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1 Introduction

In this work we continue the study, initiated in [C.C], about the geometry
of the transition layers for minimizers of the functionals

Jε(u) =
∫

Ω
{ε2‖∇u‖2 + F (x, u)}dx.

Here ε > 0 is a (small) parameter, say 0 < ε < 1, and Ω ⊂ <n is an open
bounded domain.

The nonnegative function F is a double well potential vanishing only
for two values of u, say u = −1 and u = +1, and the minimizers u under
consideration will take values precissely at that interval (−1 ≤ u ≤ +1).

A description of the physical model can be found in [C.H], [W]. The
main idea is that u represents the state of a parameter (for instance a con-
centration of one component of a binary alloy), and the function F (x, u) the
energy density of the configuration u(x).

In general, this density is indexed by another parameter, say the tem-
perature T :

F = FT (x, u).

For large values of T, FT is convex and we are then in the classical theory
of minimizers of convex functionals in the calculus of variations. However,
when T becomes small, the free energy density ceases to be convex and it
has a local minimum at two states (say u = −1, and u = +1). In this last
case, any configuration that only takes the states u = −1 and u = +1, would
be an energy minimizer.

1



The term ε2‖∇u‖2 was then added by many authors (Van der Waals,
Cahn-Hilliard and Ginzburg-Landau) to take into account the “surface en-
ergy” separating both phases.

As ε goes to zero, it is well known that sequences of minimizers converg-
ing in L1

loc(Ω) have limits which are configurations

u(x) = χA(x)− χAc(x)

where ∂A ∩ Ω is a minimal surface.
More precissely, we have the following result:

Theorem (Modica[M]) Fix M ∈ < so that | M |< vol(Ω) and suppose
that uε, for every ε > 0, is a solution of the variational problem:

Jε(u) = min
{

Jε(v) | v ∈ L1(Ω),−1 ≤ v ≤ +1,

∫

Ω
v(x)dx = M

}

If {εh} is a sequence such that εh → 0 and uεh
converges in L1

loc(Ω) to a
function u0, then we have:

i) F (x, u0(x)) = 0, a.e. in Ω, i.e. u0(x) = −1 or u0(x) = +1 a.e. in Ω.

ii) the set A = {x ∈ Ω | u0(x) = −1} is a solution of the variational
problem

PΩ(A) = (Perimeter of A in Ω) =

= min
{

PΩ(B) | B ⊂ Ω, vol(B) =
vol(Ω)−M

2

}
.

iii)

lim
εh→∞

ε−1
h Jεh

(uεh
) = 2C0PΩ(A).

where C0 =
∫ +1

−1

√
F (s)ds.

Let us mention that in our previous work [C.C] we proved the following:

Theorem [C.C] If the minimizers of uε converge in L1
loc, when ε goes

to zero, and the limit is given by −χΩ1
+ χΩ−Ω1

, then the level surfaces
Sε

µ = {uε = t}, −1 < t < +1, converge uniformly to ∂Ω1 ∩ Ω on any
compact subset K ⊂ Ω.

This theorem was obtained as a consequence of the following density
result, also proved in [C.C] and that will be used in this paper.
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Theorem [C.C] Let u, −1 ≤ u ≤ +1, be a local minimizer of J1 in
the ball BR(0). Asume that µ{B1(0) ∩ {u > t}} ≥ λ0 (for a certain positive
constant λ0 independent of R and t, −1 < t < +1). Then there exists a
positive constant C such that:

µ
{
Bρ(0) ∩ {u > t}

}
≥ Cρn

for any ρ, 1 ≤ ρ ≤ R.
As in our paper [C.C] we shall consider here a family of potentials F

representing different types of regularity. Namely:

F0(u) = χ{|u|≤1}, Fδ(u) = (1− u2)δ
+ , 0 < δ ≤ 2.

While the cases 0 ≤ δ < 2 generate free-boundary problems (transition
strips), the solution to the last one has exponential convergence to the states
±1. Now we can present our main result.

Theorem 1 If u is a solution to the Jε problem in the ball BR(0), for
which the level set {u = 0} is a Lipschitz graph, xn = f(x1, · · · , xn−1),
then for every t0, 0 < t0 < 1, there exist positive numbers ε0, α, 0 < τ < 1,
(depending only upon the Lipschitz norm of f and t0), such that, for ε ≤ ε0,
all level surfaces u = t, |t| < t0, are uniformly C1,α inside the ball BτR(0).
Furthermore, for δ < 2 one can take t0 = 1.

This result is closely related to a conjecture of de Giorgi [G]. It concerns
a Liouville type theorem: when are global minimizers one-dimensional?

E. de Giorgi conjectured that if limxn→±∞ u = ±1, then the solution
must be one-dimensional. The theorems of Modica [M] and [C.C] imply that
the transition regions (say −1/2 < u < +1/2) look at infinity like a minimal
surface, therefore the conjecture is very plausible when such a surface is
a hyperplane, for instance in dimension smaller than eigth. But, since in
higher dimensions there are global minimal graphs which are not planes,
the conjecture becomes more difficult. In any case, it has received a lot of
attention recently (see references [B.C.N], [B.B.G], [A.Cb]). A corollary of
our theorem is:

Corollary 1 Let u be a local minimizer of the functional J1 in the whole
space <n . Assume that ∂{u > 0} is a Lipschitz graph. Then u is one-
dimensional i.e. there exists v ∈ <n such that u(x) = ϕ(x · v), for a suitable
ϕ : < → <.
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In the proof of our main Theorem 1 we shall consider first the case where
all level sets {u = t}, |t| < 1, are uniformly Lipschitz surfaces inside a ball.
But, at the end of the paper, we shall present an argument to conclude that
if {u = 0} is a Lipschitz surface inside Br, then, in a smaller ball, say Br/2,
all the other level sets are also uniformly Lipschitz surfaces.

Theorem 2 Let u be a minimizer of Jε(u) =
∫
BR(0) {ε2‖∇u‖2 + (1− u2)δ}dx

such that all level sets {u = t}, |t| < 1, are uniformly Lipschitz graphs
xn = f t(x1, · · · , xn−1), sup|t|<1 ‖f t‖Lip = K < ∞. Then there exists positive
ε0, t0, τ(0 < τ < 1) and α > 0 (depending only upon the Lipschitz norm K),
such that, for ε ≤ ε0, the level surfaces {u = t}, |t| < t0, are uniformly C1,α

inside the ball BτR(0). Moreover, in the case δ < 2 one can take t0 = 1.

Remark. Our Theorem implies, in particular, the regularity of the free
boundary under the Lipschitz assumption about the level surfaces. There-
fore one obtains an alternative “penalization method approach” to the re-
sults presented in [C], [C’], [A.C] and [P], corresponding to the cases δ =
0, δ = 1 and 1 < δ < 2. However our method covers also the cases 0 < δ < 1.

2 Description of the potentials. One dimensional
behavior, optimal regularity and decay

In our previous work [C.C] we did consider a class Sγ,C(δ) of admissible
potentials F , for which we required several properties making precisse the
statement that they behave assymptotically, when u goes to ±1, like one of
the models F (u) = (1−u2)δ

+, 0 ≤ δ ≤ 2. These properties are the following:

i) 0 ≤ F ≤ 1

ii) F (x,−1) = F (x,+1) = 0, for every x ∈ Ω.

iii) inf |t|<λ,x∈Ω F (x, t) ≥ γ(λ), where γ is a decreasing and strictly positive
function in the interval (0, 1).

iv) F (x, u) ≥ C(1− | u |)δ, if 1 >| u |> λ, 0 ≤ δ ≤ 2.

v) in the case 0 < δ < 2, we assume also that Fu(x, u) is continuous in
Ω× (−1, +1) and satisfies the estimate

Fu(x,−1 + s) ≥ Csδ−1, Fu(x, 1− s) ≤ Csδ−1 if 0 < s < λ.
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vi) In the case δ = 2 we will assume the continuity of Fuu and the existence
of a region of positivity: if u is near 1, then Fuu = a − b(x)(1 − u) +
o(1 − u), for some positive a > 0, where b(x) is bounded below from
zero. Similarly Fuu = a− b(x)(1 + u) + o(1 + u), near u = −1.

