

# L<sup>p</sup> bounds for Hilbert transforms along convex curves

A. Cordoba<sup>1</sup>, A. Nagel\*<sup>2</sup>, J. Vance<sup>3</sup>, S. Wainger\*<sup>2</sup>, and D. Weinberg<sup>4</sup>

- <sup>1</sup> Division de Matematicas, Universidad Autonoma, Cantoblanca, Madrid 28049, Spain
- <sup>2</sup> Department of Mathematics, University of Wisconsin, Madison, WI 53706, USA
- <sup>3</sup> Department of Mathematics, Wright State University, Dayton, OH, USA
- <sup>4</sup> Department of Mathematics, Texas Tech, Lubbock, TX, USA

### § 1. Introduction

Let  $\Gamma: \mathbb{R} \to \mathbb{R}^n$  be a curve in  $\mathbb{R}^n$  with  $\Gamma(0) = 0$ ,  $n \ge 2$ . To  $\Gamma$  we associate the Hilbert transform operator  $\mathscr{H}$  defined by the principal-value integral

$$\mathcal{H}f(x) = \text{p.v.} \int_{-\infty}^{\infty} f(x - \Gamma(t)) \frac{dt}{t} \quad (x \in \mathbb{R}^n).$$
 (1)

(f denotes an arbitrary function in an appropriate class; say,  $f \in C_c^{\infty}(\mathbb{R}^n)$ .) It is of substantial interest to determine for which curves  $\Gamma$ , and which indices p, one has the  $L^p$  bound

$$\|\mathcal{H}f\|_{p} \leq A_{p} \|f\|_{p} \tag{2}$$

for a constant  $A_p$  depending only on  $\Gamma$  and p, not f. See [SW] for a survey of this problem's history through 1977. More recent results are found in [Ne, Wn, NSW2, NVWW1, NVWW2, Ch].

To clarify the purpose of this paper, let us recall the main strategy up until this time for obtaining estimates of the form

$$\|\mathscr{H}f\|_{p} \leq A_{p} \|f\|_{p}. \tag{2}$$

First, since  $\mathcal{H}$  is a convolution operator, it follows easily that

$$\widehat{\mathscr{H}f} = m \cdot \widehat{f} \tag{3}$$

where  $\hat{}$  denotes the Fourier transform and the "Fourier multiplier" m is the function

$$m(\xi) = \text{p.v.} \int_{-\infty}^{\infty} \exp(i\xi \cdot \Gamma(t)) \frac{dt}{t} \qquad (\xi \in \mathbb{R}^n).$$
 (4)

So, to prove the estimate (2) for p=2, it suffices to show that  $m(\xi)$  is a bounded function on  $\mathbb{R}^n$ .

<sup>\*</sup> Supported in part by NSF grants at the University of Wisconsin-Madison

To prove the estimate (2) for  $p \neq 2$ , one has had to take advantage of "good properties" of the Fourier transform of a measure or distribution supported on the curve  $\Gamma$ . These "good" properties might be expressed in terms of certain smoothness of the function  $m(\xi)$  in (4), (derivatives of m must decay at  $\infty$ ), or the decay of the Fourier transform of measures supported on  $\Gamma$ , or the boundedness of certain "worse" functions – i.e. worse than  $m(\xi)$ . For example, in the case of a plane curve (i.e. n=2)  $\Gamma(t)=(t,\gamma(t))$ , one might try to prove that

$$m_{\varepsilon}(\xi,\eta) = \text{p.v.} \int_{-\infty}^{\infty} (1+\eta^2 \gamma^2(t))^{\varepsilon} \cdot \exp(i\xi t + i\eta \gamma(t)) \frac{dt}{t}$$
 (5)

is a bounded function on  $\mathbb{R}^2$  for some positive  $\varepsilon$ . The idea is then to show that an "improved" operator such as that corresponding to the multiplier  $m_{-\delta}(\xi,\eta)$  is bounded on  $L^p(\mathbb{R}^2)$ ,  $1 , for some positive <math>\delta$ , and then finish by applying Stein's analytic interpolation theorem [SWe], p. 205.

The results of [NVWW1] show that estimate (2) holds for p=2 for curves on which the "good" properties described above fail. For example,  $\mathscr{H}$  is bounded on  $L^2(\mathbb{R}^2)$  for certain plane curves  $\Gamma(t)+(t,\gamma(t))$  where  $\gamma(t)$  is linear on intervals  $a_j \leq t \leq b_j$  with  $b_j = 2a_j$  and  $a_j \to 0$  as  $j \to \infty$ . By considering points  $(\xi, \eta)$  orthogonal to these straight line portions of  $\Gamma$ , one can see that the "good" properties alluded to above fail.

In this paper, we see that the above method of obtaining  $L^p$  estimates can still be used for these curves if the "bad parts" of the curve are "cut out" with appropriate Paley-Littlewood decompositions. (The "bad parts" of the curve are treated separately via a maximal function.) We shall use the lacunary Faley-Littlewood decomposition of [CF] and [NSW1]. See § 3.1 for details of this decomposition. A similar idea of cutting out "bad" directions was previously used in the estimation of a certain maximal function; see [NSW1].

