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§ 1. Introduction

Let I': R—>IR" be a curve in R" with I'(0)=0, n=2. To I' we associate the
Hilbert transform operator # defined by the principal-value integral

@ d
HI@=py. [ =T (xeR?). M)

(f denotes an arbitrary function in an appropriate class; say, fe C*(IR").) It is
of substantial interest to determine for which curves I, and which indices p,
one has the I’ bound

111,411, @)

for a constant 4, depending only on I' and p, not f. See [SW] for a survey of
this problem’s history through 1977. More recent results are found in [Ne, Wn,
NSW2, NVWW 1, NVWW2, Ch].

To clarify the purpose of this paper, let us recall the main strategy up until
this time for obtaining estimates of the form

1#f, <A1, 2
First, since o is a convolution operator, it follows easily that
~ N
Hf=m-f 3)

where ~ denotes the Fourier transform and the “Fourier multiplier” m is the
function

o0

d
m(E)=pw. | explie-TO)%  (EeR?) @

—

So, to prove the estimate (2) for p=2, it suffices to show that m(£) is a bounded
function on R".
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To prove the estimate (2) for p%2, one has had to take advantage of “good
properties” of the Fourier transform of a measure or distribution supported on
the curve I'. These “good” properties might be expressed in terms of certain
smoothness of the function m(¢) in (4), (derivatives of m must decay at o0), or
the decay of the Fourier transform of measures supported on I', or the
boundedness of certain “worse” functions - i.e. worse than m(&). For example,
in the case of a plane curve (i.e. n=2) I'(t)=(t, y(t)), one might try to prove that

m(&m=p.v. | (L+n*y*(0) - exp(ict+iny(1) %{ (5)

is a bounded function on R? for some positive & The idea is then to show that
an “improved” operator such as that corresponding to the multiplier m_4(&,#)
is bounded on IP(R?), 1<p<oo, for some positive §, and then finish by
applying Stein’s analytic interpolation theorem [SWe], p. 205.

The results of [NVWW 1] show that estimate (2) holds for p=2 for curves
on which the “good” properties described above fail. For example, 5 is
bounded on L*(R?) for certain plane curves I'(t)+(t,y(t)) where y(¢) is linear on
intervals a;<t<b; with b;=2a; and a;—0 as j— 0. By considering points (¢, )
orthogonal to these straight line portions of I', one can see that the “good”
properties alluded to above fail.

In this paper, we see that the above method of obtaining L estimates can
still be used for these curves if the “bad parts” of the curve are “cut out” with
appropriate Paley-Littlewood decompositions. (The “bad parts” of the curve
are treated separately via a maximal function.) We shall use the lacunary
Faley-Littlewood decomposition of [CF] and [NSW1]. See §3.1 for details of
this decomposition. A similar idea of cutting out “bad” directions was pre-
viously used in the estimation of a certain maximal function; see [NSW1].

§2. Statement of results

Theorem. Suppose I'(t)=(t,(t)) (teR) is a continuous plane curve with y: R—>R
convex for t 20, y(0)=0, y(0)* =0, and y either even or odd. Suppose also that y'
has bounded doubling time: there exists a constant C>1 with

Y(CO)*T 22y for t20. (6)

Then, # is bounded on LP(IR?) (2) for 4/3<q<4. [The convexity hypothesis
means that [y(C) —y(B)]/(C —B)=[y(B) —y(A4)]/(B—A) for 0<A<B<C.]

Our theorem not only broadens the class of curves for which LF estimates
(p+2) are known, but it also extends the range of p obtained for example in
[NW]. Moreover, if our theorem is combined with the results of [NVWW 1],
we see that for any p with 4/3<p<4, the problem of I boundedness of the
Hilbert transform for even convex plane curve (with y(0)=17'(0)" =0) is com-
pletely solved:
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Corollary. Let I'(t)=(t,y(t)) be a continuous plane curve with y: R—>R convex
for t=20, y(0)=9(0)* =0, and y an even function. Let 4/3<p<4. Then, H# is
bounded on I’(R?) (2) if and only if y' has bounded doubling time (6).

§3. Proof of the theorem

We give the proof in the case that y is an even function; the odd case is
somewhat easier. Let us also assume that ye C?(0, c0). Thus, y”(t)=0 for t%0.
The treatment of a general convex y, which contains no substantive additional
ideas, will be indicated briefly in §3.5. Finally, a note about rigor: one should
focus upon truncated operators

H yfx, = [ [flx—t,y—y@)t='de;

eS|t|=N

however, this entails so much additional notation, etc., that we choose to
ignore the truncation and proceed instead in the simpler “limit operator”
setting.
Throughout our proof, C,>1 will be a constant so that
Y(Cot)28y'(t) for t=0 (7)

e.g. C,=C3, C as in (6).
Some of our estimates will require the following lemma.

