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Value at risk (VaR) is an industrial standard for monitoring ®nancial risk in an investment portfolio.
It measures potential losses within a given con®dence interval. The implementation, calculation, and
interpretation of VaR contains a wealth of mathematical issues that are not fully understood. In this
paper we present a methodology for an approximation to value at risk that is based on the principal
components of a sensitivity-adjusted covariance matrix. The result is an explicit expression in terms of
portfolio deltas, gammas, and the variance/covariance matrix. It can be viewed as a nonlinear
extension of the linear model given by the delta-normal VaR or1 RiskMetrics (J.P. Morgan, 1996).
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1. INTRODUCTION

One of the standard measures of market risk is value-at-risk or VaR. It measures the

maximum loss that the portfolio can experience with a certain probability, typically

95%, over a certain time horizon such as one day; in this case, if VaR is given by x, one

would expect to lose at least x dollars once every 20 days. Formally, if P�t;S�t�� is a
random variable where S�t� represents a vector of risk factors S1�t�;S2�t�; . . . ;Sn�t�
over time t, then VaR will be given implicitly by the formula

ProbfP�0;S�0�� ÿP�t;S�t�� > VaRg � 0:05:

The e�cient calculation of VaR is one the contemporary challenges in the practice of

risk management. Approaches for VaR calculations can be classi®ed as historical,

Monte Carlo, or analytical. We refer the reader to Jorion (1997) for a detailed

discussion of VaR methodologies and a number of historical cases. A good overview

can also be found in Du�e and Pan (1997).

In this paper we are concerned with the analytical estimation of the losses that the

portfolio faces due to market risk, as a function of the future values of S. The
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RiskMetrics Technical Document (1996) presents the delta-normal VaR (dNVaR). In

the RiskMetrics de®nition, the risk factors are normally distributed with covariance

matrix V, and the portfolio is approximated by its linear component. The calculation

of the dNVaR reduces to the integral of a Gaussian over a half plane that one can

explicitly compute. In this case,

VaR � z0:95
��������������������
DT �V � D

p
:

Here z0:95 is the percentile of the univariate normal distribution, approximately 1.65,

and D is the delta of the portfolio with components given by

Di � @P
@Si

����
t�0
:

The good thing about dNVar is that the formula is simple to calculate. What is not so

good is that, in practice, portfolios tend to be well delta-hedged, which yields a

nonrealistic zero, or near zero, VaR.

In this paper, we re®ne this approximation to include quadratic terms given by the C
or Hessian of the portfolio:

P�t� ÿP�0� � H � t �
Xn

i�1
Di � n� 1

2
nT � C � n; n � Si�t� ÿ Si�0�� �:�1:1�

This approximation does not include the term t2 � @2H=@t2. In fact, n is a

multivariate random variable with covariance matrix proportional to t, so the

expectation of its norm will be proportional to
��
t
p

, and (1.1) thus contains all terms

of order up to t. For simplicity, we will from now on suppose that t � 1, which

is not unreasonable because the time-horizon for VaR is usually taken to be one

day.

The approximation (1.1) will fail when we deal with a portfolio simultaneously

hedged in its deltas and all gammas. This is a rare situation in practice for institutional

portfolios, although it is possible to ®nd such situations at the level of the trading

desk. We refer the reader to Taleb (1997) for a practical discussion of instrument

sensitivities.

Assuming a normal statistical distribution of n, one reduces the analysis of VaR to

computing the integral of a Gaussian over a quadric in a space of possibly very high

dimension, as was shown by Albanese and Seco (2001). In practice, risk factors are

usually lognormally distributed. Note that with a logarithmic change of variables we

can still assume a portfolio with normal risk factors; therefore the formula (1.1) will

still apply with the caveat that the deltas and gammas require an elementary

transformation given by the chain rule.

The purpose of this paper is to extend the dNVaR to quadratic approximations of

the portfolio as given by (1.1). In this case explicit simple formulas do not exist; we

mention, however, the result by Albanese and Seco (2001) that is an exact expression

for VaR in the Fourier transform space that provides geometrical insight as to the way

that VaR depends on portfolio sensitivities and the covariance structure. We depart

from exact expressions and present the result in the form of an asymptotic expansion

that works well in the tail of the distribution, where VaR lives. This yields

an approximate expression for the integrals involved in the calculation of VaR.
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The asymptotic formula is of elementary form but it carries the notational burden

resulting from a long sequence of elementary transformations; hence we defer the

introduction of the result until Theorem 4.3 below.

The basic idea, however, is easy to describe: The quadratic approximation given by

(1.1) reduces the VaR calculation to the integral of Gaussians over quadrics. In the tail

of the distribution, one can study them via asymptotic expansions using stationary

phase techniques. The result uses only information about portfolio sensitivities and the

variance/covariance matrix. In this paper we con®ne ourselves to the mathematical

derivation of such formulas which are also of independent interest, together with their

applications to VaR calculations. A systematic empirical study is postponed to later

articles. We also postpone the extension to nonquadratic portfolios as well as to non-

Gaussian risk factors, all of which can be dealt with by using similar, but more

advanced, mathematical considerations.

There is a considerable literature concerning quadratic perturbations of the linear

VaR. One of the most popular is the one that utilizes the Cornish±Fisher expansion for

the quantile function of a non-Gaussian variable. It starts with the expansion (1.1) but

instead of treating the resulting random variable in an exact manner, it approximates its

quantile function using the third moment of the P&L (Pro®t and Loss)2 function. This

approximation is useful for portfolios that do not di�er from linear by a large amount

but it tends to fail as one gets deep in the tail of the P&L (Pro®t and Loss) distribution

and hence is of limited applicability. The result, however, is very simple to state and use.

We refer the reader to Hull (1999) for a detailed account of this expansion.

Some other delta-gamma approximations are discussed in Dowd (1998) They include

the delta-gamma-normal approach in which the quadratic part of the approximation

(1.1) is treated as an independent normal variable; Wilson's delta-gamma approach,

which approximates the VaR by the solution of a suitable programming problem; and

Zangari's moment-®tting approach which approximates the true probability distribu-

tion of the left-hand side of (1.1) by matching its ®rst four moments (which can be

easily computed) to one of a suitably chosen four-parameter family of distributions (see

also section 6.3 of RiskMetrics 1996).

Quadratic approximations have also been the subject of a number of papers

dedicated to numerical computations for VaR. We refer the reader to Cardenas et al.

(1997) for a numerical method to compute quadratic VaR using fast Fourier transform

methods and to Du�e and Pan (1999) for its extension to jump-di�usion processes. In

a related area, we also mention the work by Studer and LuÈ thi (1997) who introduce the

concept of maximum loss, related to VaR, and provide an algorithm to solve for

quadratic portfolios.