# § 2. Statement of results

**Theorem.** Suppose  $\Gamma(t) = (t, \gamma(t))$   $(t \in \mathbb{R})$  is a continuous plane curve with  $\gamma \colon \mathbb{R} \to \mathbb{R}$  convex for  $t \ge 0$ ,  $\gamma(0) = 0$ ,  $\gamma'(0)^+ = 0$ , and  $\gamma$  either even or odd. Suppose also that  $\gamma'$  has bounded doubling time: there exists a constant C > 1 with

$$\gamma'(Ct)^{+} \ge 2\gamma'(t)^{-} \quad \text{for } t \ge 0.$$
 (6)

Then,  $\mathcal{H}$  is bounded on  $L^p(\mathbb{R}^2)$  (2) for 4/3 < q < 4. [The convexity hypothesis means that  $[\gamma(C) - \gamma(B)]/(C - B) \ge [\gamma(B) - \gamma(A)]/(B - A)$  for 0 < A < B < C.]

Our theorem not only broadens the class of curves for which  $L^p$  estimates  $(p \pm 2)$  are known, but it also extends the range of p obtained for example in [NW]. Moreover, if our theorem is combined with the results of [NVWW1], we see that for any p with  $4/3 , the problem of <math>L^p$  boundedness of the Hilbert transform for even convex plane curve (with  $\gamma(0) = \gamma'(0)^+ = 0$ ) is completely solved:

**Corollary.** Let  $\Gamma(t) = (t, \gamma(t))$  be a continuous plane curve with  $\gamma: \mathbb{R} \to \mathbb{R}$  convex for  $t \ge 0$ ,  $\gamma(0) = \gamma'(0)^+ = 0$ , and  $\gamma$  an even function. Let  $4/3 . Then, <math>\mathcal{H}$  is bounded on  $L^p(\mathbb{R}^2)$  (2) if and only if  $\gamma'$  has bounded doubling time (6).

#### § 3. Proof of the theorem

We give the proof in the case that  $\gamma$  is an even function; the odd case is somewhat easier. Let us also assume that  $\gamma \in C^2(0,\infty)$ . Thus,  $\gamma''(t) \ge 0$  for  $t \ne 0$ . The treatment of a general convex  $\gamma$ , which contains no substantive additional ideas, will be indicated briefly in § 3.5. Finally, a note about rigor: one should focus upon truncated operators

$$H_{\varepsilon,N} f(x,y) = \int_{\varepsilon \le |t| \le N} f(x-t, y-\gamma(t)) t^{-1} dt;$$

however, this entails so much additional notation, etc., that we choose to ignore the truncation and proceed instead in the simpler "limit operator" setting.

Throughout our proof,  $C_0 > 1$  will be a constant so that

$$\gamma'(C_0 t) \ge 8\gamma'(t)$$
 for  $t \ge 0$  (7)

e.g.  $C_0 = C^3$ , C as in (6).

Some of our estimates will require the following lemma.

**Lemma A.** Van der Corput Lemma. (See [Z], p. 197.) Suppose  $\phi$ :  $[a,b] \to \mathbb{R}$  is in  $C^1[a,b]$ ,  $\phi'$  is monotone, and there is a  $\lambda > 0$  with  $|\phi'(t)| \ge \lambda$  for  $a \le t \le b$ . Then  $\int_a^b \exp(i\phi(t))dt \le B/\lambda$  for a constant B independent of a, b, f, and  $\lambda$ .

## § 3.2. A Paley-Littlewood decomposition

Partition the plane into sectors  $R_k$   $(k = \pm 1, \pm 2, ...)$ , each sector symmetric about both coordinate axes, as shown below.

Specifically, let

$$R_k = \{(\xi, \eta) \in \mathbb{R}^2 : \tan(2^{-k-2}\pi) \le |\eta/\xi| \le \tan(2^{-k-1}\pi)\} \quad \text{for } k = 1, 2, \dots,$$

$$R_{k} = \{ (\xi, \eta) \in \mathbb{R}^{2} : (\eta, \xi) \in R_{-k} \}$$

$$= \{ (\xi, \eta) \in \mathbb{R}^{2} : \tan(2^{k-2}\pi) \le |\xi/\eta| \le \tan(2^{k-1}\pi) \} \quad \text{for } k = -1, -2, \dots$$
 (8)

Write  $(Tf)^{\hat{}} = X_{R_k} \cdot \hat{f}$ .  $(X_S$  denotes the characteristic function of the set S.) We have

**Theorem B.** (See [NSW1], Corollary 2.) For  $1 there exists positive constants <math>A_p$  and  $B_p$  with  $A_p || f ||_p \le ||(\sum\limits_k |T_f^c|^2)^{1/2}||_p \le B_p || f ||_p$  for each  $f \in L^p(\mathbb{R}^2)$ .



