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Abstract

We study the free boundary evolution between two irrotational, incompressible and inviscid fluids in 2-D
without surface tension. We prove local existence in Sobolev spaces when, initially, the difference of the
gradients of the pressure in the normal direction has the proper sign, an assumption which is also known
as the Rayleigh—Taylor condition. The well-posedness of the full water wave problem was first obtained by
Wu (1997) [20]. The methods introduced in this paper allow us to consider multiple cases: with or without
gravity, but also a closed boundary or a periodic boundary with the fluids placed above and below it. It
is assumed that the initial interface does not touch itself, being a part of the evolution problem to check
that such property prevails for a short time, as well as it does the Rayleigh—-Taylor condition, depending
conveniently upon the initial data. The addition of the pressure equality to the contour dynamic equations
is obtained as a mathematical consequence, and not as a physical assumption, from the mere fact that we
are dealing with weak solutions of Euler’s equation in the whole space.
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1. Introduction

We consider the following evolution problem for the active scalar p = p(x,t), x € Rz, and
t>0:

o +v-Vp=0, (L.1)
with a velocity v = (vy, vy) satisfying the Euler equation
p(vr +vVv)=—-Vp—(0,gp), (1.2)
and the incompressibility condition
V.-v=0. (1.3)
The free boundary is given by the discontinuity on the densities of the fluids

1 1

P(X1,X2,t)={p2’ erz(t), 3 M1
p°, xeR°(t)=R"— 2 (1),
where ,o1 #* ,02 are constants.

‘We shall assume also that each fluid is irrotational, i.e. w = V x u = 0, in the interior of each
domain £2/ (j =1, 2). The main purpose of this paper is to understand the evolution of the free
boundary, but we shall also take the point of view of having weak solutions in the whole space
presenting a discontinuity in the density along the interface. Under the hypothesis that at the
initial time we have smooth velocity fields v!, v2 whose values at the interface differs only in the
tangential direction it follows that, for a certain time ¢ > 0, the vorticity @ will be supported on
the free boundary curve z(w, ¢) and it has the form

wx,t)=o(a, t)8(x — z2(a, t)).

Here we shall consider two types of geometries, namely periodicity in the horizontal space vari-
able, says z(a + 2km,t) = z(a,t) + (2kmw, 0), or the case of a closed contour z(« + 2k, t) =
z(c, t). We shall assume also that we have infinite depth. In [15] fluids of finite depth were
considered.

In Section 2 our first step will be to show the equality of pressure at each side of the free
boundary, when we understand the system (1.1)—(1.3) in a weak sense (see Proposition 2.1).

The free boundary z(«, ¢) evolves with a velocity field coming from Biot—Savart law, which
can be explicitly computed and it is given by the Birkhoff—Rott integral of the amplitude @ along
the interface curve:

1 (z(a, 1) —z(B, 1)t
BR(z, ) (a, t) = EPV @) —2B.DP

w(B,t)dp, (1.4)

where PV denotes principal value [19]. It gives us the velocity field at the interface to which we
can subtract any term in the tangential direction without modifying the geometric evolution of
the curve

z:(a,t) =BR(z, w)(a, t) + c(a, 1)0qz(cx, 1). (1.5)
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A wise choice of c(«, 1), namely:

T

oe—{-nf 0gz(a, 1)
2n 100 z(ct, 1) |2

-7

cla,t)= - 0uBR(z, w)(a, t) da

0a2(B, 1)

- m -0gBR(z, @) (B, 1) dp, (1.6)

allows us to accomplish the fact that the length of the tangent vector to z(w, ) be just a function
in the variable ¢ only [14]:

A() = |dgz (e, ).

Then we can close the system using Bernoulli’s law with the equation:

2
o
oy (a, 1) = —2A,0;BR(z, @) (at, 1) - 0pz(a, 1) — Apdy (ﬁ)(a, 1)+ 0y (cw) (e, t)
o
+2A,c(a, 1)0oBR(z, w)(a, 1) - dgz(er, 1) — 2A 800 22(x, 1), (1.7)
where
P2 — P1
P =
P2+ p1

is the Atwood number.
We shall use the notation T for the following operator (depending on the curve z(«, t)) acting
on u(«, t) by the formula

T(u)(o, t) =2BR(z, u)(a,t) - 9gz(ct, 1). (1.8)

The inversibility of (1 + A,T) (see [2]) allows us to write Eq. (1.7) in the following more con-
venient explicit manner:

o (a, )= + A,OT)_1 (A,,R(z, w) + 8a(cw))(a, 1). (1.9)
Next let us give the function which measures the arc-chord condition [13]

B 18I
F@)(a, B,t) = @0 — 2@ — B0 Vo, B € (—m, ), (1.10)

and

F(2)(,0,1) = —Iaaz(a, o
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Finally following Refs. [3] and [1] we introduce the auxiliary function ¢(«,t) which will
allow us to integrate the evolution equation

@ =@ )|z )] (1.11)
o(a, = @D c(o, 2 (a, ). .

Our main result consists on local existence for the water wave problem: p; = 0. We prove that
there is a positive time T (depending upon the initial condition) for which there exists a solution
of Egs. (1.4)—(1.7) with p; = 0 during the time interval [0, T] so long as the initial data satisfy

20(@) € HY, go(@) € H*=7 and ay(a) € H*" for k > 4, F(z0)(a, B) < 00, and
oo(@) = —(Vp*(z0(@). 0) — Vp' (z0(e). 0)) - 8 z0(ex) > 0,
where p/ denotes the pressure in £2/.

Theorem 1.1. Let zo(e) € H¥, po(a) € Hk_% and wo(a) € Hk1 fork >4, F(zo)(a, B) < o0,
and

oo(@) = —(Vp*(z0(@), 0) — Vp' (z0(a), 0)) - 95 z0() > 0.

Then there exists a time T > 0 so that we have a solution to (1.4)—(1.7) in the case p1 =0, where
z(a, 1) € C1([0, TI; HY) and w (o, 1) € C1([0, T; H*=1) with z(a, 0) = zo(«) and w («, 0) =
wo(a).

The first results concerning the Cauchy problem for the linearized version in Sobolev spaces
are due to [10,17,22]. In her important work [20] (see also [21]) S. Wu was able to prove that
the presence of the gravitational field, together with the hypothesis about the asymptotic flatness
of the fluid domains, implies that the Rayleigh—Taylor sign condition must hold so long as the
interface is well-defined. In our treatment we can also get local solvability even in the absence of
gravity, or for a closed contour, whenever the Rayleigh—Taylor and the arc-chord conditions are
initially satisfied.

Besides the significant work of S. Wu that has been referred before, we can also quote the
interesting paper [1] where they get energy estimates on the free boundary and the amplitude of
the vorticity, under the time dependent assumption of the arc-chord property. These authors make
also use of the fact obtained by Wu about the persistence of the Rayleigh—Taylor sign condition.

In our approach the explicit control upon the evolution of the arc-chord relation of the free
boundary is especially emphasized, together with the inversion of the operator (I + T'), which
gives us the equation for the time derivative of the vorticity amplitude in terms of the curve (see
Eqgs. (1.8)—(1.9) with p; = 0). The architecture of our proof relies upon different energy estimates
for the quantities involved (Sobolev norms for z, @, arc-chord and Rayleigh—Taylor condition).
But in order to fix together its different parts it becomes crucial to get explicit upper bounds on
the operator (/ + T')~! on different Sobolev spaces. Here we continue the method introduced
in [6,7], where conformal mappings, Hopf maximum principle and Dahlbert—Harnack inequality
up to the boundary, for nonnegative harmonic functions, play a central role.

In the following interesting works by Christodoulou and Lindblad [5], Lindblad [16], Coutand
and Shkoller [9], Shatah and Zeng [18] and Zhang and Zhang [23] the rotational case has been
also considered. Let us point out that the evolution of the sign of Rayleigh-Taylor condition
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is crucial in our proof [7], because it allows to get rid of the highest order derivatives in the
evolution equation of the Sobolev norms of the curve (Section 8).

2. The evolution equation
We shall consider weak solutions of the system (1.1)—(1.3); that is for any smooth functions

¢, n and x, compactly supported on [0, T) x R?, i.e. lying in the space C([0,T) x R?), we
have

T
//,0@;+v~V()dxdt+/po(X)§(x,0)dX=0, (2.1)
0 Rr2 R2
T
//(pv-(nz+v-Vn)+PV-n—(0, gp)~n)dxdt+/,00(X)vo(X)~n(x,0)dX=0, (2.2)
0 R2 R2
and
T
//v-dexdtzo. 2.3)
0 R2
Here p is defined by
1 1
P, xef2 (@),
X1, X2,1) = 2.4
p(x1,x2,1) {pz, re 220, (2.4)

where p! # p?. It is assumed that the vorticity is given by a delta function on the curve 32/ (r)
multiplied by an amplitude and has the form

w(x,t) =o(a, t)8(x — z2(a, t)). 2.5)
Then using the Biot—Savart law we get

. 1
LPV (x —z(8,1)) @ (B,1)dp (2.6)

v 1) = x—28. )7

for x not lying on the curve z(«, t), and

vz(z(oz 1),t) =BR(z, w)(a, 1) + I o@D dgz(a, 1)
k] k] ’ ’ 2 |8az(a,t)|2 o ’ k]
1 = _ 17 @ (@ 1)
v' (z(er, 1), t) = BR(z, @) (a, 1) 5 |8az(a,t)|28az(a’ 1), (2.7)

where v/ (z(a, 1), 1) denotes the limit velocity field obtained approaching the boundary in the
normal direction inside £2/ and BR(z, @ )(«, t) is given by (1.4). It is easy to check that (2.3) is
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satisfied by v given as in (2.6). Furthermore, we have that the identity of the weak formulation
(2.1) is verified so long as the following equality holds (see [8]):

z(, 1) -8t z(a, 1) = BR(z, w)(a, 1) - - z(a, ). (2.8)

Proposition 2.1. Let us consider a weak solution (p, v, p) satisfying (2.1)—(2.3) where p is given
by (2.4) and curl v = w by (2.5). Then we have the following identity

pl(z(e, 1), 1) = p*(z(a, 1), 1),

where pJ (z(a, 1), t) denotes the limit pressure obtained approaching the boundary in the normal
direction inside $27.

Proof. We shall show that the Laplacian of the pressure is as follows
Apx,t)=F(x,t)+ f(a, t)S(x — z2(a, t)),

where F is regular in Q27(t) although discontinuous on z(«, t), and the amplitude of the Dirac
distribution f is regular. Then the inverse of the Laplacian by means of the Newtonian potential
gives the continuity of the pressure on the free boundary (see [6]).

