let θ be a weak solution of (1.1) with an initial data $\theta_{0} \in H^{\frac{3}{2}}$ satisfying $\left\|\theta_{0}\right\|_{L^{\infty}} \leq \frac{\kappa}{C}$ (where $C<\infty$ is a fixed constant). Then $\theta \in C^{1}\left([0, \infty) ; H^{\frac{3}{2}}\right)$ is a classical solution.

Proof. Using Eq. (1.1) we have

$$
\frac{1}{2} \frac{d}{d t}\left\|\Lambda^{\frac{3}{2}} \theta\right\|_{L^{2}}^{2}=\int \Lambda^{\frac{3}{2}} \theta \Lambda^{\frac{3}{2}}\left(R(\theta) \cdot \nabla^{\perp} \theta\right)-\kappa\|\Delta \theta\|_{L^{2}}^{2} .
$$

Integration by parts gives us the following:

$$
\begin{array}{r}
\Lambda^{-1}\left(R(\theta) \cdot \nabla^{\perp} \theta\right)(x)=\tilde{c} \int \frac{R(\theta) \cdot \nabla^{\perp} \theta(y)}{|x-y|} d y \\
=C\left[R_{1}\left(\theta \cdot R_{2}(\theta)\right)-R_{2}\left(\theta \cdot R_{1}(\theta)\right)\right]
\end{array}
$$

for a suitable constant C. Therefore:

$$
\begin{aligned}
\frac{1}{2} \frac{d}{d t}\left\|\Lambda^{\frac{3}{2}} \theta\right\|_{L^{2}}^{2}= & \int \Lambda^{\frac{3}{2}} \theta \Lambda^{\frac{3}{2}}\left(R(\theta) \cdot \nabla^{\perp} \theta\right) d x-\kappa\|\Delta \theta\|_{L^{2}}^{2} \\
= & C \int \Delta \theta \Delta\left(R_{1}\left(\theta \cdot R_{2}(\theta)\right)-R_{2}\left(\theta \cdot R_{1}(\theta)\right)\right) d x-\kappa\|\Delta \theta\|_{L^{2}}^{2} \\
= & C \int \Delta \theta\left(R_{1}\left(\Delta \theta \cdot R_{2}(\theta)\right)-R_{2}\left(\Delta \theta \cdot R_{1}(\theta)\right)\right) d x \\
& +C \int \Delta \theta\left(R_{1}\left(\theta \cdot R_{2}(\Delta \theta)\right)-R_{2}\left(\theta \cdot R_{1}(\Delta \theta)\right)\right) d x \\
& +2 C \int \Delta \theta\left[R_{1}\left(\nabla \theta \cdot R_{2}(\nabla \theta)\right)-R_{2}\left(\nabla \theta \cdot R_{1}(\nabla \theta)\right)\right] d x-\kappa\|\Delta \theta\|_{L^{2}}^{2} \\
= & C\left[I_{1}+I_{2}+2 I_{3}\right]-\kappa\|\Delta \theta\|_{L^{2}}^{2} .
\end{aligned}
$$

Our estimate will follow from the following observations:

$$
\begin{aligned}
I_{2} & =-\int \theta\left[R_{1}(\Delta \theta) R_{2}(\Delta \theta)-R_{2}(\Delta \theta) R_{1}(\Delta \theta)\right]=0 \\
\left|I_{1}\right| & \leq\left|\int R_{1}(\Delta \theta) \Delta \theta R_{2}(\theta)\right|+\left|\int R_{2}(\Delta \theta) \Delta \theta R_{1}(\theta)\right| \\
& \ll \sum_{j}\left\|R_{j}(\Delta \theta) \Delta \theta\right\|_{\mathcal{H}}\|\theta\|_{B M O} \ll\|\Delta \theta\|_{L^{2}}^{2}\|\theta\|_{L^{\infty}} .
\end{aligned}
$$

This is because for each Riesz transform R_{j} and a given L^{2}-function f, the product $f R_{j} f$ is in Hardy's space \mathcal{H}^{1} and satisfies $\left\|f R_{j} f\right\|_{\mathcal{H}}{ }^{1} \ll\|f\|_{L^{2}}^{2}$. Therefore

$$
\left|\int \Delta \theta \cdot R_{j}(\Delta \theta) \cdot R_{m}(\theta) d x\right| \ll\|\Delta \theta\|_{L^{2}}^{2}\left\|R_{m}(\theta)\right\|_{B M O} \ll\|\Delta \theta\|_{L^{2}}^{2}\left\|\theta_{0}\right\|_{L^{\infty}} .
$$

Finally I_{3} is a sum of terms of the following form:

$$
\int R_{j}(\Delta \theta) \frac{\partial \theta}{\partial x_{k}} \frac{\partial}{\partial x_{l}} R_{m}(\theta) d x, \quad j, k, l, m=1,2
$$

Therefore we have the estimates:

$$
\left|\int R_{j}(\Delta \theta) \frac{\partial \theta}{\partial x_{k}} \frac{\partial}{\partial x_{l}} R_{m}(\theta) d x\right| \ll\|\Delta \theta\|_{L^{2}}\|\Lambda \theta\|_{L^{4}}^{2} .
$$

