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Abstract

We prove several weighted inequalities involving the Hilbert transform of a function f (x) and its derivative. One of those
inequalities,

−
∫

fx(x)[Hf (x) − Hf (0)]
|x|α dx � Cα

∫
(f (x) − f (0))2

|x|1+α
dx,

is used to show finite time blow-up for a transport equation with nonlocal velocity.
© 2006 Elsevier Masson SAS. All rights reserved.

Résumé

Dans cet article nous présentons la démonstration de plusieurs inegalités satisfaites par la transformation de Hilbert d’une
fonction f (x) et sa derivée f ′(x). Nous avons l’estimation suivante :

−
∫

fx(x)[Hf (x) − Hf (0)]
|x|α dx � Cα

∫
(f (x) − f (0))2

|x|1+α
dx,

où la constante Cα est strictement positive. Nous avons aussi utilisé cette inegalité pour démontrer l’explosion en un temps fini des
solutions d’une équation de transport avec une vitesse nonlocale.
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1. Introduction

In this paper we show the existence of finite-time singularities for a Burgers type equation with nonlocal velocity
in one space variable,

ft − (Hf )fx = 0, (1)

where H(·) denotes the Hilbert transform (see (2) below), improving the results of our previous paper [4] in the sense
that we can obtain here blow-up for a much wider class of initial data. One motivation for the study of that equation
is its analogy with both, the 2D quasi-geostrophic equation and the 3D Euler in vorticity form (see [2,3,5,6,8–10]
and [11] for a variety of 1D models involving nonlocal operators, the majority of them have their origin in the seminal
paper of Constantin, Lax and Majda [3]). For instance the 2D quasi-geostrophic equation belongs to the class of
transport equations with nonlocal velocities:

θt − R2(θ)
∂θ

∂x1
+ R1(θ)

∂θ

∂x2
= 0,

where the velocity is u = (−R2(θ),R1(θ)) and R(θ) = (R1(θ),R2(θ)) are the Riesz transforms of θ . This is a well-
known model for the dynamic of mixtures of cold and hot air.

Another motivation for (1) is its similarity in structure with the Birkhoff–Rott equation for the evolution of vortex
sheets (see [1,4] and [7]).

In this paper we present examples showing the existence of such singularities, our proofs below will take advantage
of certain weighted norm inequalities satisfied by the Hilbert transform. There is a vast literature about such topic, but,
in our case, we need very precise estimates, separately for both even and odd functions, which do not follow directly
from the general theorems. Since the weights involved are powers of the independent variable, the Mellin transform
is a very adequate instrument to produce those sharp estimates.

In the following we shall consider the Hilbert transform defined by the formulas:

Hf (x) = 1

π
PV

∫
f (y)

x − y
dy, (2)

or Ĥf (ξ) = −i sign(ξ)f̂ (ξ), where f̂ (ξ) = ∫
e−2π ix·ξ f (x)dx denotes the Fourier transform.

We shall make use also of the identity,
∞∫

0

t−β dt

t − 1
= π cot(πβ), (3)

valid for 0 < Re(β) < 1 and the explicit formula:

H
(|x|α) = − 1

π
tan

(
απ

2

)
sign(x)|x|α,

with −3 < α < 1 and α �= 0,−1,−2. The distribution 1/|x|β is defined by,

1

|x|β (ϕ) = PV
∫

ϕ(x) − ϕ(0)

|x|β dx if 1 < β < 2,

and by,

1

|x|β (ϕ) = PV
∫

ϕ(x) − ϕ(0) − xϕx(0)

|x|β dx if 2 < β < 3.

To present our results we find it convenient to introduce the following functional spaces: For 0 < α < 2, H 1
α (R) is

the closure of C1
0(R) under the norm:

‖f ‖2 = ‖f ‖2
L∞ +

∫
(f (x) − f (0))2

|x|1+α
dx +

∫
(fx(x))2

|x|α−1
dx,

and for α � 0 we define H 1
α (R) as before taking out the correction term f (0).

We will prove the following inequalities involving Hilbert transforms:
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Theorem 1.1. (I) For every α, 0 < α < 2, there exists a strictly positive constant Cα so that the inequality,

−
∫

fx(x)Hf (x)

|x|α dx � Cα

∫
(f (x) − f (0))2

|x|1+α
dx, (4)

holds for every even function in C1(R) ∩ H 1
α (R).

