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Lattice Points

Antonio Cérdoba

1. Andante: Small Arcs, But Not Too Small

At the beginning there were lattice points

and arithmetical functions like the following:
r(n) = #{n = a® + b%/a, b € Z} = number of lattice points on the circle x2 + y2 = n.
It is well known that

r(n) = O(@n®), forevery ¢ >0.
r(n) # O((logn)*), forany o .

On the other hand, let {v;};=1 2,3 be three lattice points on the circle of radius R, centered at
the origin. The theorem of Hero of Alexandria gives us: ||[v; — va] - |lva — v3]| - |lvi — v3]] = 4R
area (T') > 2R. Therefore, length of the arc viv3 > (2R)'/3. That s, an arc whose length is (2R)!/3
contains, at most, two lattice points. We can state our first result.

Theorem 1. (J. Cilleruelo, A. Cérdoba)
For every a, 1/3 < a < 1/2, there exists a finite constant cq, so that an arc of length R*
contains, at most, ¢, lattice points.

What happens when % < a < 17 This is an interesting open problem.

This theorem is of an arithmetical nature. The function r(n) is better understood in the ring of
gaussian integers and there is an extension to 0(/=d),d >0 square free, where we consider now
ra(n) = #{n =a%+ db?/a, b € 7}, i.e., lattice points on arcs of ellipses [2]. In his Ph.D. thesis [3]
Jiménez has also obtained the corresponding version for real quadratic fields, that is, lattice points
on arcs of hyperbolas.

The following is a list of closely related questions:

i. Restriction lemmas for Fourier Series and integrals.
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ii. Estimates for Gauss sums.
iii. Existence of infinitely many primes in the sequence {n% + 1}.

iv. Problems in the theory of Quantum chaos: Characterization of weak limits of sequences
|k (x)|2dx, where ¥ is a normalized eigenfunction of the Laplacian [4].

Sketch of the Proof [1].
Let p be a prime so that p = 1(4). It can be represented in eight manners as a sum of two
squares p = a? + b%. They correspond to the gaussian integers

a + bi = /peritEo+y) t=0,1,2,3.

2nd

We assign to such a prime p = 1(4) an angle ¢. An important fact about those angles,
corresponding to different primes, is that they are linearly independent over the rationals.
Assume that r(n) > 0 and that

n=2" ]—[ qfﬂk n p“i’j

%=3(4) pj=1(4)
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Then r(n) =4J](1 + «;) and each representation n = a?+b? yields the gaussian integer
a + bi = /ne? B0+ Eydi+3)

where:
¢; is the angle assigned to p;
l¥jl <@ and y; =a; mod (2)
t=0,1,2,3
_J 0 if viseven
¢°‘[ L if v isodd
On the circle of radius R = /n let us assume that an arc of length ~/2R* contains m + 1
lattice points:
Weuses =1,...,m+ 1 to label those lattice points and angles:

t;"
Z Yi%i+ vy

Given two different points s # s, we consider the angle:

: vi-v -t
Ills‘s =Z J 5 J ¢j+ >
j

we have:
a) If+5 =+ mod (2) then ¥** is the angle corresponding to a representation of the number
=¥l
[1»
j
as a sum of two squares.
b) Iftf # " mod (2) then ¥* " is the angle corresponding to a representation of
=)
2[[#;
j
The fact that the angles ¢; are linearly independent over the rationals allows us to conclude
that ¥*** is the angle of a lattice point not on the coordinate axis, but on the circle of radius.

’
i =y |

2"/2np}. g where v=0 or 1.
j

Therefore, if ||| ||| denotes distance to the integers we have:
l '4] 5,5 > 1
— /
253 lvj —vj \/4
n2[1; p;

On the other hand our hypothesis about the location of the m + 1 lattice points on an arc of length
V2R? yields: .