However, some of the previous results that are needed in the proof of our
main theorem, althought true for the general class Sγ,C(δ), are only stated
in the literature for F (u) = (1− u2)δ

+, 0 ≤ δ ≤ 2. Following that tradition,
and in order to limit the length of this paper, we shall restrict our attention
mainly to these model cases. Taking variations we obtain the following local
problems:

Case(a): δ = 0 .

In the unit ball B1 we are given a bounded Lipschitz function uε such
that





∆uε = 0 in the region | uε |< 1
| ∇uε |= 1

ε on (∂{uε = +1} ∪ ∂{uε = −1}) ∩B1

uε(0) = 0, | uε |≤ 1.

Case(b): 0 < δ < 2 .

in B1 we are given a C1,β−1 function uε, β = 2
2−δ , such that





∆uε = − 1
ε2

2δuε(1− u2
ε )

δ−1, if | uε |< 1
| ∇uε |= 0 on (∂{uε = +1} ∪ ∂{uε = −1}) ∩B1

uε(0) = 0, | uε |≤ 1

When n = 1, δ = 1 we get the following solution:




uε(x) = sin x
ε , if | x |≤ π

2 ε.
uε(x) = +1, if x > π

2 ε
uε(x) = −1 if x < −π

2 ε

Case(c): δ=2 .

Here we have a C∞ solution of the equation
{

∆uε = − 2
ε2

uε(1− u2
ε )

uε(0) = 0, | uε |≤ 1

The one-dimensional solutions are given by

uε(x) = th
(

e(
√

2/2ε)x
)

=
exp ((

√
2ε)x)− 1

exp ((
√

2ε)x) + 1
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It is interesting also to consider the following variation of this case (d):
{

∆uε = 1
ε2

F ′(u), in | u |< 1
uε(0) = 0, | uε |≤ 1

Where

F (u) =





1
2(1 + u)2, if − 1 ≤ u ≤ −1

2
1
4 − 1

2u2, if | u |≤ 1
2

1
2(−1 + u)2, if 1

2 ≤ u ≤ 1

Then we obtain the one-dimensional solution:

uε(x) =





−1 + 1
2 exp (−x

ε − π
4 ), if x ≤ −π

4 ε
1√
2
sin x

ε , if | x |≤ π
4 ε

1− 1
2 exp (−x

ε + π
4 ), if x ≥ π

4 ε

We are interested in the transition layers. That is the reason to impose
the condition u(0) = 0 in the statement of our local problems. The regularity
assumption u ∈ C1, 2

2−δ is optimal as it was shown in references [C], [A.P],
[A.C] and [P]. Observe also that in the last two examples, we do not obtain a
strip connecting both states ±1, but an exponential decay outside a narrow
transition layer. As we have mentioned before, our previous publication
[C.C] contains estimates about the size of the transition layers (relatively
to ε), and the uniform convergence of the level sets, uε = λ, to the limiting
minimal surface.

There exists a natural scaling which plays an important role in the forth-
coming analysis. A local minimizer of Jε in the ball Br, produces a local
minimizer of J1 in the ball Br/ε by means of the change ũ(x) = u(εx).

In the task of analyzing the level surfaces of uε, let us point that their
smoothness, up to size ε, is a consequence of free boundary regularity in
the cases δ < 2. If δ = 2 the regularity follows easily, for each ε, from the
standard elliptic theory. Our Lipschitz assumption gives us regularity up to
the scale 1. In this setting, the uniform C1,α character of the level sets is a
question about all the intermediate scales, i.e., those between ε and 1.

Exponential decay in the case δ = 2

Suppose the ω satisfies the equation ∆ω = ω inside Ω ⊃ BR(x). Then
we have the representation:

ω(x) =
1

φ(R)

∫

Sn−1
ω(x + Rȳ)dσ(ȳ)
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where φ(r) =
∫
Sn−1 ert1dσ(t), and dσ denotes uniform measure in Sn−1.

The proof is an inmediate consequence of the uniqueness theorem for
O.D.E.’s. Observe that the following two functions of the variables r given
by

v1(r) = ω(x)φ(r) and v2(r) =
∫

Sn−1
ω(x + rȳ)dσ(ȳ)

satisfy the following problem:

v′′i (r) +
n− 1

r
v′i(r) = vi(r)

vi(0) = ωn−1ω(x)

v′i(0) = 0

where ωn−1 = area of Sn−1.
The representation formula yields the exponential decay of ω when | ω |

is bounded. This happens in our second example (d) taking ω = 1 − u in
the region 1

2 < u < 1 (respectively to ω = 1 + u, when −1 < u < −1
2).

A similar result holds if the bounded function ω satisfies ∆ω ≥ ω ≥ 0 in
Ω. This is because we can compare ω with the solution of the problem:

∆u = u in Ω
u/∂Ω = ω

}

In the first example (c) ∆u = −u(1 − u2), we obtain for ω = 1 + u the
inequality ∆ω = ω(2−eω+ω2) ≥ ω if −1 < u < −1

2 . Similarly for ω = 1−u
inside 1

2 ≤ u < 1.

Gradient estimates

In this section we consider the case where all level sets {u = t}, | t |≤ 1,
are uniformly Lipschitz surfaces inside a ball. At the end of the paper we
present an argument to deduce that assumption from the Lipschitz character
of a single level, namely {u = 0}.

These problems are on the borderline where the implicit function theo-
rem applies. Therefore it is very important to have a precise control of ∇u
where | u | is close to the value 1. The uniform Lipschitz assumption allows
us (renormalizing by a convenient change of scale, if necessary), to consider
the following scenario.
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We have a function u defined inside a cylinder BR× [−T, T ] = {(x′, xn) |
x′ ∈ BR,−T ≤ xn ≤ T} with T a large multiple of R. Furthermore we will
assume that | u |≤ 1 is monotonic in the xn direction and satisfies

‖∇u‖ ≤ Kuxn , u(0) = 0.

Therefore, the level sets given by the implicit functions xn = ϕ(x′; λ), u(x′, ϕ(x′; λ)) =
λ,−1 < λ < +1, are Lipschitz surfaces with constant K < ∞.

Proposition 1 Under the hypothesis stated above and under the asumption
that u has optimal regularity, u ∈ C1, δ

2−δ , we have ‖∇u‖ ∼ un ∼
√

F (u),
uniformly inside the region | u |< 1.

In the following we shall use the standard notation f ¿ g if there exists a
final constant C so that f(x) ≤ Cg(x) for every x. In case that we have
both f ¿ g and g ¿ f we shall write f ∼ g.

The proof of Proposition 1 will be based on the following lemmas.

Lemma 2 Suppose that the non-negative function ω satisfies ∆ω = ω in a
domain Ω containing the ball B4R(x0). Then we have:

sup
x∈BR(x0)

ω(x) ≤ C(R) inf
y∈BR/2(x0)

ω(y)

Proof. It follows from the representation formula

ω(x) =
1

φ(r)

∫

Sn−1
ω(x + rȳ)dσ(ȳ)

φ(r) =
∫

Sn−1
exp(rt1)dσ(t).

Then if Bλ(x) ⊂ Ω we get for each λ̄ < λ:

ω(x) =
1

λ− λ̄

∫

Bλ−Bλ̄

ω(x + y)
φ(| y |) | y |n−1

dy, Bλ = Bλ(0).