The rest of our paper is organized as follows: Section 2, on portfolio volatility,

provides the Gaussian integral over a quadric starting from the quadratic

approximation (1.1) and the de®nition of VaR. Section 3 considers the reduction

to Gaussian integrals over hypersurfaces. Section 4 deals with ®nding the asymptotics

of the Gaussian integral by looking at the eigenvalues of the quadratic form. This

will complete the discussion in the case that the lowest eigenvalue of the quadratic

form is simple. In applications it could easily occur that the ®rst, say, k eigenvalues

are too close together. In Section 5 we present an alternative asymptotic series that

will be useful when there is a clustering of eigenvalues near the lowest one. Finally,

some of the more technical calculations needed for the proofs are collected in

Appendixes A and B. Appendix C presents a related derivation of upper and lower

bounds for VaR.
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2. PORTFOLIO VOLATILITY

The covariance matrix of the risk factors is our basic measure of market risk. When

dealing with a speci®c portfolio, we look at market risk in a biased manner because

the incidence of market moves can a�ect our portfolio in di�erent ways. We could

easily imagine a portfolio that is insensitive to the principal components of market

movements. Therefore, we need to search for a new volatility matrix adapted to our

own portfolio. The quadratic approximation introduced earlier, together with

elementary linear algebra, provides a covariance matrix adapted to our portfolio.

We will refer to it as portfolio volatility. This was introduced by Albanese and Seco

(2001), and we reproduce a sketch of their arguments for the convenience of the

reader.

The quadratic approximation in (1.1) translates into

ProbfH� D � n� 1
2nCnt � ÿVaRg � a;

where n is normally distributed with mean m and covariance matrix V. Hence,Z
H�n�D� 1

2
nCnt�ÿVaR

expfÿ1
2�nÿ m�Vÿ1�nÿ m�tg 1������������

det 2pV
p dn � a:

Using the Cholesky decomposition

V � Ht �H;

we change variables in the integral to

�nÿ m�Hÿ1 � y

to obtain Z
~H�y�~D� 1

2
y ~Cyt�ÿVaR

expfÿ1
2jyj2g 1

�2p�n=2 dy � a

with

~H � H� m � D� 1
2
mCmt;

~D � �D� mC�Ht

~C � HCHt:

Next, diagonalize ~C into its principal components

~C � P ~DPt;

and change variables to

y P � z

to obtain Z
~H�z�Pÿ1 ~D� 1

2z
~Dzt�ÿVaR

expfÿ1
2jzj2g dz

�2p�n=2 � a:
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We now complete the square

~H� z � Pÿ1~D� 1
2
z ~Dzt � T � 1

2
�z� v�D�z� v�t

for

v � ~DP ~Dÿ1

T � ~Hÿ 1
2vDvt:

Finally, we obtain Z
1
2z

~Dzt�ÿ�VaR� T �
expfÿ1

2
jzÿ vj2g dz

�2p�n=2 � a:

We think of v as the e�ective delta of the portfolio, and of D as the portfolio volatility.

The quantity T is a deterministic number that increases or decreases (depending on its

sign) our VaR.

As a result, we introduce the integral function

I�K� �
Z
1
2
z ~Dzt�ÿK

expfÿ1
2jzÿ vj2g dz

�2p�n=2 :

The solution to the implicit equation

I�K� � a �i.e:; a � 0:05�
will therefore give us the VaR of our portfolio as

VaR � K ÿ T :

The signature of ~D is of importance. For that reason we distinguish between the

negative and positive eigenspaces, and, given a vector x 2 Rn, we consider its

decomposition

x � x� � xÿ

in terms of its projections onto the positive and negative eigenspaces, respectively.

In this new form, we can rewrite

I�K� �
Z
1
2
�jx�j2 ÿ jxÿj2� �ÿK

expfÿ1
2hxÿ ~v; j ~Djÿ1�xÿ ~v�ig dx������������

det 2pV
p ;

where ~v � vjDj1=2.
Note also that there is a relationship between the signature of ~D and the sign of K,

neither of which need be positive or negative. Although VaR is always positive, recall

that K � VaR� T, and T can have either sign. Of all the possible combinations, a

positive T and positive de®nite ~D leads to the situation of a portfolio that can only earn

money and hence has a VaR of zero. Finally, note that in our setting the VaR is not

discounted to a present value. Any discount methodology can be applied to our

analysis in a trivial way.

In the sections to follow we will study the integral I, in the limit when K!1, which

is of interest when a! 0.
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3. ASYMPTOTICS FOR GAUSSIANS OVER QUADRICS

In this section we deal with the reduction to Gaussian integrals over hypersurfaces. We

will start with an integral of the form

I�R2� �
Z

Q�xÿv��ÿR2

eÿjxj
2=2 dx;�3:1�

where

Q�x� � 1
2 xDxt

is a quadratic form on Rn which may be degenerate (although in applications to ®nance

Q will typically be nondegenerate) and where v is a ®xed vector in Rn. Our results will

apply to the approximate calculation of VaR, although these expansions are of

independent interest. We refer the reader for example to Kotz, Johnson, and Boyd

(1995). We will rewrite I�R2� as a continuous sum of Laplace integrals, with large

parameter R, over a ®xed level set of Q; then we will derive the asymptotics of such

Laplace integrals over general smooth hypersurfaces, expressed in geometrical data,

such as the point of minimal distance to the origin and the principal curvatures at that

point.

The ®rst tool is provided by the following lemma.

LEMMA 3.1. The following formula holds in the sense of distributions:

eÿjxj
2=2 � �2p�n=2d0�x� � 1

2

Z 1

0

Dx
eÿjxj

2=2t

tn=2

 !
dt:

Proof. Recall that the Fourier transform of eÿjxj
2=2 is �2p�n=2eÿ2p2jnj2 . Now write

eÿ2p
2jnj2 � 1�

Z 1

0

d
dt

eÿ2p
2tjnj2 dt

� 1ÿ 2p2

Z 1

0

jnj2eÿ2p
2tjnj2 dt

and take the inverse Fourier transform of both sides. This proves the lemma. (

Using the lemma, and observing that 0 j2 fx : Q�xÿ v� < ÿR2g for su�ciently large

R, �R2 > ÿQ�v��, we can write I�R2� for those R as

I�R2� � 1

2

Z 1

0

dt
tn=2

Z
fQ�xÿv��ÿR2g

Dx�eÿjxj
2=2t� dx:�3:2�

Replacing x by Rx� v, we obtain

I�R2� � 1

2
Rnÿ2

Z 1

0

dt
tn=2

Z
fQ�x��ÿ1g

Dx�eÿjRx�vj2=2t� dx:�3:3�

The inner integral can now be converted into an integral over the boundary

fQ�x� � ÿ1g by the Gauss divergence theorem, and the resulting boundary integral

can be analyzed by classical techniques. We will ®rst do this when v � 0, in which case

the computations are a bit more transparent. In fact, we will carry out this part of the
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argument in a much more general setting, with an eye toward future applications that

are more general than just quadratic portfolios. See Quintallia (1997) for a detailed

explanation for the case v � 0.