(II) Let f ∈ C1(R) ∩ H 1
α (R) be a nonnegative (or nonpositive) function. Then for every α, 1 < α < 2, there exists

a strictly positive constant Cα so that

−
∫

fx(x)[Hf (x) − Hf (0)]
|x|α dx � Cα

∫
(f (x) − f (0))2

|x|1+α
dx. (5)

(III) The inequality,

−
∫

fx(x)Hf (x)|x|α dx � Cα

∫
f 2(x)|x|α−1 dx, (6)

with Cα > 0, is satisfied when 0 < α < 2 and f ∈ C1(R) ∩ H 1−α(R) is an even function or when 1 < α < 2 and
f ∈ C1(R) ∩ H 1−α(R) is either nonnegative or nonpositive.

As it was mentioned before, we will use these inequalities to prove the formation of finite time singularities for the
Burgers-type equation (1) with nonlocal velocity field.

The Cauchy problem is well posed for Eq. (1) giving us classical solutions f (x, t) for a short period of time
0 � t < T , for smooth enough initial data. Concerning blow-up solutions of Eq. (1) we have the following theorem:

Theorem 1.2. Let f (x,0) ∈ C1+δ
0 (R) be positive and compactly supported. Then there is no global in time, locally

bounded (in space) solution to Eq. (1).

The analysis involved in Theorem 1.1 leads to other interesting inequalities about the Hilbert transform, namely:

Theorem 1.3. Let f ∈ H 1
α (R). Then

(I) For 0 < α < 2 we have:

∞∫
−∞

|(Hf )(x) − (Hf )(0)|2
|x|α+1

dx � min

{
tan2

(
1

4
πα

)
, cot2

(
1

4
πα

)} ∞∫
−∞

|(f (x) − f (0))|2
|x|α+1

dx. (7)

(II) For −2 < α < 0 we have:

∞∫
−∞

|(Hf )(x)|2
|x|α+1

dx � min

{
tan2

(
1

4
πα

)
, cot2

(
1

4
πα

)} ∞∫
−∞

|f (x)|2
|x|α+1

dx.

Theorem 1.4. (I) Let f be an even function. Then for every α, 0 < α < 2, we have:

(A)

∞∫
−∞

[f (x) − f (0)]Hf (x)

|x|αx
dx � 0 for f ∈ H 1

α (R), (8)

(B)

∞∫
−∞

f (x)Hf (x)

|x|−αx
dx � 0 for f ∈ H 1−α(R). (9)
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(II) Let f be an odd function. Then for every α, 0 < α < 2, we have:

(A)

∞∫
−∞

f (x)[Hf (x) − Hf (0)]
|x|αx

dx � 0 for f ∈ H 1
α (R), (10)

(B)

∞∫
−∞

f (x)Hf (x)

|x|−αx
dx � 0 for f ∈ H 1−α(R). (11)

In Section 2 we present the proof of Theorem 1.1. Section 3 will be devoted to prove blow-up for Eq. (1) (Theo-
rem 1.2). Finally Section 4 contains the proof of the inequalities for the Hilbert transform presented in Theorems 1.3
and 1.4.

2. Proof of Theorem 1.1

An important ingredient in the proofs of the above inequalities will be the use of Mellin transforms of functions
f (x) in R

+. Such a transform is defined by the formula:

Mf (λ) =
∞∫

0

xiλf (x)
dx

x
.

It will be crucial in our analysis the fact that the restrictions of Hilbert transforms to the positive and negative real
axis are Mellin multipliers as we will explicitly show below. A useful property of Mellin transforms is the following
Plancherel’s identity for functions supported in R

+:
∞∫

0

f (x)g(x)
dx

x
= 1

2π

∞∫
−∞

Mf (λ)Mg(λ)dλ.