Let us observe that if d =| x1 − x2 | then

B2d(x1)−B 3
2
d(x1) ⊂ B3d(x2)−B 1

2
d(x2),

which yields our result with the estimate

C(R) ≤ exp(3R).

With the help of the maximum principle we can extend lemma 2 to the
case of non-negative functions u satisfying λ2u ≤ ∆u ≤ 4λ2u.
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Lemma 3 Suppose that ω ≥ 0 satisfies λ2ω ≤ ∆ω ≤ 4λ2ω in a domain
Ω ∈ <n containig the ball B2(x). Then we have ‖∇ω(x)‖ ≤ Cω(x), for
some finite constant C = C(λ;n).

Proof. It follows from the well-known estimate

sup
Ω
{d(y)‖∇u(y)‖} ≤ Cn{ sup

Ω
|u|+ sup

Ω
d2(y) |f(y)|}

for solutions of the equation ∆u = f in Ω, where d(y) denotes distance to
the boundary ∂Ω.

In our case

‖∇ω(x)‖ ≤ Cn sup
B2(x)

ω ≤ C̃n inf
B1(x)

ω ≤ C̃nω(x).

Let us consider in <n the following domain

Q(t) = {(x, xn) ∈ <n| |xj | ≤ t, j = i, · · · , n− 1, ϕ(x) ≤ xn ≤ Mt}

where ϕ : <n−1 → < is a Lipschitz function with Lipschitz constant less
than M and such that ϕ(0) = 0.

Define S = {(x, ϕ(x))| |xj | ≤ t} and suppose that ω1, ω2 are two func-
tions satisfying ∆ω1 ≤ λω1, ∆ω2 ≥ λω2, 0 ≤ ωj ≤ 1, in Q(t) for some
positive number λ.

Assume furthermore that there exists a positive number δ > 0 such that

ω1 ≥ δ on S.

Lemma 4 Under the assumptions stated above, there exists a positive con-
stant 0 < c = c(M, n) < 1 and a positive number N = N(M, n) so that

δ−1Nω1(x) ≥ ω2(x), for every x ∈ Q(ct).

Proof. We shall use the following fact of elementary geometry: if x ∈ Q(ct),
for a small positive number c, then there exist a finite number of rotations
centered at x and such that the corresponding images of the surface S limit
a bounded Lipschitz domain Ω containing the point x in its interior. (In
fact it is enough to show it for S a cone xn = M |x|.)

Denote by ρ0 = id, ρ1, · · · , ρN−1 the inverses of those rotations. Then
the function

ω(y) = ω1(ρ0y) + · · ·+ ω1(ρN−1y)
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satisfies ∆ω ≤ λω in Ω, taking boundary values ω/∂Ω ≥ δ > 0. Since
ω2/∂Ω ≤ 1, we can apply the maximum principle to conclude that

δ−1
N−1∑

j=0

ω1(ρ1y) ≥ ω2(y) in Ω

In particular, if we take y = x we get

δ−1Nω1(x) ≥ ω2(x).

Proof of Proposition 1. The part of this proposition correponding to the
cases δ < 2 are already known (see [A.C], [C], [C’], [P]). Therefore, in the
following we will present the proof when δ = 2 (Examples (c) and (d)).

The main idea is to apply the lemmas to the functions ω1 = uxn and
ω2 = 1− u when u is close to +1 (resp. to ω2 = 1 + u when u is near −1).
An important ingredient will be the band and density estimates obtained in
[C.C].

First, let us observe that an straightforward application of Lemma 3
yields the estimate

ω1 = uxn ≤ ‖∇u‖ ¿ ω2.

To get the reversed inequality we observe that uxn is bounded below away
from zero inside the region |u| ≤ λ0 < 1 ,i.e., there exists a constant δ > 0
such that uxn ≥ δ if |u| ≤ λ0 < 1.

This is true because the density estimate (Theorem 1 of [C.C]) implies
that

oscBr(x)(u) ≥ 1
4

for some large r and x inside the region |u(λ)| ≤ λ0 < 1.
Therefore, there exists δ = δ(r, λ0) > 0 such that

δ ≤ sup
Br

‖∇u‖ ¿ sup
Br

uxn .

Then by Harnack’s inequality we may conclude that uxn ≥ δ̄ > 0 for another
constant δ̄. To finish the proof in our second example of case δ = 2, we apply
Lemma 4 to ω1 = uxn , ω2 = 1− u.

In general, we have:
∆uxn = fu · uxn

∆(1− u) = −f(u) =
∫ 1

u
fu(s)ds ≥ fu(1− u)
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Taking into account the structural hypothesis made about f(= Fu), in
the region where 1− u is small we have the following expansion:

fu = a− b(x)(1− u) + o(1− u)

−f(u) =
[
a− 1

2
b(x)(1− u) + o(1− u)

]
(1− u)

where a > 0 and b(x) is a strictly positive bounded function.
Therefore the function ω2 = (1− u) + C(1− u)2, C > 0, satisfies

∆ω2 ≥ a{(1− u) + C(1− u)2} − 1
2
b(1− u)2 + aC(1− u)2 ≥ aω2

So long as aC > 1
2 sup b(x) and 1− u is small enough.

Therefore the two functions ω1 = uxn and ω2 = (1 − u) + C(1 − u)2

satisfy ∆ω1 ≤ aω1, ∆ω2 ≥ aω2, 0 ≤ ωj ≤ 1.
We are then in conditions to apply Lemma 4 to conclude that ω2 ¿ ω1,

which implies the desired estimate 1− u ¿ uxn .
The case when u is close to the value −1 can be treated with the same

method.

3 Energy Estimates

We have normalized local problems ∆u = 1
ε2

F ′(u) (= 1
ε2

f(u)) in the unit
ball B1 or, equivalently, ∆u = f inside the ball B1/ε. We will assume that
y = xn is a direction of monotonicity and that ‖∇u‖ ≤ Kuy for some finite
constant K, uniformly on ε > 0.

Therefore one may consider the level surfaces y = ϕ(x, λ), (x = (x1, ..., xn−1),
0 ≤ λ ≤ 1), u(x, ϕ(x, λ)) = λ which are graphs of Lipschitz functions.

Let ux be a derivate of u in the “horizontal” x-plane. It is easy to check
that the function ψ = ux/uy satisfies the (non-uniformly) elliptic equation

div(u2
y∇ψ) = 0.

Again, since we are mainly interested in the analysis of the transition layer,
for ε small, we may assume that u(0) = 0. In the following we shall consider
separately the cases 0 ≤ δ < 2 and δ = 2.

Case 0 ≤ δ < 2. In this case u(= uε) must reach both extreme values −1,
+1 inside the cylinder B1 × [−K,+K] (or B1/ε × [−K/ε,+K/ε]). We
will consider truncations

ψ̄ =
(ux

uy
− c

)
+

(
or ψ̄ =

(
− ux

uy
− c

)
+

)
, c > 0,
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and cut-off functions η(x) depending only upon the horizontal variables
x.

We have ∫
η2(x)ψ̄(x, y)div(u2

y∇ψ̄)dxdy = 0.

Integration by parts yields
∫
‖∇(ηψ̄)‖2u2

ydxdy ¿
∫
|ψ̄|2‖∇xη‖2u2

ydxdy. (∗)

In the following, it will be important to write (∗) in (x, λ)-coordinates:

uxj + uyϕxj = 0
uy · ϕλ = 1
dxdy = ϕλdxdλ

Define ψ̃(x, λ) = ψ̃(x, ϕ(x, λ)).
We have:

Proposition 2 Under the assumptions stated above the following estimate
holds
∫ +1

−1

∫

B1/ε

1
ϕλ

{
|∇x(ηψ̃)|2 +

1
ϕ2

λ

(ηψ̃)2λ

}
dxdλ ¿

∫ +1

−1

∫

B1/ε

1
ϕλ
|ψ̃|2|∇xη|2dxdλ .