Fig. 1. The sectors  $R_k$  of the Paley-Littlewood decomposition

# § 3.2. The splitting of $\mathcal{H}$

For  $k = \pm 1, \pm 2, ...$  we write  $\mathcal{H} = H_k + L_k$  where

$$Hf(x,y) = \int_{|t| \in I_k} f(x-t, y-\gamma(t)) \frac{dt}{t}, \quad (x,y) \in \mathbb{R}^2.$$
 (9)

 $I_k \equiv (0, \infty)$  - to which corresponds the part of the curve "bad" for  $(\xi, \eta)$  in sector  $R_k$  - is an interval of the form  $I_k = [\alpha_k/C_0, \alpha_k \cdot C_0]$ , and  $\alpha_k$  is chosen as follows. Suppose  $R_k = \{(\xi, \eta) \in \mathbb{R}^2 \colon r_k \leq |\xi/\eta| \leq \rho_k\}$ ; then, let  $\alpha_k$  be any positive number with  $\gamma'(\alpha_k) = r_k$ .

If we use Theorem B and then the triangle inequality, we obtain

$$A_p \| \mathscr{H} f \|_p \le \| \sum_{k} (|T_k H_k f|^2)^{1/2} \|_p + \| (\sum_{k} |T_k L_k f|^2)^{1/2} \|_p$$
 (10)

for  $1 . We therefore need to dominate each of the above terms by a constant multiple of <math>||f||_p$ . For the second term, we will see in § 3.4 that the bounded doubling time of  $\gamma'$  guarantees oscillation in multiplier integrals for  $T_k L_k$ ; this facilitates an argument via the Marcinkiewicz multiplier theorem [S], p. 109, and analytic interpolation. The first term in (10) we control by appropriate maximal functions in § 3.3.

§ 3.3. Estimate for 
$$\|(\sum_{k}|T_{k}H_{k}f|^{2})^{1/2}\|_{p}$$

For each k,  $T_k$  and  $H_k$  commute since they are both multiplier operators. So, if we can prove that

$$\|(\sum_{k} |H_k g_k|^2)^{1/2}\|_p \le C_p \|(\sum_{k} |g_k|^2)^{1/2}\|_p \qquad (4/3 
(11)$$

for a constant  $C_p$  independent of the arbitrary measurable functions  $q_k$   $(k=\pm 1,\pm 2,...)$ , then we can apply (11) and Theorem B to obtain

$$\|(\sum_{k} |T_k H_k f|^2)^{1/2}\|_p \le B_p \cdot C_p \|f\|_p$$
 (4/3 < p < 4).

Toward a proof of (11), we define a maximal operator M by

$$Mf(x, y) = \sup_{j \in \mathbb{Z}} |M_j f(x, y)|,$$

$$M_j f(x, y) = [2(C_0^{j+1} - C_0^j)]^{-1} \int_{L} f(x - t, y - \gamma(t)) dt,$$

$$J_j = \{ t \in \mathbb{R} : C_0^j \leq |t| < C_0^{j+1} \}.$$

We see easily that  $|H_k f(x, y)| \le C \cdot M(|f|)(x, y)$  for a constant C independent of k, f, and (x, y). Moreover, comparison via a g-function to (essentially) the strong maximal function shows that M is bounded on  $L^2(\mathbb{R}^2)$ ; see Lemma C below. Now, we consider the inequalities

$$\|(\sum_{k} |H_k g_k|^q)^{1/q}\|_p \le C_p \|(\sum_{k} |g_k|^g)^{1/q}\|_p. \tag{13}$$

For p=2,  $q=\infty$ , we verify (13) using the positivity and  $L^2$ -boundedness of M. For p=q>1, (13) holds simply because each  $H_k$  is concolution with a measure of mass  $4\ln(C_0)$ . (13) follows by interpolation (see [BP], Theorem 2) for q=2, 4/3 , and by duality for <math>q=2,  $2 \le p < 4$ . This proves (11).

Let us now prove that M is bounded on  $L^2(\mathbb{R}^2)$ . For this purpose we consider for each of the average  $M_j f$  a companion average  $N_j f$ , defined as follows:

$$N_{j} f(x, y) = \left[2(C_{0}^{j+1} - C_{0}^{j})\right]^{-1} \int_{J_{j}} \left[\gamma(C_{0}^{j})\right]^{-1} \left[\int_{0}^{\gamma(C_{0}^{j})} f(x - t, y - s) ds\right] dt, \qquad (14)$$

i.e.  $N_j$  is convolution with the (normalized) characteristic function of the shaded set in Fig. 2.



Evidently,  $\sup_{j} |N_{j} f|$  is dominated by a constant multiple of the strong maximal function (the operator  $f^{*}$  of [Z] p. 306, e.g.). Thus, the  $L^{2}$  bound for M will from

Lemma C. Define

$$g(f)(x, y) = \left[ \sum_{j=-\infty}^{\infty} |M_j f(x, y) - N_j f(x, y)|^2 \right]^{1/2}.$$

Then  $||g(f)||_2 \le C||f||_2$  for a constant C independent of f.

Proof. By the Plancherel theorem, it suffices to show that the function

$$\sigma(\xi,\eta) = \sum_{j=-\infty}^{\infty} |m_j(\xi,\eta) - n_j(\xi,\eta)|^2, \quad (\xi,\eta) \in \mathbb{R}^2$$
 (15)

is (essentially) bounded on  $\mathbb{R}^2$ , where

$$n_{j}(\xi,\eta) = \left[2(C_{0}^{j+1} - C_{0}^{j})\right]^{-1} \int_{L} \exp(i\xi t) \cdot \left[\frac{\exp(i\eta\gamma(C_{0}^{j})) - 1}{i\eta\gamma(C_{0}^{j})}\right] dt$$
 (16)

and

$$m_{j}(\xi,\eta) = [2(C_{0}^{j+1} - C_{0}^{j})]^{-1} \int_{J_{j}} \exp(i\xi t) [\exp(i\eta \gamma(t))] dt$$
 (17)

are the Fourier multipliers for the operators  $N_j$  and  $M_j$ . ( $J_j$  is defined in (12).)

