A pointwise estimate for fractionary derivatives with applications to partial differential equations

Antonio Córdoba*† and Diego Córdoba ${ }^{\ddagger \S}$
*Universidad Autónoma de Madrid, Carretera de Colmenar Viejo, Km. 15, 28049 Madrid, Spain; and ${ }^{\ddagger}$ Consejo Superior de Investigaciones Científicas, c/Serrano 123, 28006 Madrid, Spain
Communicated by Charles L. Fefferman, Princeton University, Princeton, NJ, October 8, 2003 (received for review July 15, 2003)

This article emphasizes the role played by a remarkable pointwise inequality satisfied by fractionary derivatives in order to obtain maximum principles and L^{p}-decay of solutions of several interesting partial differential equations. In particular, there are applications to quasigeostrophic flows, in two space variables with critical viscosity, that model the Eckman pumping [see Baroud, Ch. N., Plapp, B. B., She, Z. S. \& Swinney, H. L. (2002) Phys. Rev. Lett. 88, 114501 and Constantin, P. (2002) Phys. Rev. Lett. 89, 184501].

The decay in time of the spatial L^{p}-norm, $1 \leq p \leq \infty$, is an important objective in order to understand the behavior of solutions of partial differential equations. The purpose of this article is to analyze the following pointwise inequality, $2 \theta \Lambda^{\alpha} \theta(x) \geq \Lambda^{\alpha} \theta^{2}(x)$, valid for fractionary derivatives in $R^{n}, n \geq$ $1,0 \leq \alpha \leq 2$, together with its applications to several maximum principle and decay estimates. In particular, it is applied to the quasigeostrophic equation with critical viscosity

$$
\theta_{t}+R(\theta) \cdot \nabla^{\perp} \theta=-\kappa \Lambda \theta,
$$

where $\nabla^{\perp} \theta=\left(-\partial \theta / \partial x_{2}, \partial \theta / \partial x_{1}\right), R(\theta)=\left(R_{1}(\theta), R_{2}(\theta)\right)$, and R_{j} denotes the $j^{t h}$-Riesz transform in R^{2} (see refs. 1-6).

Given a weak solution $\theta(x, t)$ (obtained as limit of solutions of the equations

$$
\theta_{t}^{\varepsilon}+R\left(\theta^{\varepsilon}\right) \cdot \nabla^{\perp} \theta^{\varepsilon}=-\kappa \Lambda \theta^{\varepsilon}+\varepsilon \Delta \theta^{\varepsilon}
$$

with the same initial data θ_{0}, when the artificial viscosity ε tends to zero), it is proved that $\|\theta(\cdot, t)\|_{L^{p}}, 1 \leq p \leq \infty$, decays and, furthermore, there is a time $T=T\left(\kappa, \theta_{0}\right)<\infty$ after which θ becomes regular.

In this article, we describe the main ideas of the proofs, together with some of the heuristic arguments. The complete details will appear elsewhere.

Pointwise Estimate

The nonlocal operator $\Lambda=(-\Delta)^{1 / 2}$ is defined with the Fourier transform by $\widehat{\Lambda} f(\xi)=|\xi| \hat{f}$, where \hat{f} is the Fourier transform of f.

Theorem 1. Let $0 \leq \alpha \leq 2, x \in R^{n}, T^{n}(n=1,2,3 \ldots)$ and $\theta \in$ $C_{0}^{2}\left(R^{n}\right), C^{2}\left(T^{n}\right)$. Then the following inequality holds:

$$
\begin{equation*}
2 \theta \Lambda^{\alpha} \theta(x) \geq \Lambda^{\alpha} \theta^{2}(x) \tag{1}
\end{equation*}
$$

Proof: It is easy to check that the inequality is satisfied when $\alpha=0$ and $\alpha=2$. For $0<\alpha<2$ and $n \geq 2$, there are the formulas

$$
\begin{gather*}
\Lambda^{\alpha} \theta(x)=C_{\alpha} P V \int \frac{[\theta(x)-\theta(y)]}{|x-y|^{n+\alpha}} d y \quad x \in R^{n} \tag{2}\\
\Lambda^{\alpha} \theta(x)=\tilde{C}_{\alpha} \sum_{\nu \in Z^{n}} P V \int_{T^{n}} \frac{[\theta(x)-\theta(y)]}{|x-y-\nu|^{n+\alpha}} d y \quad x \in T^{n}, \tag{3}
\end{gather*}
$$

where $C_{\alpha}, \tilde{C}_{\alpha}>0$.
With Eq. 2 (and Eq. $\mathbf{3}$ in the periodic case) inequality Eq. $\mathbf{1}$ is obtained easily:

$$
\begin{aligned}
\theta \Lambda^{\alpha} \theta(x)= & C_{\alpha} P V \int \frac{\left[\theta(x)^{2}-\theta(y) \theta(x)\right]}{|x-y|^{n+\alpha}} d y \\
= & \frac{1}{2} C_{\alpha} P V \int \frac{[\theta(y)-\theta(x)]^{2}}{|x-y|^{n+\alpha}} d y \\
& +\frac{1}{2} C_{\alpha} P V \int \frac{\left[\theta^{2}(x)-\theta^{2}(y)\right]}{|x-y|^{n+\alpha}} d y \\
\geq & \frac{1}{2} \Lambda^{\alpha} \theta^{2}(x) .
\end{aligned}
$$