Proof. Consider

φ(x, y) = η(x)ψ̃(x, y),
φ̃(x, λ) = η(x)ψ̃(x, λ),
φ(x, y) = φ̃(x, ϕ−1(x, λ) = φ̃(x, u(x, y)).

Therefore
∇xφ = ∇xφ̃ + ∂φ̃

∂λ∇xu

∂φ
∂y = ∂φ̃

∂λuy

If we substitute these formulas in the left hand side of the energy in-
equality (∗) we get:

∫ ∫ 

|∇xφ̃|2 +

∣∣∣∣∣
∂φ̃

∂λ

∣∣∣∣∣
2

|∇xu|2 + 2
∂φ̃

∂λ
∇xφ̃ · ∇xu+

+

(
∂φ̃

∂λ

)2

u2
y



 u2

ydxdy =
∫ ∫

Q(x, y)u2
y dx dy
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The Lipschitz hypothesis yields |∇u|2 ≤ K2u2
y and, therefore, the term

Q(x, y) in the integrand must be greater than

C

K



|∇xψ̃|2 + u2

y

(
∂φ̃

∂λ

)2




for some strictly positive constant C. This proves our inequality.

Remark. We have used the fact that ψ̃ vanishes when u = +1,−1,
allowing us to take cut-off η(x) depending only upon the horizontal variables
x. If we re-scale back to the unit ball, then we get:

ε =
1
R

,
1
ϕλ

= uy ∼ 1
ε
(1− |λ|)δ/2

i.e.,
∫ +1

−1

∫

B1

(1− |λ|)δ/2
{
|∇x(ηψ̃)|2 +

1
ε2

(1− |λ|)δ(ηψ̃)2λ

}
dx dλ

¿
∫ +1

−1

∫

B1

(1− |λ|)δ/2|ψ̃|2|∇xη|2 dx dλ .

Case δ = 2.

The main difference with respect to the previous case lies in the fact that
now both states ±1 are not reached inside the ball, instead we only have an
exponential decay.

On the other hand, if we take cut-off η = η(x, λ), depending upon λ,
then the energy estimate becomes:

∫ +1

−1

∫

B1

(1− |λ|)
{
|∇x(ηψ̃)|2 +

1
ε2

(1− |λ|)2(ηψ̃)2λ

}
dx dλ

¿
∫ +1

−1

∫

B1

(1− |λ|)|ψ̃|2
{
|∇xη|2 +

1
ε2

(1− |λ|)2η2
λ

}
dx dλ

and the term 1
ε2 (1− |λ|)2η2

λ gives us problems.
To avoid that term, we shall consider now truncations of the following

form

ψ̃ =

[(
ψ − εm

uy

)
− C

]

+

(
or

[(
−ψ − εm

uy

)
− C

]

+

)
.

13



Let us recall that in this case we have uy ∼ 1
ε (1− |λ|), ϕλ ∼ ε

1−|λ| ,
εm

uy
À

εm+1

1−|λ| which will be greater than K so long as |λ| ≥ 1− Cεm+1 for a conve-
niently fixed constant C > 0.

Therefore ψ̃ has compact support on λ and satisfies the equation

div(u2
y∇ψ̃) = −εm∆uy · χψ̃>0 = −εm−2f(x, u)uyχψ̃>0 .

If we use η2ψ̃ as test function then, after integration by parts, we obtain
the inequality
∫ ∫

|∇(ηψ̃)|2u2
y dx dy ¿

∫ ∫
|ψ̃|2|∇xη|2 dx dy+εm−2

∫ ∫
η2ψ̃uyχψ̃>0 dx dy .

That is
∫ ∫

|∇(ηψ̃)|2u2
y dx dy ¿

∫ ∫
|ψ̃|2|∇xη|2 dx dy + O(εm−2)

where m ≥ 3 will be fixed later.
Writing this inequality in the (x, λ) coordinates, we obtain

Proposition 3 Under the assumptions stated above, the following estimate
holds:

∫ +1

−1

∫

B1

(1− |λ|)
{
|∇x(ηψ̃)|2 +

1
ε2

(1− |λ|)2(ηψ̃)2λ

}
dx dλ

¿
∫ +1

−1

∫

B1

(1− |λ|)|ψ̃|2|∇xη|2 dx dλ + O(εm−2) .

Our next step will be to use these energy estimates to produce (L2, Lp)
embeddings for those truncations. As before, we shall consider separately
the cases 0 ≤ δ < 2 and δ = 2.

Proposition 4 For each δ, 0 ≤ δ < 2, there exists p = p(δ) > 2 such that if
φ(x, λ) has compact support we have

[∫ +1

−1

∫

B
(1− |λ|)δ/2|φ(x, λ)|p dx dλ

]2/p

¿
∫ +1

−1

∫

B
(1− |λ|)δ/2

{
|∇xφ|2 + (1− |λ|)δ(φλ)2

}
dx dλ .

14



Proof. a) The case δ = 0 is just a consequence of the standard Sobolev’s
embedding and we can take p ≤ 2n

n−2 .
b) Let us assume now that 0 < δ < 2. We shall consider separately the

domain 0 ≤ u < 1 (resp. −1 < u ≤ 0).
In the region 0 ≤ λ < 1 we make a change of variables:

(1− λ)δ/2 dλ = dt i.e., t =
2

2 + δ
(1− λ)

2+δ
2 .

Therefore if φ̃(x, t) = φ(x, λ) we have

∇xφ̃ = ∇xφ ,
∂φ

∂λ
= Cδt

δ
2+δ

∂φ̃

∂t

and our proposition asks for the estimation of

[∫ +1

−1

∫
(φ̃)p dx dt

]2/p

in terms of the energy
∫ +1

−1

∫ {
|∇xφ̃|2 + t

4δ
2+δ (φ̃t)2

}
dx dt .

Let us recall that since φ̃(x, 0) = 0 we have

|φ̃(x, t)| ¿
∫ ∫

Γx,t

|∇xφ̃(z, s)|+ |φ̃t(z, s)|
(|x− z|+ |t− s|)n−1

dz ds

where Γx,t = {(z, s)||x− z| ≤ t− s}. Therefore we get

|φ̃(x, t)| ¿
∫ ∫ |∇xφ̃(x− z, t− s)|+ |t− s| 2δ

2+δ |φ̃t(x− z, t− s)|
[|x− z|a · |t− s|b] 2δ

2+δ [|z|+ |s|]n−1
dz ds

where a, b are positive numbers to be chosen later under the condition
a + b = 1.

Let us denote

F (x, t) =
|∇xφ̃(x, t)|+ t

2δ
2+δ |φ̃t|

[|x|atb] 2δ
2+δ

Since convolution with the kernel 1
[|z|+|s|]n−1 maps Lr to Lp if 1

p > n−1
n +

1
r−1 and we want to have p > 2, we need F ∈ Lr for 1

r < 1
2 + 1

n . Furthermore
Hölder’s inequality yields

15



||F ||r ¿
(∫ 1

0

∫ {
|∇x(φ̃)|2 + t

4δ
2+δ (φ̃t)2

}
dx dt

)1/2 [∫ 1

0

∫
[|x|atb]− 2δr

2+δ
2

2−r

] 2−r
2

Therefore our proposition follows because if 0 ≤ δ < 2 we can always
choose r so that

2n

n + 2
< r <

2n

n + 4δ
2+δ

and then take b = 1
n , a = 1− 1

n .

Case δ = 2.