21/2

Ra—l

ws,s’

=
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Multiplying these inequalities all together we get:
y
1/4
R(d—l)m(m+l) > 1 : — 1
- Iy =y} 1/4

Yo -v
ns.s/an' njpj s

Now we observe that because of the constrains ij‘ | < aj we have:

2

(m + 1)2 — 8(m)

Vv =2

5,8 *
0 ifmisodd
where  8(m) = { 1 ifmiseven
Therefore, [ —8(m)
m+1)2—8(m
R(a—l)mgmHz > —"1,,—./2 = R-(MH);—&"‘
/i
I1; pj
ie., ‘ 2
a _a)m(m +D) _m+ D" —30m)
2 4
which yields,
1 1

D e e c—
*=32 4Z1+2

The proof for other imaginary quadratic fields Q(+/—d) follows a similar strategy. One has to assign
angles to ideals, and the non-principal prime ideals complicate the program. But it can be carried

out (see [2]). O

2. Allegro: Trigonometric Sums

Gaussian sums are an important object in Number Theory. Here we shall consider them in the

particular form
2
SN ( x) — Z e27r ik“x
N<k<2N

The following are well-known estimates:
i.

2
Z e27l’lk X ~ NI/Z, 1< p <4
N<k<2N

p
ii.
2N ) C
#{X . ZBkax ZNI/Za < =
a
N

for some universal constant C < 00.
jii.

2N
Zez"“‘z"“ ~ N'21og N)V4 N - o0
N 4
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An application of the method introduced in the proof of the previous theorem produces:

Theorem 2. (]. Cilleruelo, A. Cérdoba)

| 4

/ dx
0

N+N©

.2
Z eZmn x
N

1
2N2“+0(N3°‘_1+5), forevery ¢ >0 if 5 <e@< 1.

I

1
2N 4 0(1), fas<s.

It is an interesting open problem to extends Theorem 2 to the case of arbitrary coefficients,
i.e., sums of the form
N+N®

12
Z akeka x
N

Trigonometric series whose frequencies are precisely the powers {n*},— 2 3... are relevantin Number
Theory. There is a conjecture about their L?-behavior:
Conjecture 1.

IfY |an|? < oo, then Za,,e2”i"kx € LP[0,1], forp <2k

In the following we shall consider the family of trigonometric series

1
Sa,k(x) — Z .n_ae27rinkx .
n=1
They have an interesting history. According to Weierstrass [5], Riemann thought that ImS; 2(x)
could be an example of a continuous but nowhere differentiable function. This was partially con-
firmed by Hardy [6], who proved that ImS; , is not differentiable at any irrational value of x and
at several types of rational values. However, years later Gerver [7] showed that there are infinitely
many rational numbers in which the derivative exists.
With the help of a computer we have obtained the graphics in the following pages.
These graphics illustrate our next theorems about the fractal (box counting) dimension and
differentiability properties of the functions

ad C k
n 2min*x
Fa.k(x)=§ —¢
n
n=1

0 < liminf ¢, <limsupc, < c©
Theorem 3. (F. Chamizo, A. Cérdoba)
If1 <a <k+ 1/2, then we have
. 1 o
dim(Fpx) =2+ % %
Theorem 4. (F. Chamizo, A. Cérdoba) )
2nidn

Leta/q € Q be an irreducible fraction and S(a/q) =Y 1_ e™'q
Then S« (x) is differentiable at a/q if and only if S(a/q) = 0. Moreover, in this case,

2mi & i apk
Sl/c,lc(x) =_Tzn82mqn .

n=1

See [9, 10].
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Graphof Im Fy , Graph of Im F3,
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3. Molto Vivace: The Energy of a Large Atom

As we have seen before, an interesting problem in Number Theory is to estimate trigonometric

sums of the following form:
N
k k
= — No | —
s =321 (i) (v ()

where:
(@) [¢"(x)| = Co > 0.
(b) u is a periodic function of average 0.

(c) The amplitude f is usually nice.
Example 1.
f =1, ux) = e¥* ¢(x) = x2, then we obtain Gauss sums mod(N).

Example 2.

f=Lukx)=x—[x]- %, then S represents the error term in the lattice point problem for a curve
¢ dilated by N.

00000
'S XX XN NN X/
0000000 000
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In collaboration with Fefferman and Seco, the following example has been analyzed:

w(x) = dist {x,Z}* — —
172

1 2
b = —/(v”(r)--z-) ar
) T r2 ),

o 2\ 172
f(Q):F—(?Z—)-,P(Q)=/(VTF(r)~—;2—)+ dr .