We can consider two different cases of f (x), even and odd, and then discuss the general case.
Notice that fx(x)Hf (x) = (f (x) − f (0))xH(f (x) − f (0)) = gx(x)Hg(x) for g(x) = f (x) − f (0) so we may,

without loss of generality, assume that f (0) = 0 for f (x) even. Then,
∞∫

−∞

fx(x)Hf (x)

|x|α dx = 2

∞∫
0

fx(x)Hf (x)

xα
dx, (12)

and using Plancherel’s identity it can be written in the form:

−
∞∫

0

fx(x)Hf (x)

xα
dx = 1

2π

∞∫
−∞

F(λ)ms(λ)F (λ)dλ, (13)

where

F(λ) = M

(
f

xα/2

)
(λ) =

∞∫
0

xiλ−α/2−1f (x)dx,

and

ms(λ) = −A(λ)B(λ),

with A(λ) and B(λ) being Mellin multipliers that can be deduced from the Mellin transform of fx(x) and Hf (x)

respectively. In order to find them, let us compute:
∞∫

xiλ−α/2fx(x)dx = −
(

iλ − α

2

)
F(λ) ≡ A(λ)F (λ),
0
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∞∫
0

xiλ−α/2−1Hf (x)dx = 1

π

∞∫
0

xiλ−α/2−1

[ ∞∫
−∞

f (y)

x − y
dy

]
dx

= 1

π

∞∫
0

xiλ−α/2−1

[ ∞∫
0

f (y)

x − y
dy +

∞∫
0

f (y)

x + y
dy

]
dx

= 2

π

∞∫
0

xiλ−α/2

[ ∞∫
0

f (y)

x2 − y2
dy

]
dx = 2

π

∞∫
0

[ ∞∫
0

xiλ−α/2

x2 − y2
dx

]
f (y)dy.

Then we evaluate the last integral in x performing the change of variables x = yt :
∞∫

0

xiλ−α/2

x2 − y2
dx =

∞∫
0

xiλ−α/2

x2 − y2
dx = yiλ−α/2−1

∞∫
0

t iλ−α/2

t2 − 1
dt,

and the change t2 = s together with (3) to evaluate:
∞∫

0

t iλ−α/2

t2 − 1
dt = 1

2

∞∫
0

s(iλ−α/2−1)/2

s − 1
ds = π

2
cot

(−iλ + α/2 + 1

2
π

)
.

Hence

2

π

∞∫
0

[ ∞∫
0

xiλ−α/2

x2 − y2
dx

]
f (y)dy = cot

(−iλ + α/2 + 1

2
π

) ∞∫
0

yiλ−α/2−1f (y)dy = − tan

(−iλ + α/2

2
π

)
F(λ).

Therefore

B(λ) = − tan

(−iλ + α/2

2
π

)
,

and

ms(λ) =
(

iλ + α

2

)
tan

(−iλ + α/2

2
π

)
,

Re
[
ms(λ)

] = λ sinhπλ + α
2 sin 1

2πα

coshπλ + cos 1
2πα

. (14)

If −2 < α < 2, α �= 0, then

λ sinhπλ + α
2 sin 1

2πα

coshπλ + cos 1
2πα

> Cα > 0,

and we may conclude that

−
∞∫

0

fx(x)Hf (x)

xα
dx � Cα

∞∫
−∞

|f (x)|2
|x|α+1

dx,

or in general, if f (0) �= 0, we obtain inequality (4).
In the case of f being odd, we evaluate:

−
∞∫

0

fx(x)(Hf (x) − Hf (0))

xα
dx = 1

2π

∞∫
−∞

dλF(λ)ma(λ)F (λ),

where

ma(λ) = −A(λ)B(λ),
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with A(λ) and B(λ) being the Mellin multipliers coming from the Mellin transform of fx(x) and Hf (x) − Hf (0)

respectively. To find them, let us compute:

∞∫
0

xiλ−α/2fx(x)dx = −(iλ − α/2)F (λ) ≡ A(λ)F (λ),

∞∫
0

xiλ−α/2−1((Hf )(x) − (Hf )(0)
)

dx

= 1

π

∞∫
0

xiλ−α/2−1

[ ∞∫
0

f (y)

x − y
dy +

∞∫
0

f (y)

y
dy −

∞∫
0

f (y)

x + y
dy +

∞∫
0

f (y)

y
dy

]
dx

= 2

π

∞∫
0

xiλ−α/2−12x2

[ ∞∫
0

f (y)/y

x2 − y2
dy

]
dx = 2

π

∞∫
0

[ ∞∫
0

xiλ−α/2+1

x2 − y2
dx

]
f (y)

y
dy

= cot

(−iλ + α/2

2
π

) ∞∫
0

yiλ−α/2−1f (y)dy = cot

(−iλ + α/2

2
π

)
F(λ).