LEMMA 3.2. Let D be a (not necessarily bounded) domain in Rn with smooth boundary

@D �M and suppose that the function jxj2 has a unique nondegenerate minimum

on @D. Let x0 2 @D be this point of minimal distance to 0. Then we have an asymptotic

expansion Z
D

D�exp�ÿkjxj2=2��dx � e�ÿkjx0j2=2�
X
m<N

cmk
ÿmÿ�nÿ3�=2 � O�kÿ�nÿ3�=2ÿN �;�3:4�

where k is a large positive parameter. The main term of the expansion has coe�cient

c0 � �2p��nÿ1�=2 � jx0j � det�I � jx0jK�ÿ1=2;
where K is the diagonal matrix whose diagonal entries are equal to the principal

curvatures of M � @D at x0.

REMARK. This lemma has an immediate extension to the case where there are

®nitely many points of minimal distance to 0 on @D, all nondegenerate: it su�ces to

add the di�erent asymptotic expansions for each point.

Proof. By the divergence theorem (whose application does not pose a problem for

unbounded D, due to the exponential decay of the integrand) we have thatZ
D

D�exp�ÿkjxj2=2�� dx �
Z

M

@

@n
�exp�ÿkjxj2=2�� dr�x�

� ÿk
Z

M
hx; n�x�i exp�ÿkjxj2=2� dr�x�;

�3:5�

where n�x� is the outward normal to M at the point x. It su�ces to establish the

asymptotic expansion (3.4) for the integral cuto� in an arbitrary neighborhood V of x0,

since the contribution of the complement of such a neighborhood will be of the order

exp ÿk�jx0j2=2� c�
� �

, for some c > 0. We will choose V �M to be su�ciently small to

have a parameterization z : U � Rnÿ1 ! V �M of the form

z � z�x1; . . . ; xnÿ1� � �x1; . . . ; xnÿ1; f �x1; . . . ; xnÿ1��:
Here we are assuming that the normal vector of M at x0 is �0; . . . ; 0; 1�. We may also

assume, without loss of generality, that z�0� � x0, so that j f�0�j � jx0j. Finally, we may

arrange that x1; . . . ; xnÿ1 correspond to the directions of the principal curvatures ofM at

the point x0, so that the extrinsic curvature of @D at x0 will be given by a diagonal matrix:

K�x0� � @2f
@xi@xj

� �
x�0
�

k1 0 � � � 0
0 k2 � � � 0

..

. ..
. . .

. ..
.

0 0 � � � knÿ1

0BBB@
1CCCA:

Let v 2 C1c be some smooth cuto� function supported in V, which is identically 1 in

some smaller neighborhood of x0. Write x � �x0; xn�. Then jxj2 � jx0j2 � f�x0�2 and
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dr�x� � ������������������������
1� jrf�x0�jp

dx0 on V �M. Since n�x� � �ÿrf; 1�=
��������������������
1� jrf j2

q
, it follows

that Z
M

v�x�hx; n�x�ieÿkjxj2=2 dr�x� �
Z
Rnÿ1

v x0; f �x0�� ��x0 � rf ÿ f �eÿkF �x0� dx0;

with F�x0� � �jx0j2 � j f�x0�j2�=2.
The lemma follows using classical results on asymptotic integrals (e.g., cf. Wong

1989), with

c0 � �2p�n=2jdet F 00�0�ÿ1=2jx0j:

In our case, the Hessian of F in x0 � 0 is equal to �Id� jx0jK�. This ®nishes the proof
of the lemma, taking into account the extra factor of k coming from (3.5). (

For the case v 6� 0 we need an analogue of Lemma 3.2 with exponent j ���kp x� vj2
instead of kjxj2. We state it in the special case that the hypersurface @D is given by the

equation Q�x� � ÿ1, which is all that is needed in the present paper.

LEMMA 3.3. Suppose that Q has eigenvalues ÿaÿ1 < ÿaÿ2 � � � � � ÿaÿnÿ < 0 �
a�1 � � � � � a�n� (so that aÿ1 is of multiplicity 1) and let v � �vÿ; v�� �
�vÿ;1; . . . ; vÿ;nÿ ; . . . ; v�;n�� be the coordinates of v in the corresponding eigenbasis. De®ne

a constant c � c�Q; v� by

c � 1

2

X
j�2
ÿ a�j

a�j � aÿ1
v2�;j ÿ v2ÿ;1 �

X
k�2

aÿk
aÿ1 ÿ aÿk

v2ÿ;k

 !
:�3:6�

Then we have an asymptotic expansionZ
fQ�x��ÿ1g

Dx eÿj
��
k
p

x�vj2=2
� �

dx ' eceÿk=2aÿ
1

X
j�0

cjk
ÿ�nÿ3�j�=2

with principal coe�cient

c0 � 2�2p�nÿ12 �aÿ1 �
n
2ÿ1Pn�

j�1�a�j � aÿ1 �ÿ1=2Pnÿ
k�2�aÿ1 ÿ aÿk �ÿ1=2:

The proof of this lemma, which is slightly more computational than that of Lemma 3.2,

is given in Appendix A.

4. PRINCIPAL COMPONENT VaR

In this section we will derive an asymptotic series for I�R2�, ®rst when v � 0 and then in

general.

For the case v � 0 all we have to do is apply Lemma 3.2 to the inner integral of

(3.2) and then integrate over t. We stress that the quadratic form Q may have

positive as well as negative eigenvalues. We have to introduce some notation. We

may assume, without loss of generality, that Q�x� is in diagonal form and we split

Rn as the orthogonal direct sum of the semipositive and strictly negative subspaces

of Q:

Rn � Rn� � Rnÿ ;
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where Q restricted to Rn� �Rnÿ� is positive semide®nite (respectively, negative de®nite).

We will write x � �y; z�; y 2 Rn� , and z 2 Rnÿ . If we denote by 0 � a�1 � � � � � a�n� the

positive eigenvalues of Q and by aÿ1 � � � � � aÿnÿ the absolute values of the strictly

negative ones, then

Q�y; z� �
Xn�
j�1

a�j y2j ÿ
Xnÿ
k�1

aÿk y2k

� Q��y� ÿ Qÿ�z�:
Note that we are just listing all eigenvalues in increasing order, starting with ÿaÿ1 . Note

also that Q� might be degenerate but Qÿ is not unless nÿ � 0. We will also assume that

ÿaÿ1 is di�erent from all the other eigenvalues. Before stating the main theorems we

need the following elementary lemma, which can be easily proved by integration by

parts.