VTZF (r) is the Thomas—Fermi potential for an atom with charge Z which satisfies the perfect scaling:
V() = 2% Vre (2'4r)

It happens that —¢” (2) > Cy > 0, so we are in conditions to use Van der Corput’s method.
For the function Yo (Z) = Z*/35(Z'/?), we have obtained the following estimates:

Theorem 5. (A. Cordoba, C. Fefferman, L. Seco)
a)3C < o0, [Yg(2)| < CZ*/2,
b) limsup |Z73/2y o (Z)| # 0.
Z—>o00
The role of the function ¥g(Z) in atomic physics is as follows:
Consider a non-relativistic atom, consisting of a nucleus of charge Z fixed at the origin and N
quantized electrons at positions x; € R3.

The hamiltonian of such a system is given by Hz y = vazl (=Ax; — TJchT) + % Z#k I_xﬁ acting
on functions ¥ € H = AIN lL2(R3 ® Z3)

We define the energy

E(Z) = i%f E(Z;N), E(Z;N)= inf < Hzn¥,¥ >
YeH
Iy li=1

Then we have the following asymptotic
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1
E(2) = Crr2"P + £ 2+ CpsZ* + y9(2) +0 (25/3-“) ,a>0.

The rigorous proof of this formula is due to Lieb—Simon (1° Term), Hughes (2° Term) and
Fefferman—Seco (Dirac—Schwinger term).

It has been known that the next correction is not just a power (fractionary) of Z. The work of
Schwinger and Fefferman-Seco suggest that it is precisely ¥(Z) the right candidate for the next
term of the expansion. Then its “oscillatory nature” became rather interesting as a first step in the
project of understanding the periodic table from first principles.

The estimates for g follow from Van der Corput’s method; that is, stationary Phase and
Poisson’s summation formula, which allows us to make the connection with the last topic of this
article.

4. Scherzo: X-Rays Crystallography

The spatial configuration of a crystal is usually obtained throughout X-ray diffraction data.
The standard interpretation assigns diffraction peaks intensities to absolute values of the Fourier
transform of the periodic electron density p.

The phase problem asks for the reconstruction of p from the knowledge of | |. In such general
terms it is not well posed.! A rather interesting question is to analyze which kind of “chemical" or
“geometrical" information about p is relevant to ensure the reconstruction.

A plausible model for the electronic density of one-dimensional crystals is given by sums of

Dirac’s deltas:
N +00
p= Z bj Z 8x,~+n
j=1 —00

where b; € Z* are positive integers and 0 < x; < 1.
The phase problem asks to locate the positions {x;} (modulo translations or reflections xj’. =
1 — x;) knowing the absolute values.

N
[F(m)| = |3 bje™ ™
j=1

meZ.

Example 3. (Gaussian molecule) Let p be an odd prime and consider the gaussian sum:

LA n\ 2rimt
Gp(m)=Z(;)e ’

n=1

where +1, nR
n _ — ’ n p
<;> = Legendre symbol. = [ -1, nNp.

Then

p—l : n2 in
G,,(m) - Ze2mm7 =1+ ZZeZmBm
n=0 nRp

_ ) P if (m,p)=1

IThis was first observed by Pauling + Shappel (1930) in reference to the mineral bixbyite. Calderén and
Pepinsky (1952) introduced a method to construct different homometric sets, i.e., E % F and | XEl = 1XFl.
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Inverse problem: Are gaussian sums characterized by this property?

Theorem 6. (F. Chamizo, A. Cérdoba)
Let0 = x1 < x2 < ... < xy < 1 be real numbers and {b;} positive integers such that

N
|F(m)| = ijeb!ixj.m
j=1
satisfies:
[Fm)] = T if (p,m)=1
IFm)| = Y b i p/m

Then either
m 2rim&
F(m) = AD, (;) + Be™ ™5 G p(m)
or
ok
F(m) = AD, (ﬁ) + Be¥™5
P
for suitables rational numbers A, B, and integer k.
We have used the notation:
Dp(x) =Y27'e¥int Dirichlet kernel
Gp(m) = gaussian sums

Crucial lemma:
Let £, = €2"//P and consider the field Q(¢p).