Integration by parts yields

$$
\begin{aligned}
\|\Lambda \theta\|_{L^{4}}^{4} & =\sum_{j} \int\left(\frac{\partial \theta}{\partial x_{j}}\right)^{4} d x \\
& =\left|\sum_{j} \int \theta \frac{\partial}{\partial x_{j}}\left(\left(\frac{\partial \theta}{\partial x_{j}}\right)^{3}\right) d x\right| \\
& =3\left|\sum_{j} \int \theta\left(\frac{\partial \theta}{\partial x_{j}}\right)^{2} \frac{\partial^{2} \theta}{\partial x_{j}^{2}} d x\right| \\
& \ll\left\|\theta_{0}\right\|_{L^{\infty}}\|\Lambda \theta\|_{L^{4}}^{2}\|\Delta \theta\|_{L^{2}}
\end{aligned}
$$

Thus,

$$
\|\Lambda \theta\|_{L^{4}}^{2} \ll\left\|\theta_{0}\right\|_{L^{\infty}}\|\Delta \theta\|_{L^{2}}
$$

that is

$$
\begin{equation*}
\frac{d}{d t}\left\|\Lambda^{\frac{3}{2}} \theta\right\|_{L^{2}}^{2} \leq\left(c\left\|\theta_{0}\right\|_{L^{\infty}}-\kappa\right)\|\Delta \theta\|_{L^{2}}^{2} \tag{3.7}
\end{equation*}
$$

for some universal constant c .
A well known approximation argument allows us to conclude the result: Let θ^{n} be the sequence of solutions to the following problems:

$$
\begin{gathered}
\theta_{t}^{n}+R\left(\theta^{n}\right) \cdot \nabla^{\perp} \theta^{n}=-\kappa \Lambda \theta^{n}+\frac{1}{n} \Delta \theta^{n}, \\
\theta_{0}^{n} \in C_{0}^{\infty}\left(R^{2}\right), \quad\left\|\theta_{0}-\theta_{0}^{n}\right\|_{L^{\infty}} \leq \frac{\kappa}{2^{n}}, \quad\left\|\theta_{0}-\theta_{0}^{n}\right\|_{H^{\frac{3}{2}}} \leq \frac{\kappa}{2^{n}} .
\end{gathered}
$$

Then $\left\|\Lambda^{\frac{3}{2}} \theta^{n}(\cdot, t)\right\|_{L^{2}}^{2}$ is a decreasing sequence on t, uniformly on n. A compacity argument, taking limits as $n \rightarrow \infty$, will give us the desired estimate for θ.

4. Decay of the L^{∞} Norm

Theorem 4.1. If θ and u are smooth functions on $R^{2} \times[0, T)\left(\right.$ or $\left.T^{2} \times[0, T)\right)$ satisfying $\theta_{t}+u \cdot \nabla \theta+\kappa \Lambda^{\alpha} \theta=0$ with $\kappa>0,0<\alpha \leq 2, \theta(\cdot, t) \in H^{s}\left(R^{2}\right), 0 \leq t<T$, (or $\left.H^{s}\left(T^{2}\right)\right)(s>1)$ and $\nabla \cdot u=0$, then

$$
\begin{equation*}
\|\theta(\cdot, t)\|_{L^{\infty}} \leq \frac{\left\|\theta_{0}\right\|_{L^{\infty}}}{\left(1+\alpha C t\left\|\theta_{0}\right\|_{L^{\infty}}^{\alpha}\right)^{\frac{1}{\alpha}}} \quad 0 \leq t<T \tag{4.8}
\end{equation*}
$$

where $\theta_{0}=\theta(\cdot, 0)$ and $C=C\left(\kappa, \theta_{0}\right)>0$. Furthermore, when $\alpha=0$ we have the exponential decay $\|\theta(\cdot, t)\|_{L^{\infty}} \leq\left\|\theta_{0}\right\|_{L^{\infty}} e^{-\kappa t}$.

Proof. The case $\alpha=0$ is straightforward. When $0<\alpha \leq 2$ let $g(t)=|\theta(\cdot, t)|_{L^{\infty}}$ for $0 \leq t<T$. By the maximum principle $g(t)$ is bounded, and since $\theta(\cdot, t) \in H^{s}, s>1$, it follows from the Riemann-Lebesgue lemma that $\theta(x, t)$ tends to 0 when $|x| \rightarrow \infty$. Therefore there always exists a point $x_{t} \in R^{2}$ where $|\theta|$ reaches its maximum, that is

$$
g(t)=\left|\theta\left(x_{t}, t\right)\right| .
$$

Assume that $\theta\left(x_{t}, t\right) \geq 0$ (for $\theta\left(x_{t}, t\right) \leq 0$ a similar argument will work), and let $h \geq 0$, then by the maximum principle

$$
0 \leq g(t)-g(t+h)=\theta\left(x_{t}, t\right)-\theta\left(x_{t+h}, t+h\right) \leq \theta\left(x_{t}, t\right)-\theta\left(x_{t}, t+h\right) \leq c \cdot h
$$

where $c=\sup _{0 \leq t<T}\left|\frac{\partial \theta}{\partial t}\right|$. Therefore $g(t)$ is a decreasing Lipschitz function and by H. Rademacher's theorem it is differentiable almost everywhere.