The proof of the remainder case $n=1$ is as follows. Given $\psi\left(x_{1}\right)$ an application of the previous case, $n=2$, to the function $\phi_{\delta}\left(x_{1}, x_{2}\right)=\psi\left(x_{1}\right) e^{-\pi \delta x_{2}^{2}}$ yields

$$
\begin{aligned}
2 \psi\left(x_{1}\right) \Lambda^{\alpha} \psi\left(x_{1}\right) & =\lim _{\delta \rightarrow 0} 2 \phi_{\delta}\left(x_{1}, x_{2}\right) \Lambda^{\alpha} \phi_{\delta}\left(x_{1}, x_{2}\right) \\
& \geq \lim _{\delta \rightarrow 0} \Lambda^{\alpha} \phi_{\delta}^{2}\left(x_{1}, x_{2}\right) \\
& =\Lambda^{\alpha} \psi^{2}\left(x_{1}\right)
\end{aligned}
$$

Remark 1: The family of test functions $x^{p} e^{-\delta x^{2}}, \delta>0$, shows that the condition $\alpha \leq 2$ cannot be improved.

Also, the hypothesis $\theta \in C_{0}^{2}\left(R^{n}\right), C^{2}\left(T^{n}\right)$ is not necessary. Inequality Eq. 1 holds when $\theta(x), \Lambda^{\alpha} \theta(x), \Lambda^{\alpha} \theta^{2}(x)$ are defined everywhere and are, respectively, the limits of the sequences $\theta_{m}(x)$, $\Lambda^{\alpha} \theta_{m}(x), \Lambda^{\alpha} \theta_{m}^{2}(x)$, where $\theta_{m} \in C_{0}^{2}\left(R^{n}\right), C^{2}\left(T^{n}\right)$ for each m.

Applications

$L^{\boldsymbol{p}}$ Decay. Let it be given the following scalar equation

$$
\left(\partial_{t}+u \cdot \nabla\right) \theta=-\kappa \Lambda^{\alpha} \theta,
$$

where the vector u satisfies either $\nabla \cdot u=0$ or $u_{i}=G_{i}(\theta)$, together with the appropriate hypothesis about regularity and decay at infinity, which will be specified each time, in order to allow the integration by parts needed in the proofs.

Lemma 1. If $0 \leq \alpha \leq 2$ and $\theta \in C_{0}^{2}\left(R^{n}\right)\left(C^{2}\left(T^{n}\right)\right)$, it follows that

$$
\begin{equation*}
\int|\theta|^{p-2} \theta \Lambda^{\alpha} \theta d x \geq \frac{1}{p} \int\left|\Lambda^{\alpha / 2} \theta^{p / 2}\right|^{2} d x \tag{4}
\end{equation*}
$$

where $p=2^{j}$ and j is a positive integer.
Proof: An iterated application of inequality Eq. 1 yields:

$$
\begin{aligned}
\int|\theta|^{p-2} \theta \Lambda^{\alpha} \theta d x & \geq \frac{1}{2} \int|\theta|^{p-2} \Lambda^{\alpha} \theta^{2} d x=\int|\theta|^{p-4} \theta^{2} \Lambda^{\alpha} \theta^{2} d x \\
& \geq \frac{1}{4} \int|\theta|^{p-4} \Lambda^{\alpha} \theta^{4} d x \geq \frac{1}{2^{k-1}} \int|\theta|^{p-2^{k}} \Lambda^{\alpha} \theta^{2^{k}} d x
\end{aligned}
$$

[^0]taking $k=j-1$ and using Parseval's identity with the Fourier transform inequality Eq. 4 is obtained.