Recall that in the (x, λ) coordinate system the energy inequality reads

∫ ∫
(1− |λ|)

{
|∇x(ηψ̃)|2 +

1
ε2

(1− |λ|)2(ηψ̃)2λ

}
dx dλ

¿
∫ ∫

(1− |λ|)|ψ̃|2|∇xη|2 dx dλ + O(εm−2)

where ψ̃ = [(ux
uy

) − εm

uy
− c]+, c ≥ 0, (or ψ̃ = [(−ux

uy
− εm

uy
) − c]+) and ψ̃

vanishes when |λ| À 1−εm+1 . Therefore we used the following embedding:

Proposition 5 If φ(x, λ) has compact support inside the region |x| ≤ 1, |λ| <
1− εm+1 then it satisfies

[∫ ∫
(1− |λ|)|φ(x, λ)|p dx dλ

]2/p

¿
∫

(1−|λ|)
{
|∇xφ|2 +

(1− |λ|)2
ε2

φ2
λ

}
dx dλ

for a certain p > 2.

Proof. Let us work first inside the region 0 ≤ λ < 1− εm+1. The change
of variables

t = (1− λ)2, dt = −2(1− λ)dλ

leads us to estimate [
∫ ∫ |φ(x, t)|p dx dt]2/p in terms of the energy

∫ ∫ {
|∇xφ|2 +

t2

ε2
(φt)2

}
dx dt .

16



For functions φ compactly supported in x and vanishing at t ≤ εM ,M =
2(m + 1).

We have:

|φ(x, t)| ¿
∫ ∫

Γ

|∇xφ(x− z, t− s)|+ |φt(x− z, t− s)|
(|z|+ |s|)n−1

dz ds

where Γ = {|(z, s)| |z| ≤ s, s ≥ εM}. That is

|φ(x, t)| ¿
∫ ∫ |∇xφ(x− z, t− s)|

(|z|+ |s|)n−1
dz ds +

+
∫ ∫ εM+|t−s|

ε |φt(x− z, t− s)|
[

εM+|x−z|
ε

]a [
εM+|t−s|

ε

]b

1
(|z|+ |s|)n−1

dz ds

= φ1 + φ2

where, as before, we have taken positive numbers a, b to be fixed later,
satisfying the condition a + b = 1.

Clearly for φ1 we have the inequality

[∫ ∫
|φ1(x, t)|p1 dx dt

]2/p1

¿
∫ ∫

|∇xφ(x, t)|2 dx dt

if
1
p1

>
1
2
− 1

n
i.e., 2 ≤ p1 <

2n

n− 2

To estimate φ2 we consider the convolution

φ2 = F ∗ 1
(|z|+ |t|)n−1

.

Therefore we have

||φ2||p ≤ ||F ||q if
1
p
≥ 1

q
− 1

n
.

Since

F (x, t) =
εM+|x|

ε |ψt|[
εM+|x|

ε

]a [
εM+|t|

ε

]b

we want

17



||F ||q ¿
∣∣∣∣∣

∣∣∣∣∣
εM + |t|

ε
ψt

∣∣∣∣∣

∣∣∣∣∣
2

·
∣∣∣∣∣∣

∣∣∣∣∣∣

[
εM + |x|

ε

]−a [
εM + |t|

ε

]−b
∣∣∣∣∣∣

∣∣∣∣∣∣
r

.

Let us take q
2 + 1

s = 1, r = 2q
2−q and observe that

∫

|x|≤1

[
εM + |x|

ε

]−a 2q
2−q

dx ¿
∫ ∞

0

tn−2 dt

(1 + t)
2aq
2−q

· εM(n−1)−(M−1) 2aq
2−q

We want:




M(n− 1) = (M − 1) 2aq
2−q

a 2q
2−q > n− 1

M = (M − 1) 2bq
2−q

b 2q
2−q > 1

That is, we need to choose
1
p

>
1
q
− 1

n
, q < 2, p > 2

Mn = (M − 1)
2q

2− q

and also a + b = 1 in such a way that a 2q
2−q > n− 1, b 2q

2−q > 1.
If q0 is given by 2q0

2−q0
= n then we have M

M−1n > 2q0

2−q0
. Therefore,

the solution q to the equation 2q
2−q = M

M−1n must satisfy the inequality
q0 < q < 2. To finish we choose p by the formula

1
p

=
1
q
− 1

n
<

1
2

and take a = 1− 1
n , b = 1

n , which satisfy all the requirements.

4 Proof of Theorem 2

Our proof of the uniform smoothness of the level sets, follows closely the
technique introduced by E. de Giorgi to study the regularity of solutions of
uniformly elliptic, second order equations, given in divergence form. We shall
apply it to the functions ψ = ϕx(x; λ) i.e., to first derivatives of ϕ on any
horizontal direction. Here we will also assume that y = xn is a direction of
monotonicity and that the level surfaces y = ϕ(x; λ) are uniformly Lipschitz.

The argument consists mainly in two steps:

18



Step 1. An L2 → L∞ inequality, i.e., a control in measure which produces
a uniform estimate.

Step 2. An oscillation decrease: There exist constants β > 0, ρ < 1, τ(β) >
0 such that if ψ̃ (a truncation of ψ) is smaller than 1 in the ball Br,
and if the following quotient of Lebesgue measures is bounded below
by β:

µ{(ψ̄ = 0) ∩Br}/µ(Br) ≥ β .

Then, in the smaller ball Bρr, we have the estimate

sup
Bρr

ψ̄ ≤ 1− τ(β) .

This second step when applied conveniently either to the positive or the
negative part of ψ produces the oscillation decrease

oscBρr (ψ) ≤ (1− τ(β)) oscBr (ψ)

whose iteration yields the desired Hölder continuity of ψ = ϕx .
To simplify the notation, in the following we will assume, without any

loss of generality, that the Lipschitz constant is K = 1. Also with a conve-
nient change of scale we can renormalize always to the unit ball B1 .

We will consider functions ψ ∈ H1
0 (Ω × (−1, 1)) whose truncations φ =

(ψ − c)+ or (−ψ − c)+, satisfy the energy estimate as well as the (L2, Lp)
embedding, given by propositions 2, 3, 4 and 5. And we shall assume also
that B1(0) ⊂ Ω.

Proposition 6 For a given a truncation φ let us consider the integral

b =
∫ +1

−1

∫

B1

(1− |λ|)δ/2(φ(x, λ))2 dx dλ

then we have:

a) Case 0 ≤ δ < 2: There exists a positive number b0 > 0 such that if b ≤ b0

then

sup
x∈B1/2

|λ|<1

φ(x, λ) ≤ 1
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b) Case δ = 2: For each γ < 1 there exists b0(γ) > 0 such that b ≤ b0(γ)
implies

sup
x∈B1/2

|λ|<γ

φ(x, λ) ≤ 1

Proof. Let ηk, for each k = 1, 2, . . . , be a cut-off satisfying:

i) ηk ≡ 1 inside B 1
2
+2−k(0) = Bk

ii) ηk ≡ 0 outside B 1
2
+2−(k−1)(0) = Bk−1

iii) |∇ηk
| ≤ C2k, for some fixed constant C.

a) For 0 ≤ δ < 2 we define the family of truncations

φk(x, λ) =
[
φ(x, λ)−

(
1
2
− 2−k

)]

+

Let p = pδ > 2 be given by Proposition 5 and take r : 1
r + 2

p = 1. We
obtain:

∫ ∫
(1− |λ|)δ/2[ηk(x)φk(x, λ)]2 dx dλ ¿

[∫ +1

−1

∫

{ηkφk>0}
(1− |λ|)δ/2η2

k−1(x) dx dλ

]1/r

·

·
[∫ ∫

(1− |λ|)δ/2(ηkφk)p dx dλ

]2/p

Observe that φk > 0 ⇔ φk−1 > 2−k which produces,
∫ ∫

{ηkφk>0}
(1−|λ|)δ/2η2

k−1(x)dx dλ ¿ 22k
∫ ∫

(1−|λ|)δ/2[ηk−1(x)φk−1(x, λ)]2 dx dλ .