We also shall use an ad hoc integration by parts for the derivatives of the velocity. The expres-
sion for the conjugate of the velocity in complex variables

1 1
—,PV/ — w(a,t)da,
2mi z—z(a,t)

for z # z(«, t) allows us to accomplish the fact that

9,0(z, t)_ /( o (@) /( dz(a, 1) wl(a,t) o

z—z(a, t))2 z—z(a,1)? dpz(a, 1)

v(z,t) =

and therefore

1 1
azv(z,t)—%PV/ma ( az)(O{ t)dOl (29)

for a regular parametrization with d,z(c, ) # 0. In a similar way

1 1
Uiz, 1) ==—PV | ———— (o, 1)d
Vi(z,1) =5 /Z_Z(a,t)wz(a )da

1 1 ro
——PV ] ———9 Dda, 2.10
— /Z_Z(a’t) a(aaz)w ) da (2.10)

325(z, 1) ! PV/ Lo (Lo (2 (a,1)d 2.11)
v(z, 1) = — ——— 9| — 0 — ) )(a, ) da. .
VE 27 z—z(o, 1) “\ gz \ gz

and
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These identities help us to get the values of Vv/(z(a, 1), 1), v,j (z(a, 1), 1) and VZv/ (z(, 1), 1)
which are obtained as limits approaching the boundary in the normal direction inside £2/(¢).
To get the stated formula for the pressure we start with identity (2.2) choosing n(x,t) =

VXi(x,t). Then

T T T
//pAkdxdt:f/(O,gp)~dexdt—/ pv - Vi dxdt
0R

0 R2 0 R2 2

T
— / / oV - (v . Vzk) dxdt — / po(X)vo(x) - VA(x,0)dx

0 R2 R2
=hLh+hL+ L+ 14

Let us define /() = {x € 2'(¢t): dist(x,32' (1)) > &} and 22(1) = {x € 2°(¢):
dist(x, 32%(r)) > ¢}, we have

T T
Ilzlim/ / gpIBXZAdxdt+/ / g0, A dx dt
e—0
0 2l 0 22
T n
= / / (0> = p")gduzi(e, DX (2(, 1), 1) derdt,
0 —m

and we can consider the term (p% — 01)gdyz1(a, 1) as being part of the function f (e, ).
Regarding the term I we integrate by parts in the variable ¢ to obtain

T T
12=11m—/ / plvl-w,dxdt—/ / 0*v? -V dxdt
e—0

0 2l 0 2200

=Nh+h—1L
where

T
J1=//,ovtoV)dedt,
0 R

2

and

T n
J2=//(p2v2(z(a, 0,1) — p' (z(, 1), 1)) - VA(z(@, 1), 1) ze (@, 1) - 93 2, 1) da dit.

0 —m



A. Cordoba et al. / Advances in Mathematics 223 (2010) 120-173 127

In J; we use formula (2.10) to get the limit on the boundary of v; (x, 7). Again we first integrate by

parts in J; and then take the limit when € — 0. Since in each QL) v is regular and div v, =0,
it follows that

T n

Ji =//(p v (2, 1), 1) = p'v} (z(e, 1), 1)) - 95 2o, DA (2 (e, 1), 1) dx dit.

0 —m
As before we may consider (pzvtz(z(a, t),1) — ,olvt1 (z(a, t),1)) - 8jl-z(a, t) as being a part of

fle,1).
Next (2.7) yields the splitting J, = K1 4+ K> where

-

Kz—// 2 +p 252(?‘ t))|2 duzle, ) - VA(2(ct 1), 1)z (@, 1) - 9 2(er, ) dar .

(0> = p")BR(z, @) (o, 1) - VA (z(et, 1), 1)z (e, 1) - By z(er, 1) dex dt,

hll\:a

Integrating by parts in & we can write

T n

Kz:—//(pz-i-:ol))‘(z(a’t)’t) (2|8 B 3y z)(a 1) dadt,

0 —7m

giving us another term of f(a, t).
Let us introduce now the decomposition I3 = J3 + J4 + Js5 4+ Jg where

T T
——f/p(vl)zaﬁlxdxdt, J4=—//pv1vzaXZaX,xdxdt,

0 R2 0 R2
T T

—//pvlvzaxlaxZAdxdt, J6=—f/p(v2)za§2mxdt.
0 R2 0 R2

Using the sets .{28’ (#) and the identity (2.9) we get

J3=//2,ov13xlv18xlkdxdt
0

4 / / (PP (0 (e 10, 1)) — 0 (0} (2Cets ). 1))y (et 1), 1) Bz (et 1) der i
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The term K3 trivializes because the ad hoc integration by parts formula together with the identity

(2.11) gives
/T
0

where f(a, 1) = 2(p?v3(z(et, 1), )5, v} (et 1), 1) — p 1o} (2o, 1), D)y, v} (2, 1), 1)) Ba22(et, 1),
and the first term in K3 is part of F'(x, ) while the second lies in f(«, ).
We can rewrite K4 as follows

T &
20 v18x1vl —|—(8X1v1) Adxdt // f(a, t)k z(a 1), t) dadt,
R2 0 —m

T =
2 2

[l 4
K4_ ,0 —,o //[(BR1)2+—( - 1)4 i|8xlk(z)8a12dozdt

4 |0uz]
0 —m
T
0

T
(P> +p") /wBR1 daz1 50 A(2) g 22 dardt. (2.12)
—7T

Next we continue analogously with Jy

J4=//,0(v28x2v1+v18x2v2)8xlkdxdt
0 R2

// (viv3) (2, 1), 1) — p (v} vd) (2(et, 1), 1)) B, A (2(t, 1), 1) Bzt (v, 1) dex dt
0 —m
= K5+ K,

and K is treated as K3 (a term in K is part of F'(x, t) and another of f(«, t)). K¢ can be written
in the following manner

T n
W< 03721002
Ko =—(p*=p' //[BRlBRz—i— 1 %]%J(Z)%zld(xd[
0 —m | al |
T n
Z w 0yZ
(p*+0") //[ |8a |22+ —BR; |8‘¥ |1 j|8x1x(z)8azldadt (2.13)
a
0 -7

Regarding J5 we have the splitting

=//p(v28X1v1+v13X1v2)8X2kdxdt
0 R2
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+// )(z(a, 1), 1) — p' (viv3) (z(a, 1), 1)) By A (2, 1), 1) 22 (ex, 1) dex dt
0 —
= K7+ Ks.

K7 again can be treated like K3, and we obtain for Kg the following expression

T &
@ 0321002
e //[BR‘BR”T T T42i|3Xz)~(Z)3aZ2dotdt
a
0 —7m
T & )
Z w Z
(0240 //[ |aa |22+ o BR2 |aa |1 }%czk(z)amdadt. (2.14)
(74
0 —m

Next for Jg

J6=//2,Ov23va28xZ)ndxdt
0 Rr2

—/f(pz(ug(z(a,z),r))z—pl(v;(z(a, 1,1))") o1 (z(@, 1), 1) duza(e, 1) da dt

0 —m
= K9 + Ko,

and for K9 we proceed as before. Finally we have

T n
) 2
Kio=—(p>—p' //[(BRg)Z @ (3a22) }an,\(z)aazldad;
0 —m

4 Bzl
T n
Z
(P> +p! //w I8a |228x2k(z)8amdocdt. (2.15)
(X
0 —m

Using Egs. (2.12)—(2.15) we get the following sum K4+ K¢+ Kg + K19 = (0> — p")L1 + (p> +
pH Lo where

—//BR(z,w)(a, 1) - Va(z(e, 1), 1)BR(z, @) (e, 1) - 9y z(, 1) de dt,
0 —m

and
// D BR G ) 1) - B2 Dz 1) - VL (ele, 1), 1) .

2[8qz(e, )|
0 -
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Integration by parts in the variable o in Ly gives the last term of f(c«, t). Then identity (2.8)
gives K1 + (p? — p')L1 =0 and the stated formula for the Laplacian of p is proved. O

Identity (2.8) allows us to choose the velocity of the curve as follows:
21, 1) =BR(z, w)(a, 1) + c(at, 1) 9o 2(et, 1), (2.16)

where the scalar c(«, t) is given by

Catw [ 9B [ 05z
=" [ G tBRG @)@ dp /Wz(ﬁ)'z 04BR(z, w)(B)df, (2.17)

-7

and has been taken in such a way that the length of the tangent vector only depends on the
variable ¢:

|0uz(e, D)]* = At). (2.18)

Since c(«, t) has to be periodic, we obtain

A'(t) = 2047/ (0, 1) - Oz, t) = % / 0qz(ct, 1) - 04BR(z, w)(a, t) da. (2.19)

-7

Next we close the system giving the evolution equation for the amplitude of the vorticity
@ (a, t) by means of Bernoulli’s law. This fact allows us to satisfy (2.2) showing that we have a
weak solution. Using (2.6) for x # z(«, t) we get v(x, 1) = V¢ (x, t) where

_ 1 x2 —22(8, 1)
¢(x,t)= 7 PV/arctan(—x1 —ry t))w(,B, t)dp.

Let us define

where again ¢/ (z(r, 1), 1) denotes the limit obtained approaching the boundary in the normal
direction inside £2/. It is clear that

T (@, 1) = (Vo (2(@, 1), 1) — V! (2, 1), 1)) - Bpz(at, 1)

= (v2(z(oz, 1),1) — v! (z(a, 1), 1)) - 0gz(t, 1) = (a1, 1),

and therefore
7
/ w (o, t)da =0.
-

Now we observe that
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5 1
¢*(z(a, ), 1) = IT(z, @) (o, 1) + S @),
¢ (z(a, 1), 1) = IT(z, @) (et 1) — %H(a, 0, (2.20)

where

22(a,t) — z2(B, 1)
z1(a, 1) — z1(B, 1)

IT(z,m)(a,t) = %PV/arctan( )w(ﬂ, t)dg.

Using the Bernoulli’s law in (1.2), inside each domain, we have

1
p(dh(x, H+ §|v(x, 0| +ng) + p(x, 1) =0.

Next we take limits to get
. 1, . .
o’ <¢! (z(a,0), 1) + 5|vf (2, 1), 1) + gza(e, r)) + p/(z(@, 1), 1) =0,

and since pl(z(a, t),t)= p2(z(a, t),t), we obtain

2 1
o). 1)+ 5[0 (2. 1.) = S [o! (2@ ). 1) P+ (0 = p)gca@ ) =0, 221)

where we have introduced the following notation:
[p¢e)(e. 1) = p*¢} (2. ). 1) = p'¢) (z(@. ). 1).

Then itis clear that ¢/ (z(c, 1), 1) = 3, (¢7 (z(et, 1), 1)) — 24 (o0, ) - VI (z(at, ), 1), and using (2.20)
we find that
p*+p!

i+ (0* = ") (IT(z, @) — 2t - (p*v*(z, 1) — p' 0" (2, 1)).

[og:] =

Introducing Egs. (2.7) and (2.16) into (2.21) we get

(o, 1) = =2A,0,(IT(z, @) (at, 1) + c(a, v (@, 1) + Ap|BR(z, &), z)\z
| (0, 1)
7 4100z(c 1)
—24,822(a, 1). (2.22)

+24,c(a, NBR(z, @) (e, 1) - dzl, 1) — A

Since the equality

30/(IT(z,@)) = 0;(BR(z, @) - 042) = %BR(z, @) - 042 + BR(z, @) - 04BR(z, &)
+ cBR(z, @) - 022 + 4¢BR(z, @) - 92
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can be proved easily, we can take then a derivative in (2.22) and use the above identity to find the
desired formula for w:

2
oy (a, 1) =—2A,0,BR(z, ) (a, 1) - 0pz(at, 1) — Apdy (%)(a, 1)+ 0y (co)(a,t)
e
+2A,c(et, 1) BR(z, w)(, 1) - Jpz(et, 1) — 2A 20022 (ct, 1). (2.23)

Our next step will be to get the formula for the difference of the gradients of the pressure in
the normal direction:

ol t)=—(Vp*(z@. 1), 1) = Vp' (z(e, 1), 1)) - 85 z(et, 1), (2.24)
which we shall find in the singular terms of the evolution equation.
We will consider the case p; = 0, which gives —Vp(x,t) = 0 inside 21(¢) and therefore

Vpl(z(a,1),t) = 0. Let us define the Lagrangian coordinates for the free boundary with the
velocity v?