Remark 2: When $p=2^{j}(j \geq 1)$ Lemma 1 implies the following improved estimate:

$$
\begin{aligned}
\frac{d}{d t}\|\theta\|_{L^{p}}^{p} & =-\kappa p \int|\theta|^{p-2} \theta \Lambda^{\alpha} \theta d x \\
& \leq-\kappa \int\left|\Lambda^{\alpha / 2} \theta^{p / 2}\right|^{2} d x
\end{aligned}
$$

In the periodic case, this inequality yields an exponential decay of $\|\theta\|_{L^{p}}, 1 \leq p<\infty$. For the nonperiodic case, Sobolev's embedding and interpolation produces

$$
\begin{aligned}
\frac{d}{d t}\|\theta\|_{L^{p}}^{p} & \leq-\kappa\left(\int \theta^{2 p / 2-\alpha} d x\right)^{2-\alpha / 2} \\
& \leq-C\left(\|\theta\|_{L^{p}}^{p}\right)^{p-1+(\alpha / 2) / p-1}
\end{aligned}
$$

where $C=C\left(\kappa, \alpha, p,\left\|\theta_{0}\right\|_{1}\right)$ is a positive constant. It then follows

$$
\|\theta(\cdot, t)\|_{L^{p}}^{p} \leq \frac{\left\|\theta_{0}\right\|_{L^{p}}^{p}}{\left(1+\varepsilon C t\left\|_{0}\right\|_{L^{p}}^{p \varepsilon}\right)^{1 / \varepsilon}},
$$

with $\varepsilon=\alpha / 2(p-1)$.
Remark 3: The decay for other $L^{p}, 1<p<\infty$, is obtained easily by interpolation. However, the L^{∞} decay needs further arguments that will be presented in the next section.

Viscosity Solutions of the Quasigeostrophic Equation

A weak solution of

$$
\theta_{t}+R(\theta) \cdot \nabla^{\perp} \theta=-\kappa \Lambda \theta
$$

will be called a viscosity solution with initial data $\theta_{0} \in$ $H^{s}\left(R^{2}\right)\left(H^{s}\left(T^{2}\right)\right), s>1$, if it is the weak limit of a sequence of solutions, as $\varepsilon \rightarrow 0$, of the problems

$$
\begin{equation*}
\theta_{t}^{\varepsilon}+R\left(\theta^{\varepsilon}\right) \cdot \nabla^{\perp} \theta^{\varepsilon}=-\kappa \Lambda \theta^{\varepsilon}+\varepsilon \Delta \theta^{\varepsilon}, \tag{5}
\end{equation*}
$$

with $\theta^{\varepsilon}(x, 0)=\theta_{0}$.
Theorem 2. Let $\theta^{\varepsilon}, \varepsilon>0$, be a solution of Eq. 5, then $\theta^{\varepsilon}(\cdot, t) \in$ H^{s} for each $t>0$ and satisfies

$$
\|\left.\theta^{\varepsilon}(\cdot, t)\right|_{L^{\infty}} \leq \frac{\left\|\theta_{0}\right\|_{L^{\infty}}}{1+C t \frac{\kappa\left\|\theta_{0}\right\|_{L^{\infty}}}{\left\|\theta_{0}\right\|_{L^{2}}}}
$$

uniformly on $\varepsilon>0$ for all time $t \geq 0$. Furthermore, for $s>3 / 2$, there is a time $T_{1}=T_{1}\left(\kappa,\left\|\theta_{0}\right\|_{H^{s}}\right)$ such that $\left\|\Lambda^{s} \theta^{\varepsilon}(t)\right\|_{L^{2}} \leq 2\left\|\Lambda^{s} \theta_{0}\right\|_{L^{2}}$ for $0 \leq t<T_{1}$.

Theorem 3. Let θ be a viscosity solution with initial data $\theta_{0} \in H^{s}$, $s>3 / 2$, of the equation $\theta_{t}+R(\theta) \cdot \nabla^{\perp} \theta=-\kappa \Lambda \theta(\kappa>0)$. Then there exist two times $T_{1} \leq T_{2}$ depending only on κ and the initial data θ_{0} so that:
(i) If $t \leq T_{1}$ then $\theta(\cdot, t) \in C^{1}\left(\left[0, T_{1}\right) ; H^{s}\right)$ is a classical solution of the equation satisfying

1. Chae, D. \& Lee, J. (2003) Commun. Math. Phys. 233, 297-311.

2. Constantin, P., Cordoba, D. \& Wu, J. (2001) Indiana Univ. Math. J. 50, 97-107.
3. Constantin, P. \& Wu, J. (1999) SIAM J. Math. Anal. 30, 937-948.

$$
\|\theta(\cdot, t)\|_{H^{s}} \ll\left\|\theta_{0}\right\|_{H^{s}}
$$

(ii) If $t \geq T_{2}$ then $\theta(\cdot, t) \in C^{1}\left(\left[T_{2}, \infty\right)\right.$; $\left.H^{s}\right)$ is also a classical solution and $\|\theta(\cdot, t)\|_{H^{s}}$ is monotonically decreasing in t, bounded by $\left\|\theta_{0}\right\|_{H^{s}}$, and satisfying

$$
\int_{T_{2}}^{\infty}\|\theta\|_{H^{s}}^{2} d t<\infty
$$

In particular, this implies that

$$
\|\theta(\cdot, t)\|_{H^{s}}=O\left(t^{-1 / 2}\right) t \rightarrow \infty .
$$