On the other hand, we have:

[∫ ∫
(1− |λ|)δ/2(ηkφk)p dx dλ

]1/p

¿

¿
[∫ ∫

(1− |λ|)δ/2(φk)2|∇xηk|2 dx dλ

]1/2

¿ 2k
[∫ ∫

(1− |λ|)δ/2(ηk−1φk−1)2 dx dλ

]1/2

.
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Therefore, if we define the sequence

bk =
∫ ∫

(1− |λ|)δ/2(ηkφk)2 dx dλ

we have obtained the following recursion

bk ≤ C2k(1+α)b1+α
k−1

with α = 2
p > 0.

It is well known that such a recurrence produces

lim
k→∞

bk = 0

so long as b0 is small enough.

b) In the case δ = 2 we to take the following truncations

φk =

[(
ux

uy
− εm

uy

)
−

(
1
2
− 2−k

)]

+

, or

[(
−ux

uy
− εm

uy

)
−

(
1
2
− 2−k

)]

+

.

Similarly to the preceeding case we get recurrence for the sequence

bk =
∫ ∫

(1− |λ|)[ηk(x)φk(x, λ)]2dxdλ.

Namely,
bk ≤ C22kbk−1[22kbk−1 + εm−2]α

which leads to
lim sup bk ¿ ε(m−2)(1+α)

if b0 is small enough (but independently of ε).

More precisely, if b0 is small enough, then there exists k0 such that
for k ≥ k0 we have bk ≤ ε(m−2)(1+α). Since |∇φ| = O(1/ε) uniformily
inside the region |λ| ≤ η < 1, the estimate above implies

sup
x∈B1/2

|λ|<η

φ(x, λ) ≤ 1

if m is big enough, q.e.d.
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Next, given 0 ≤ φ ≤ 1 being one of the truncations considered in Propo-
sition 6, let us define the sets:

N(λ) = {|x| ≤ r|φ(x, λ) = 0}.

Proposition 7 For each γ, 0 ≤ γ < 1, there exists a strictly positive con-
stant C(γ) such that if

∫ +γ

−γ
µ{N(λ)}dλ ≥ γµ(Br)

then
sup

x∈Br/2

|λ|≤γ

φ(x, λ) ≤ 1− C(γ).

Corollary 8. Applying Proposition 7 either to φ+ or φ−, as many times
as necessary, we obtain

osc B
(1/2)k

|λ|≤γ

(φ) ≤ (1− C(γ))k.

Therefore
|φ(x, λ)− φ(z, λ)| ¿ |x− z|α

with α = − log(1− C(γ))/ log 2.

Proof of Proposition 7. We shall work in the normalized case r = 1. The
proof for a general radius will then follows by a change of scale. Obviously,
if

µ(N) =
∫ +γ

−γ
µ(N(λ))dλ

is big enough, then we can apply Proposition 6 to finish the proof.
Let us take the following family of scaled truncations:

φk(x, λ) = 2k[φ(x, λ)− (1− 2−k)]+η(x)

with a cut-off η ≡ 1 in B3/4, η = 0 outside B1. We have the sets:

Nk(λ) = {x ∈ B3/4|φk(x, λ) = 0}

Gk(λ) = B3/4 −Nk(λ) =
{

x ∈ B3/4|φk−1(x, λ) >
1
2

}
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and the inclusions:

Nk(λ) ⊂ Nk+1(λ), k = 1, 2, . . .

Gk(λ) ⊃ Gk+1(λ).

Our goal is to show that limk→∞ µ(Gk(λ)) = 0, i.e., after a finite number of
steps we will be in position to apply Proposition 6 to the function φk and
finish the proof.

First, let us show that

(∗) sup
|λ|≤γ

µ(Gk(λ)) ≤ inf
|λ|≤γ

µ(Gk−1(λ)) + O(ε).

This is true because given λ1, λ2 in [−γ, +γ] we have:
∫

Nk(λ1)
φk(x, λ2)dx =

∫

Nk(λ1)
[φk(x, λ2)− φk(x, λ1)]dx

¿
[∫

Nk(λ1)

∫ +γ

−γ
(φk)2λdxdλ

]1/2

¿
[∫ ∫

(1− |λ|) 3δ
2 (φk)2λdxdλ

]
(1− γ)−

3δ
4

¿ ε by the energy inequality.

Therefore, since Nk−1(λ1) = Gc
k−1(λ1) we get

1
2
µ(Gk(λ2)) ≤

∫

Gk(λ2)
φk−1(x, λ2)dx

=
∫

Gk−1(λ1)∩Gk(λ2)
φk−1(x, λ2)dx +

∫

Gk(λ2)∩Nk−1(λ1)
φk−1(x, λ2)dx

≤ µ(Gk−1(λ1)) + O(ε).

This proves (∗).
Next, let us define the maximal functions

φk(x) = sup
|λ|≤γ

φk(x, λ)

we choose λ1(|λ1| ≤ γ) satisfying

µ(Nk(λ1)) ≥ 1
2
µ(B3/4).
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Then

φk(x)− φk(x, λ1) ≤
[∫ +γ

−γ
(φk)2λ

]1/2

that is,
∫

Nk

φk(x)dx ¿
[∫ +γ

−γ

∫

Nk(λ1)
(φk)2λdxdλ

]1/2

¿ (1− γ)−
3δ
4

[∫ +γ

−γ

∫

B
(1− |λ|) 3δ

2 (φk)2λdxdλ

]1/2

+

= O(ε), again by the energy inequality.

Therefore µ{x ∈ Nk(λ1)|φk(x) ≥ 1
2} = O(ε), i.e., for each |λ| ≤ γ we

have
µ

{
x|φk(x, λ) <

1
2

}
≥ µ(Nk(λ1))− Cε ≥ 1

2
µ(B3/4)− Cε.

Since φk(x, λ) < 1
2 ⇐⇒ φk+1 = 0 we obtain

µ {Nk+1(λ)} ≥ 1
2
µ(B3/4)− Cε.

Given x ∈ Gk(λ) we have the estimate

1
2
≤

∫ σ2(x,λ;ξ)

σ1(x,λ;ξ)
∇φk−1(x− tξ, λ) · ξdt

where ξ ∈ Σx = {ξ ∈ Sn−2|∃t > 0, x−tξ ∈ Nk−1(λ)} and σ1(x, λ; ξ), σ2(x, λ; ξ)
are chosen in such a way that

x− σ1(x, λ; ξ) · ξ ∈ Gk(λ)

x− σ2(x, λ; ξ) · ξ ∈ Nk(λ)

{x− tξ|σ1(x, λ; ξ) < t < σ2(x, λ; ξ)} ⊂ Gk−1(λ)−Gk(λ).

The lower bound estimate for the measures of the sets Nk(λ) yields a lower
bound for the area of the spherical caps:

σ(Σx) ≥ C > 0.

Therefore, we obtain:

0 <
C

2
≤

∫

Sn−2

∫ σ2(x,λ;ξ)

σ1(x,λ;ξ)
|∇φk−1(x− t · ξ, λ)|dtdλ
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≤
∫

Gk−1(λ)−Gk(λ)

|∇φk−1(x− z, λ)|
|z|n−2

dy

Next, we integrate over the set Gk(λ):

C

2
µ(Gk(λ)) ≤

∫ ∫
χG∗

k
(λ)(x)χD∗

k
(λ)(z)

|∇φk−1(x− z, λ)|∗
|z|n−2

dxdz

where Dk(λ) = Gk−1(λ) − Gk(λ) and *-denotes non increasing rearrange-
ment.
We get

µ(Gk(λ)) ¿
[ ∫

|∇φk−1(x, λ)|∗dx
]
·sup

x

[ ∫
χG∗

k
(λ)(x− y)χD∗

k
(λ)(y)

1
|y|n−2

dy
]
¿

¿
[
µ(Gk−1(λ))− µ(Gk(λ))

] 1
n−1

which implies that limk→∞(Gk(λ)) = 0.
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5 Proof of Theorem 1

To finish the reduction of Theorem 1 to Theorem 2 we have to show that if
one level set, says u=0, is Lipschitz then all the others above it (respectively
below it) are also Lipschitz. From now on we will separate both cases: Above
the level u=0 it is convenient to change u to 1-u (respect. to 1+u below).
The transformed functionals are now

J(u) =
∫
{‖∇u‖2 + Fδ(u)}dx, Fδ(u) ∼ uδ

with 0 ≤ δ ≤ 2 and 0 ≤ u ≤ 1. Here we have a Lipschitz level set, says at
u=1. In our discussion we will use the following series of papers: [B.C.N],
[C], [A.C], [P], [A.P].