Given  $(\xi, \eta) \in \mathbb{R}^2$ , consider first those integers j with  $|\eta|\gamma(C_0^{j+1}) \le 1$ ; let us write  $j \in I$ . If  $j \in I$  and  $t \in J_j$ , we see easily that for the quantities  $\alpha = [\exp(i\eta\gamma(C_0^j)) - 1]/[i\eta\gamma(C_0^j)]$  and  $\beta = \exp(i\eta\gamma(t))$  appearing in (16) and (17), we have  $|\alpha - \beta| < |\alpha - 1| + |\beta - 1| \le 3|\eta|\gamma(C_0^{j+1})$ . Thus for  $j \in I$ ,  $|n_j(\xi, \eta) - m_j(\xi, \eta)|^2 \le 9|\eta\gamma(C_0^{j+1})|^2$ . Since  $\gamma$  is convex, this latter quantity decreases geometrically as  $j \to -\infty$ . Hence  $\sum_{j \in I} |m_j(\xi, \eta) - n_j(\xi, \eta)|^2$  is bounded by a constant independent of  $(\xi, \eta)$ .

Next we consider those integers j for which  $|\eta|\gamma(C_0^j)>1$ ; let us write  $j\in II$ . But  $|n_j|\leq 2/|\eta\gamma(C_0^j)|$  for all j, so by again comparing with a geometric series we see that  $\sum_{j\in II}|n_j(\xi,\eta)|^2\leq C$ , C independent of  $(\xi,\eta)$ . As for  $m_j$ , we consider those  $j\in II$  for which  $|\xi|\geq 2|\eta\gamma'(t)|$  whenever  $t\in J_j$  – we write  $j\in IIA$  – and those  $j\in II$  for which  $|\eta\gamma'(t)|>2|\xi|$  whenever  $t\in J_j$  – we write  $j\in IIB$ . Put  $\phi(t)=\xi t+\eta\gamma(t)$ . For  $t\in J_j$  and  $j\in IIA$  we have  $|\phi'(t)|>|\xi|/2\geq |\eta\gamma'(C_0^j)|$ . For  $t\in J_j$  and  $j\in IIB$  we have  $|\phi'(t)|\geq |\eta\gamma'(t)|/2\geq |\eta\gamma'(C_0^j)|/2$ . Thus, Lemma A plus convexity of  $\gamma$  give

$$|m_{j}(\xi,\eta)| < \frac{a}{(C_{0}^{j+1} - C_{0}^{j})|\eta\gamma'(C_{0}^{j})|} < \frac{a}{(C_{0} - 1)|\eta\gamma(C_{0}^{j})|}$$
(18)

for  $j \in IIA \cup IIB$ , a independent of j and  $(\beta, \eta)$ . Therefore both

$$\sum_{i \in \mathbf{IIA}} |m_j(\xi, \eta)|^2 \quad \text{and} \quad \sum_{i \in \mathbf{IIB}} |m_j(\xi, \eta)|^2$$

are suitably bounded.

Finally, there is only one j in  $\mathbb{Z}\setminus(I\cup II)$ , and (7) shows that there are at most three j in  $II\setminus(IIA\cup IIB)$ . This is satisfactory since  $|m_j(\xi,\eta)| \le 1$  and  $|n_j(\xi,\eta)| \le 1$  for all j and  $(\xi,\eta)$ .

§ 3.4. Estimate for 
$$\|(\sum_{k} |T_{k}L_{k} f|^{2})^{1/2}\|_{p}$$

For this estimate, we intend to use the Marcinkiewicz multiplier theorem [S], p. 109. However, the multiplier  $\chi_{R_k}$  of the operator  $T_k$  is not smooth. Our first step is therefore

§ 3.4.1 Replacing  $T_k$  by a "smooth" operator  $S_k$ . We shall presently define operators  $S_k$  so that  $T_k = T_k S_k$ . Then we will be able to "replace"  $T_k$  by  $S_k$ :

$$\| (\sum_{k} |T_{k}L_{k}f|^{2})^{1/2} \|_{p} = \| (\sum_{k} |T_{k}S_{k}L_{k}f|^{2})^{1/2} \|_{p}$$

$$\leq C_{p} \| (\sum_{k} |S_{k}L_{k}f|^{2})^{1/2} \|_{p} \quad \text{for } 4/3 
(19)$$

where  $C_p$  is independent of f. The inequality in (19) follows from [CF], p. 425, specifically from the estimate  $\|(\sum_j |P_jf_j|^2)^{1/2}\|_p \le C_p \|(\sum_j |f_j|^2)^{1/2}\|_p$  in which  $P_j$  is the operator whose multiplier is the characteristic function of a half-plane with boundary line  $\eta = \tan(2^{-j})\xi$ .