Lemma A. Van der Corput Lemma. (See [Z], p. 197.) Suppose ¢: [a,b]—>R is in
C'[a,b], ¢' is monotone, and there is a A>0 with |¢'(t)| = A for a<t<b. Then
b

jexp(iqﬁ(t))dt]gB//l for a constant B independent of a, b, f, and A.

§ 3.2. A Paley-Littlewood decomposition

Partition the plane into sectors R, (k= +1,+2,...), each sector symmetric
about both coordinate axes, as shown below.
Specifically, let

R, ={(&neR?: tan2~**m)<p/é|Stan(2™*" 1)} for k=1,2,...,
and

R,={(¢&,meR?: (n,&)eR_,}
={(& neR?%: tan(2*"2n)<|é/m| Stan(2X~'n)}  for k= —1,-2,.... )

Write (Tf) =Xy, /. (X denotes the characteristic function of the set S.) We
have

Theorem B. (See [NSW1], Corollary 2.) For 1<p<oo there exists positive
constants A, and B, with A, f|,ZICITf1»)21,<B, | f|, for each feLP(R?).
kK k
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Fig. 1. The sectors R, of the Paley-Littlewood decomposition

§ 3.2. The splitting of #
For k=+1, +2,... we write ' =H,+ L, where

dt

Hf ()= | fe=ty=p0)F, ()R ©)

ltlehc

1,€(0,0) - to which corresponds the part of the curve “bad” for (&#) in
sector R, - is an interval of the form I, =[a,/C,,a,- C,], and o, is chosen as
follows. Suppose R,={(&,neR?: r,<|é/n|<p,}; then, let o, be any positive
number with y'(¢)=r1.

If we use Theorem B and then the triangle inequality, we obtain

ANAS N, SIEATH 1Y, + I T L S 192, (10)

for 1<p<oo. We therefore need to dominate each of the above terms by a
constant multiple of | f - For the second term, we will see in §3.4 that the
bounded doubling time of y' guarantees oscillation in multiplier integrals for
T.L,; this facilitates an argument via the Marcinkiewicz multiplier theorem
[S], p. 109, and analytic interpolation. The first term in (10) we control by
appropriate maximal functions in §3.3.
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§ 3.3. Estimate for H(;wkaflz)”zllp

For each k, T, and H, commute since they are both multiplier operators. So, if
we can prove that

I 1H, g )21, C, I 18l 2, (4/3<p<4) (11)
k k

for a constant C, independent of the arbitrary measurable functions g, (k=

+1,+2,...), then we can apply (11) and Theorem B to obtain

I ITH f12)'21,<B,- C,Ifl, (4/3<p<4).
k

Toward a proof of (11), we define a maximal operator M by

Mf(x’Y)=S}1£’|Mjf(x7Y)|,
M; f(x, ) =[2(C5"" = CYI~" [ f(x —t,y—y(0)dt,
i,
J={teR: Cj<|t|]< Ci ).

We see easily that [H, f(x,y)|<C-M(|f|)(x,y) for a constant C independent of
k,f, and (x, y). Moreover, comparison via a g-function to (essentially) the strong
maximal function shows that M is bounded on L*(IR?); see Lemma C below.
Now, we consider the inequalities

I 1 Higil Dl < CL I lgil®) 4l (13)
k k

For p=2, q= oo, we verify (13) using the positivity and L?>-boundedness of M.
For p=¢g>1, (13) holds simply because each H, is concolution with a measure
of mass 4In(C,). (13) follows by interpolation (see [BP], Theorem 2) for g=2,
4/3<p=<2, and by duality for g=2, 2<p<4. This proves (11).

Let us now prove that M is bounded on L*(IR?). For this purpose we
consider for each of the average M;f a companion average N;f, defined as
follows:

_ A 7(CY)
NS ) =[2(Ch =1~ T hepn ! |
‘IJ

fo f(x—t,y—s)ds] dt, (14
0

i.e. N; is convolution with the (normalized) characteristic function of the shaded
set in Fig. 2.

| 3 /

r: s= ¥t

Fig. 2
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Evidently, sup|N; f| is dominated by a constant multiple of the strong
j

maximal function (the operator f* of [Z] p. 306, e.g.). Thus, the I* bound for
M will from

Lemma C. Define
o0 1/2
g(f)(x,y)=[ 5 IM,-fx,y)—Njfx,y)lz] .

j= —o0

Then ||g(NIl, = C|lfll, for a constant C independent of f.