Theorem 3 Given 0 < t0 ≤ 1 and K < ∞ there exists a finite R(t0,K) so
that a non-negative minimizer of

J(u) =
∫

Ω∩BR(0)
{‖∇u‖2 + Fδ(u)}dx

where R ≥ R(t0,K), Ω = {xn > f(x)′}, ‖f‖Lip ≤ K, u|∂Ω = 1, must satisfy:

a) If t0 > 0, then u is monotone respect to the direction xn in the domain
{u > t0} and, for any t > t0, all level surfaces {u = t} = {xn = f t(x′)}
are Lipschitz graphs with norm ‖f t‖Lip ≤ 2K.

b) In the case δ < 2, t0 can be taken equal to 0.

Corollary 9 u is monotonic in any direction going “inwards” of Ω and all
level surfaces of u are Lipschitz uniformly.

Proof.
a) Here t0 is strictly bigger than zero. This part follows by compactness,

suppose that the statement is false: Then there is, for Rk ↑ ∞, a sequence of
non-negative solutions uk and a sequence of points Pk inside the ball BRk

2

(0)

so that
uk(Pk) ≥ t̄0 > t0

and
−‖∇x′uk(Pk)‖

(uk)xn(Pk)
> 2K

We can translate each solution uk in such a way that Pk becomes the
new origin. Taking a subsequence, if necessary, we can assume that those
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translates, which we shall denote also uk, will converge uniformly on com-
pact sets to a global solution u∞, inside a limiting domain belonging also
to the same Lipschitz class. Since t0 > 0 we have from the gradient esti-
mate that (u∞)xn 6= 0 and ∇uk converges to ∇u∞. But this contradicts
the fact that for global solutions in a K-Lipschitz domain, we must have
−‖∇x′u

∞‖/(u∞)xn ≤ 2K (see ref [B.C.N]).
b) In the case δ < 2 we can apply the free boundary regularity theory.

For different values of δ there are different results (see previous quoted ref-
erences) but a common one says that flatness implies C1,α. That is, if the
free boundary is trapped between two closed enough hyperplanes, inside the
ball of radius r, then it is C1,α, for some α > 0, in the ball of radius r

2 .
Now, again by compactness, we can show that for R large enough every

point in the free boundary becomes sufficently flat.
Let θ be the necessary flatness for the free boundary to be regular. That

is θ is a universal constant such that, if the free boundary inside a ball of
radius r is contained between two hyperplanes at distance θr, then all level
surfaces of u in the ball of radius r

2 are uniformly C1,α.
Let us recall that solutions about a Lipschitz graph having all level sur-

faces Lipschitz, are uniformly C1,α from our previous theorem 2. Therefore
we can choose ρ0 small enough so that the free boundary of any global
solution is θ

2 flat in Bρ0(x) for any free boundary point x.
Fix now t0 > 0 so that, from non-degeneracy, the set {u < t0} is con-

tained in a ρ0

4 neighborhood of the free boundary.
Claim: For δ < 2 there exits R0 = R0(δ,K) such that if u is defined in

BR, for R > R0, then all conclusions a) holds for any t > 0.
To prove the claim it is sufficient to show that for R large enough the

free boundary of u becomes θ-flat.
If not, as before one can find a sequence of minimizers uk and points

xk in the free boundary of uk which are not θ-flat inside the ball Bρ0 . But
uk converge uniformly to u∞, and the non-degeneracy property implies that
the free boundary of uk also converge uniformly to the free of u∞. But this
is a contradiction because the last free boundary has to be θ

2 -flat in Bρ0 .

Appendix I
In this appendix we show how to extend the results on [B.C.N] to so-

lutions of free boundary problems. That is, we prove that global solutions
of the free boundary problem above a Lipschitz graph have Lipschitz level
sets.

More precisely we prove.

27



Theorem 4 Let Ω be a domaion of the form Ω = {x : xn > f(x′), f Lipschitz}.
Let u be a Non-negative solution in Ω of the δ-problem with 0 ≤ δ < 2 and
u|∂Ω = 1.

Then u is unique and monotone decreasing in the xn-direction.

Corollary u is monotone in any direction going ”inwards” of Ω, and
all level surfaces of u are uniformly Lipschitz with the same norm than f .

In order to prove the theorem we shall need some properties of u and
some comparison techniques. Namely, a comparison argument with the
first non-negative eigenfunction of the Laplacian in a ball, as was done in
reference [B.C.N]. Using the fact that u is weakly superharmonic we obtain:

1) Near the fixed boundary u is a Cα superharmonic function satisfying:

u ≤ 1− d(x, ∂Ω)θ

for some 0 < θ = θ(δ, ‖f‖Lip), 0 ≤ δ < 2.

2) The free boundary F = ∂{u > 0} is at a finite positive distance from
∂Ω:

0 < C0 ≤ d(F, ∂Ω) ≤ C1 < ∞
where C0, C1 depend only on δ and the Lipschitz norm of f .

3) Let v1 (respectively v2) be a non-negative subsolution (respectively
supersolution) in the upper half-plane of ∆u = uα, 0 ≤ α < 1. Then we
have the exact growth:

i) If v1 is not identically equal to zero near the origin and v1|{xn=0} ≡ 0
then:

vλ = sup
{xn=0}

v1 ≥ C(α)λβ

where 4β = 2/(1− α), C(α) = [(1− α)2/(2(1 + α)]1/(1−α).
ii) If v2 vanishes at the origin then:

vλ = inf
{xn=0}

v2 ≤ C(α)λβ.

The proof follows from the observations

(vλ)′′ ≥ (vλ)α, (vλ)′′ ≤ (vλ)α
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vλ(0) = 0, (vλ)′(0) ≥ 0, vλ(0) = 0, (vλ)′(0) = 0

Theorem 4 will be a consequence of the following:
Let u1, u2 be two (possibly different) solutions of our problem (0 ≤

δ < 2) in the same Lipschitz domain Ω. Given λ > 0 let us consider
uλ

1(x) = u1(x + λen), en = (0, . . . , 0, 1). Then we have uλ
1 ≤ u2.

The proof relies on the translation comparison method:
Let us consider

w1(x) = inf
Bσ(x)

u1, w2(x) = sup
Bσ(x)

u2.

Then w1 is a supersolution of the δ-problem and w2 a subsolution. Further-
more, the level surfaces of w1: ∂St = ∂{w > t} have a tangent ball from
”inside”, while those of w2 a tangent ball from ”outside”.

For large value of λ, w1(x + λen) ≤ w2(x) and all the level surfaces up
to the free boundary are at positive distance from each other. Let λ0 be
the smallest λ for which the free boundary remains at positive distance, and
assume that λ0 À σ.

After a sequence of translations we suppose that the free boundaries of
w1(x + λ0en) and w2 ”touch” at a point, say 0, placed at finite distance
from ∂Ω, and with a well defined normal. Since (λ0 À σ) w1(x + λ0en)|∂Ω

is strictly less than one, while w2|∂Ω ≡ 1.
Therefore one can multiply our original u1 by 1+ε, for certain ε > 0, and

construct the corresponding w1 for the new supersolution. Observe that

∆((1 + ε)u1) = (1 + ε)1−α((1 + ε)u1)
α ≥ ((1 + ε)u1)

α.