LEMMA 4.1. Let a > 0 and R 2 R. Then we have for all N thatZ 1

0

tÿbeÿR2=2ta dt � eÿR2=2a
XNÿ1
j�0

cjR
ÿ2jÿ2 � O�R2N �

 !
;

with constants cj depending on a and b, and c0 � 2a.

THEOREM 4.2. Suppose that nÿ � 1 and that the multiplicity of the most negative

eigenvalue ÿaÿl is equal to one. Then

I�R2� ' eÿR2=2aÿ
1

X
m�0

CmRÿ1ÿ2m;�4:1�

with

C0 � 2�2p��nÿ1�=2 �aÿ1 �n=2
Pj�1�a�j � aÿ1 �1=2Pk�2�aÿ1 ÿ aÿk �1=2

:�4:2�

REMARKS. The other Cv's can, in principle, be easily read o� from the proof of

Theorem 4.2. However, in this paper we will mainly limit our computations to the

principal term. Explicit estimates for the remainder terms for the asymptotic series

above can also be easily obtained. These will in ®rst instance depend on a choice of

cuto� function (cf. the proof of Lemma 3.2 above). For an optimal estimate, one would

have to minimize over a suitable class of cuto�s. This is straightforward, but

technically a little cumbersome, and we omit the details. A similar remark applies to

Theorems 4.3 and 5.1 below. Note also that the rate of exponential decay of I�R� only
depends on the most negative eigenvalue of Q.

Proof. We ®rst determine the points of minimal norm on the surface

fx : Q�x� � ÿ1g and their principal curvatures. A point of minimal distance must be

a stationary point of the function x! jxj2 restricted to the surface. Hence for any such

point x � �y; z� we must have that, for some k 2 R,

k � �y1; . . . ; yn� ; z1; . . . ; znÿ� � �a�1 y1; . . . ; a�n�yn� ;ÿaÿ1 z1; . . . ;ÿaÿnÿznÿ�;
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the vector on the right being the direction of the normal to the surface. It follows

easily that either y � 0 or z � 0. The latter is not possible because Q�x� � ÿ1, so
all stationary points will have y � 0. Furthermore, it follows that when zk 6� 0,

then k � ÿaÿk . Since aÿ1 has multiplicity 1, a moment's thought shows that, letting

fe�j g and feÿj g denote the standard basis of Rn� and Rnÿ , respectively, the

stationary points will either be �0;�e1= ������
aÿ1
p � or will be of the form

zjej � � � � � zj�pej�p; j � 2 being such that aÿjÿ1 6� aÿj and p being the multiplicity

of aÿj . A point on the surface of this form will have distance squared 1=aÿj to 0,

and it follows that the points of minimal distance are �0;�e1= ������
aÿ1
p �. We calculate

the principal curvatures at these points as in the proof of Lemma 3.2, using the

local parameterizations

z1 � f �y; z0� � �
�������������������������������������������������������������������������������������������������������
�1ÿ aÿ2 z22 ÿ � � � ÿ aÿnÿz2nÿ � a�1 y21 � � � � � a�n�y2n��=aÿ1

q
;�4:3�

and ®nd for the principal curvatures in the y and z0 directions that

k�j � a�j
. ������

aÿ1
p � j � 1� and kÿm � ÿaÿm

. ������
aÿ1

p �m � 2�:

Next, we apply Lemma 3.2 for each ®xed t 2 �0; 1�, with k � R2=t and then integrate

over t. We ®nd that

I�R2� �
X
m<N

Am�R�R1ÿ2m � eN �R�R1ÿ2N ;

where

Am�R� � cm �
Z 1

0

tÿ3=2�meÿR2=2taÿ
1 dt;

with cm being given by Lemma 3.2, and with an error term eN�R� that can be estimated

by

jeN �R�j � CN �
Z 1

0

tÿ3=2�N eÿR2=2taÿ
1 dt:

Using Lemma 4.1 for both the Am's and the error term, we ®nd the stated asymptotic

expansion for I�R2�. The principal coe�cient can easily be calculated from the main

terms in Lemmas 3.2 and 4.1. This completes the proof of Theorem 4.2. (

For the case v 6� 0 we proceed as in the proof of Theorem 4.2 and apply Lemma 3.3

to (3.3). Since jRx� vj2 � j�R= ��
t
p �x� v=

��
t
p j2 we do not only have to put k � R2=t in

Lemma 3.3, but also have to replace v by v=
��
t
p

. The result is an expansion

I�R2� '
X

m

Am�R�R1ÿm

with

Am�R� � cm

Z 1

0

e�cÿR2=2aÿ
1
�=tt�ÿ3�m�=2 dt:

Treating these as in Lemma 4.1, and ®nally expanding �R2=2aÿ1 � ÿ c
ÿ �ÿ1

in decreasing

powers of 1=R2, we ®nd the asymptotic expansion for I�R2�. With the notations

introduced in Lemma 3.3, this result is as follows.
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THEOREM 4.3. Suppose that the smallest eigenvalue of Q has multiplicity 1. Then for

R2 > 2aÿ1 c, we have

I�R2� ' e
ÿ R2

2aÿ
1 ec �

X
m�0

CmRÿ1ÿm�4:5�

with

C0 � 2�2p��nÿ1�=2 �aÿ1 �n=2
Pn�

j�1�a�j � aÿ1 �1=2Pnÿ
k�2�aÿ1 ÿ aÿk �1=2

:�4:6�

REMARK. Note that the successive terms in the expansion now decrease with

inverse powers of R, instead of R2, as was the case in Theorem 4.2. This, together

with the overall factor of ec in front, constitutes the principal di�erence between (4.5)

and (4.1). It thus becomes relevant to know the coe�cient C1 of the second term in

the series (4.1) and (4.5). Elementary (but long) calculations show that these are equal

to, respectively,

Cv�0
1 � C0

Xnÿ
m�2

bÿm aÿm ÿ
Xn�
j�1

b�j a�j ÿ 2aÿ1

 !

and (cf. Appendix B)

Cv 6�0
1 � C0 � vÿ;1 �

������
aÿ1

p ÿ 1

2

Xn�
j�1
�b�;j� b2

�;jv
2
�;j�

@2w
@y2j
�0� �

Xnÿ
k�2
�bÿ � b2

ÿv2ÿ;k�
@2w
@z2k
�0�

 !( )
;

where the b's are de®ned by

b�;j �
aÿ1

a�j � aÿ1
;

bÿ;k �
aÿk

aÿ1 ÿ aÿk
:

5. UNIFORM VaR ESTIMATES

In this section we study an alternative asymptotic expansion when there is a clustering

of eigenvalues near the lowest one. If for example v � 0, it follows from the expression

for Cv�0
1 that

C1

C0

���� ���� � O jjQjj � max
j�1;m�2

aÿ1
aÿ1 ÿ aÿj

;
aÿ1

aÿ1 � a�j

 !
� 1

 ! !