Proof. By the Plancherel theorem, it suffices to show that the function
a&m= 3 Im(&m-n(&nl? (& neR? (15)
j=—

is (essentially) bounded on IR?, where

—[(CI+! — iV - [expliny(Cy) —1
e s % o LT
and
mAEn) =[2(CY = i1 | expliZnLexp(iny(o)]dr (i

are the Fourier multipliers for the operators N; and M;. (J; is defined in (12).)

Given (&,n)eR?, consider first those integers j with |7|y(Cit1)<1; let us
write jel. If jel and teJ;, we see easily that for the quantities a=[exp(iny(Ci))
—1]/Liny(Ci)] and B=exp(iny(t)) appearing in (16) and (17), we have |a
—Bl<la—11+|B =1 =3Iyl y(CF). Thus for Jel, [n{&,m)
—my&m*£9|ny(C4H)|*. Since y is convex, this latter quantity decreases
geometrically as j— —oo. Hence Zlmj(é, n) —ni(&, 1)|? is bounded by a constant
independent of (¢, n). Jel

Next we consider those integers j for which |5|y(Ci)>1; let us write jell
But |n;| <2/Iny(C)| for all j, so by again comparing with a geometric series we
see that ) [n;(&,n)|> < C, C independent of (¢,7). As for m;, we consider those

jell

jell for thich |&1=2]ny'(t)] whenever teJ; - we write jell4 - and those jell
for which [7y'(t)|>2|¢| whenever teJ; - we write jellB. Put ¢(1)=<Ct+ny(1).
For teJ; and jell4 we have |¢'(1)|>[£]/22[ny'(Cy)l. For teJ; and jellB we
have |¢'(t)| = |ny' (H)l/2=|ny'(C})l/2. Thus, Lemma A plus convexity of y give

a

a
- - - - 18
(CHT=CHny (CH ~(Co— D Iny(Ch (19

lmj(és ’7)| <

for jeIlAUIIB, a independent of j and (B, n). Therefore both

Y Im&ml* and 3 |my&n)?

jell4 jellB

are suitably bounded.
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Finally, there is only one j in Z\(IUII), and (7) shows that there are at
most three j in IIN(II4AUIIB). This is satisfactory since |m;(&n)|<1 and
In(&mI=1 for all j and (&, 7).

§ 3.4. Estimate for H(Z|Tkka|2)”2H,,
k

For this estimate, we intend to use the Marcinkiewicz multiplier theorem [S],

p. 109. However, the multiplier y,, of the operator T, is not smooth. Our first
step is therefore

§3.4.1 Replacing T, by a “smooth” operator S,. We shall presently define
operators S, so that T, =T,S,. Then we will be able to “replace” T, by S,:

IS TS P21, = W RS LS )2,
k k
écp“(Z|Skkal2)”2”,, for 4/3<p<4 (19)
k

where C, is independent of f. The inequality in (19) follows from [CF], p. 425,
specifically from the estimate (3 P, f;1*)'?(,< C,IQ | £;1%) "2, in which P, is

J J
the operator whose multiplier is the characteristic function of a half-plane with
boundary line n=tan(2 /)¢,
Now, we choose S, to be the operator such that

S N=w, f (20)

where the Fourier multiplier w, is defined as follows. Let w: R?\(0,0)—[0, 1]
be a C” function, homogeneous of degree 0, even in each variable, w(&,n)=1 if
n/4<|n/E L2, w(&n)=0 if |y/él=n or |n/E|<1/2; then, for k=1,2,3,... put
o (& n=w(2¥n), and for k= —1, =2, =3,... put w(&n)=w_,(n,&). We verify

that
o,=1 on R, (21)

so that T, =T, S, and (19) holds.
Two other properties of w, will be important. First, their support are nearly
disjoint in that
each (¢, n7)elR2\(0,0) is in the support

. (22)
of at most ten of the functions w,.

Second, for k= +1, +2,... and (& n)esupp(w,), if [t|Sa,/C, then |E|>2|ny'(1)]
and if |t|>a, - C, then |n7y'(t)| > 2|&]. («, is as defined in §3.2.) Thus,

(&, mesupp(w,)
and (23)
t¢l, =[o,/Co, 0 - Col=|E+ny ()| Z 3max(|&|, [ny'(t))).