Let us consider t such that $g^{\prime}(t)$ exists. For each $h>0$ we take $x_{t+h} \in R^{2}$ such that

$$
g(t+h)=\theta\left(x_{t+h}, t+h\right)
$$

Then we can find a sequence $h_{n} \rightarrow 0$ such that $x_{t+h_{n}} \rightarrow \tilde{x}$ with $g(t)=\theta(\tilde{x}, t)$. (This follows by a compacity argument: let R be so that $|\theta(x, t)| \leq \frac{1}{2} g(t)$ if $|x| \geq R$ (observe that when $g(t)=0$ everything trivializes), then for h small enough it happens that $\left.\left|x_{t+h}\right| \leq 2 R\right)$.

We have:

$$
\begin{aligned}
g^{\prime}(t) & =\lim _{h_{n} \rightarrow 0} \frac{\theta\left(x_{t+h_{n}}, t+h_{n}\right)-\theta(\tilde{x}, t)}{h_{n}} \\
& =\lim _{h_{n} \rightarrow 0}\left[\frac{\theta\left(x_{t+h_{n}}, t+h_{n}\right)-\theta\left(x_{t+h_{n}}, t\right)}{h_{n}}+\frac{\theta\left(x_{t+h_{n}}, t\right)-\theta(\tilde{x}, t)}{h_{n}}\right] \\
& \leq \lim _{h_{n} \rightarrow 0} \frac{\partial \theta}{\partial t}\left(x_{t+h_{n}}, \tilde{t}\right)
\end{aligned}
$$

with $t \leq \tilde{t} \leq t+h_{n}$. Therefore, we get the following inequality:

$$
\frac{d\|\theta(\cdot, t)\|_{L^{\infty}}}{d t}=g^{\prime}(t) \leq \lim _{h_{n} \rightarrow 0} \frac{\partial \theta}{\partial t}\left(x_{t+h_{n}}, \tilde{t}\right)=\frac{\partial \theta}{\partial t}(\tilde{x}, t) .
$$

Equation (1.1) together with the fact that $\theta(\cdot, t)$ reaches its maximum at the point \tilde{x} implies the equality:

$$
\begin{aligned}
\frac{\partial \theta}{\partial t}(\tilde{x}, t)=-u \cdot \nabla \theta(\tilde{x}, t)- & \kappa(-\Delta)^{\frac{\alpha}{2}} \theta(\tilde{x}, t)=-\kappa(-\Delta)^{\frac{\alpha}{2}} \theta(\tilde{x}, t) \\
& =-\kappa \cdot P V \int \frac{[\theta(\tilde{x}, t)-\theta(y, t)]}{|x-y|^{2+\alpha}} d y
\end{aligned}
$$

Thus,

$$
\frac{d\|\theta(\cdot, t)\|_{L^{\infty}}}{d t} \leq-\kappa P V \int \frac{[\theta(\tilde{x}, t)-\theta(y, t)]}{|\tilde{x}-y|^{2+\alpha}} d y \leq 0 .
$$

We know that $\theta(\tilde{x}, t)-\theta(y, t) \geq 0$ for all $y \in R^{2}$. So

$$
I \equiv P V \int \frac{[\theta(\tilde{x}, t)-\theta(y, t)]}{|\tilde{x}-y|^{2+\alpha}} d y=\int_{\Omega}+\int_{R^{2} / \Omega} \geq \int_{\Omega}
$$

where $\Omega \equiv\{y:|\tilde{x}-y| \leq \delta\}$. We split $\Omega=\Omega_{1} \cup \Omega_{2}$

$$
y \in \Omega_{1} \quad \text { if } \quad \theta(\tilde{x}, t)-\theta(y, t) \geq \frac{\theta(\tilde{x}, t)}{2}
$$

and $y \in \Omega_{2}$ otherwise. Now

$$
I \geq \int_{\Omega} \geq \int_{\Omega_{1}}=\frac{\theta(\tilde{x}, t)}{2 \delta^{2+\alpha}} \operatorname{Area}\left(\Omega_{1}\right)
$$

On the other hand we have the energy estimate

$$
\begin{aligned}
E(0) & =\int_{R^{2}} \theta^{2}(x, 0) d x \geq \int_{R^{2}} \theta^{2}(x, t) d x \geq \int_{\Omega_{2}} \theta^{2}(x, t) d x \\
& \geq \frac{\theta^{2}(\tilde{x}, t)}{4} \operatorname{Area}\left(\Omega_{2}\right),
\end{aligned}
$$

therefore

$$
I \geq \frac{\theta(\tilde{x}, t)}{2 \delta^{2+\alpha}}\left(\operatorname{Area}(\Omega)-\operatorname{Area}\left(\Omega_{2}\right)\right) \geq \frac{\theta(\tilde{x}, t)}{2 \delta^{2+\alpha}}\left(\pi \delta^{2}-\frac{4 E(0)}{\theta^{2}(\tilde{x}, t)}\right)
$$