� C � jjQjj � aÿ1
aÿ1 ÿ aÿ2

� 1

� �
;

where kQk denotes the norm of the symmetric matrix associated to the quadratic form

Q. One can make a similar observation if v 6� 0. Therefore one expects, assuming

jjQjj ' 1, that the main term will be a good approximation to I�R2�, with small relative

error
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I�R2� ÿ C0Rÿ1eÿR2=2aÿ
1

C0Rÿ1eÿR2=2aÿ
1

if R2�aÿ1 ÿ aÿ2 � � 1; or aÿ1 ÿ aÿ2 � Rÿ2. This will fail if aÿ1 and aÿ2 are too close

together, relative to the R2 which are in the range of the VaR associated with our

chosen con®dence level. In such cases approximating by the ®rst term of the asymptotic

expansion would not be a good idea. More generally, the ®rst k smallest eigenvalues

ÿaÿ1 ; . . . ;ÿaÿk might cluster, but there is a big gap aÿk ÿ aÿk�1. Situations such as this are

frequently encountered in multivariate linear statistics and such a splitting of the

eigenvalues of the covariance matrix into two subsets is the basis of dimensionality

reduction in principal component analysis. In this section we derive an asymptotic

expansion for I�R2� which is uniform in the ®rst kÿ 1 eigenvalue di�erences

aÿj�1 ÿ aÿj ; 1 � j � kÿ 1. This will be done using a geometric construction, which we

will ®rst illustrate in the three-dimensional case, assuming Q to be negative de®nite. We

thus suppose that n � 3 and that Q�x� � ÿ�a1x21 � a2x
2
2 � a3x

2
3�, with a1 ' a2 �

a3 > 0. We want to estimate the integral

I�R2� �
Z

a1x2
1
�a2x2

2
�a3x2

3
�R2

eÿjxj
2

dx:

Again, by Lemma 3.1 and Gauss' theorem, we ®nd that

I�R2� � Rn=2
Z 1

0

dt
tn=2�1

Z
R
hx; nR�x�ieÿR2jxj2=2t drR;�5:1�

where we have written R � fx : a1x
2
1 � a2x

2
2 � a3x

2
3 � 1g and where nR�x� and drR�x�

are, respectively, the outward normal and the surface measure on R at the point x. Let

W denote the x1 ÿ x2 plane. We let

R2 :� R \ W � f�x1; x2; 0� : a1x21 � a2x22 � 1g:
Since a1 ' a2; R2 is almost a circle. Fix f 2 R2 and let Vf be the plane spanned by f and
the x3 axis. Then one easily sees that R \ Vf is an ellipse in the Vf plane, with minor axis

jfj2 and major axis 1=a3. We now write the drR�x� integral in (5.1) as a double integral:Z
R2

Z
R\Vf

hx; nR�x�ieÿR2jxj2=2tf �x; f� drR\Vf�x� drr2
�f�;

where drR2
denotes the surface measure on R2 and f�x; f� is some appropriate Jacobian.

We next apply, for each f 2 R2, the asymptotic expansion of Theorem 4.2 to the inner

integral over R \ Vf. Since a3jfj2 � a1f
2
1 � a2f

2
2 � 1 and therefore 1=jfj2 � a3 for

f 2 R2, we are in good shape to use Theorem 4.2. Integrate this asymptotic expansion,

®rst over t, as in the proofs of3 Lemmas 3.1 and 3.2, and ®nally term by term over

f 2 Rk. The result will be an asymptotic expansion of I�R2� in decreasing powers of R,

with coe�cients that are expressed as integrals over R2.

This idea obviously generalizes to general n and Q and we limit ourselves here to

stating the ®nal result, referring to Appendix B for the technical details. First we have

to introduce some notation. As before, we suppose that

Q�x� �
Xn�
j�1

a�j y2j ÿ
Xnÿ
m�1

aÿm z2m ;
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where yj and zm are the coordinates with respect to the orthonormal basis e�1 ; . . . ; e�n�
and eÿ1 ; . . . ; eÿnÿ of Rn� and Rnÿ , respectively. We will write

R � fx 2 Rn : Q�x� � ÿ1g:
Fix a k; 1 � k � nÿ. As explained in the introduction to this section, in applications k

will be chosen such that aÿk ÿ aÿk�1 >> maxj<kfaÿj ÿ aÿj�1g. Let Wk � Span �eÿ1 ; . . . ; eÿk �
and de®ne

Rk � R \ Wk:

Let drRk
be the surface measure on Rk. For f 2 Rk, let vf be the orthogonal projection

of v onto the linear subspace Vf spanned by f and the orthogonal complement of Wk

and let

C�f� � C�f; v� � ÿ1
2jvÿ vfj2 � c�vf�;

with c�vf� � c�vf;QjVf� as in Theorem 4.3. More explicitly,

c�vf� � 1

2

X
j�1
ÿ jfj2a�j
1� jfj2a�j

v2�;j ÿ
hv; fi2
jfj2 �

X
m�k�1

jfj2aÿv
1ÿ jfj2aÿm

v2ÿ;m

 !
:

Then we will prove in Appendix B the following asymptotic expansion for I�R2�.

THEOREM 5.1. Suppose that aÿk�1 < aÿk � � � � � aÿ1 .Then forR
2 > maxf2Rk

2c�vf�=jfj2
we obtain

I�R2� '
X
m�0

Rkÿ2ÿm
Z

Rk

eÿR2jfj2=2eC�f�Cm�f� drRk �f�
� �

;

with the function C0 � C0�f� in the main term given by

C0�f� � �2p��nÿk�=2 1

jfj2
hnRk �f�; fi

Pn�
j�1�1� jfj2a�j �1=2Pnÿ

j�k�1�1ÿ jfj2aÿj �1=2�1=2
:

REMARKS.

(i) This expansion is uniform in aÿ1 ÿ aÿ2 ; . . . ; aÿkÿ1 ÿ aÿk . For example, if v � 0 then

jC1�f�=C0�f�j � C � jjQjj � jfj2
1ÿ jfj2aÿk�1

� 1

 !

� C � jjQjj2
aÿk ÿ aÿk�1

� jjQjj
 !