§34.2. An analytic family of operators T,. By (19), it remains to dominate
||(Zk:|Skka|2)”2||p by a constant multiple of [/ f|,, 4/3<p<4. An application
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of the Rademacher functions (e.g., see [S], p. 104) shows that it is enough to
prove that the operator T

Tf=Y+5Lf (24)
k

is bounded on I”(R?), 4/3<p <4, with a bound independent of the choice of +
signs. To do this, we introduce a complex parameter z as follows:

(Lk,zf)Azmk,z'f
m (& m=p.v. [ exp(i&t+iny®)-[1+|ny@)]

(1412

dt
s (25)

’TzfzziSkLk,zf
k

so that T=T, and L, =L, ,.

Now, fix an arbitrarily small £¢>0. In §3.43 we shall show that T, is
bounded in L*(IR?) for Re(z)=1—¢, and in §3.4.4 that T, is bounded on I”(R?)
for Re(z)=—1—¢ and 1<p<oo. Our estimates will be independent of the
choice of + signs and will grow at most polynomially in |z|. The required
estimate for T will then follow by analytic interpolation [SWe], p. 205, and the
proof of our theorem will be complete.

§3.4.3. [*-boundedness of T,, Re(z)=1—¢. We will show that the multiplier for
T,, Y & n)-m (&), is (essentially) bounded on R?. Since |w,|<1 and in
k

view of (22), it suffices to show that m, . is bounded (independent of k) on the
support of w,. So, we fix (£, n)esupp(w,) and write ¢(t)=<Et+ny(t).

Estimate 1. Suppose 0 <a<b and |ny(t)| 1 for a<|t]|<b. Then

I § explp@®) - [1+Iny0I)Ft~ " dt|< C-(1+]z)). (26)

as|t]=b

Estimate 2. Suppose that for a <t<b we have

[ny®l=1 and |§'()>]ny'(@)|/2. (27)
Then

Eexp(id)(t))'[l+|'7V(t)l]zt"dt S C(1+|z)). (28)
(In both (26) and (28), C is independent of a, b, £, 1, and Im(z).)
Proof of Estimate 1. Let d’(t):j[exp(iqS(s)—i¢(—s))s‘ Yds. Then, since y is even,
the integral to be estimated equals
id)'(t)‘ [1+Iny(@)]) de

b
=) [1+Iny@OIFl —zf @) - [1+Iny®I1~ nly' (1) dt.
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By the L? theory of [NVWW1], Theorem 2, |®(t)| <K for a constant K
depending only on the curve y. Thus, each boundary term in the above
integration by parts is at most 2K, and the integrated term is at most

b
Klz|[[1+Iny@)0~cInly () dt <K |z| - |n|(y(b) —y(a)) <K |z|.

Proof of Estimate 2. We use the inequalities

2t ZInty' () ZIny@)|21  for a<t =), (29)
and
ILL+ @I <2lny@))'~°  for a<t<b, (30

which follow from (27) and the convexity of y. The integral to be estimated is
b
JLL+1ny@)F - [t¢'(t)]~ ' -d[exp(i¢p(1))]. We integrate by parts in the indicated

way. For the boundary terms, we have

lexpli(t)]- [1+Iny(0)[T/Ld' (]| =4Iy (O ~*/Iny (1) <4.

Two of the three integrated terms are

b
Jexp(ip(t) - [1+Iny(@|F - [td' (01" - [eny' (1 - ny' (D) de

and

ZEGXp(itﬁ(t))'[l iy~ [t (01 - ny' (1) dt.
Both are dominated by
S+ IO~V 01 2401 +2) =~
For the third integrated term,
EGXP(W(O) L+Iny@F -t [o'(01 20y (1) dt,
we assume with no loss of generality that 0 <a<b. This term is dominated by
8§Inv(t)|“"t“~|nv’(t)|‘2-|n|v”(t)dt
§8:[|ntv’(t)l“‘~t“ Ay @)1 2nly" (t)dt
§8lnl‘ea*ilv’(t)!‘l‘iv”(t)dt§88‘1(|n|aV'(a))‘£§88“1(|'7|v(a))‘5§88“1-

Thus Estimate 2 holds.
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Property (23) and Estimates 1 and 2 imply the required bound for m, , on
supp(w,). Specifically, define >0 by |[n|y(tr)=1. If t<o/C,, we treat

ax/Co ') -1 —axCo
| exp(ip(2))-[1+[ny(®)[]°t~"dt with Estimate 1 and | , |, [ ,and |
—t T arCo —ak/Co —
with Estimate 2. If t=«,/C,, a singular splitting of the integral for m, _ suffices.
§ 3.4.4. IP-boundedness of T,, Re(z)= —1—¢, 1 <p<oo. We will apply the Mar-
cinkiewicz multiplier theorem [S], p. 109. For the multiplier m of T,, m=)
om  om K

+w,(&n)-my (£ 1), we need to show that the functions m, éé?’ N and
0% n
<n 5521,1 are bounded. By (22), it suffices to verify these four estimates for

o, -m ., with bounds independent of k. The form of the functions w,(&, #) - all
dilates of w(¢,n) or of w(n,£), w homogeneous of degree 0 and smooth on
RR2\(0,0) - shows that we need only check the four estimates for my (&, n) with
(&, n)esupp(w,). So, we again fix (&, n)esupp(w,) and write ¢(t)=<Et+ny(t).