Now, we choose  $S_k$  to be the operator such that

$$(S_k f)^A = \omega_k \hat{f} \tag{20}$$

where the Fourier multiplier  $\omega_k$  is defined as follows. Let  $\omega \colon \mathbb{R}^2 \setminus (0,0) \to [0,1]$  be a  $C^{\infty}$  function, homogeneous of degree 0, even in each variable,  $\omega(\xi,\eta) = 1$  if  $\pi/4 \le |\eta/\xi| \le 2$ ,  $\omega(\xi,\eta) = 0$  if  $|\eta/\xi| \ge \pi$  or  $|\eta/\xi| \le 1/2$ ; then, for k = 1,2,3,... put  $\omega_k(\xi,\eta) = \omega(\xi,2^k\eta)$ , and for k = -1,-2,-3,... put  $\omega_k(\xi,\eta) = \omega_{-k}(\eta,\xi)$ . We verify that

$$\omega_k \equiv 1$$
 on  $R_k$  (21)

so that  $T_k = T_k S_k$  and (19) holds.

Two other properties of  $\omega_k$  will be important. First, their support are nearly disjoint in that

each 
$$(\xi, \eta) \in \mathbb{R}^2 \setminus (0, 0)$$
 is in the support of at most ten of the functions  $\omega_k$ .

Second, for  $k = \pm 1, \pm 2, \ldots$  and  $(\xi, \eta) \in \operatorname{supp}(\omega_k)$ , if  $|t| \le \alpha_k / C_0$  then  $|\xi| > 2 |\eta \gamma'(t)|$  and if  $|t| > \alpha_k \cdot C_0$  then  $|\eta \gamma'(t)| > 2 |\xi|$ . ( $\alpha_k$  is as defined in § 3.2.) Thus,

$$(\xi, \eta) \in \operatorname{supp}(\omega_k)$$
 (23)

and

$$t \notin I_{\nu} = \lceil \alpha_{\nu}/C_{0}, \alpha_{\nu} \cdot C_{0} \rceil \Rightarrow |\xi + \eta \gamma'(t)| \ge \frac{1}{2} \max(|\xi|, |\eta \gamma'(t)|).$$

§ 3.4.2. An analytic family of operators  $T_z$ . By (19), it remains to dominate  $\|(\sum_k |S_k L_k f|^2)^{1/2}\|_p$  by a constant multiple of  $\|f\|_p$ , 4/3 . An application

of the Rademacher functions (e.g., see [S], p. 104) shows that it is enough to prove that the operator T

$$Tf = \sum_{k} \pm S_k L_k f \tag{24}$$

is bounded on  $L^p(\mathbb{R}^2)$ ,  $4/3 , with a bound independent of the choice of <math>\pm$  signs. To do this, we introduce a complex parameter z as follows:

$$(L_{k,z}f)^{A} = m_{k,z} \cdot \hat{f}$$

$$m_{k,z}(\xi,\eta) = \text{p.v.} \int_{|t| \notin I_{k}} \exp(i\xi t + i\eta \gamma(t)) \cdot [1 + |\eta \gamma(t)|]^{z} \frac{dt}{t}$$

$$T_{z}f = \sum_{k} \pm S_{k}L_{k,z}f$$

$$(25)$$

so that  $T = T_0$  and  $L_k = L_{k,0}$ .

Now, fix an arbitrarily small  $\varepsilon > 0$ . In § 3.4.3 we shall show that  $T_z$  is bounded in  $L^2(\mathbb{R}^2)$  for  $\text{Re}(z) = 1 - \varepsilon$ , and in § 3.4.4 that  $T_z$  is bounded on  $L^p(\mathbb{R}^2)$  for  $\text{Re}(z) = -1 - \varepsilon$  and  $1 . Our estimates will be independent of the choice of <math>\pm$  signs and will grow at most polynomially in |z|. The required estimate for T will then follow by analytic interpolation [SWe], p. 205, and the proof of our theorem will be complete.

§ 3.4.3. L²-boundedness of  $T_z$ ,  $\text{Re}(z) = 1 - \varepsilon$ . We will show that the multiplier for  $T_z$ ,  $\sum_k \pm \omega_k(\xi, \eta) \cdot m_{k,z}(\xi, \eta)$ , is (essentially) bounded on  $\mathbb{R}^2$ . Since  $|\omega_k| \le 1$  and in view of (22), it suffices to show that  $m_{k,z}$  is bounded (independent of k) on the support of  $\omega_k$ . So, we fix  $(\xi, \eta) \in \text{supp}(\omega_k)$  and write  $\phi(t) = \xi t + \eta \gamma(t)$ .

Estimate 1. Suppose 0 < a < b and  $|\eta \gamma(t)| \le 1$  for  $a \le |t| \le b$ . Then

$$\left| \int_{a \le |t| \le b} \exp(i\phi(t)) \cdot [1 + |\eta\gamma(t)|]^z t^{-1} dt \right| \le C \cdot (1 + |z|). \tag{26}$$

Estimate 2. Suppose that for  $a \le t \le b$  we have

$$|\eta \gamma(t)| \ge 1$$
 and  $|\phi'(t)| > |\eta \gamma'(t)|/2$ . (27)

Then

$$\left| \int_{a}^{b} \exp(i\phi(t)) \cdot [1 + |\eta \gamma(t)|]^{z} t^{-1} dt \right| \le C(1 + |z|).$$
 (28)

(In both (26) and (28), C is independent of a, b,  $\xi$ ,  $\eta$ , and Im(z).)