Zi(y.) =v(Z(y.1).1),
Z(y,0) =zo(y).

We have two different parameterizations for the same curve Z(y,t) = z(x(y, t), t) and also two
equations for its velocity, namely

Zi(y,t) =z, 8) + o (v, ) 0uz(, 1)
=BR(z, o) (a,t) +cla,t)dyz(e, t) + o (Y, 1)y z(t, t)

and another one given by the limit

Zi(y, 1) = BRGz, ) (e 1) + =280y ) (2.25)
t\Y, - Z, o)X, 2 |aaz(a’ [)|2 ol O, . .

The dot product with the tangential vector gives

w (o, t) o(a,t)

1
“0 0= S e = Tgzta ol

And taking a time derivative in (2.25) yields

Zu(y,0) - 95 z(a, t) = (3:BR(z, @) (et, 1) + o (v, )3 BR(z, @) (@, 1)) - 33 z(ct, 1)

1 w(a,t)

Em(aab(av 1) + oy (y, t)aoth(Ol, t)) : aaLZ(Olv £).

Therefore
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o(a,t) _

P _<8,BR(z,w)(a,t)+ ple. )

00z (e, 1)

3BR(z, )(«, t)) Sk z(a, 1)

1 o(n pla,t) 5 > L
2 [zl )2 (e, 1] w1 | dazlen )

+ g0uzi (e, 1). (2.26)

(aaZ[(Ol, t) +

Remark 2.2. Let us consider py and p; to be now arbitrary densities, then using the Lagrangian
coordinates for the free boundary of the fluid in 2L

Z)(y,t) =v' (Z/(y.0),1),
Z'(y,0) =z0(y).

it is easy to check that

o(a1) | (a, t)|2
m = Ap (atBR(Z, w)(a,t) + magz(a, t)) . ajz((x’ )
<M_A ( t)>8BR( )( t)_aj_( 1)+ 24,21 (@. 1)
[0z (ct, 1)]2 et oBRZ, D), o 2(, gA,0q0z1(a, ).

3. The evolution equation in terms of ¢ (c, £)

We will consider p; = 0 and therefore A, = 1. Using (2.23) we can write

2
oy (o, t) = —20;BR(z, w)(ct, t) - 0qz(cx, 1) — Oy (%)(a, t) + 0y (cm)(a, t)
4 2c(a, 1)y BR(z, @) (e, t) - Oyz(ct, t) — 280y 22(ct, ). (3.1

In the case A, = 0 the expression (2.23) yields
wl(aa t) = aoz(cw)(aa t)a

that is, we obtain the vortex sheet problem for which the Kelvin—Helmholtz instability arises
[4,12]. For A, =1 this term again appears in the evolution equation, and in order to absorb it we
shall make use of the parameter ¢(«, ¢) [1,3]. The fact that |9, z(c, 1) |2 = A(t) yields

T
1
2A(t)dyc = — / 0qz(ct, 1) - 04BR(z, w)(a, t)doe — 2047 - 0o BR(z, @)
T
—7T
and therefore

T
2007 - 0uBR(z, ) = — o (AC?) + = / duz(a, 1) - 94BR(z, ) (e, 1) da.
T

—7T
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Substituting the formula above in (3.1) we find

T
oy = ~20,BR(z, @) - doz — 8 6?) + = / 0u2(@, 1) - D BR(z, @) (e, 1) dot — 289572, (3.2)

-
for ¢ given by (1.11). From that identity we have

wt(avt) ZD'(O{,I)
— 380[2
2|00z, D) 2|0gz(a, )]

(o, 1) = (o, 1) - dazi (o, 1) — By (clduzl) @, 1) (3.3)

which together with (3.2) and (2.19) yields

z 0o z(a, 1) 0xz2
=—8,BR(z,w) - O / - 94BR(z, w)(a, 1) da —
' |0az] 2|aaZ| az(. )] %9zl

Oy z(a, 1)

— — - 0¢BR(z, ,t)da — 9:(c|0 )
2|8aZ|2 21T / 190z (e, )] wBR(z, @) (a, t) da l(cl aZ|)
-

that is

Oy (902) aam
— B(1) 0;BR(z, w) - —
206a7] v |aaz| & 0az]

$r == 3 (clduzl), G4

where

_ wz(ct, 1)
B() = 2n/|8az(a e -04BR(z, @) (a, t) da.

It is easy to check in the equation above that the singular term 9, (c) takes part of the transport
term 0y ((pz).

Now let us remember that the evolution equation for the quantity I7(«, t) was discovered using
the continuity of the pressure on z(«, t) (Proposition 2.1). Analogously the evolution equation
for 0y I1(a, t) = w (0, t) can be obtained throughout the following identity:

—(Vp*(z(a, 1), 1) = Vp'(z(a, 1), 1)) - dgz(at, 1) = 0.

(Observe nevertheless that the Rayleigh—Taylor condition refers the jump of the pressure in the
normal direction (2.24).)
With the help of property (2.18) we find that

Iqzlar, 1) - 0qz(at, 1) =0,

and therefore

8§z(a, t)- Balz(a, 1)

0tz(a,1).
ez np e D

32z(a 1) =
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In the above formula we get the normal direction in the second derivative of z. Using this fact in
(3.4) we obtain

N 32z-91z
— B()dap = (UBRG. ) - 0572 + gdaz1) 5=
al

92(¢?)
2|0qz|

Oq@r = —

o 2 [ o@D bR w e yda ) + 8 ( 9z ) 9, BR(z, ).
— S - Oy , o) (a, o o
27 J Touzte,n)] ¢ "\ 19zl ©

In 9;( gzg |) the perpendicular direction also appears, so that completing the formula for o (2.26)

we get

32(p?) o 32z-9;)z 1, daZi- itz
— B()dpp — — 2—2= 30z|B) (1) + 0,BR(z, @) - 0 z——2—
21307] (1)0agp PERRPIE 3 (1902 B)(t) + 3. BR(z, ) - e

Oapr = —

w 927917
+ 94BR(z, @) - alz+——<a 20z 4+ —— 9279t ))M
(Iaa I 28,22\ |0ez] EM4E

and therefore

ACR) o 03705z
Oy = — B()dgp — —2—%= — 9,(|0az| B) (¢
1% 2|8a | () (% ,02 |8aZ|3 l(| o | )()
. BR ar 32z-05z )| Buzs - 0y 32z 0y )
+|8a |3( (z, @) - z+2|a ) e )(aZz "‘Z+|8a| z-
Finally after a straightforward calculation we obtain the following:
KAGH o 02295z
Our = 0 — — —2%" — 3,(|942|B
o Pt 2|8a | 1% ,02 |aa2|3 l(| aZ| )
, 2
——(%BR(z, @) - 35 32z-9757) . 3.5
+|aaz|3(°‘ o) Ozt g “Z) )
4. The basic operator
Let the operator T be defined by the formula
T (u)(o) =2BR(z,u) () - 0y z(cx). 4.1)

Lemma 4.1. Suppose that | F(z)|| L~ < 0o (1.10) and z € C*® with0 <8 < 1/2. Then T : L*> —
H! and

Tl 2 i1 < | F(2) ||Loo Izl gas- (4.2)

Proof. Here we shall show the argument in the case of a closed curve. The other case was treated
in [6].
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Since the formula (1.4) yields

e

T(w)(a)= %8(1 [ u(pB) arctan(

-7

22(at) _22(/3)>dﬁ,
z1(@) —z1(B)

we have

Vg

f Tw)(x)da =0,

-7

which implies || 7 (w)||;2 < 10T ()|l 2.
Let us write first:

0o T (u) =2BR(z, u)(ex) - agz(a) + 20y z(a) - 0uBR(z, u) () =11 + I>.
For I; we have the expression

drz(a) )
I =2( BR(z, u)(a) — 5 Hu)(e) | - 8,2(ex) + 2H (u)(et)
[0z (ct) |

dtz(a) - 82z(a)
|02 () |2
=Ji+ /o,

where H (1) is the (periodic) Hilbert transform of the function u.
Then

Ly @@t k@ }
JI_EB“Z(“)'[ ne=r )[IZ(a)—z(a—ﬁ)lz Aoaz@Pang/n) |

Let us define

(@) —z@ =B+ 3y z(@)
z(@) —z(@ = ) 2|8uz(@)|*tan(B/2)’

Ci(a, p) = (4.3)

then we shall show that ||Cqllze < C||.7:(Z)||%ooIIZIIZC2 and therefore J; < C[|F(2)|I3 x
||z||3c2 luell ;2. Since the estimate Jo < C||F (2)|lr >zl c2| H (u)(«)| is immediate, we finally get

111 < C|F@ |l (lull 2 + [H@) @) 4.4)

Next we split C; = D1 + D> + D3 where

D,

(2(e) = z(@ = B) — daz(@)B)* 1 [ B 1 }
= . D == 3 - )
|2(e) —z(a = B)I? 2=02() lz(@) —z(@ = B)*  |3az(e)]*B
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and

z(@) |: 1 j|
D3 = - — .
1daz(@)*L B 2tan(B/2)
The inequality
|2(e) = 2(a = B) — Baz(@) B| < Izl 2B 4.5

yields easily |Di] < [lzllc2 1 F(2) |13 .
Then we can rewrite D, as follows:

[(aaz(a)ﬂ (z(a) — z(a — B))) - (0qz(a) B + (z(@) — z(x — ﬂ)))}

Dy =9}
2= 05 2(@) |2(e) — 2(ct = B)Pluz () 2B

and, in particular, we have

002(@)B — (z(0) — 2@ = )| (1uz(@)B] + [2(e) — 2( = B)I).
|2(@) — z(e — B)*13az ()1 B]

Using (4.5) we find that | D2| < 2|1z]l c2 | F(2) 12w
Next let us observe that [—m, ] gives | D3| < C||F(z)| -
The identity dqz () - Bj;z(oc) = 0 allows us to write I, as follows:

|D>| <

dap

L2 (@) — 2B - uz@) (@) — 2(B) - Buz(@)
~= [ up .
= (@) — (B

and therefore

I — 2 [ (z(@) — z(a — B) — 8u2(@) )T - dz(@) (z(@) — z(a — B)) - Bpz(@)
2= —; u(la —p)

|z(a) — z( — B)I* 4P
Next we take I, = J3 + J4 + Js + Jg + J7 where
2 /” gy EC A 020 @) —2(a = ) - duzle)
3=—— | u(la — dag,
T lz(a) — z(a — B)|*
(a2t 1 [ o Ba@) = 2@ = B) = 3uz(@)B) - duz(@)
Ja=—(0a2(@) " - duz(e@) — [ u(e — p) 20— 2@ =B dp,
(a2 L 21 [ B g’ B 1 :|
(932(@)) ™ - az(e)]daz(a)] — /u(oz ﬁ)[|z(a) oy TR PO TEY: dB,

-7

(022@) - duz@) (1 [ I
Jo+ J71=— 9uz(@)2 ( /”(0‘—,3)[’3 m}dﬂ‘f‘f](”)(@),

—TT
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and E(a, B) = z(a) — z(c — B) — duz(e)B — $92z(t) p%. Using the bound

1
|E(e, B)| < 5||z||cz,<s|ﬁ|2+5, (4.6)

one gets easily that
b
1731 < Cllzlida, [ F@} / (181>~
-7

Then reasoning as before the inequality (4.5) gives |J4| < C||Z||éz IF @)1} llull 2. Regarding

Dy, wehave |Js| < Cllzll{, IF @) 13 oo llull 2, and itis easy to get | Jo| < Clizll 2| F (@) [l oo lluel| 2.
Finally we have

LI < C|F@| wollzltas (nuan + |H(u)(@)| + / 1B u(a — B)| dﬁ).
This last inequality together with (4.4) gives us
|96 T (u)(@)| < C| F(2) ||ioc (Ko (Ilulle + [Hw)(@)| + / 1B Hu(a — B)| dﬂ).