To finish let us take $\delta=\sqrt{\frac{4 E(0)}{\theta^{2}(\tilde{x}, t)}}$, to get

$$
\frac{d\|\theta(\cdot, t)\|_{L^{\infty}}}{d t} \leq-C^{2}(\kappa, E(0)) \cdot \theta^{1+\alpha}(\tilde{x}, t)=-C^{2}(\kappa, E(0)) \cdot\|\theta(\cdot, t)\|_{L^{\infty}}^{1+\alpha}
$$

which yields inequality (4.8).
Corollary 4.2. For solutions of the equation

$$
\theta_{t}+R(\theta) \cdot \nabla^{\perp} \theta=-\kappa \Lambda \theta+\epsilon \Delta \theta
$$

$\kappa>0, \epsilon>0$, where either $\theta_{0} \in H^{s}\left(R^{2}\right)\left(\right.$ or $\left.H^{s}\left(T^{2}\right)\right)$, $s>\frac{3}{2}$, or $\left\|\Lambda \theta_{0}\right\|_{L^{4}}<\infty$, we have:

$$
\|\theta(\cdot, t)\|_{L^{\infty}} \leq \frac{\left\|\theta_{0}\right\|_{L^{\infty}}}{\left(1+C \kappa t \frac{\left\|\theta_{0}\right\|_{L^{\infty}}}{\left\|\theta_{0}\right\|_{L^{2}}}\right)}
$$

for some universal constant $C>0$.
Proof. It follows from the argument of Theorem 4.1 and the observation that $\Delta \theta\left(x_{t}, t\right)$ ≤ 0 at the points x_{t} where $\theta(\cdot, t)$ reaches its maximum value.

5. Viscosity Solutions

A weak solution of

$$
\theta_{t}+R(\theta) \cdot \nabla^{\perp} \theta=-\kappa \Lambda \theta
$$

will be called a viscosity solution with initial data $\theta_{0} \in H^{s}\left(R^{2}\right)\left(H^{s}\left(T^{2}\right)\right), s>1$, if it is the weak limit of a sequence of solutions, as $\epsilon \rightarrow 0$, of the problems

$$
\theta_{t}^{\epsilon}+R\left(\theta^{\epsilon}\right) \cdot \nabla^{\perp} \theta^{\epsilon}=-\kappa \Lambda \theta^{\epsilon}+\epsilon \Delta \theta^{\epsilon}
$$

with $\theta^{\epsilon}(x, 0)=\theta_{0}$. We know that each $\theta^{\epsilon}, \epsilon>0$, is classical and $\theta^{\epsilon}(\cdot, t) \in H^{s}$ for each $t>0$ satisfying

$$
\left\|\theta^{\epsilon}(\cdot, t)\right\|_{L^{\infty}} \leq \frac{\left\|\theta_{0}\right\|_{L^{\infty}}}{1+C t \frac{\kappa\left\|\theta_{0}\right\|_{L^{\infty}}}{\left\|\theta_{0}\right\|_{L^{2}}}}
$$

uniformly on $\epsilon>0$, for all time $t \geq 0$. Furthermore, for $s>\frac{3}{2}$ there is a time $T_{1}=$ $T_{1}\left(\kappa,\left\|\theta_{0}\right\|_{H^{s}}\right)$ such that $\left\|\Lambda^{s} \theta^{\epsilon}(t)\right\|_{L^{2}} \leq 2\left\|\Lambda^{s} \theta_{0}\right\|_{L^{2}}$ for $0 \leq t<T_{1}$.

Lemma 5.1. Let θ be a viscosity solution of $Q G$ with critical viscosity, i.e. $\alpha=1, \kappa>0$, then

$$
\int_{0}^{\infty}\left\|\Lambda^{\frac{1}{2}} \theta(\cdot, t)\right\|_{L^{2}}^{2} d t<\infty
$$

Proof. For each $\epsilon>0$ we have

$$
\begin{aligned}
\frac{d}{d t}\left\|\theta^{\epsilon}\right\|_{L^{2}}^{2} & =2 \int \theta^{\epsilon} R\left(\theta^{\epsilon}\right) \cdot \nabla^{\perp} \theta^{\epsilon}-2 \kappa \int \theta^{\epsilon} \Lambda \theta^{\epsilon}-2 \epsilon \int\left|\Lambda \theta^{\epsilon}\right|^{2} \\
& =-2 \kappa\left\|\Lambda^{\frac{1}{2}} \theta^{\epsilon}\right\|_{L^{2}}^{2}-2 \epsilon\left\|\Lambda \theta^{\epsilon}\right\|_{L^{2}}^{2} \leq-2 \kappa\left\|\Lambda^{\frac{1}{2}} \theta^{\epsilon}\right\|_{L^{2}}^{2}
\end{aligned}
$$

therefore

$$
\left\|\theta_{0}\right\|_{L^{2}}^{2}-\left\|\theta_{0}^{\epsilon}(\cdot, t)\right\|_{L^{2}}^{2} \geq 2 \kappa \int_{0}^{t}\left\|\Lambda^{\frac{1}{2}} \theta^{\epsilon}(\cdot, t)\right\|_{L^{2}}^{2} d t
$$

i.e.