Proof of Estimate 1. Let  $\Phi(t) = \int_{a}^{t} \exp(i\phi(s) - i\phi(-s))s^{-1} ds$ . Then, since  $\gamma$  is even, the integral to be estimated equals

$$\int_{a}^{b} \phi'(t) \cdot [1 + |\eta \gamma(t)|]^{z} dt$$

$$= \Phi(t) \cdot [1 + |\eta \gamma(t)|]^{z}|_{a}^{b} - z \int_{a}^{b} \Phi(t) \cdot [1 + |\eta \gamma(t)|]^{z-1} |\eta| \gamma'(t) dt.$$

By the  $L^2$  theory of [NVWW1], Theorem 2,  $|\Phi(t)| \le K$  for a constant K depending only on the curve  $\gamma$ . Thus, each boundary term in the above integration by parts is at most 2K, and the integrated term is at most

$$K|z|\int_{a}^{b} \left[1+|\eta \gamma(t)|\right]^{-\varepsilon}|\eta|\gamma'(t)dt \leq K|z|\cdot|\eta|(\gamma(b)-\gamma(a)) \leq K|z|.$$

Proof of Estimate 2. We use the inequalities

$$2|t\phi'(t)| \ge |\eta t\gamma'(t)| \ge |\eta \gamma(t)| \ge 1 \quad \text{for } a \le t \le b, \tag{29}$$

and

$$|[1+|\eta\gamma(t)|]^z|<2|\eta\gamma(t)|^{1-\varepsilon}\quad\text{ for }a\leq t\leq b,$$
(30)

which follow from (27) and the convexity of  $\gamma$ . The integral to be estimated is  $\int_{a}^{b} [1 + |\eta \gamma(t)|]^{z} \cdot [t \phi'(t)]^{-1} \cdot d[\exp(i \phi(t))].$  We integrate by parts in the indicated way. For the boundary terms, we have

$$|\exp[i\phi(t)]\cdot[1+|\eta\gamma(t)|]^{z}/[t\phi'(t)]|\leq 4|\eta\gamma(t)|^{1-\varepsilon}/|\eta\gamma(t)|\leq 4.$$

Two of the three integrated terms are

$$\int_{a}^{b} \exp(i\phi(t)) \cdot [1 + |\eta\gamma(t)|]^{z} \cdot [t\phi'(t)]^{-1} \cdot [t\eta\gamma'(t)]^{-1} \cdot \eta\gamma'(t) dt$$

and

$$z\int_{a}^{b} \exp(i\phi(t)) \cdot [1 + |\eta\gamma(t)|]^{z-1} \cdot [t\phi'(t)]^{-1} \cdot \eta\gamma'(t) dt.$$

Both are dominated by

$$4(1+|z|)\int_{a}^{b}|\eta\gamma(t)|^{-1-\varepsilon}|\eta\gamma'(t)|\,dt \leq 4(1+z)\int_{1}^{\infty}u^{-1-\varepsilon}du.$$

For the third integrated term,

$$\int_{a}^{b} \exp(i\phi(t)) \cdot [1 + |\eta\gamma(t)|]^{z} \cdot t^{-1} \cdot [\phi'(t)]^{-2} \cdot \eta\gamma''(t) dt,$$

we assume with no loss of generality that 0 < a < b. This term is dominated by

$$\begin{split} 8 \int_{a}^{b} |\eta \gamma(t)|^{1-\varepsilon} \cdot t^{-1} \cdot |\eta \gamma'(t)|^{-2} \cdot |\eta| \gamma''(t) dt \\ & \leq 8 \int_{a}^{b} |\eta t \gamma'(t)|^{1-\varepsilon} \cdot t^{-1} \cdot |\eta \gamma'(t)|^{-2} |\eta| \gamma''(t) dt \\ & \leq 8 |\eta|^{-\varepsilon} a^{-\varepsilon} \int_{a}^{b} |\gamma'(t)|^{-1-\varepsilon} \gamma''(t) dt \leq 8 \varepsilon^{-1} (|\eta| a \gamma'(a))^{-\varepsilon} \leq 8 \varepsilon^{-1} (|\eta| \gamma(a))^{-\varepsilon} \leq 8 \varepsilon^{-1}. \end{split}$$

Thus Estimate 2 holds.