To finish we use the L? boundedness of H and Minkowski’s inequality to obtain the estimate
4 4
0T @), < C|F@ | llzliaslull 2. O
5. Estimates on the inverse operator (I + -1

As it was shown in Ref. [6], under our hypothesis about the curve z, T (u) = 2BR(z, u)(x) -
04 z(a) defines a compact operator in Sobolev spaces. Its adjoint 7* is given as the real part of
the Cauchy integral and it does not has real eigenvalues A such that |A| > 1 [2]. Therefore the
existence of the bounded operator (1 + T)~! follows from the standard theory.
Let F(z) be given by
F(z) = L / u(B)duz(B) dp.
z—z(B)

and f(z) = Re(F(z)), which can be considered either in the periodic setting, where we have
two periodic domains 271, £22 (see Ref. [6]), or in the bounded domain case (§22 bounded). In
both situations F(z) can be evaluated in the interior of both domains, and T* appears when we
take limits approaching the boundary from the interior of each £2/: z = z(a) + €3, (), € — 0
(e >0, Ql; € <0, .{22):

f(z(@) = T*(u) — sign(e)u(a).
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The periodic case was treated in Ref. [6] (Proposition 4.2). Therefore we shall consider here
the bounded domain case. '

Let H/ denote the Hilbert transform associated to 2/, we have:
() =1
Fl=F/Q' = fl yig!,
F?=F/2%= 2 +ig%,
17092 =T*u —u,
/02 =T*u +u,
8'/92 =8"/82=Gw).
u—T"u= Hl(g(u)),
u+T*u= Hz(g(u)).

Theorem 5.1. The norm of the operator (I + T)~! from L? to L? is bounded from above by
exp(CllzlI?) with ||zll = llzll g3 + | F () || Lo, for some universal constants C and p.

Proof. As in Proposition 4.2 (Ref. [6]) the proof follows from the estimate
177|205, < exp(ClIII?).

Let ¢ be a conformal mapping of 22 into the unit disc D such that ¢ (zo) = 0 where z¢ satisfies
dist(zp, 21 > ﬁ then

Hf=H(fop ")o¢

where H is the Hilbert transform in the unit disc D. Since 927 is smooth enough (C 2.0y we
know from general theory that ¢ and ¢’ have continuous extensions to 922 and our problem
is reduced to obtain a weighted estimate for the Hilbert transform H in d D with respect to the
weight w(t) = [(¢~")(7)], || = 1. But that is a consequence of the inequality

w(t1)

P
< &ClIl
w(12)

— P
e—Clll” ¢

for arbitrary z;, || = 1. '
Following Riemann let us write ¢(z) = (z — 20)eR@+i5@ where the real harmonic function
R(z) is the solution of the following Dirichlet’s problem:

AR=0 in £°
R(z)=—loglz —zo|, ze€ 00>
Since £27 is a regular domain whose boundary has tangent balls of radius ﬁ contained in £22,

it follows from the standard theory that |[VR|;~ < ||z[|log(||zl). This estimate also holds for
the conjugate harmonic functions S(z) implying |¢’(7)| < lIzll log(llIz|), T € 3522.



140 A. Cordoba et al. / Advances in Mathematics 223 (2010) 120-173

Given 19 € 3822 the arc y = {r € 82%: dist(t, 10) < m} is then mapped by ¢ into

the semicircle ¢ (y) = {z € dD: dist(z, ¢ (19)) < V2.
Let us consider the Cayley transform Cy ) : D — R

1-¢(w) -z

Co(r)(2) =— W

verifying that

V =Im(Cpy) 0 $) =0 in 22,

V/922 =0,
w(y) =Re(Cy(ry) 0o d)(¥) C[—1,+1],
w(tp) =

Applying Hopf’s maximum principle to the nonnegative harmonic function V in a disc of
radius 1/||z]|| tangent to 2% in 7, we get an estimate for the normal derivative of V at 7, i.e. for
IVV (2)| (since 8522 is a level set of V), namely:

‘—( > —v (%)
||| d
where t* is the center of the disc.
To get an upper bound we may use the Poisson’s kernel representation of V in a C>%-domain
2 contained in £22 whose boundary consists of y and its parallel arc y* at distance 1/ zlll,
together with two “vertical” connecting arcs chosen in such a way that the C>%-norm of 382 is
controlled by ||z]||. Since V /a 22 =0 we obtain the estimate:

< llzllog(llzll) sup V (z)
TeR

‘8—‘/()
ov ‘

for

1 , 1
te-y=1_1redn? dist(r, ) < —}
2 { 2CIz/IlMog(lizlIN

We are then in condition to invoke Dahlberg’s Harnack inequality up to the boundary [11] to
conclude that

A% . 1
‘W(r) < lzliog(lizl) v (z*), ey

Next we use the standard Harnack’s inequality in the parallel curve y* to conclude that

IVV (@l

— < lzlP log(llzl
IVV (w2l (1<)

for any two points 71, 72 € %y.
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But since % <|C (¢ (7)) €2, T €y, we get the bound

@' (1)
¢’ (12)

1
< llzl*log(llzll), T, 72 € SV

Let us observe now that the length of 922 is controlled by ||z]| giving us a number of, at most,
Cllz |||2 log(|llz|ll) different arcs %y needed to cover 9£22. Then an iteration of the inequality above
yields

/

o~ ClIzIP log(lizlly < | (7))
~ /

¢'(12)

< eCI\Iz\Ilzlog(HIZHI)

XX

for any two arbitrary points 71, 7o € 8522, allowing us to finish the proof in the case 2. The
transformation z — 1/(z — zo) where, as before, zg € 22, dist(zo, 8.{22) > 1/|lIz]l, allows us to
reduce the estimate for 7! to the previous case. O
6. Preliminary estimates
The following subsection are devoted to show the regularity of the different elements involved
in the problem: the Birkhoff—Rott integral, z;(«, t), @y («, t), @ (o, t); the difference of the gra-
dient of the pressure in the normal direction o (¢, t) and its time derivative oy (e, ). We shall
concentrate our attention in the case of a closed contour, because for a periodic domain in the
horizontal space variable the treatment is completely analogous (see [6]).
6.1. Estimates for BR(z, @)
In this section we show that the Birkhoff—Rott integral is as regular as 9, z.
Lemma 6.1. The following estimate holds
) .
1BRG. @) |y < C(|F@ || e + 1213001 + I l13,) (6.1)
fork =2, where C and j are constants independent of 7 and @ .
Remark 6.2. Using this estimate for k =2 we find easily that
) .
|0aBR(z. @) |, o < C(|F @00 + 21155 + 1 13,2) (6.2)

which shall be used through out the paper.

Proof. We shall present the proof for k = 2. Let us write

17 dtz(a)
BR(z, @)@, 1) = — / Ci(e, B (o — B)dp + WH(w)(a)

—7T
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where C is given by (4.3). The boundedness of the term C; in L™ gives us easily
2
|BRG. @) > < C|F@ | llzlZallem 2.

In E)oleR(z, @ ), the most singular terms are given by

g

Pi(a) = %PV/ 3w (o —B)

(z(@) — z(a — B))*
z(et) — z(a — B)|2

dap,

-7

R 822(cr) — 92z(er — )
Pate = EPV/ @D ) 2t PP

dp,

-7

(z(@) — z(a — B+
|z(a) — z(a — B)|*

1 b3
P3(a) = —;PV/ @ (x — B)

-

x ((z(@) —z(a = B)) - (922(er) — 82z(a — B))) dp.
Again we have the expression

e

1
Pl(oo:E/clm,ﬁ)aﬁw(a—ﬂ)dm

-7

3 z(a)

WH(BC%W)((X) dOl,

giving us
[P@| <CIF@ [ lzliea (05 | 2 + |1 (3Gr) ).

Next let us write P, = Q1 + Q2 + Q3 where

e

1
Ql(a)—Z/(W(a—ﬂ)—W(a))

-7

32z(a) — 82z(a — B)
lz(a) — z(a — B)|?

dp,

1 1

0a(e) = % / (922(er) — 322 (c — ﬂ))(

_i o () r 2 2 _ (L_;)
Q3(a)_2n|8az(a)|2_[(aaZ(a) %=\ ™ s )
1 @() 2
5 |aaz(a)|2A(8az)(a),

where A =0, H.

- d
|z(@) —z(a = B [Baz(@)?IBI

6.3)

(6.4)
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Using that
|922(c0) — 33z(e — B)| < 1B lIzll 2,

we get |Q1(@)] +[Q2(@)| < [[@ 1 ||f(Z)||j||Z||éz,5a while for Q3 we have

|03()| < ClllL= || F@|| oo (2l 2 + | A(822) (@)]),
that is
|Pry@)| < (1+ |A@22) @)@ et | F@ | 1zl o (6.5)

Let us now consider P3 = Q4+ Qs + Q¢ + Q7 + Qg + Qo, where

g

1
0i=— /(w(a P —w@)

-7

x ((z(@) — z(e — B)) - (93z(@) — 3zz(c — B))) dP,

@ () /ﬂ (z(@) — z(@ = B) — duz(@)B)*
|z(@) — z(a = I

(z(@) — z(a — B))*
z(et) — z(a — B)I*

Os=—

x ((z(e) — z(a — B)) - (32z(e) — 2z(t — B))) dB,
o (@)dy z(at) /” B(z(e) — z(at — B) — g z(e)B) - (82z(a) — 32z(ct — B))

Qs =- 2(@) — 2@ — B)I* “*.
J_ T
07 = —M&az(oﬂ . / ﬁz(aozlz(a) — agz(oz — ,3))
y ( 1 ~ 1 )dﬂ
lz(e) —z( — B)I*  |duz()[*1BI* ’
@ ()9 z(a) 5 5 ( 1 )
S Tt (8 — 9%z(o — S
Os 710 z(a)|* wa)- / x2() = 82( = ) B2 4sin®(8/2) 9.
and
_ w(@)igz(@) e

Q9= ez @ dz(@) - A(B52(0)).

Proceeding as before we get

|Ps(@)] < C(1+ | A(822) @)@ et | F@ | mllzl s
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which together with (6.4) and (6.5) gives us the estimate
[(PL+ P2+ P)(@)] < C(1+ | A(822) (@) + |H (82w ) @) ) | [l o1 (| F @) e + 12113)-

For the rest of the terms in 8§BR(z, @) we obtain analogous estimates allowing us to conclude
the inequality

|ozBRG. @) 2 < C(1+ 832 2 + |2 | 2) Il | F@ 2l
Finally the Sobolev inequalities yield (6.1) for k =2. O
6.2. Estimates for z;(c, t)
This section is devoted to show that z; is as regular as 9,z.
Lemma 6.3. The following estimate holds
Izl g < C(|F@ 3o + 120050 + I 120)’, (6.6)
fork >2.

Proof. It follows easily from formulas (2.16), (2.17) together with the estimates obtained in the
last section. O

6.3. Estimates for oy
This section is devoted to show that @y is as regular as dy @ .
Lemma 6.4. The following estimate holds
Il gt < Cexp(Cll?) (| F@ |30 + 120052 + 1 12000 + l@ls1) . (67)
fork > 1.