2
o'm ,

Bound for &n 3z on

There are two terms,

a= [ exp(i¢(t))-[1+InyO)|FFEny(t)dt

ltl¢ I

B=z [ exp(id()-[1+Iny0I)*~"Eny(n)dr.

ltl¢ e

and

Evidently, we need only estimate a.

Write
ax/Co 0 o) —arCo
o= [ + [ +{ +
0 —ax/Co  axCo —©

t

For the first of these, let ®(t)=[exp(i¢(s))ds. By the convexity of y, (23) and
0

Lemma A, |®(t)|<2B/|¢| for 0=t=<0a,/C,. Integration by parts gives

ak/Co

| expli¢(®)-[1+Iny(®)1* Eny(t)de

0
=ED(t)- [1+|ny@®)|Fny®)|%/ +two integrated terms.

The boundary terms are suitably bounded since Re(z) < —1. For one integrated
term, we have

ax/Co

z [ E@@1+Iny®F~ ny@)Inly () dt
o
ax/Co

<2B|z]| g Inly(@)-[L+Iny®)1~2~*Inly () dt
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0
which is satisfactory by comparison to { u-[1+u]~?~*du. The other integrated
term, Y

ax/Co

[ o) [1+Iny(I1-ny(0)de,

0

0 ai/Co
is likewise compared to [[1+u]~'~*du. Thus, | dt is appropriately
0 0 0
bounded, asis | by the same reasoning.
© — ol Co —ar'Co
Asfor | (and | ), we begin by writing
ax'Co — 0

P(t)= [ exp(i®(s)ds, |P(t)<2B/¢l,

axCo

and proceed in the same way.

omy .
¢
This equals | exp(i®(t))[1+|ny(t)|]* £dt, which we split into four integrals

[tl¢ i
and estimate exactly as above.

Bound for ¢

A
Bound for n Mz
an

There are two terms,

a= [ exp(i@(t)[1+1ny®)*ny(t)t="'de
|t]¢lx
and

p=z | exp(i®(®)-[1+Iny@OF~ 'ny)e"de

[tl¢ i

By the evenness and convexity of y, we have

0

IotléI ‘j [L+1nyON0~ "~y @lde < | [1+]u]~ ' ~*du
t|¢l —©
B is evidently easier.
Bound for m,(&,n)
This is
P-V-l |£1 exp(i@)[1+|ny(@®)]Ft~"dt
ax/Co o0
(T T )Cexpligt) —explig(—o0- [ +lns(olFe~" de
0 ax-Co

by the evenness of y.
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ax/Co

For j dt, we write ®(t)= f[exp(ld)(s))—exp(z¢>(—s)]s‘1ds By the I?
theory of [NVWWI] Theorem 2 |@(t)] < C=a constant depending only on

ax/Co
the curve y. We now rewrite [-dt using integration by parts in the way

0
indicated by our choice of @. The resulting boundary terms are bounded
because Re(z)<O0, and the integrated term is dominated by C|z|[[1
0
+u]~2"%du.

| ~dt, we write
ax"Co

P(1)= [ [exp(i¢(s)) —exp(i(—s))]s~'ds

akx'Co

and proceed in the same way.

§3.5. Extension to a general convex curve

Nearly all of our proof stands as is in the case of a general convex curve,
provided one indicates one-sided derivatives, etc., as necessary. Lemma A holds
for a convex or concave ¢, rather than ¢eC’, with the hypothesis |¢'(t)| =4
replaced by |¢(s)—¢(t)l/|s—t|= 1. Also, the various integrations by parts are
valid, since one can check that appropriate functions are absolutely con-
tinuous. There is one exception to this last comment: the proof of Estimate 2
in §3.4.3, in which y” appears. There, one approximates the convex curve 7(t)
by y;()=y;*y(t) =¥ ;*y(0), where {y;};°, is an appropriate smooth approxi-
mate identity, each ; an even function with su;zp(l)/rﬁ in the interval [ —1/j, 1/j].
—1/J
The proof given for Estimate 2 applies to y; for | ~dt. Finish by letting j— co.

a+1/j
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