:

(ii) The asymptotic expansion of Theorem 5.1 interpolates smoothly between the cases

of an aÿ1 of multiplicity 1 and an aÿ1 of multiplicity k > 1. In fact, in the ®rst case

we again obtain Theorem 4.3 simply by expanding each of the Rk integrals above

using stationary phase; in the second case each of these integrals can be evaluated,

leading to an expansion as in Theorem 4.3, but multiplied by an extra factor of

Rnÿk.
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(iii) In practice one would ®rst try to use only the ®rst term of this expansion:

I�R2� ' �2p��nÿk�=2�Rkÿ2
Z

Rk

hnRk �f�; fieÿR2jfj2=2�C�f�

Pn�
j�11� �jfj2a�j �1=2Pnÿ

j�k�1�1ÿ jfj2aÿj �1=2
drRk �f�
jfj2 :

Note that, contrary to (3.1), the integral is over a compact set, which will be low-

dimensional if k is not too big, in which case it may be accurately evaluated

numerically. Also note that the integrand is completely explicit in terms of the risk and

portfolio data.

6. CONCLUSIONS

Under Gaussian assumptions for the underlying risk factors, the value at risk of a

portfolio can by approximated by explicit asymptotic expressions. The nature of the

approximation is twofold. On the one hand, the delta and gamma of the portfolio are

used to monitor the movements of the P&L function. This constitutes an extension of

the delta-normal methodology of RiskMetrics. On the other hand, we consider the

con®dence level to be close to 100% (usually 95% or 99%), and an asymptotic

expression is obtained that is valid in this limit. The methodology presented is fairly

general, and can be extended to nonquadratic approximations, as well as non±

Gaussian risk factors. Such extensions will be dealt with in future publications.

APPENDIX A: PROOF OF LEMMA 3.3

As in the proof of Lemma 3.2 we need to use the asymptotic expansion of the integral

J�k� �
Z

Rn
eÿkhAx;xi=2ÿ

��
k
p

w�x�g�x� dx:

For the proof of Lemma 3.2, this calculation was a straightforward application of the

results in Wong (1989). In the case under consideration, we need to establish the

following lemmas.

LEMMA A.1. Let w; g 2 C1�Rn� and k > 0. De®ne

a�x; k� � g
x���
k
p
� �

exp ÿ 1���
k
p
X
j;k

xjxk rjk
x���
k
p
� � !

with

w�x� � hx;rw�0�i �
X
j;k

xjxk rjk�x�:

We have that for all K � 0; 1; 2; . . . ;

a�x; k� �
X
j<K

Pj�x�
kj=2

� 1

kK=2
RK�x; k�;(A.1)

with Pj�x� a polynomial in x and RK�x; k� polynomially bounded in x, uniformly for k � 1.

Moreover,
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P0�x� � g�0�; P1�x� � hx;rg�0�i ÿ 1

2
g�0�

X
j;k

xjxk
@2w
@xj@xk

�0�:(A.2)

Proof. Expand g�x= ���
k
p � and the exponential in a Taylor series:

g
x���
k
p
� �

exp ÿ 1���
k
p
X
j;k

xjxk rjk
x���
k
p �

 ! !

�
X
jaj<K

@a
x g�0�
a!

xa

kjaj=2
� R1;K�x; k�

kK=2

0@ 1A � X1
j�0

�ÿ1�j
j!

�Pj;k xjxk rjk�x=
���
k
p ��j

kj=2

 !
:

Next, expand rjk�x=
���
k
p �,

X
j;k

xjxk rjk�x=
���
k
p
� �

X
2�jaj<K

xa@a
x w�0�
a!

kÿjaj=2�1 � kÿK=2�1R2;K�x; k�:

Here the remainders R1;K and R2;K are both of the formX
jaj�K

xaqa�x; k�

with qa uniformly bounded in k � 1 and polynomially bounded in x. Rearranging

terms, we obtain (A.1) and (A.2). (

LEMMA A.2. Let hAx; xi be a positive de®nite quadratic form on RN and let

w 2 C1�RN�, g 2 C1�RN�, with all @a
xg�x� polynomially bounded and w satisfying

w�0� � 0 and k@a
xwk1 � Ca, for all a. Let

J�k� �
Z
RN

eÿk hAx;xi=2� �ÿ
��
k
p

w�x�g�x� dx

Then

J�k� ' kÿN=2
X
j�0

Cjk
j=2;(A.3)

where, if we let u � rw�0�,

C0 � �2p�N=2g�0��det�A��ÿ1=2ehA
ÿ1u;ui=2:

REMARKS.

(i) Note that the asymptotic series decreases by powers of
���
k
p

instead of by powers of

k, as was the case when w � 0. It is therefore interesting to compute the second

coe�cient C1. If we let w00�0� � �@2w�0�=@xj@xk�j;k be the Hessian of w in 0, then we

®nd that

C1 � ÿ�2p�N=2 ehA
ÿ1u;ui=2

�det A�1=2

� hAÿ1u;rg�0�i � 1
2

g�0� tr�Aÿ1w00�0�� � hAÿ1w00�0�u;Aÿ1uiÿ �� 	
:
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(ii) The same type of expansion will hold if we replace the quadratic form hAx; xi by a

nonnegative function F � F�x� with nondegenerate minimum 0 in x � 0; this is a

well-known consequence of the Morse lemma. The principal coe�cient remains

the same, with A replaced by the Hessian F00�0�; the next coe�cient will of course

change.

Proof. The proof closely follows the one of the standard case: Replace the

integration variable x by x=
���
k
p

. Then, using the second-order Taylor expansion

w�x=
���
k
p
� � 1���

k
p hx;rw�0�i � 1

k

X
j;k

xjxk rjk
x���
k
p
� �

;

we obtain that

J�k� � kÿN=2
Z
RN

a�x; k�eÿhAx;xi=2ÿhx;rw�0�i dx;

with amplitude a�x; k� given by

a�x; k� � g
x���
k
p
� �

exp ÿ 1���
k
p
X
j;k

xjxk rjk
x���
k
p
� � !