Proof. In the following we shall work the details of the proof only when k = 1, since the cases
k > 2 can be treated analogously. Formula (3.2) yields

wt(ar t) + T(wt)(a’ t) = Il(O{, t) + Iz(a’ t) - 2@(0[» t)aaw(av t) + R(a9 t)v (68)

where

I = -1 h (z1(@) — 2 (0 — ) - a2(a0)
™ |2(e) — z( = B)I?

-7

o (a—pB)dp,

T

IQ:E/ (Z(a)_z(a_ﬁ))L'aaZ(a)
7 lz(@) — z(a — B)|*

-7

(z(@) = z(@ = B)) - (z1(e) — 2z (@ — B))w (e« — B) d,
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and

c(a

s
Jt
=— )faaz(oz, 1) - 0,BR(z, @) (a, 1) do + 2804 22(a, ).

-7

From Theorem 5.1 we get
ol e < [T+ T o 2 (M llz2 + 102 + 2l 93apll 22 + Rl 12).
and proceeding as before, using the estimates above, we obtain
) .
lwell 2 < exp(ClzIP) (| F @ | o0 + 121155 + 1132 + llell3,2) - (6.9)
Next we shall show that in the singular case we have:
) ,
ldawell 2 <exp(Cllzll?) (| F@)] ] + 235 + 11132 + lel32)’ (6.10)

To see it let us take a derivative in (6.8) to obtain the identity

doi(a, 1) + T (Quwr)(a, 1) = Ji(a, 1) + Jala, 1) + J3(e, 1) + o I1 (@, 1) + 0a L2 (e, 1)

—02(¢?) (e, 1) + Bu R(et, 1), 6.11)
where
1 [ (0uz(@) — duzla — ) - duz(@)
J - - d )
T3 _/ fe—z@-pp TP
2 [ @) — 2@ — BN - daz(@)
Jy=—
T lz(e) —z( — B)I*
x (z(a) — z(a = B)) - (duz(@) — Ouz(a — B)) i (@ — B) dp,
and

—1 [ (@) —zl@— Bt 82z
n |z(@) — z(e — B)?

-7

J3 =

o (o — B)dp.

Using Theorem 5.1 in (6.11) we get

el 2 < |+ 1) o 12

3
x (Zquan + 101l 2 + 10a 2l 2 + [ 95 (07)]| 12 + ||aaR||Lz>-
=1
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A straightforward calculation yields

12(0%) [ 12 + 18aRll 2 < C(| F@ 700 + 12135 + 2 12,2 + ll0l2,2)"
To estimate the other terms we write:

@2zt - dyz(@)
|0z () |2

H () (),
4

17
5= / Cales By (e — B) df —

where

(Buz(@) = doz(@ = ) - daz(@)  (B3z(e))" - Buz(e) }

Gl hr= [ (@) — 2@ — )P 1302 (c) P2 tan(B/2)

Then
111@)] < C|F@ |3 lzlas ( / 1B i (e — )| dB + |H<w,><a>y>,

and using (6.9) we have

11112 < exp(CNP) (| F @ 3o + 1212 + o 12, + l0l2,2)"

Next we rewrite J, as follows

2 /ﬂ (z(@) = z2(0 = B) — duz(@)B)* - Buz(@)
) |z(et) — z(a — B)I*

x (z(a) — z(a = B)) - (duz(@) — Boz(a — B)) i (@ — B) dP,
which is a more regular term than J;. Since J3 is also more regular than J; we finally get
) )
720122 + 1731 22 < exp(Cllz ) (| F @) || 1o + 1215 + 1 13,2 + loll5) -

The most singular term in 9,/ is given by

o (a — B)dg,

K= - /JZ (02 (@) — 0y 2s (00 — /3))L -0 z(a)
1= 2
T . |z(a) — z(a — B)]

and will be estimated using the following splitting K1 = L1 + L> + L3 + L4 where
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(@ (@) —@(@—p))dp,

L, = l ]T (O z (@) — 0y zs (00 — ,3))1- W)
™I lz(a) — z(a — B)|?

pid 1 1
Ly= n(“) /(aaZt(Ol) — duze(@ — )" 8"‘2(“)[ }dﬂ’

@) —zl@— AP [daz(@)IB

1 w@iyz@) [
Ly=————-—="
T |0gz(a)]

(Oaz (@) — B zs (o — /9)){i - ;} g,
B%  4sin*(B/2)

—7T
and

_ -1l o @dkz@

7 T

Since |92 (@) — duzi (o — B) < B fy 1022/ (@ + (s — 1)B)| ds we have

1
K11 < C|F@ s lizl sl (/ 1822 (e + (s — )| ds + ]A(aaz,xa)\).
0

From (6.6) we obtain the estimates
2 2 2 \J
IK1llz2 < C(|F@|| 7 + 2155 + Iz ll3,2)
and
10a 11112 < C(|F@ |5 + 12l + I l12)

Next we rewrite /> in the form

2 j (z(@) — z(¢ = B) = Buz(@)B)* - Buz(@)
) |z(e) — z(a — B)|*
x (z(a) —z(a = B)) - (z1(@) — z:(a — B)) o (@ — B) dB,

which shows that I, is more regular than /1 and, therefore, the estimate for 9, 1> follows easily
with the same methods that we used with 9, /1, allowing us to finish the proof. 0O

6.4. Estimates for w
In this section we show that the amplitude of the vorticity @ lies at the same level than 9, z.

We shall consider z € H*(T), ¢ € H* 1 (T) and & € H*=2(T) as part of the energy estimates.
The inequality below yields & € H*~1(T).
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Lemma 6.5. The following estimate holds
) .
Il | g < C([F@ o0 + N2l3eer + 1w 155ms + lol3) (6.12)
fork >2.

Proof. We shall present the proof for k = 2, being the rest of the cases completely analogous.
Since @ = 2|94z|¢ + 2|94 z|%c the identity |d,z|*> = A(¢) gives us the equality

dow (@) = 2|8uz(e)|920() — 80 (2002 - 3 BR(z, @) (a0),
from which we easily get
lo2@ ]2 <2zl 830l 2 + |90 (2002 - BuBR(z, @) -

Therefore in order to get the estimate (6.12) for k = 2 we need to show that the following in-
equality holds

80/(280z - 8uBRz. @) | 12 < C| F@ S Izl s 1 1 1. (6.13)
To see that we can write
20qz(at) - 0 BR(z, @) () =T (0w ) () + Ry(ar) + Ra(a),

where

[ (Buz(e) — duz(c — )
lz(@) — z(a — B)|?

1
Ri(a) = gaaz(oz) : w(a— B)dp,

-7

and

[ (2@ — 2@ — B)*
J @) = p

2
Ray(e) = ——0uz(e) -

x (2(e) = z(e = B)) - (daz(@) — duz( — B))w (@ — B) dP.

Then we have | T (0@ ) || 1 < C||5’-"(z)||‘£Oo ||z||‘(‘}2ﬁ |07 || 12 from (4.2), so that we only need to
estimate 9, Ry and 9, Ry in L? to get (6.13).
Next we consider the most singular terms in d, Ry, namely:

1 [ (3R2(@) — 820 — )

$1(@) =~ hz(@) -_{ =B,
1 [ (9u2(@) — duz(@ — B

$2(@) = —8uz@) -_f ) @b,
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and we use the decomposition

]Baw(a—ﬂ)dﬁ

$2(0) = ~8,2(@) - / [(Bazm) 2 Gl 0) S i )b
R I |z(e) — z(a = B)I? |00 z(c0) 22 tan(B/2)

By z(@) - 95z(@)

oz (@) H ) (a)

to obtain

b1
152(0)| < C|F @ Izl s (naawan + |H@ow) ()| + f 181519 (@ — ﬂ)|dﬂ>,
—TT
thatis || S22 < C”]:(Z)”ioonznéz,a||3otw||L2'
In S7 we have the splitting Uy + U + Uz + Us where

2(@) — 32 (a — B+
|z(a) — z(a — B) |2

I [ (2
Ur(@) = —tuz@) / (@ (@—B) — (@) db,

Us(a) = %W(Ol)aaz(a) : / (02z(cr) — 022 (@ — B))

1 1
_ dp.
X[IZ(a)—z(a—ﬂ)lz |aaz(a>|2ﬁ2} P

_l 8051(04)'”2 a4 20 li_;
o) = LS [ e o) g - s |

-7

and
0y 2(ar) )
|00z ()]

Us(@) = w (@) A(322) " (@).

Then in Uy we use the identity
1
92z(a) — 0u22 (@ —B) =P / 3z(a+ (s — DB)ds (6.14)
0

to get

1 n

\Ul<a>\<c||f(z>||iw||z||cz,a||w||ca/f|ﬂ|‘*—1!aiz(a+<s—1)ﬂ)!dﬂds,

0 —m

and therefore [|U1 || ;2 < CIF(@) |7 llzl3slla g1
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To estimate U, and Uz we can use again (6.14). For U4 the control is easier.
To finish the argument we rewrite R, as follows:

2, f (@) — 2@ — B) — dazl@)B)*
n J |z(@) —z(a@ = B)I*

x (z(@) — z(a — B)) - (0uz(@) — Bz — B))ww (o — B) dPS,
expressing the fact that with the same method, 9, R is easier to estimate than d, R;. O
6.5. Estimates for o

Here we prove that o, the difference of the gradient of the pressure in the normal direction, is
at the same level than 32z.

Lemma 6.6. The following estimate holds
) .
loll g < Cexp(Clzll?) (| F @) | oo + N12ll30s2 + 1 15 + Il 7). (6.15)
fork >2.

Proof. We shall give the details of the case k = 2. Let us recall the formula for o («):

o 1) 1
I <8,BR(Z, w) + ——0,BR(z, w)) <052
P2 %4

1 @ © n
+ ——— | 0gzr + 0 <07 + 20421, 6.16
> |3az|2( wZ az) o 2 1 80221 (6.16)

then from previous sections we have:
, 4
lollz2 < Cexp(Cllzll?) (| F @ |50 + 12154 + 13,5 + llel3,5) -

To control ||8§0|| ;2 we only have to deal with 83 (0/BR(z, ™) - BOJ;z), because the remainder
terms have been already estimated. Again we shall consider the most singular parts:

[ G@—z@—B) i@,
R Ry R L

a2 ) _an.
Iz=%f 05z (o) — 35z (. — B)) 8“Z(a)w(a—,3)d,3,

|z(et) — z(a — B)I?

-1 [ (2(@) —2(a — B)) - daz(@)
T lz(@) — z(a — B)|*

-7

x (z(@) = z(a@ = B)) - (822 (@) — 82z (et — B))ww (@ — B) dB.
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We have
T
1 2 1 2
L = o E(a, B)oym:(a — B)dp + EH(aawv)(a),
—TT
where

(@) —z(a = p)) - duz() 1
lz(@) —z(a = B)I? 2tan(B/2)”

E(a,p) =

Since | E|lp~ < C||F(z) ||%OO ||z||2C2 we can estimate /1 throughout inequality (6.7).
The equality

1
32z(a) — 32z (@ —B) =B / 3zi(a+ (s — 1B)ds
0

allows us to get

1 n

LI+ 151 < C|F@ Izl ol (/f 1032 (e + s — 1)) | ds + |A(a§zt)(a>|>

0 —m

and (6.6) takes care of the rest. O
6.6. Estimate for o;

In this section we obtain an upper bound for the L norm of o; that will be used in the energy
inequalities and in the treatment of the Rayleigh—Taylor condition.