$$
\int_{0}^{\infty}\left\|\Lambda^{\frac{1}{2}} \theta^{\epsilon}(\cdot, t)\right\|_{L^{2}}^{2} d t \leq \frac{1}{2 \kappa}\left\|\theta_{0}\right\|_{L^{2}}^{2}
$$

uniformly on $\epsilon>0$. Taking the limit we get our result.
We also have the following:
Corollary 5.2. For each $\delta>0, \epsilon \geq 0$ and $n=0,1,2, \ldots$ there exists a time $t_{n}^{\epsilon} \in$ $\left[n \delta^{-1},(n+1) \delta^{-1}\right)$ such that $\left\|\Lambda^{\frac{1}{2}} \theta^{\epsilon}\left(\cdot, t_{n}^{\epsilon}\right)\right\|_{L^{2}}^{2} \leq \frac{\delta}{2 \kappa}\left\|\theta_{0}\right\|_{L^{2}}^{2}$.

Next we assume that $\theta_{0} \in H^{\frac{3}{2}}$ and let us consider

$$
\begin{aligned}
\frac{d}{d t}\left\|\Lambda^{\frac{1}{2}} \theta^{\epsilon}\right\|_{L^{2}}^{2} & =2 \int \Lambda^{\frac{1}{2}} \theta^{\epsilon} \Lambda^{\frac{1}{2}}\left(R\left(\theta^{\epsilon}\right) \cdot \nabla^{\perp} \theta^{\epsilon}\right)-2 \kappa\left\|\Lambda \theta^{\epsilon}\right\|_{L^{2}}^{2}-2 \epsilon\left\|\Lambda^{\frac{3}{2}} \theta^{\epsilon}\right\|_{L^{2}}^{2} \\
& \leq\left|\int \Lambda \theta^{\epsilon} R\left(\theta^{\epsilon}\right) \cdot \nabla^{\perp} \theta^{\epsilon}\right|-2 \kappa\left\|\Lambda \theta^{\epsilon}\right\|_{L^{2}}^{2} \\
& \leq C \sum_{j}\left\|\Lambda \theta^{\epsilon}\right\|_{L^{2}}^{2}\left\|R_{j} \theta^{\epsilon}\right\|_{B M O}-2 \kappa\left\|\Lambda \theta^{\epsilon}\right\|_{L^{2}}^{2} \\
& \leq C\left\|\Lambda \theta^{\epsilon}\right\|_{L^{2}}^{2}\|\theta(\cdot, t)\|_{L^{\infty}}-2 \kappa\left\|\Lambda \theta^{\epsilon}\right\|_{L^{2}}^{2} \\
& =\left(C\left\|\theta^{\epsilon}(\cdot, t)\right\|_{L^{\infty}}-2 \kappa\right)\left\|\Lambda \theta^{\epsilon}\right\|_{L^{2}}^{2}
\end{aligned}
$$

for some universal constant C.
Because of the L^{∞}-decay we can find a time $T=T\left(\kappa, \theta_{0}\right)$ so that if $t \geq T$ then $C\left\|\theta^{\epsilon}(\cdot, t)\right\|_{L^{\infty}}<\kappa$ uniformly on $\epsilon>0$.

Choosing t_{n}^{ϵ} to be the smallest element of the time sequence in Corollary 5.2 which is bigger than T , we obtain:

$$
\left\|\Lambda^{\frac{1}{2}} \theta^{\epsilon}\left(\cdot, t_{n}^{\epsilon}\right)\right\|_{L^{2}}^{2} \geq \kappa \int_{t_{n}^{\epsilon}}^{\infty}\left\|\Lambda \theta^{\epsilon}(\cdot, t)\right\|_{L^{2}}^{2} d t \geq \kappa \int_{(n+1) \delta^{-1}}^{\infty}\left\|\Lambda \theta^{\epsilon}(\cdot, t)\right\|_{L^{2}}^{2} d t
$$

Therefore we have proved the following:
Lemma 5.3. For each $\delta>0$ there exists a time $T=T\left(\kappa, \theta_{0}\right)$ so that
a) $\int_{T}^{\infty}\left\|\Lambda \theta^{\epsilon}(\cdot, t)\right\|_{L^{2}}^{2} d t \leq \frac{\delta}{\kappa^{2}}\left\|\theta_{0}\right\|_{L^{2}}^{2}$.
b) $\left\|\Lambda^{\frac{1}{2}} \theta^{\epsilon}(\cdot, t)\right\|_{L^{2}}^{2}$ is a decreasing function of t, for $t \geq T$ and $\left\|\Lambda^{\frac{1}{2}} \theta^{\epsilon}(\cdot, T)\right\|_{L^{2}}^{2} \leq$ $\frac{\delta}{2 \kappa}\left\|\theta_{0}\right\|_{L^{2}}^{2}$.
c) There exists a time t_{n}^{ϵ} on each interval $[T+c n, T+c(n+1))$ so that (for an adequate c to be fixed later) $\left\|\Lambda \theta^{\epsilon}\left(\cdot, t_{n}^{\epsilon}\right)\right\|_{L^{2}}^{2} \leq \frac{\kappa}{c}$.
For $t \geq T$ we may consider