Hence

ma(λ) = −
(

iλ + α

2

)
cot

(−iλ + α/2

2
π

)
,

so that

Re

(
−

(
iλ + α

2

)
cot

(−iλ + α/2

2
π

))
= − 1

2α sin 1
2πα + λ sinhπλ

coshπλ − cos 1
2πα

,

and

−
∞∫

0

fx(x)(Hf (x) − Hf (0))

xα
dx = 1

2π

∞∫
−∞

dλ
λ sinhπλ − α

2 sin 1
2πα

coshπλ − cos 1
2πα

∣∣F(λ)
∣∣2

.

If f is an arbitrary function (without loss of generality we can again assume that f (0) = 0), then we can write:

f (x) = f (x) + f (−x)

2
+ f (x) − f (−x)

2
≡ fs(x) + fa(x),

where fs(x) and fa(x) are even and odd respectively.
Notice that

−
∞∫

−∞

fx(x)(Hf (x) − Hf (0))

|x|α dx = −
∞∫

−∞

[fs,x(x) + fa,x(x)](Hfs(x) + Hfa(x) − Hfa(0))

|x|α dx

= −
∞∫

−∞

fs,x(x)Hfs(x)

|x|α dx −
∞∫

−∞

fa,x(x)(Hfa(x) − Hfa(0))

|x|α dx

= −2

∞∫
0

fs,x(x)Hfs(x)

xα
dx − 2

∞∫
0

fa,x(x)(Hfa(x) − Hfa(0))

xα
dx.

Therefore:
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−
∞∫

−∞

fx(x)(Hf (x) − Hf (0))

|x|α dx = 1

π

∞∫
−∞

dλRe
[
ms(λ)

]∣∣Fs(λ)
∣∣2 + 1

π

∞∫
−∞

dλRe
[
ma(λ)

]∣∣Fa(λ)
∣∣2

� 1

π

∞∫
−∞

dλ inf
λ

(
Re

[
ms(λ)

])∣∣Fs(λ)
∣∣2 + 1

π

∞∫
−∞

dλ inf
λ

(
Re

[
ma(λ)

])∣∣Fa(λ)
∣∣2

= 1

π

∞∫
−∞

dλ
infλ(Re[ms(λ)]) + infλ(Re[ma(λ)])

2

(∣∣Fs(λ)
∣∣2 + ∣∣Fa(λ)

∣∣2)

+ 1

π

∞∫
−∞

dλ
infλ(Re[ms(λ)]) − infλ(Re[ma(λ)])

2

(∣∣Fs(λ)
∣∣2 − ∣∣Fa(λ)

∣∣2)

= inf
λ

(
Re

[
ms(λ)

]) + inf
λ

(
Re

[
ma(λ)

]) ∞∫
0

|fs(x)|2 + |fa(x)|2
|x|α+1

dx

+ inf
λ

(
Re

[
ms(λ)

]) − inf
λ

(
Re

[
ma(λ)

]) ∞∫
0

|fs(x)|2 − |fa(x)|2
|x|α+1

dx,

where we have used the notation,

Fa(λ) = M

(
fa

xα/2

)
, Fs(λ) = M

(
fs

xα/2

)
.

It can be verified (see the lemma at the end of this section) that in the range 1 < α < 2, infλ(Re[ms(λ)]) > 0,
infλ(Re[ma(λ)]) < 0 and infλ(Re[ms(λ)])+ infλ(Re[ma(λ)]) > 0. If f (x) is everywhere nonnegative, then |fs(x)|2 −
|fa(x)|2 � 0, and therefore:

−
∞∫

0

fx(x)(Hf (x) − Hf (0))

xα
dx

� infλ(Re[ms(λ)]) + infλ(Re[ma(λ)])
2

∞∫
0

|fs(x)|2 + |fa(x)|2
|x|α+1

dx

= infλ(Re[ms(λ)]) + infλ(Re[ma(λ)])
4

∞∫
0

f 2(x) + f 2(−x)

|x|α+1
dx = Cα

∞∫
−∞

f 2(x)

|x|α+1
dx.