Lemma 6.7. The following estimate holds
) .
lotllzee < Cexp(CllzI?) (| F @) |00 + Izll3a + 1 135 + llell?,s) - (6.17)

Proof. Let us consider (6.16) the splitting o/p2 = Py + P> + P3 + P4 + Ps where

Py =BR(z, w) - d+z, P, = |8¢ |3aBR(Z, @) 0y
2
1 o L % 2 1
Py=———0,2 -5z, Py= 092052, Ps=gbaz1.
3 5 |8aZ|2 lt " Oy < 4 92| al " Og 2 5 =80zl

Estimate (6.6) yields |13 Ps ||z~ < g9 daz1ll ;1 < CUF @120 + 11zl + I [12,2)7. For Ps
we write

w
——— (0uBR(z. ) - 94 2+ 052 - 95°2).

_ 1
37 2 1002 «
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and we get
10, Pl < C(| F @ 2o + 1210 + 1 [12,5)"
x (|| + 100z + | + |52 | + | H @am)| + | ABazs) ).

It yields

18 Psllzoe < C(|F @ 7m0 + Nz + a0 12,5)” (il g2 + 2l 113)

by the Sobolev embedding. The inequalities (6.7) and (6.6) take care of the rest.
In 9; P4 we have the term

Wt 007 0q2s
= -
2|042|? 2|8,z

al(p _at(laazlc)(av t)7

but estimates (6.7) and (6.6) yield easily the appropriate bounds for ||¢; ||z and ||0; P4/ r.
In a similar way we control ||9; P2 ||z . Regarding d; P; the most singular terms are given by

1 1
=—-H , =———A - 0g2).
01 5 (1r) 0> 2|3aZ|2 (CSTRN %4

For O, we decompose further Q> = Ry + R, where

1

2 1
_WH(Z” : aaZ)’ Ry =———>H (0421 - 02).
o

Ry = _
! 200022

Then we take a time derivative in (2.16) to estimate R; in L°°, and for R, we use the fact that
0u 2t - 04z only depends on ¢ (see (2.19)). Next the identity 0y 2¢s + 042 = 0; (00 2s - 00 Z) — |8az,|2
allows us to write

1

= mHUaaZ[lz)

Ry

From estimates (6.6) we get control of Ry in L™°.
For Q1 we have

101llLe < Cllwiell s

To continue we will need estimates on ||y || s for which we may use the identity (6.8), and the
inequality || fllcs < CUl fll 2 + Il fllgs) where

| Fll=s = sup | f(e) — f(B)]
g l—pP

Then formula (6.8) gives

@ + T(@1) = 011 + 02 — 2010090 — 200001 + ;R + J1 + J2, (6.18)
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where

T _ _ N '
J]:_%/ (2 (@) =z (a = B)) aaZ(a)w;(Ol—ﬁ)d,B,

|z(@) — z( — B)?

and

2 /” (2(e) = 2ot = BN - duz()
Jh=—
) |z() — z(a — B)I*
x (z(@) = z(a = B)) - (z:(@) — 2/ (@ — B)) i (e — B) dB.
As before we use the invertibility of (/ 4+ T') to get appropriate estimates on ||@y || 2:

Il ll 2 < Cexp(Cll?) (| F @) 7o + 212 + a1, + l0l2,5)’ (6.19)

We shall show with some details how to get the most singular case ||@ || s
Formula (6.18) yields

loulla < ”T(wtt)Hga + 1011 + 012 — 20,009 — 2004 0r + 0 R+ J1 + J2| 55,
and therefore
lwilles < || T(@i)|| 1 + 1911 + 0: L2 — 201009 — 20000; + 0, R + J1 + T2l 1.

Then the inequality || T ()|l g1 < 1Tl 2— gt lwie |l 12, together with (4.2) and (6.19) yields the
desired estimate. In d,/; we find the term A(z;) therefore we need to control ||A(z:) ||z =
| Bgz,t |z2, but formula (2.16) let us obtain that bound. In 9; /> we have again the extra cancella-
tion given by

1L 1
(z() — z(a = B)) ™ - Buz(@) = (2(e) — z(@ — B) — Buz(@)B) ™ - Bz (),
which yields the appropriate estimate. We have also to control || 8§<p, ||;2, but formula (3.3) gives

8§w,(oz,t) 85(3(05, 1)
2|0z, )| 2|8gz(a, 1)]3

gy (o, 1) = daz(@t, 1) - dazy (o, 1) — B (30 (302 - B BR(z, @))),

showing that it can be estimated as before. Finally, the remainder terms are less singular in
derivatives, allowing us to finish the proof. O
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7. A priori energy estimates

Let us consider for k > 4 the following definition of energy E():

b/

B0 =zl 0+ |

-7

HFQ @) + I 220 + gl @, (7.1)

o(a,t)

k 2
@ |8az(05, t)’ do

so long as o («, t) > 0. In the next section we shall show a proof of the following lemma.

Lemma 7.1. Let z(«, t) and @ (a0, t) be a solution of (1.4)—(1.7) in the case p1 = 0. Then, the
following a priori estimate holds:

d

—_EP
th @< mi(t)

exp(CE? (1)), (7.2)
Sfor m(t) =minge[—r,7r10(a, t) =0 (s, 1) >0, k >4 and C, q and p some universal constants.

We shall present the details when k = 4. Regarding || 83 z||i2 let us remark that we have

2 o(a,1) 2 1 2
||8§ZHL2(1)=/G(Ol’t)|832(a,t)| da < m/a(a,t)}&iz(a, 1| da.
T

T
7.1. Energy estimates on the curve

In this section we give the proof of the following lemma when, again, k = 4. The case k > 4
is left to the reader.

Lemma 7.2. Let z(«, t) and @ (a, t) be a solution of (1.4)—(1.7) in the case p1 = 0. Then, the
following a priori estimate holds:

d 2 [ o) k 2 C »
dt(nznml +_/ s %@ da)(t)<5(z>+mq(t) exp(CEP(),  (73)
for
S(z)—/nza(“) a§Z(°‘)'a‘iz’("‘)A(ak—1 )(@) dot (7.4)
LT Jaz@P « ¥ ’ '

-7

and k > 4.
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(We have denoted with S a nonintegrable term which shall appear in the equation of the
evolution of ¢ but with the opposite sign.)

Proof. Using (6.6) one gets easily

—||z||H3 < c/(|z(a)||z,(a)| +[83z()] [0z (@)]) da < exp(CEP(1)).

C
= ma(r)

Then we have

d [ o@ (1 0@  0@202@)- dzi(@)
az(a)‘ doz—/—(

T _ 4 5
dt ,0 2|9,z () |2 |0 z(c0) |2 0z (@)* )}3012(01)‘ do

-7

T

+ / _ 29 440y 02wy da

0219z ()]? %%
=1+ b.
The bound (6.17) gives us
I < CEP(1)).
'S0 ( 1))
Next for I, we write
b4 b
20 (a) 4 20 (a) 4
L= 2|8 P az( a) - 0,BR(z, w) (o) do + 2|8 P az(oz) 0, (c0x2) (o) dox
e -1
=Ji1+ /.

The most singular terms in J; are given by K, K> and K3:

I 4 b anl
_%// (Ot) 9 2(a) - (0gz(a) — 0yz(a — B)) o (@ — B)dp da.

|z(a) — z(a = B)I?

1 [ [ _o@ (z(@) — z(a@ — B))* )
”[/7; 22 a2 lz() — z(a — B)I* Cla, po (a — p)dpda,

and

1 [ [ o) (@) — 2@ =Bt
S —B)d
nl[ 219qz|? faz(e0) - lz(a) — z(a — B)I? % (@ = ) dp.

where C(«, B) = (z() — z(a — B)) - (Bftz(a) - Béz(a —B)).
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Then we write:

4 a4 1
__// O i, Bh2@ =zt

021842/ 9t lz(ar) — z(B)I?

—T —T7

S f /ﬂ o). 2@ %)o@ ) toBm@ 0
7% |002|

|z(@) — z(B)I? 2

—TT —TT

! / /82@. (%z(e) = 32BN s @ () —oB)m(@) g\
7p2|0uz?

|z(a) — 2(B)I? 2

—T —T7

=L+ Ls.

That is we have performed a kind of integration by parts in K, allowing us to show that Ly, its
most singular term, vanishes:

= 1 2//8§z(ﬂ) (35z(@) = 35z(B) " o (@@ (B) + 0 (B)w (@)
7% 0az]

LA 2@ — (AP 2 apda
1 m T
= srpar | | O = aiso)
(85z(@) — 85z(B) " o (@w (B) + 0 (B)w (@) dpda
2(@) — 2(B)2 2
:O’
whether for L, we have
T ow 4 1 B
. 2//84w_ Gz @@ =0V E) g,
7020y z| S |z(a) — z(B)| 2
A @2zB) o (B) @ (B) — (@)
_np2|aaz|2/ / @) ) — 2B 2 dp da

- =7

In L, the kernels have degree —1 so long as the arc-chord condition is satisfied, so they can be
estimated by

c
L, <C|F @) ||§oo||z||’;,3 e llcrsliollens |35z ||i2 < mq—mexp(CEP(t)).

The term C(«, ) in K> can be written as follows:
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C(a, B) = (z2(@) — z(a — B) — daz(@)B) - (83z(er) — dkz(a — B))
— B(3uz(@) — Boz(a — B)) - dtz(a — B)
+ B(8ez(@) - 3hz(@) — duz(@ — B) - daz(a — B)),

then using that
dnz(@) - 32z(a) = —302z(a) - 332 (a),

we can split K> as a sum of kernels of degree —1 operating on agz(a), plus a kernel of degree
—2 acting in three derivatives 831(04), allowing us to obtain again the estimate

K> < exp(CEP(1)).

a0)
The term K3 is a sum of a kernel of degree zero acting on four derivatives of @

b1
1 o) 4
Ly=— | ———0, z(«
Tx / PR
-7

g

' f[(Z(a) —zl@ =Bt 3y z(@)
|z(@) —z(@ =PI |daz(@)|*2tan(B/2)

}agw(a — B)dBda,

-7

plus the following term:

[ [ o@ k@) -0tz
L= [ | S e k)@ a5

T —7

We can integrate by parts on L3 with respect to § writing 8§w((x —B)=—0g (83w((x —B)) and
then pass the derivative to the kernel of degree zero. This calculation gives three derivatives in
@ and kernels of degree —1 which can be estimated as before.