$$
\frac{d}{d t}\left\|\Lambda \theta^{\epsilon}\right\|_{L^{2}}^{2}=2 \int \Lambda \theta^{\epsilon} \Lambda\left(R\left(\theta^{\epsilon}\right) \cdot \nabla^{\perp} \theta^{\epsilon}\right)-2 \kappa\left\|\Lambda^{\frac{3}{2}} \theta^{\epsilon}\right\|_{L^{2}}^{2}-2 \epsilon\left\|\Delta \theta^{\epsilon}\right\|_{L^{2}}^{2}
$$

and observe that

$$
\begin{aligned}
\left|\int \Lambda \theta^{\epsilon} \Lambda\left(R\left(\theta^{\epsilon}\right) \cdot \nabla^{\perp} \theta^{\epsilon}\right)\right| & =\left|\int \Delta \theta^{\epsilon}\left(R\left(\theta^{\epsilon}\right) \cdot \nabla^{\perp} \theta^{\epsilon}\right)\right| \\
& =\left|\sum_{j} \int \frac{\partial \theta^{\epsilon}}{\partial x_{j}} R\left(\frac{\partial \theta^{\epsilon}}{\partial x_{j}}\right) \cdot \nabla^{\perp} \theta^{\epsilon}\right| \\
& \ll\left\|\Lambda \theta^{\epsilon}\right\|_{L^{3}}^{3} \leq\left\|\Lambda \theta^{\epsilon}\right\|_{L^{2}}\left\|\Lambda \theta^{\epsilon}\right\|_{L^{4}}^{2} \leq\left\|\Lambda \theta^{\epsilon}\right\|_{L^{2}}\left\|\Lambda^{\frac{3}{2}} \theta^{\epsilon}\right\|_{L^{4}}^{2}
\end{aligned}
$$

Therefore:

$$
\frac{d}{d t}\left\|\Lambda \theta^{\epsilon}\right\|_{L^{2}}^{2} \leq\left(C\left\|\Lambda \theta^{\epsilon}\right\|_{L^{2}}-\kappa\right)\left\|\Lambda^{\frac{3}{2}} \theta^{\epsilon}\right\|_{L^{2}}^{2}
$$

Let us observe now that our previous choice of T was made in such a way that $C\left\|\Lambda \theta^{\epsilon}\right\|_{L^{2}} \leq \frac{\kappa}{2}$. Then for $t \geq T$ we obtain the decrease of $\left\|\Lambda \theta^{\epsilon}\right\|_{L^{2}}$, together with the sequence of "uniformly spaced" times t_{n}^{ϵ}, where $\left\|\Lambda \theta^{\epsilon}\left(\cdot, t_{n}^{\epsilon}\right)\right\|_{L^{2}} \leq \frac{\kappa}{2 C}$.

We conclude the existence of other time $\tilde{T}=\tilde{T}\left(\kappa, \theta_{0}\right)$ so that

$$
\int_{\tilde{T}}^{\infty}\left\|\Lambda^{\frac{3}{2}} \theta^{\epsilon}\right\|_{L^{2}}^{2} d t \leq C(\kappa)
$$

uniformly on $\epsilon>0$.
Assuming now that $\theta_{0} \in H^{2}$ we get:

$$
\frac{d}{d t}\left\|\Lambda^{\frac{3}{2}} \theta^{\epsilon}\right\|_{L^{2}}^{2}=2 \int \Lambda^{\frac{3}{2}} \theta^{\epsilon} \Lambda^{\frac{3}{2}}\left(R\left(\theta^{\epsilon}\right) \cdot \nabla^{\perp} \theta^{\epsilon}\right)-2 \kappa\left\|\Lambda^{2} \theta^{\epsilon}\right\|_{L^{2}}^{2}-2 \epsilon\left\|\Lambda^{\frac{5}{2}} \theta^{\epsilon}\right\|_{L^{2}}^{2}
$$

We have:

$$
\begin{aligned}
& \int \Lambda^{\frac{3}{2}} \theta^{\epsilon} \Lambda^{\frac{3}{2}}\left(R\left(\theta^{\epsilon}\right) \cdot \nabla^{\perp} \theta^{\epsilon}\right) d x \\
&= C \int \Delta \theta^{\epsilon} \Delta\left(R_{1}\left(\theta^{\epsilon} \cdot R_{2}\left(\theta^{\epsilon}\right)\right)-R_{2}\left(\theta^{\epsilon} \cdot R_{1}\left(\theta^{\epsilon}\right)\right)\right) d x \\
&= C \int \Delta \theta^{\epsilon}\left(R_{1}\left(\theta^{\epsilon} \cdot R_{2}\left(\Delta \theta^{\epsilon}\right)\right)-R_{2}\left(\theta^{\epsilon} \cdot R_{1}\left(\Delta \theta^{\epsilon}\right)\right)\right) d x \\
&+C \int \Delta \theta^{\epsilon}\left(R_{1}\left(\Delta \theta^{\epsilon} \cdot R_{2}\left(\theta^{\epsilon}\right)\right)-R_{2}\left(\Delta \theta^{\epsilon} \cdot R_{1}\left(\theta^{\epsilon}\right)\right)\right) d x \\
&+2 C \int \Delta \theta^{\epsilon}\left[R_{1}\left(\nabla \theta^{\epsilon} \cdot R_{2}\left(\nabla \theta^{\epsilon}\right)\right)-R_{2}\left(\nabla \theta^{\epsilon} \cdot R_{1}\left(\nabla \theta^{\epsilon}\right)\right)\right] d x \\
&= C\left[I_{1}+I_{2}+2 I_{3}\right] .
\end{aligned}
$$