:

Using Lemma A.1 we observe that a�x; k� has good asymptotic decay properties with

respect to k, while staying decent with respect to x. Substituting the asymptotic

expansion (A.1) into the integral for J�k�, we ®nd the asymptotic expansion (A.3),

with

Cj �
Z
RN

Pj�x�eÿhAx;xi=2ÿhx;rw�0�i dx;

from which one easily computes C0 and C1 (we omit the details). This proves Lemma

A.2. (

As in the proof of Lemma 3.2, it su�ces to establish Lemma 3.3 for the integral

cuto� in some small neighborhood of the points of minimal distance to the origin. We

next compute

@

@n
�eÿj

��
k
p

x�vj2=2� � ÿhkx�
���
k
p

v; n�x�ieÿ�kjxj2=2�
��
k
p
hx;vi�jvj2=2�:

Again by the divergence theorem and using a local parameterization xn � f�x0� of
the boundary, as in the proof of Lemma 3.2, we see that the integral we have to

study is

eÿjvj
2=2

Z
Rnÿ1

kg1�x0� �
���
k
p

g2�x0�
� �

eÿkF �x0�ÿ
��
k
p

w�x0� dx0;(A.4)

where

g1�x0� � f �x0� ÿ hx0;rf �x0�i
g2�x0� � vn ÿ hv0;rf �x0�i(A.5)

and
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F �x0� � 1
2 jx0j2 � f �x0�2
� �

w�x0� � hx0; v0i � vnf �x0�;
where v0 � �v1; . . . ; vnÿ1�. We will take the parameterizations (4.3) from the proof of

Theorem 4.2. Using the same notations as before, and with z1 playing the roÃ le of xn
above, we have that

F �y; z0� � 1

2

X
j�1

a�j � aÿ1
aÿ1

y2j �
X
k�2

aÿ1 ÿ aÿk
aÿ1

z2k �
1

aÿ1

 !
;(A.6)

which is a constant plus a quadratic form in �y; z0�, and writing v � �vÿ; v�� 2Rnÿ � Rn�

and vÿ � �vÿ;1; vÿ�, we have

w�x0� � hy; v�i � hz0; vÿi � vÿ;1������
aÿ1
p �

����������������������������������������Xn�
j�1

a�j y2j ÿ
Xnÿ
k�2

aÿk z2k

vuut :(A.7)

Applying Lemma A.2 to (A.4), with amplitudes and phases given by (A.5), (A.6),

and (A.7), one easily ®nds Lemma 3.3. An elementary but tedious calculation shows

that the second coe�cient equals

c1 � 2�2p��nÿ1�=2 � vÿ;1�aÿ1 �
n
2ÿ1

Pn�
j�1�a�j � aÿ1 �1=2Pnÿ

k�2�aÿ1 ÿ aÿk �1=2

� ������
aÿ1

p ÿ 1

2

Xn�
j�1
�b�;j � b2

�;jv
2
�;j�

@2w

@y2j
�0� �

Xnÿ
k�2
�bÿ � b2

ÿv2ÿ;k�
@2w

@z2k
�0�

 !( )
;

where the b's are the inverses of the eigenvalues of the quadratic form in (A.3):

b�;j �
aÿ1

a�j � aÿ1
; bÿ;k �

aÿk
aÿ1 ÿ aÿk

Note that to obtain Lemma 3.3 one has to sum four asymptotic series: one for g1, one
for g2, and for each of these one according to the choice of sign in (4.3). Changing the

sign leaves F unchanged and has the e�ect of replacing vÿ;1 by ÿvÿ;1 in the expression

(A.7) for w. Then both u � rw�0� and w00�0� remain the same, as do the ®rst two terms

in the expansion (A.3), since the value in 0 of the amplitudes (A.5) and of their ®rst

derivatives will not change either. The net e�ect is an overall factor of 2.

APPENDIX B: PROOF OF THE UNIFORM VaR EXPANSION

Recall that Wk � Span �eÿ1 ; . . . ; eÿk �. For z 2 Rnÿ we will write z � �z0; z00� with

z0 � �z1; . . . ; zk� 2Wk � Rk and z00 � �zk�1; . . . ; znÿ� 2 Rÿk�nÿ in the orthogonal com-

plement of Wk. Also recall that Vf is the subspace spanned by a ®xed f 2 Rk � R \Wk

and the orthogonal complement of Wk. An orthonormal basis of Vf is given by

f=jfj; eÿk�1; . . . ; eÿnÿ ; e
�
1 ; . . . ; e�n� :(A.8)

If we denote the coordinates with respect to this basis by �s; zk�1; . . . ; znÿ ; y1; . . . ; yn��,
then R \ Vf will be given by the equation
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ÿ s2

jfj2 ÿ
Xnÿ

j�k�1
aÿj z2j �

Xn�
j�1

a�j y2j � 1:(A.9)

If f 2 Rk, then it is easily seen that

Tf�Rk� � Tf�R� \ Wk ;

where Tf denotes the tangent space at f. Likewise, using (A.9), one sees that

Tf�R \ Vf� � Tf�R� \ Span �eÿk�1; . . . ; eÿnÿ ; e
�
1 ; . . . ; e�n� �:

In particular, we have an orthogonal decomposition

Tf�R� � Tf�Rk� � Tf�R \ Vf�:
As a consequence of this, if drR�f�, drRk

�f�, and drR\Vf�f� denote the surface measures

on R, Rk, and R \ Vf, respectively, then for f 2 Rk we have

drR�f� � drRk �f� 
 drR\Vf�f�:(A.10)

We can consider R n R \ �f0g �Wk� as a ®berbundle over Rk, with projection p given by

p�x� � pW �x�=Q pW �x�� �;
pW being the orthogonal projection onto W �Wk. Equivalently, if �y; z� 2 R, then
p�y; z� � z0=Qÿ�z0�. Note that we are using here the nondegeneracy of Qÿ. The ®ber

over f 2 Rk is R \ Vf n fz0 � 0g, so that

R n fz0 � 0g � [f2Rk ffg � R \ Vf n fz0 � 0g� �:
We can de®ne a measure on R n fz0 � 0g by ®rst integrating along each ®ber, with

respect to drR\Vf , and subsequently integrating along Rk, with respect to drRk
. The

resulting measure will be absolutely continuous with respect to the surface measure drR

and there will exist a C1-function f on R n fz0 � 0g such that, for any

u 2 Cc�R n fz0 � 0g�,Z
R

u�x� drR�x� �
Z

Rk

Z
R\Vf

u�x�f �x� drR\Vf�x�
 !

drRk �f�:

It follows from (A.10) that f�f� � 1 for f 2 Rk.

We will apply this formula to our integral I�R2� given by (1.1). The starting point is

again formula (3.3), with the inner integral, as before, converted to a boundary

integral:

I�R2� � 1

2
Rnÿ2

Z 1

0

dt
tn=2

Z
R

hnR�x�;R2x� Rvi
t

eÿjRx�vj2=2t drR�x�:

Recalling that vf is the orthogonal projection of v onto Vf and writing v � vf� �vÿ vf�
we have for any x 2 Vf that jRx� vj2 � jRx� vfj2 � jvÿ vfj2. Hence4

I�R2� � 1

2
Rnÿ2

Z 1

0

dt
tn=2

Z
Rk

drRk �f�eÿjvÿvfj2=2t

Z
x2R\Vf

hnR�x�;R2x� Rvi
t

eÿjRx�vfj2=2tf �x�drR\Vf�x�:
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Treating the integral over R \ Vf as in (the proof of) Lemma 3.3, with k � R2=t and
v replaced by vf=