Next for L4 we write

_ jTZG(oz) dtz(a) - 95 z(a) N
L= [ A<8“<2|aaz|>>(“)d“
_/”zam) 842(c) - B2 (e) [A(83 )(a)_A<82< W o prie w)>>(a)}da
) T lz@P «? NPT
=S+ M,

for S(¢) given by (7.4). For My we have
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158
T
2 4 1
3z 3

P My = / H(oM)(a)ag(Lz.aaBR(z,w)>(a)da=N1 + N2+ Ns,

2 |aaZ| |8&’Z|
where

9z

T
34 _aJ_
N =/H<a ot ‘;Z)(a) - 94BR(z, w) () da,
|0 2| |0 2]

b3
3%z 0tz 042
Nr= | Hloc &+ —X& o -9*BR(z, w)(a) da,

: / ( 3l >( oz PPRE @)@

and N3 is given by the rest of the terms which can be controlled easily with the estimate that we

already have for the Birkhoff—Rott integral.
Regarding N a straightforward calculation gives

3z
002

3tz 9tz
N < oY o
: H |8ocZ|3

< Cllo = | F@ s | 0aBRG. @) o |82 72

- 0uBR(z, @)

L? L2

Again, in N, we consider the most singular terms given by

L0t dez@) 1 [ (0fa(@) — 9z — Bt
o __/H<“ 8ul? )(“)waz(a)(Z_/ f@ —za—pp TP

P o and
L (z(a) — z(a — B)) C(a,B)w(a — B)da,

B r 3z 9tz 0o z(@0)
02‘_/H<“ |30zl >(°‘)|aaz<a>|'4n 2@ — 2@ = I

T

gz 052 %

03 /H( 78 Z|°3‘ >(a)|8az| - 34BR(z, 3} ) (@) da.
o o

-7

Using the above decomposition for C(«, 8) we can easily estimate 0. In O3 we may write

daz(@) - 9BR(z, i3 ) (o) = %aaT(agw) — 92z(a) - BR(z, 9y ) ()

to obtain

ez - 0BR(z ) | 12 <[ T (05 ) | 0 + [ 022] 1 |BR(z. 2e) ],

allowing us to control O3.
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Next we split O into several kernels of degree one acting on (Béz(a))J-, which can be esti-
mated as before, plus the term

1 n 3z 07z @ () dyz() L
Pl_E/H<U oz )(a) toep Al) )@ de

-7

Then the following estimate for the commutator,
@ 02 L (waaz 4 J.)

z - A (0,2

” |aaz|3 ) ) |00 2| ( * )

yields

< F@ I wlwliglizligs ] 82z o

L2

5 .y 1 [ otz-otz. (wolz otz
P IF@ bzt |38l 2 = 5 [ o o (T @ a
o o

-7

using that
/ Hf(@)Ag(a)doa =— / fl)oyg (o) da,

and a straightforward integration by parts let us control P;.
So finally we have controlled J; in the following manner:

J1 <

C
p
o exp(CE (t)) + S

To finish the proof let us observe that the term J, can be estimated integrating by parts, using
the identity aéz(oz, t) - 0pz(a,t) = —3821(01, t) - agz(a, t) to treat its most singular component.
We have obtained

o(a) 1
/W z(a) - aaz(a)84c(a)doz—3/ paIry |2a (0832 - 822) (@) c(e) dex
T T

and this yields the desired control. O

7.2. Energy estimates for the arc-chord condition

In this section we analyze the evolution of the quantity || F(z)| z (¢), which gives the local
control of the arc-chord condition.

Lemma 7.3. The following estimate holds

d .
TNF@ [ <C(IF@ | + 12050 + I [130)) (7.5)
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Proof. First we compute the time derivative of the function F(z) as follows

Bl (e, 1) —z(a = B.1)) - (zi (e, 1) — 2z (@ = B, 1))

d
S F@@ B0 = lz(a, 1) — z(a — B, D)3

obtaining

|Bllz: (. 1) — zi (o = B, 1)

et g SF@QE@HO) Nl o).

d
E.?—'(z)(a, B)() <

Sobolev estimates and (6.6) yield

d .
ST @@ pHO < C(FR@, BYD) (|F@ |5 @ + 1213 @) + @ 12.(0)’,

and therefore
d .
T F @@ B0 <CFO@AO]F@) | (| F@) |7+ 12020 + 1 12, (1))

We shall denote G(t) = C||F(2)|| L= (t)(||.7-'(z)||%OO ) + IIZII%_ﬂ ) + |Iw||%12 1))/, so that after
integration in the time variable ¢ we get

t+h

F(2)(t+h) g]—"(z)(t)exp(/ G(s)ds),

t

and therefore

t+h

|F @] < +h < |F@] Loo(t)exp( / G(s)ds>,

t

which yields

d
7 1F@] @ = Tim (|F@] ot +1) = [F@ )27

t+h

<|F@ ”Loo(t)hl_i)rg+ (eXp</ G(S)dS) - l)h_l <F@| G,

t

allowing us to finish the proof of Lemma 7.3. O
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7.3. Energy estimates for w and ¢
In this section we complete the estimate (7.2) with the following result.

Lemma 7.4. Let z(«, t) and w (a, t) be a solution of (1.4)—(1.7) in the case p1 = 0. Then, the
following a priori estimate holds:

exp(CEP (1)), (7.6)

d 2 2 ¢
Sl 1< =S
r (||w||Hk72 + ||‘P||Hk,%)( ) ®+ ma (t)

fork > 4.

Proof. We shall present the details in the case k = 4, leaving the other cases to the reader.
Formula (6.7) shows easily that

d .
Sl <exp(Clizll” ) (|7 ) |7 @) + 112124 (0 + 12,5 0) + 12,5 (1))’

which together with (6.12) yields

1
m4(t)

(CEP@)).

d 2

— ||l 1) <

w30 <
Using the estimates obtained before one has

——Cexp(CEP(1)).

1
IlwlleU) < i

Next (3.5) yields

d
o [A'2(32¢) ||iz(r) = / Be@ A ) (@ da=11+ L+ 15+ I, (7.7)
T

where

1
I =— /2|8 . a‘ﬂ(“)A(34( ))(a)doz, L= /B(t)a <P(01)A( ¢)da,
T

T

1
13=_T/p2|8az| sp(@)A(82(082z - 852)) (@) de,

and

1 2
——/ 5 Z|3a§¢(a)A<a§(aaBR(z,w)-ajz+ TR |2a§z ar ) )(a)da.
o
T
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The most singular term in /7 is given by

1o 4
_/|aaz|3“‘”(“)/‘(¢8a¢)(a)da,
T

and we have

The following estimate for the commutator || g A > 0 f) — A2 (8o iz < gl f|| 1 yields
N<|F@| llel’
L it

allowing us to get the estimate /1 < mq 0l Cexp(CEP(1)).
The boundedness of the term B(¢) gives us a similar control of I

L < Cexp(CEP(1)).

mP(t)

Next we write the term I4 as follows:

03 ( 9,BR ot
/|ao,|3 ‘”(“)< @) Z+2|a PEAC

92z 9t ) (@) da,

where the most singular part is given by

2_/ B |3 (p (a)D(oz)B D(a)da,

where

82

D(Ol)=3aBR(Z,ZD)'8jZ+2|8 T tal 05z

(7.8)
To analyze 83 (D), let us observe that the most singular terms are given by

[ @) — @ — B) - daz(@)
2 |z(@) — z( — B)I?

—TT

E| =

o (e — B)da,
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“1 [ @) — 2~ B)) - duzle)
w |z(@) — z(a@ = B)I*

-7

x (z(@) —z(a — B)) - (95z(@) — dpz(a — B)) & (o — B) d,

E3=BR(z, 3 )aiz+a3(2|a |za§ Baz).

Since the terms Ep and E; are singular only in the tangential directions, we can again use the
following identity

duz(at) - gz(e) = =305z () - Dpz2(er). (7.9)
to obtain the desired control

In E3 the term BR(z, 9 w) 8iz can be written as the sum of 1 7 H (84w) plus kernels of
degree zero in ag @, which are bounded in L2. Therefore we can wrlte it as follows

BR(z,85w) - 93z = lH(&iw) + “bounded terms in L2”.

2
The identity
1
5 %@ = 1021059 — 0; (0 BR(z, ) - 0a2)
yields
3 _ 3 o 2\ “ 2
0. (04BR(z,w) - 04z) = H|[ 0 052) - 042 + “bounded terms in L.
o o 2|a Z|2 o
o

That is

%H(agw) = H (1922135¢) — H2<8 (2|aw 2 (922 )t 3az>> + “bounded terms in L%
2

and therefore
1
EH(ng) = H(|0.219590) + (83 <2|8 B > (02 z) : 8o,z>> + “bounded terms in L2”.

The above equality gives E3 = |0,z| H (8 @) + “bounded terms in L>”.
Finally for J, we have

2_/ 0, |2 (p (a)H( ‘P)(a)D(Ol)da—i—“bounded terms”,
Ol

and integration by parts gives us the desired estimate.
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For I3 it is important to arrange conveniently the derivatives
I3 = —S + J3 + “bounded terms”,

where

92701z
h:/ﬁf](ag@m)aga(mm (7.10)
o

Then, because of its sign, the term involving the highest derivative can be eliminated and we are
left with the task of estimating J3. In order to do that we shall study the singular term 830(01)
using the splitting

3o :8£<<B,BR(z,w)+ B |a «BR(z, w)) )

1 @
B3 = ——( 0,z 82z ) -9t 92
* “<2|aaz|2<“z’+|aa| ) w? )T BN

=F + F+ F;.

The term F3 trivializes, whether for F, we have

93 ! 9BR(z, ) - 31z + 02z 0tz)=03(-—2=D
2|3a 19022 2|3a |2 2|3 z|?

where D is given by (7.8) and the integral can be estimated like /4 or J>. Finally we are left with
F, and we shall show that

Fi =180zl H(33¢:) — clduz| H(33¢) + “bounded terms in L2”. (7.11)

Plugging the above decomposition in J3 (7.10) we can control this term as before using the
formula for 83(p, 3.5).
Next we split F1 = G1 + G, where

G1 =9, (3BR(z, @) - 8;2), G2=33<|3 |a wBR(z, @) - 3 z)

and again we will consider the more singular terms. In G we have

7 3 _ a3 _ .
0= / (932 (c) — 33z (. — B)) 8“Z(a)w(tx—ﬂ)d,3,

|z(a) — z(a = B)I?

1 [ @) — 2@ = B) - daz(@)
T lz(a) — z(a — B)|*

-

0, =

x (z(@) —z(@ = B)) - (832 (@) — 83z (@ — B)) o (@ — B) dB,
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and

1 [ Gle) @) dazle) sy
C=w ] T h@-za—pp =@ PP

—7T

Let us write O1 = P} + P where

L[ 9320 dazle) — B3z (e — B) - dazle — )
1 —B)d
B 271/ j2(e) — 2@ — B)I? e
and
T a3 _B). - -
py L [ e =B Q@ =@ =)

Com l2(a) — z(a — B) 2

—TT

The term P, has a kernel of degree —1 in 82 ¢, giving us a Hilbert integral of Bgzt which can be
estimated using (6.6). From its expression it follows that P; can be written as the sum of terms
involving kernels of degree —1 and the operator A, that is:

P _ w
' 2002

A(32; - 34z) + “bounded terms in L2”.

Since A'(r) = 2047: (e, 1) - 0z (a, ) we have
83z, - 07 = —2822, . 30241 — 0gZt - 803[1,
which yields

Py (—24 (Biz, . 832) — A3z - 32Z)) + “bounded terms in L2”.

 20.z?

Then, as it was shown before, the estimates for z and z; give us the control of the term Pj in the
L? norm.
Regarding O, we introduce into its integral expression the following identity
(z(@) —z(a — B)) - (92 (@) — Dz (cx — B))
= Bogz(@) - (5zi(e) — Izs (e — B))
+ (2(e) — 2 — B) — duz(@)B) - (Igz: (@) — Byz: (0t — B))

and then we just take the same steps that we followed with Oj.
Using the estimates (6.7) for w; we get

1 3 13 M 2?’
03 = EH(aawt) + “bounded terms in L=”,
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and therefore
1 3 73 . Dss
G = EH(E)O( w;) + “bounded terms in L*”.

The formula for G, gives us more singular terms, namely the following ones

w(a— B)dp,

0 f” @42(0) — 32(a — B)) - duz(@)
Oy = 3
2rlal ] T ) =z )]

o ¢ /” @(@) — 2@ — B)) - Buz(@)
5= 4
w0zl ] e =z = )]

x (z(@) — z(a@ — B)) - (33z(er) — dtz( — B)) & (o — B) P,

and

o [Ge) @B -de@
O¢ = 270 2| |z(ct) — z (ot — '3)|2 d,w(a — B)dp.