Sketch of the Proofs: For the L^{∞}-decay there is the following heuristic argument. Assuming that $\theta(\cdot, t)$ get its maximum value at the point x_{t}, depending smoothly on t, then the equation yields

$$
\frac{\partial \theta}{\partial t}\left(x_{t}, t\right)=-\kappa \Lambda \theta\left(x_{t}, t\right)=-\kappa \cdot P V \int \frac{\left[\theta\left(x_{t}, t\right)-\theta(y, t)\right]}{\left|x_{t}-y\right|^{3}} d y .
$$

And the decay is obtained because

$$
P V \int \frac{\left[\theta\left(x_{t}, t\right)-\theta(y, t)\right]}{\left|x_{t}-y\right|^{3}} d y \geq C \frac{\theta^{2}\left(x_{t}, t\right)}{\|\theta(\cdot, t)\|_{L^{2}}} .
$$

In the actual Proof the differentiability properties of Lipschitz functions are used in order to avoid the hypothesis about the existence of $d x_{t} / d t$.

The Proof of Theorem 3 is based on both the L^{∞}-decay and a bootstrap mechanism associated with the evolution of different Sobolev norms. A crucial ingredient is the fact that $f R(f)$ belongs to Hardy's space \mathcal{H}^{1} for each L^{2}-function f and every odd singular integral R. A typical example of that mechanism is the following chain of inequalities

$$
\begin{gathered}
\frac{d}{d t}\left\|\theta^{\varepsilon}\right\|_{L^{2}}^{2}=2 \int \theta^{\varepsilon} R\left(\theta^{\varepsilon}\right) \cdot \nabla^{\perp} \theta^{\varepsilon}-2 \kappa \int \theta^{\varepsilon} \Lambda \theta^{\varepsilon}-2 \varepsilon \int\left|\Lambda \theta^{\varepsilon}\right|^{2} \\
=-2 \kappa\left\|\Lambda^{1 / 2} \theta^{\varepsilon}\right\|_{L^{2}}^{2}-2 \varepsilon\left\|\Lambda \theta^{\varepsilon}\right\|_{L^{2}}^{2} \leq-2 \kappa\left\|\Lambda^{1 / 2} \theta^{\varepsilon}\right\|_{L^{2}}^{2} \\
\frac{d}{d t}\left\|\Lambda^{1 / 2} \theta^{\varepsilon}\right\|_{L^{2}}^{2}=2 \int \Lambda^{1 / 2} \theta^{\varepsilon} \Lambda^{1 / 2}\left(R\left(\theta^{\varepsilon}\right) \cdot \nabla^{\perp} \theta^{\varepsilon}\right)-2 \kappa\left\|\Lambda \theta^{\varepsilon}\right\|_{L^{2}}^{2} \\
-2 \varepsilon\left\|\Lambda^{3 / 2} \theta^{\varepsilon}\right\|_{L^{2}}^{2} \\
\leq\left(C\left\|\theta^{\varepsilon}(\cdot, t)\right\|_{L^{\infty}}-2 \kappa\right)\left\|\Lambda \theta^{\varepsilon}\right\|_{L^{2}}^{2} \\
\frac{d}{d t}\left\|\Lambda \theta^{\varepsilon}\right\|_{L^{2}}^{2} \leq\left(C\left\|\Lambda \theta^{\varepsilon}\right\|_{L^{2}}-\kappa\right)\left\|\Lambda^{3 / 2} \theta^{\varepsilon}\right\|_{L^{2}}^{2} \\
\frac{d}{d t}\left\|\Lambda^{3 / 2} \theta^{\varepsilon}\right\|_{L^{2}}^{2} \leq\left(C\left\|\theta^{\varepsilon}\right\|_{L^{\infty}}-\kappa\right)\left\|\Delta \theta^{\varepsilon}\right\|_{L^{2}}^{2}
\end{gathered}
$$

valid for some universal constant C, uniformly with respect to the artificial viscosity ε.

It is a pleasure to thank C. Fefferman for his helpful comments and his strong influence in our work. The work of A.C. was partially supported by Ministerio de Ciencia y Tecnología Grant BFM2002-02269. D.C. acknowledges support from Ministerio de Ciencia y Tecnología Grant BFM2002-02042.
4. Resnick, S. (1995) Ph.D. thesis (University of Chicago, Chicago).
5. Wu, J. (2002) Comm. Partial Differ. Eq. 27, 1161-1181.
6. Wu, J. (1997) Indiana Univ. Math. J. 46, 1113-1124.

[^0]: ${ }^{\dagger}$ E-mail: antonio.cordoba@uam.es.
 §To whom correspondence should be addressed. E-mail: dcg@imaff.cfmac.csic.es. © 2003 by The National Academy of Sciences of the USA