��
t
p

, we ®nd thatZ
R\Vf

hnR�x�;R2x� Rvi
t

eÿjRx�vfj2=2tf �x�drR\Vf�x�

' ec�vf�=teÿR2jfj2=2t R��
t
p
� �ÿnÿkX

j�0
c0;j�f� R��

t
p
� �2ÿj

� c1;j�f���
t
p R��

t
p
� �1ÿj

;

where the c0;j come from the term with hnR�x�; xi and the c1;j from the one with

hvf; nR�x�i. Here we used that in the orthonormal basis (A.8), R \ Vf is given by the

equation (A.9). Also note that 1=jfj2 > aÿk�1 � � � � � aÿnÿ , since

aÿk�1jfj2 � aÿk�1�f21 � � � � � f2k� < aÿ1 f21 � � � � � aÿk f2k � ÿQ�f� � 1:

Next, we integrate over t and use Lemma 4.1 again to obtain an expansion in negative

powers of R. Remembering that C�f� � c�vf� ÿ jvÿ vfj2=2 and integrating the resulting

asymptotic expansion over f 2 Rk we obtain Theorem 5.1, apart from the formula for

C0�f�. But using that f�f� � 1 on Rk one shows easily, as in the proof of Lemma 3.3,

that

c0;0 � 2�2p��nÿk�=2hnR�f�; fi � �Pn�
j�1�1� jfj2a�j �1=2Pnÿ

j�k�1�1ÿ jfj2aÿj �1=2�ÿ1:

One easily checks that hnR�f�; fi � hnRk
�f�; fi. Finally, Lemma 4.1 introduces an extra

factor of jfj2 in the denominator. This proves Theorem 5.1.

APPENDIX C: UPPER AND LOWER BOUNDS

We ®rst make an elementary remark on the implication of lower and upper bounds for

VaR estimates. The point is that a lower bound for the probability distribution

function I�V� � Prob�P�t;S�t�� ÿP�0;S�0� < ÿV2� of the P&L function will lead to a

lower bound for the VaR, and an upper bound will lead to an upper bound. In fact, let

I� � I��V� and I� � I��V� be an upper and a lower bound, respectively, for I:

I��V � � I�V � � I��V �;
I�V� will be a decreasing function of V but this will not be required for either I� or I�.
Pick some level of risk a 2 �0; 1� and let V��a�;V��a� be such that

I��V��a�� � I��V ��a�� � a;

these equations presumably being easier to solve than the one we are really interested

in:

I�V �a�� � a:

Then a � I��V��a�� � I�V��a�� and I�V��a�� � a, so that, assuming strict monotonicity

of I�V�,
V��a� � V �a� � V ��a�:

If I�V� is not strictly monotonous, the de®ning equation for V�a�, the VaR at risk level

a above, need not have a unique solution, and one should take the largest, or the sup,
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of all solutions as the value at risk. In that case, the lower bound V��a� for V�a� will
still be valid, but the upper bound will not necessarily hold. However, such a situation

will rarely present itself in practice.

We now turn to our quadratic portfolio and assume that our I�V� is given by (3.1),

with V � R2. A lower bound can easily be obtained from the following recently

established inequalities for the error function (cf. Ruskai and Werner (2000)5 Thm. 20):

gp�x�eÿx2=2 � E�x� :�
Z 1

x
eÿs2=2 ds � g4�x�eÿx2=2; x 2 R;

where

gk�x� � k

�k ÿ 1�x� ���������������
x2 � 2k
p

and where these inequalities are optimal in the class of functions gk considered (our gk
di�er slightly from the ones of Ruskai and Werner, who gave their estimates for the

functions V0�x� :� 2 exp�x2� R1x exp�ÿu2�du � exp�x2�E� ���2p x�= ���
2
p

).

This estimate can be used to obtain a very rough lower bound for (3.1) in case Q is

negative semide®nite (so that x � z in the notations of Section 4) and v � 0; replace the

domain of integration by the smaller one fx : x21 � R2=aÿ1 g and do the x2; . . . ; xn
integrations. Then I�R2� � 2�2p��nÿ1�=2E�R= ������

aÿ1
p �, so that the above bound gives

I�R2� � 2�2p��nÿ1�=2 p
������
aÿ1
p

eÿR2=2aÿ
1

�pÿ 1�R� ���������������������
R2 � 2paÿ1

p :

Of course, this lower bound is obtained by throwing away all the information

contained in Q except its lowest eigenvalue, and it will be worse than the ®rst term (4.2)

of the asymptotic (4.1) if the product Pk�2�1ÿ �aÿk =aÿ1 �� becomes too small (details can

be easily worked out) but it might be useful if this product is close to 1 (corresponding

to a large gap between aÿ1 and the other eigenvalues of Q). Note incidentally that it will

always be better than the trivial lower bound 2�2p��nÿ1�=2 ������
aÿ1
p

Rÿ1 exp�ÿR2=2aÿ1 � for
the ®rst term of the expansion (4.1); of course, this does not imply anything

mathematically speaking, since we are ignoring error terms in (4.1).

Extensions to nonde®nite Q and nonzero v are possible, but we will not enter into

that here.

Upper bounds are somewhat more involved. The idea is to estimate (3.1) by an

integral over a bigger domain, which can be written as a disjoint union of pieces on

each of which we can use the Ruskai and Werner estimates for E�x�. For example,

letting 0 � s � 1 we have that

fx : Q�x� � ÿR2g � fx : aÿ1 x21 � sR2g[�
x � �x1; x0� : aÿ1 x21 � sR2;

X
k�2

aÿk x2k � �1ÿ s�R2

�
(recall that we assume Q to be negative semide®nite) where the union on the right is a

disjoint one. The integral over the ®rst set on the right can be estimated as before, using

now the upper bound for E�x� involving g4�x�. As to the integral over the other part,

we can estimate it very roughly by an integral over fx : x21 � sR2=aÿ1 ; kx0k1 � �1ÿ s�
R2=Nmax�aÿ2 ; . . . ; aÿn �g �jj � jj1 being the l1 norm on Rnÿ1), which can be written as
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the disjoint union of 2nÿ1 unbounded rectangles in Rn, on each of which one can apply

the Ruskai and Werner estimates. (For example, one can estimateZ
x2
1
�sR2=aÿ

1

eÿx2
1
=2 dx1 �

������
2p
p

ÿ 2E R
p

s=aÿ1
ÿ � � ������

2p
p

ÿ 2eÿs2R2=2aÿ
1 gp R

p
s=aÿ1

ÿ �
;

and so forth). The ®nal upper bound for I�R2� is easy to work out, but complicated to

write down. As a ®nal step, one might optimize over 0 < s < 1.

Finally, we remark that a much better result would be obtained by proving a Ruskai

and Werner type estimate for

ex2=2
Z 1

x
snÿ1eÿs2=2 ds;

in particular for large n.
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