Property (23) and Estimates 1 and 2 imply the required bound for  $m_{k,z}$  on  $\operatorname{supp}(\omega_k)$ . Specifically, define  $\tau>0$  by  $|\eta|\gamma(\tau)=1$ . If  $\tau<\alpha_k/C_0$ , we treat  $\int\limits_{-\tau}^{\pi_k/C_0} \exp(i\phi(t)) \cdot [1+|\eta\gamma(t)|]^z t^{-1} dt$  with Estimate 1 and  $\int\limits_{-\tau}^{\pi_k/C_0} \int\limits_{-\pi_k/C_0}^{\infty} \int\limits_{-\pi_k/C_0}^{-\tau} \int\limits_{-\pi_k/C_0}^{\pi_k/C_0} \int\limits_{-\pi_k/C_0}^{\infty} \int\limits_{-\pi_k/C_0}^{-\pi_k/C_0} \int\limits_{-\infty}^{\pi_k/C_0} \int\limits_{-\pi_k/C_0}^{\pi_k/C_0} \int\limits_{-\pi_k/C_$ 

Bound for 
$$\xi \eta \frac{\partial^2 m_{k,z}}{\partial \xi \partial \eta}$$

There are two terms,

$$\alpha = \int_{|t| \notin I_k} \exp(i\phi(t)) \cdot [1 + |\eta \gamma(t)|]^z \, \xi \, \eta \gamma(t) \, dt$$

and

$$\beta = z \int_{|t| \neq I_k} \exp(i\phi(t)) \cdot [1 + |\eta \gamma(t)|]^{z-1} \xi \eta \gamma(t) dt.$$

Evidently, we need only estimate  $\alpha$ .

Write

$$\alpha = \int_{0}^{\alpha_{k}/C_{0}} + \int_{-\alpha_{k}/C_{0}}^{0} + \int_{\alpha_{k}C_{0}}^{\infty} + \int_{-\infty}^{-\alpha_{k}C_{0}}.$$

For the first of these, let  $\Phi(t) = \int_{0}^{t} \exp(i\phi(s)) ds$ . By the convexity of  $\gamma$ , (23) and Lemma A,  $|\Phi(t)| \le 2B/|\xi|$  for  $0 \le t \le \alpha_k/C_0$ . Integration by parts gives

$$\int_{0}^{\alpha_{k}/C_{0}} \exp(i\phi(t)) \cdot [1 + |\eta\gamma(t)|]^{z} \xi \eta \gamma(t) dt$$

$$= \xi \Phi(t) \cdot [1 + |\eta\gamma(t)|]^{z} \eta \gamma(t)|_{0}^{\alpha_{k}/C_{0}} + \text{two integrated terms.}$$

The boundary terms are suitably bounded since  $Re(z) \le -1$ . For one integrated term, we have

$$\left| z \int_{0}^{\alpha_{k}/C_{0}} \xi \Phi(t) [1 + |\eta \gamma(t)|]^{z-1} \eta \gamma(t) |\eta| \gamma'(t) dt \right|$$

$$\leq 2B|z| \int_{0}^{\alpha_{k}/C_{0}} |\eta| \gamma(t) \cdot [1 + |\eta \gamma(t)|]^{-2-\varepsilon} |\eta| \gamma'(t) dt$$

which is satisfactory by comparison to  $\int_{0}^{\infty} u \cdot [1+u]^{-2-\varepsilon} du$ . The other integrated

$$\int_{0}^{\alpha_{k}/C_{0}} \xi \Phi(t) \cdot [1 + |\eta \gamma(t)|]^{z} \cdot \eta \gamma'(t) dt,$$

is likewise compared to  $\int\limits_0^\infty [1+u]^{-1-\varepsilon}du$ . Thus,  $\int\limits_0^{a_k/C_0}dt$  is appropriately bounded, as is  $\int\limits_{-\alpha_k/C_0}^\infty$  by the same reasoning.

As for  $\int\limits_{a_k \cdot C_0}^\infty \left( \text{and } \int\limits_{-\infty}^{-\alpha_k \cdot C_0} \right)$ , we begin by writing

As for 
$$\int_{\alpha_k \cdot C_0}^{\infty} \left( \text{and } \int_{-\infty}^{-\alpha_k \cdot C_0} \right)$$
, we begin by writing

$$\Phi(t) = \int_{a_R \cdot C_0}^{t} \exp(i\Phi(s)) ds, \quad |\Phi(t)| \leq 2B/|\xi|,$$

and proceed in the same way.

Bound for 
$$\xi \frac{\partial m_{k,z}}{\partial \xi}$$

This equals  $\int_{|t|\notin I_k} \exp(i\Phi(t))[1+|\eta\gamma(t)|]^z \xi dt$ , which we split into four integrals

Bound for 
$$\eta \frac{\partial m_{k,z}}{\partial \eta}$$

There are two terms,

$$\alpha = \int_{|t| \notin I_k} \exp(i\Phi(t)) [1 + 1|\eta \gamma(t)|]^z \eta \gamma(t) t^{-1} dt$$

and

$$\beta = z \int_{|t| \notin I_k} \exp(i\Phi(t)) \cdot [1 + |\eta \gamma(t)|]^{z-1} \eta \gamma(t) t^{-1} dt.$$

By the evenness and convexity of  $\gamma$ , we have

$$|\alpha| \leq \int_{|t| \notin I_k} [1 + |\eta \gamma(t)|]^{-1-\varepsilon} |\eta \gamma'(t)| dt \leq \int_{-\infty}^{\infty} [1 + |u|]^{-1-\varepsilon} du.$$

 $\beta$  is evidently easier.