-7

Using the identity (7.9) we can estimate O4 and Os as before. Furthermore we have that

O¢ = L4 H(93@) + “bounded terms in L,
2|04 z]
and
q) 4 113 1 2’7
Gy = H(8aw) + “bounded terms in L=”.
2|9qz|
Then we get
1
F = EH(agw,) + 2|;; lH(Biw) + “bounded terms in L2”. (7.12)
2

We shall continue deducing (7.11) from (7.12); in order to do that let us write

1
—wy = 0, (1902 ——— + 132l (@1 + 3 (1azlc))

2 2|0x2]
1 3w 0z
—33w, =8, (13 o 092|030 — 092|020, —= - 3,BR(z, )
5 datr Al O‘Z|)2|8az| + 00210590 — 10221050, ol (z, @)
‘We have
0uZ Bazpajz

2
|8aZ|aaat( 3

] dBRG w)) = 02002 - 00 BR(z. ) + af,(
o

o ajz-aaBR(z,w)>
(VRS

= 32(uz - 328, BR(z, w)) + “bounded terms in L?”,



A. Cordoba et al. / Advances in Mathematics 223 (2010) 120-173 167

The last two identities allow us to consider

1 3 3 2 “« : 299
Eaaw, = |002|0,¢: — 04 (Baz - 040y BR(z, zzr)) + “bounded terms in L

and therefore

%H(agw,) = |8u2|H (8¢:) — H (85 (302 - 3,3;BR(z, @))) + “bounded terms in L>”.

This formula indicates that to prove (7.11) it is enough to obtain

c|8az|H(8;‘go) = ﬁH(ng) — G3 + “bounded terms in L2, (7.13)
o

where
G3 = H(82(3uz - 98 BR(z, w))). (7.14)
Again let us consider the most singular terms in ag(aaz - 00 0:BR(z, w)):
07 = 3 (3az - BR(z, 2)),
“1 [ @) —z(@ = Bt - duz(e)
T |z() — z(a — B)|*

-7

Og =

x (z(@) —z(@ = B)) - (82 (@) — 83z (ct — B))ww (@ — B) dB,

and

o (o — B)dp.

1 /” @32:(@) — 33210 — B - Baz(@)
09 = —
2 2@) — 2@ — PP

The term O7 = l80(T(802lw,) is estimated in L2 by using the operator T. In Og we substitute
(z(a) — z(ax — ,3))J‘ - 0gz(@) by (z(a) — z(x — B) — Baz(o{),B)J‘ - 0y z(v) inside the integral and
then we split the integral in two terms (one is multiplied by 83 Z¢ (o) and the other is an operator

R(E)gzt) with kernel of degree —1) allowing us to integrate Og.
Regarding Og9 we have that

0y = WA(BS‘Z[ . 8jzw) + “bounded terms in L2”,
2

and therefore the identity H(A(f)) = —0, f yields for G3 in (7.14) the following configuration:

1

= 2|8—|28a (932 - 93z ) + “bounded terms in L2~
2

G3

= 208422 (00 (93BR(z, @) - 35 25) + 9 (cOy 7 - 8 zm)) + “bounded terms in L
%4

1 1
= 209a2)2 <§H(8§;w)w + e da (952 - 8jz)) + “bounded terms in L>”.
74
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With this identity in (7.13) we obtain

® 4 c 4 cw 4 n « SR Y
H(o —Gy3=—-H|(0 — ——— 0,070 bounded terms in L
2|8aZ| ( aa)—) 3 2 ( O[ZD_) 2|80{Z|2 0‘( ol Olz) + u

= —cH(|3az|32'<p) — G4 + “bounded terms in L2”,
for

Gy = cH (19az*d5¢) + 3 (052 - 05°2).-

w

2|3qz|?

Finally we only have to show that G4 is a bounded term in L?. But this follows because we have
19az|?85c = =33 (302 - 3BR(z, )

- WA(agz ‘ 8jzw) + “bounded terms in L2”. 0O
al

8. The addition of the Rayleigh-Taylor condition to the energy

Our final step is to use the a priori estimates to prove local existence (Theorem 1.1). For
that purpose we introduce a regularized evolution equation which is well-posed independently
of the sign condition on o («, t) at t = 0. But for o (x, 0) > 0, we shall find a time of existence
uniformly in the regularization, allowing us to take the limit.

Let z°(c, 7) be a solution of the following system:

Z(a,1) =BR(z", @) (. 1) + ¢ (o, 1) 06 2° (a1, 1),
@f = —20BR(Z5, @°) - 02" — 0 ((¢°)7) +2|002"| BEC® — 280025 + £2042° | Ag”,

7°(a, 0) = zo(a) and @ (, 0) = wy () for & > 0, where

= 0T [ D) %" (B) -
(o) = /|8aZe(Ot)|2 3.BR(z", @ )(a)doz—/ B (B)E -3gBR(z", @*®)(B) dB,

s
w?t 1 028 (a, 1)

= ——— — 19,2, Bé(t 78BR8, ), t)da.
o= S 2l =% | Tuzrtanp PRE ) nde
=TT
Proceeding as in Section 3 we find
82(((/)8)2) of 82Z8 . aJ_ZE
e _ _ o — B89, ¢f — — ¢ o a,(l9.75| BE
2 2|aaZ€| () 1% ,02 |aaZ€|3 t(| 74 | )
1 &
aarpe <aaBR(zf,wf).aLz8+2|8 €|28§ZS 0z 8) +eAd9°, (8.1

where
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ot s
2

p (B,BR(Z o)+

.al_ e
|8az|a «BR(z°, w)) 952

1 w? 2
T 210 P |2<azs e ) o7 e

For this system there is local existence for initial data satisfying F(zo)(c, B) < oo even if
o¢(a, 0) does not have the proper sign. In the following we shall show briefly how to obtain
a solution of the regularized system with z%, ¢ € C 1 ([0, T¢1, H k ) for k > 4. We shall prove the
same a priori estimates given in Sections 6.1, 6.2 and 6.4, but the estimates corresponding to
Sections 6.3 and 6.5 are respectively

2 2 2 2 j
|7 | < Coxp(ClI[I7) (17 ) e + 12 Fgnz + [ [ + 0" )’
+eCexp(Cl|*[|") [ Adag*| 2. (82)

o e < Cexp(Cll2 NPV IF ) + 12 Vg - I D + 1 )’
+eCexp(Cll2*[|") [a%a¢° - (8.3)

fork > 2.
Then following the same steps of Section 6 we have

d & & & &
= 1+ 17 CO G+ I e + o 1)
< C@exp((l2* [ + 17 @) [z + 1o a2 + 9 [) ")

where the only difference appears in the following new term

/g
2,6 ol ¢
_ k—1 ot aaz 'aotz k
I_—/Ba (FW 8(pd(x<C(8)

83288J_82 il o2
el I LR T2

which is controlled by the Laplacian dissipation term introduced in the regularization.
The next step is to integrate the system during a time T independent of ¢. We will show that
for this system we have

d c .
7 E'0< s o s

+ 1) exp(CEP (1)), (8.4)
where E (¢) is given by the analogous formula (7.1) for the e-system,

mé(t)= min o%(a,t)=0%(0y, 1) >0
ae[—m,m]

and C, p and ¢q are universal constants independent of ¢.
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In the following we shall select only the most singular terms, showing for them the corre-
sponding uniform estimates for k =4 and leaving to the reader the remainder easier cases. Let
us consider the one corresponding to /3 in Section 7.3, we have

T
/ 1
|9
T

We split this term as 15 = —S° + J5 + J§ + “bounded terms” where S corresponds to S in (7.4)
and

0% (@) A(32(0f822° - 352°)) da.

T
C
15— [ S e @Rl a3 8)
T

T
1
J§ = / — H(3,9°) ()3, (0°)052° - 952" da.
T
In J5 we use (8.3) to get

& c 2
J2 S i (mg)q(t) ( Ep(t))+8 ”8 2 ”L2

The similarity with (7.10) together with the use of the corresponding version of (7.11) allows us
to get

8225 . alze . .
J5 = / WH(SS&)H( of)do + Me*|| 35 ||L2 + “bounded terms
s

that by formula (8.1) becomes

2,e . 9Ll
J§ =—5/ %H(ag(f)[{(a Ydo + Me?*|| 33 ”L2 + “bounded terms”.

g

Then we can write it as follows

. ) 825 als |
§=e [ A} (B ) ) 44 58 da -+ 16k | + “bounded e
0 2
T
and therefore

J§ M82”A2 BN ”L2 + “bounded terms”.

Now the use of the Laplacian dissipative term introduced in the evolution equation yields
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d ¢ e 1o e
B0 < i lof [+ 1) exp(CEP©) + (Me? = &) | 42306 1o,

where the constant M is fixed. This finally shows (8.4) for & small enough.

Our regularization damages the estimates for the term ||/ ||z in (6.17). But this control is
necessary only once in the argument and therefore enough derivatives in the definition of energy
gives the desired control. Since we wish to keep the result for four derivatives, we can go around
the problem just by regularizing the initial data. At the end of the argument, when the local-
existence theorem holds for ¢ = 0, then the a priori energy estimate for k = 4 allows us to take
the limit in the regularization of the initial data. With this strategy and taking enough derivatives
in the definition of the energy, we find in (8.4) the following inequality

d
—EP(t) <

C
- 14
o T exp(CE?(1)). (8.5)

Now let us observe that if zo(«) € H¥, wo(a) € H*~! and ¢o(a) € Hk_%, then we have
the solution in [0, T?] of the regularized system. And if initially o («, 0) > 0, there is a time
depending on ¢, denoted by T¢ again, in which o(«, t) > 0. Now, for ¢t < T? we have (8.5). Let
us mention that at this point of the proof we cannot assume local existence, because we have the
above estimate for # < T?, and if we let ¢ — 0, it could be possible that T®* — 0, i.e. we cannot
assume that if the initial data satisfy o (o, 0) > 0, there must be a time T, independent of ¢, in
which the following important quantity

mé(t) = min o%(a,t) =0%(0y, 1)
ag[—m,m]

is strictly greater than zero. In fact, everything in the evolution problem depends upon the sign
of o¢(a, t) (the higher order derivatives), since otherwise the problem is ill-posed [12]. In other
words, at this stage of the proof we do not have local existence when ¢ — 0, but the following
argument will allow us to continue: First let us introduce the Rayleigh—Taylor condition in a new
definition of energy as follows:

_p
Epr(t) =E"(t) + s

Sobolev inequalities shows that o («, 1) € C!([0, T?] x [—7, 7]) and therefore m?(¢) is a Lip-
schitz function differentiable almost everywhere by Rademacher’s theorem. With an analogous
argument to the one used in [6] and [7], we can calculate the derivative of m®(¢), to obtain

(m®) (t) = of (s, 1)

for almost every ¢. Then it follows that

i<L><t) A

dt \ m¢ C(m)2(r)
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almost everywhere. The control of the quantity |||z, independently of &, by its formula
together with inequality (8.5) yields

d
5 Err() < Cexp(CERr (1),

and therefore
1 2
Err(t) < —E ln(exp(—CERT(O) —-C t).

Now we are in position to extend the time of existence T¢ so long as the above estimate works
and obtain a time T depending only on the initial data (arc-chord and Rayleigh—Taylor). Finally
we can let ¢ tend to 0 to conclude the existence result.
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