We have that $I_{1}=0$, and

$$
\begin{aligned}
\left|I_{2}\right| & =\left|\int R_{2}\left(\Delta \theta^{\epsilon}\right) \cdot \Delta \theta^{\epsilon} \cdot R_{1}\left(\theta^{\epsilon}\right)-\int R_{1}\left(\Delta \theta^{\epsilon}\right) \cdot \Delta \theta^{\epsilon} \cdot R_{2}\left(\theta^{\epsilon}\right)\right| \\
& \ll\left\|\Delta \theta^{\epsilon}\right\|_{L^{2}}^{2}\left\|\theta^{\epsilon}\right\|_{B M O} \leq\left\|\Delta \theta^{\epsilon}\right\|_{L^{2}}^{2}\left\|\theta^{\epsilon}\right\|_{L^{\infty}} .
\end{aligned}
$$

Again this is true because $f R_{j}(f)$ is in Hardy's space \mathcal{H}^{1} for each L^{2}-function f.
To estimate I_{3} let us observe the following:

$$
\left|I_{3}\right| \ll\left\|\Delta \theta^{\epsilon}\right\|_{L^{2}}\left\|\Lambda \theta^{\epsilon}\right\|_{L^{4}}^{2} .
$$

And we have

$$
\begin{aligned}
\left\|\Lambda \theta^{\epsilon}\right\|_{L^{4}}^{4} & \cong \sum_{j} \int\left(\frac{\partial \theta^{\epsilon}}{\partial x_{j}}\right)^{4} \leq 3 \sum_{j} \int \theta^{\epsilon}\left(\frac{\partial \theta^{\epsilon}}{\partial x_{j}}\right)^{2}\left|\frac{\partial^{2} \theta^{\epsilon}}{\partial x_{j}^{2}}\right| \\
& \ll\left\|\theta^{\epsilon}\right\|_{L^{\infty}}\left\|\Lambda \theta^{\epsilon}\right\|_{L^{4}}^{2}\left\|\Delta \theta^{\epsilon}\right\|_{L^{2}}
\end{aligned}
$$

which implies

$$
\left|I_{3}\right| \ll\left\|\Delta \theta^{\epsilon}\right\|_{L^{2}}^{2}\left\|\theta^{\epsilon}\right\|_{L^{\infty}} .
$$

Therefore we obtain

$$
\frac{d}{d t}\left\|\Lambda^{\frac{3}{2}} \theta^{\epsilon}\right\|_{L^{2}}^{2} \leq\left(C\left\|\theta^{\epsilon}\right\|_{L^{\infty}}-\kappa\right)\left\|\Delta \theta^{\epsilon}\right\|_{L^{2}}^{2} .
$$

In particular one can find a time $\bar{T}=\bar{T}\left(\kappa, \theta_{0}\right)$ so that for $t \geq \bar{T},\left\|\Lambda^{\frac{3}{2}} \theta^{\epsilon}(\cdot, t)\right\|_{L^{2}}$ is bounded by $\left\|\Lambda^{\frac{3}{2}} \theta_{0}^{\epsilon}\right\|_{L^{2}}$ and decreasing $\left(\left\|\theta^{\epsilon}(\cdot, t)\right\|_{L^{\infty}} \leq \frac{\kappa}{2 C}\right)$. We get

$$
\int_{\bar{T}}^{\infty}\left\|\Delta \theta^{\epsilon}\right\|_{L^{2}}^{2} d t<\infty
$$

uniformly on $\epsilon>0$. Then one can repeat this process now with Λ^{2} and $\Lambda^{\frac{5}{2}}$ and so on. Therefore we have completed the proof of the following:

Theorem 5.4. Let θ be a viscosity solution with initial data $\theta_{0} \in H^{s}, s>\frac{3}{2}$, of the equation $\theta_{t}+R(\theta) \cdot \nabla^{\perp} \theta=-\kappa \Lambda \theta(\kappa>0)$. Then there exist two times $T_{1} \leq T_{2}$ depending only upon κ and the initial data θ_{0} so that:

1) If $t \leq T_{1}$ then $\theta(\cdot, t) \in C^{1}\left(\left[0, T_{1}\right) ; H^{s}\right)$ is a classical solution of the equation satisfying

$$
\|\theta(\cdot, t)\|_{H^{s}} \ll\left\|\theta_{0}\right\|_{H^{s}}
$$

2) Ift $\geq T_{2}$ then $\theta(\cdot, t) \in C^{1}\left(\left[T_{2}, \infty\right) ; H^{s}\right)$, is also a classical solution and $\|\theta(\cdot, t)\|_{H^{s}}$ is monotonically decreasing in t, bounded by $\left\|\theta_{0}\right\|_{H^{s}}$, and satisfying

$$
\int_{T_{2}}^{\infty}\|\theta\|_{H^{s}}^{2} d t<\infty
$$

In particular this implies that

$$
\|\theta(\cdot, t)\|_{H^{s}}=O\left(t^{-\frac{1}{2}}\right) \quad t \rightarrow \infty
$$

References

1. Baroud, Ch. N., Plapp, B.B., She, Z.-S., Swinney, H.L.: Anomalous self-similarity in a turbulent rapidly rotating fluid. Phys. Rev. Lett. 88, 114501 (2002)
2. Berselli, L.: Vanishing viscosity limit and long-time behavior for 2D Quasi-geostrophic equations. Indiana Univ. Math. J. 51 (4), 905-930 (2002)
3. Chae, D.: The quasi-geostrophic equation in the Triebel-Lizorkin spaces. Nonlinearity 16 (2), 479495 (2003)
4. Chae, D., Lee, J.: Global Well-Posedness in the super critical dissipative Quasi-geostrophic equations. Commun. Math. Phys. 233, 297-311 (2003)
5. Coifman, R., Meyer, Y.: Au delà des operateurs pseudo-differentiels. Asterisqué 57, Paris: Société Mathmatique de France, 1978, pp. 154
6. Coifman, R., Meyer, Y.: Ondelettes et operateurs. III. (French) [Wavelets and operators. III] Operateurs multilinaires. [Multilinear operators] Actualits Mathmatiques. [Current Mathematical Topics] Paris: Hermann, 1991
7. Constantin, P.: Energy Spectrum of Quasi-geostrophic Turbulence. Phys. Rev. Lett. 89 (18), 1804501-4 (2002)
8. Constantin, P., Cordoba, D., Wu, J.: On the critical dissipative Quasi-geostrophic equation. Indiana Univ. Math. J. 50, 97-107 (2001)
9. Constantin, P., Majda, A., Tabak, E.: Formation of strong fronts in the 2-D quasi-geostrophic thermal active scalar. Nonlinearity 7, 1495-1533 (1994)
10. Constantin, P., Wu, J.: Behavior of solutions of 2D quasi-geostrophic equations. SIAM J. Math. Anal. 30, 937-948 (1999)
11. Cordoba, D.: Nonexistence of simple hyperbolic blow-up for the quasi-geostrophic equation. Ann. of Math. 148, 1135-1152 (1998)
12. Cordoba, A., Cordoba, D.: A pointwise estimate for fractionary derivatives with applications to P.D.E. Proc. Natl. Acad. Sci. USA 100 (26), 15316-15317 (2003)
13. Cordoba, D., Fefferman, C.: Growth of solutions for QG and 2D Euler equations. J. Am. Math. Soc. 15 (3), 665-670 (2002)
14. Dinaburg, E.I., Posvyanskii, V.S., Sinai, Ya.G.: On some approximations of the Quasi-geostrophic equation. Preprint.
15. Held, I., Pierrehumbert, R., Garner, S., Swanson, K.: Surface quasi-geostrophic dynamics. J. Fluid Mech. 282, 1-20 (1995)
16. Kato, T., Ponce, G.: Commutators estimates and the Euler and Navier-Stokes equations. Comm. Pure Appl. Math. 41, 891-907 (1988)
17. Pedlosky, J.: Geophysical Fluid Dynamics. New York: Springer-Verlag, 1987
18. Resnick, S.: Dynamical problems in nonlinear advective partial differential equations. Ph.D. thesis, University of Chicago, Chicago 1995
19. Schonbek, M.E., Schonbek, T.P.: Asymptotic behavior to dissipative quasi-geostrophic flows. SIAM J. Math. Anal. 35 (2), 357-375 (2003)
20. Stein, E.: Singular Integrals and Differentiability Properties of Functions. Princeton NJ: Princeton University Press, 1970
21. Stein, E., Zygmund, A.: Boundedness of translation invariant operators on Holder and L^{p}-spaces. Ann. of Math. 85, 337-349 (1967)
22. Wu, J.: Dissipative quasi-geostrophic equations with L^{p} data. Electronic J. Differ. Eq. 56, 1-13 (2001)
23. Wu, J.: The quasi-geostrophic equations and its two regularizations. Comm. Partial Differ. Eq. 27 (5-6), 1161-1181 (2002)
24. Wu, J.: Inviscid limits and regularity estimates for the solutions of the 2-D dissipative Quasigeostrophic equations. Indiana Univ. Math. J. 46 (4), 1113-1124 (1997)

Communicated by P. Constantin

[^0]: * Partially supported by BFM2002-02269 grant.
 ** Partially supported by BFM2002-02042 grant.