But then if w1, w2 ”touch” at the free boundary it cannot happens that
w2 ≥ w1 at the fixed boundary ∂Ω.

Appendix II
We shall consider here a special case of de Giorgi’s conjecture, namely

the following: Let −1 ≤ u ≤ 1 be a local minimizer of J(u) =
∫
<n(|∇u|2 +

χ|u|<1)dx in the whole space <n. Let us also assume that limxn→±∞ u = ±1
and that n ≤ 7.

Theorem 5 Under the hypothesis stated above u is one-dimensional (i.e.
its level sets are hyperplanes).

Sketch of the proof
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It is well known that in this case we have the equivalent free boundary
problem:

{
∆u = 0 inside |u| < 1
|∇u| = 1 on Σ+ ∪ Σ−, (Σ± = {u = ±1})

We will show that flatness implies Lipschitz and therefore one reaches
the position to apply theorem 2.

Since u is a local minimizer on BR(0), for each R ↑ ∞, we can scale
everything to the unit ball B1(0), obtaining local minimizer of

Jε(vε) =
∫

B1

(ε2|∇vε|2 + χ|vε|<1)dx

vε(x) = u(x
ε ), ε = 1

R .
By our main theorem in [C.C] we know that the level sets of vε converge

uniformly to a limiting minimal surface S in B 1
2
(0). Since we are in dimen-

sion n ≤ 7, S is a smooth surface and, therefore, the level sets vε will be as
flat as needed for ε small enough (R big enough).

Inside the region |u| < 1 we have ∆(|∇u|2) = 2
∑

(uj,k)2 ≥ 0. Therefore
|∇u|2 − 1 is subharmonic and vanishes on the boundary of the strip |u| < 1
in BR(0). By the maximum principle we get that

|∇u(x)| ≤ 1 + O(e−cR),

inside BR
2
(0) for some absolute constant c > 0.

Claim: In the viscosity sense
∑

+ has positive mean curvature (respect.∑
− has negative mean curvature) from the point of view of the domain

|u| < 1.

Suppose not: Mean curvature (
∑

+) ≤ −β < 0 in the viscosity sense at
some point, that we can take to be the origin. Then one can find a quadratic
comparison surface Λ : xn = P (x), ∆P = −β, so that Λ and

∑
+ are tangent

at the origin and Λ is above
∑

+ there.
With the help of a small translation down in the vertical direction, we

will get a domain D ⊂ {|u| < 1} such that ∂D consists of two parts, one
of them will be contained in

∑
+ while the other will be in the translated

surface Λ∗ = Λ− τen, τ > 0 small. Let us denote by ∂D = (∂D)+ ∪ (∂D)∗
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such decomposition and let d(x) be the distance function to the surface Λ∗.
We have:

∆d(x) = −
∑ κj

1− κjd(x)
≥ −

∑
κj ≥ β > 0,

where κj denotes the corresponding curvature of Λ∗ at the point where x
realizes its distance. Therefore

0 =
∫

D
∆u =

∫

∂D
uνdHn−1 =

∫

(∂D)+
dHn−1 −

∫

(∂D)∗
uνdHn−1

which implies:

area((∂D)+) ≤ (1 + O(e−cR))area((∂D)∗)

On the other hand we have:

βvol(D) ≤
∫

D
∆d ≤

∫

∂D
dνdHn−1 =

∫

(∂D)+
dνdHn−1 −

∫

(∂D)∗
dHn−1

Thus:
βvol(D) + area((∂D)∗) ≤ area((∂D)+)

And:
βvol(D) + area((∂D)∗) ≤ (1 + O(e−cR)area((∂D)∗)

which will yield a contradiction if R is big enough. This proves the claim.

Given δ > 0 we know from our quoted result [C.C] that {|u| < 1} is δ-flat
for R big enough. That is: {|u| < 1} ∩BR(0) ⊂ {|x′ | ≤ R} × [−δR, δR].

Let S+ denotes the envelope of paraboloids, xn = 1
δR |x

′ − a|2 + b,
tangent to

∑
+ from above (respect. S− is the envelope of paraboloids,

xn = − 1
δR |x

′ − a|2 + b, tangent to
∑
− from below). Then

∑
± are, respec-

tively, the graphs of two continuous Lipschitz function f±, with Lipschitz
constant ∼ 1. Also in the viscosity sense we have ∆f+ ≥ 0, ∆f− ≤ 0, see
reference [C.C*].

Let us recall that the band estimate of reference [C.C] yields vol({|u| <
1} ∩ BR) ≤ cRn−1. Since the distance function to

∑
± is superharmonic in

the viscosity sense, an energy comparison with the natural test functions
associated to the enveloping surfaces, allows us to conclude that the set of
contact points is big enough. Therefore, the two surfaces S± are, for R big
enough, at distance ≤ δRε, for every ε > 0, except for a set of small measure,
O(δ−1Rn−1−ε), in BR.
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Scaling to the unit ball B1(0) we get two continuous Lipschitz function
φ±(x) = 1

Rf±(Rx), satisfying ∆φ+ ≥ 0, ∆φ− ≤ 0, 0 ≤ φ− ≤ φ+ ≤ δ,
µ{φ+(x)− φ−(x) ≥ δRε−1} = O(δ−1R−1−ε).

Then, again for R big enough, one can apply lemma 7 of reference [C.C*]
to conclude a flatness improvement. Rescaling back to BR we obtain that
inside a smaller ball, say BR

2
, our set ({|u| < 1} ∩ BR

2
) is τδ-flat for some

universal τ < 1. And this finishes the proof.
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[C.C*] L. Caffarelli, A. Córdoba, An elementary regularity theory of minimal
surfaces, Diff. and Int. Equations vol 6, 1, (1993), 1-13.

[C] L. Caffarelli, The regularity of free boundaries in higher dimensions,
Acta Mathematica 139 (1977).

[C’] L. Caffarelli, A Harnack inequality approach to the regularity of free
boundaries. Part I: Lipschitz implies C1,α, Rev. Mat. Iberoamericana,
vol3 (1987).

[M] L. Modica, The gradient theory of phase transitions and the minimal
interphase criterium, Arch. Rat. Mech. Anal. 98 (1987), 125-142.

[G] E. de Giorgi, Convergence problems for functionals and operators, Proc.
Int. Meeting on Recent Methods in Nonlinear Analysis, Rome, 1978,
Pitagora, Bologna, 1979.

[G.G] N. Ghoussoub and C. Gui, On a conjecture of the Giorgi and some
related problems, Math. Ann. 211 (1998). 481-491.

[M.M] L. Modica and S. Mortola, Some entire solutions in the plane of
non-linear Poisson equations, Bolletino U.M.I. 5 (1980), 614-622.

[A.C] H.W. Alt and L. Caffarelli, Existence and regularity for a minimum
problem with free boundary, J. reine Angew. Math. 325 (1981), 105-144.

[A.P] H.W. Alt and D.Phillips, Free boundary problem for semilinear elliptic
equation, J. reine Angew. Math. 368 (1984), 64-102.

[P] D. Phillips, A minimization problem and the regularity of solutions in
the presence of a free boundary, Indiana Univ. Math. J. 32 (1983), 1-17.

[B.C.N] H. Berestycki, L.A. Caffarelli and L. Nirenberg, Monotonicity for
elliptic equations in unbounded Lipschitz domains, C.P.A.M., vol L
(1997), 1089-1111

[B.B.G] M.T. Barlow, R.F Bass and C. Gui, The Liouville property and a
conjecture of De Giorgi.

33
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