Bound for  $m_k(\xi, \eta)$ 

This is

$$\begin{aligned} \text{p.v.} & & \int_{|t| \neq I_k} \exp(i\boldsymbol{\Phi}(t)) [1 + |\eta \gamma(t)|]^z t^{-1} dt \\ & = \left( \int_0^{\alpha_k/C_0} + \int_{\alpha_k \cdot C_0}^{\infty} \right) [\exp(i\boldsymbol{\phi}(t)) - \exp(i\boldsymbol{\phi}(-t))] \cdot [1 + |\eta \gamma(t)|]^z t^{-1} dt \end{aligned}$$

by the evenness of  $\gamma$ .

For  $\int_{0}^{\alpha_{k}/C_{0}} \cdot dt$ , we write  $\Phi(t) = \int_{0}^{t} [\exp(i\phi(s)) - \exp(i\phi(-s)]s^{-1}ds$ . By the  $L^{2}$  theory of [NVWW1], Theorem 2,  $|\Phi(t)| \le C = a$  constant depending only on the curve  $\gamma$ . We now rewrite  $\int_{0}^{\alpha_{k}/C_{0}} \cdot dt$  using integration by parts in the way indicated by our choice of  $\Phi$ . The resulting boundary terms are bounded because  $\operatorname{Re}(z) < 0$ , and the integrated term is dominated by  $C|z| \int_{0}^{\infty} [1 + u]^{-2-\varepsilon} du$ .

For  $\int_{\alpha_{k}/C_{0}}^{\infty} \cdot dt$ , we write

For 
$$\int_{\alpha_k \cdot C_0} \dots dt$$
, we write 
$$\Phi(t) = \int_{\alpha_k \cdot C_0}^t \left[ \exp(i\phi(s)) - \exp(i\phi(-s)) \right] s^{-1} ds$$

and proceed in the same way.

#### § 3.5. Extension to a general convex curve

Nearly all of our proof stands as is in the case of a general convex curve, provided one indicates one-sided derivatives, etc., as necessary. Lemma A holds for a convex or concave  $\phi$ , rather than  $\phi \in C^1$ , with the hypothesis  $|\phi'(t)| \ge \lambda$  replaced by  $|\phi(s) - \phi(t)|/|s - t| \ge \lambda$ . Also, the various integrations by parts are valid, since one can check that appropriate functions are absolutely continuous. There is one exception to this last comment: the proof of *Estimate 2* in § 3.4.3, in which  $\gamma''$  appears. There, one approximates the convex curve  $\gamma(t)$  by  $\gamma_j(t) = \psi_j * \gamma(t) - \psi_j * \gamma(0)$ , where  $\{\psi_j\}_{j=1}^\infty$  is an appropriate smooth approximate identity, each  $\psi_j$  an even function with support in the interval [-1/j, 1/j]. The proof given for *Estimate 2* applies to  $\gamma_j$  for  $\int\limits_{a+1/j}^{b-1/j} \cdot dt$ . Finish by letting  $j \to \infty$ .

#### References

- [BP] Benedek, A., Panzone, R.: The spaces L<sup>p</sup>, with mixed norm. Duke Math. J. 28, 301-324 (1961)
- [Ch] Christ, M.: Hilbert transforms along curves, II. A flat case (Preprint)
- [CF] Cordoba, A., Fefferman, R.: On the equivalence between the boundedness of certain classes of maximal and multiplier operators in Fourier analysis. Proc. Natl. Acad. Sci. USA 74, 423-425 (1977)
- [NSW1] Nagel, A., Stein, E.M., Wainger, S.: Differentiation in lacunary directions. Proc. Natl. Acad. Sci. USA 75, 1060-1062 (1978)
- [NSW2] Nagel, A., Stein, E.M., Wainger, S.: Hilbert transforms and maximal functions related to variable curves, I. Proc. Symp. Pure Math., vol. 35, Am. Math. Soc. Providence, R.I. 1979
- [NVWW1] Nagel, A., Vance, J., Wainger, S., Weinberg, D.: Hilbert transforms for convex curves. Duke Math. J. 50, 735-744 (1983)
- [NVWW2] Nagel, A., Vance, J., Wainger, S., Weinberg, D.: The Hilbert transform for convex curves in R<sup>n</sup>. Am. J. Math. (To appear)

- [NW] Nagel, A., Wainger, S.: Hilbert transforms associated with plane curves. Trans. Am. Math. Soc. 223, 235-252 (1976)
- [Ne] Nestlerode, W.C.: Singular integrals and maximal functions associated with highly monotone curves. Trans. Am. Math. Soc. 267, 435-444 (1981)
- [S] Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton, N.J.: Princeton Univ. Press 1970
- [SW] Stein, E.M., Wainger, S.: Problems in harmonic analysis related to curvature. Bull. Am. Math. Soc. 84, 1239-1295 (1978)
- [SWe] Stein, E.M., Weiss, G.: Introduction to Fourier Analysis on Euclidean Spaces. Princeton, N.J.: Princeton Univ. Press 1971
- [Wn] Weinberg, D.: The Hilbert transform and maximal function for approximately homogeneous curves. Trans. Am. Math. Soc. **267**, 295-306 (1981)
- [Z] Zygmund, A.: Trigonometric Series, vol. 1, 2nd ed. London: Cambridge Univ. Press 1959

Oblatum 13-II-1985 & 24-VII-1985