Lemma 1.
If all the algebraic conjugates of w € Q(¢p) have equal modulus, then:

p—1
either w = B;:Z(—'l) ¢
n=1 p
or w = BCI',‘

for some rational number B and integer k.

Proof. Let o be a generator of the Galois group of the extension [Q(¢p) : Q. The hypothesis
about the algebraic conjugates yields

o(w)
w

et = ()%, (a,b) = 1
Taking a*a = 1 mod (b) we obtain
& =D € Q&)

Two cases:

1. If p/bthen[Q(Lp) : Q(Cp)] = %—%, yieldsb = porb =2p.
2. If p Xbthen Q(¢p) = Q(p - &b) = Q(¢pb) and @(p) = @(p-b) = b =1,2.
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i.e., we only have four possibilities
b=12,p,2p

and it became easy to check that there exists e, 0 < e < p — 1 so that

Let us assume that o'(¢,) = ¢5 and choose k = e/(g — 1) in Z} (g > 1 because o is a generator of
the Galois group).

Then
0 ¢y w) o) Fow)
5Fw 5* w
—kg+k 0 (W) — ezm'_k p—]) o(w) _
w wo
= 57
Similarly
02( ~ky
_éll’t__) =41
U(Zp - w)
Therefore, az(gp‘kw) = ¢ *w, ie.,

GrweM = [a (a(;,,) +03@p) + o+ a"‘z(s“p))

+b (02@) + 0@+ + 0P G) |

where M is the subfield invariant under o'2. Therefore,

w=;},‘{Ach+BZ;g},A,BeQ,

neR neN

where R, N denotes, respectively, the set of quadratic and non-quadratic residues mod(p).
Ifo (¢ *w) = ¢, *wthen ¢ *w e Q.
Ifo(t  w) =— » kw, then we have B = —A and & kw is a rational multiple of a gaussian

sum. [:ﬁ

References

[1] Cilleruelo, J. and Cérdoba, A. (1992). Trigonometric polynomials and Lattice points, Proc. Amer. Math. Soc.
115.

[2] Cilleruelo, J. and Cérdoba, A. (1994). Lattice points on ellipses, Duke Math. J., 76(3).

[3] Jiménez, J. (1995). Puntos de coordenadas enteras en hiperbolas, Ph. D. Thesis, U.A.M.

[4] Jacobson, D. (1993). Quantum limits on flat tori, Ph. D. Thesis, Princeton University, Prineton, NJ.

[5] Weierstrass, K. Uber continuierliche Functionen eines reellen Arguments, die fiir keiren Werth des letzteren einen
bestimmten Differentialquotien besitzen. Mathematische Werke 11, 71-74.

[6] Hardy, G.H. (1916). Weierstrass’s non-differentiable function. Trans. Amer. Math. Soc. 17.
[7] Gerver, J.(1970). The differentiability of the Riemann function in certain rational multiples of 7. Amer. J. Math.
22.



870
[8]
91

[10]
[11]

(12]
(13]

(14]
(15]

Antonio Cérdoba

Duistermaat, J. (1991). Selfsimilarity of “Riemann’s non-differentiable function”. Nieuw. Arch. Wisk. (4)9.

Chamizo, F and Cérdoba, A. (1993). The fractal dimension of a family of Riemann’s graphs, C.R. Acad. Sci.
Paris, Serie J. 317.

Chamizo, F. and Cérdoba, A. Differentiability and dimension of some fractal Fourier series, In press, Adv. Math.

Fefferman, C. and Seco, L. (1994). On the Dirac and Schwinger corrections to the ground-state energy of an
atom. Adv. Math. 107.

Cérdoba, A., Fefferman, C., and Seco, L. (1995). Weyl sums and atomic energy oscillations, Rev. Mat. Iberoamer-
icana, 11(1).

Calder6n, A. and Pepinsky, R. Computing Methods and the phase problem in X-ray Crystal analysis, Pub. Penns.
State College, College Park, P.A.

Rosenblatt, J. (1984). Phase Retrieval, Comm. Math. Phys. 95.

Chamizo, F. and Cérdoba, A. Quadratic Residue Molecules, In Journal of Number Theory, vol. 65, N=BA1, July
1997.

Universidad Auténoma de Madrid