Lemma 2.1. For 1 < α < 2, we have:

inf
λ

(
Re

[
ms(λ)

]) + inf
λ

(
Re

[
ma(λ)

])
> 0.

The proof of the lemma is based in two facts:
Fact 1:

min
λ

(
π Re

(
ma(λ)

)) = −s

1 + t
.

Fact 2: For every λ

λ sinhλ + s
>

s
,

coshλ − t 1 + t
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where s = πα
2 sin πα

2 and t = − cos πα
2 (1 < α < 2). The first fact is trivial and the second is a consequence of the

following observations:

λ sinhλ > 2(coshλ − 1),
s

1 + t
= 2

πα
4

tan πα
4

< 2.

3. Applications to a nonlocal transport equation

This section contains the proof of the application described in the introduction dealing with a nonlocal partial
differential equation, where the inequalities obtained in the previous section will be crucial in proving the formation
of finite time singularities.

The equation is:

ft − (Hf )fx = 0.

In order to prove Theorem 1.2 we shall consider a general smooth initial data f0(x) = f (x,0), positive and com-
pactly supported, and we will show that fx(x, t) blows up in finite time.

It is a straightforward exercise to obtain a priori inequality:

d

dt

(∥∥f (· , t)∥∥2
L2+

∥∥fxx(· , t)
∥∥2

L2

)
� C

(∥∥f (· , t)∥∥2
L2 + ∥∥fxx(· , t)

∥∥2
L2

)3/2
,

which implies local (in time) existence for the Cauchy problem with initial data in Sobolev’s space H 2(R). We
may thus assume a C1,α solution f (x, t). We have a particle dynamics given by the ordinary differential equation
X′(t) = −Hf (X(t), t) and the equation implies that f is constant along trajectories. Let supp(f0) ⊂ [a0, b0] then the
positivity of f implies that Hf (a0) � 0, Hf (b0) � 0 which yields supp(f (x, t)) ⊂ [a0, b0] for t > 0.

If we change coordinates to a system of reference in which the maximum is stationary, i.e. we define xM(t) to be
the trajectory where f reaches its maximum, and

x′ = x − xM(t), t ′ = t,

we obtain from (1) the equation:

f̄t ′ − x′
M(t)f̄x′ − Hf̄ (x′, t ′)f̄x′ = 0, (15)

where f̄ (x′, t ′) = f (x′ + xM(t), t). In order to simplify notation let us omit from now on the explicit dependence of
the function on the second variable t = t ′.

But

dxM(t)

dt
= −Hf

(
xM(t)

)
,

Hf (x) = 1

π
PV

∫
f (y)

x − y
dy = 1

π
PV

∫
f (y)

(x − xM(t)) − (y − xM(t))
dy = Hf̄ (x′),

and

Hf
(
x = xM(t)

) = Hf̄ (x′ = 0),

so that (15) becomes

f̄t ′ −
(
Hf̄ (x′) − Hf̄ (0)

)
f̄x′ = 0,

also we have suppx′(f̄ (· , t)) ⊂ [−L,L] for a suitable finite constant L.
Hence, denoting g = f̄max − f̄ ,

gt ′ = −(
Hg(x′) − Hg(0)

)
gx′ . (16)

Dividing (16) by |x|α , 1 < α < 2, and using Theorem 1.1 we get:
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d

dt ′

L∫
−L

g(x′)
|x′|α dx′ = −

L∫
−L

(Hg(x′) − Hg(0))gx′(x′)
|x′|α dx′

= −
∞∫

−∞

(Hg(x′) − Hg(0))gx′(x′)
|x′|α dx′ � Cα

∞∫
−∞

g2(x′)
|x′|α+1

dx′

� Cα

L∫
−L

g2(x′)
|x′|α+1

dx′ � CL,α

( L∫
−L

g(x′)
|x′|α dx′

)2

,

where CL,α is a positive constant. Therefore
∫ L

−L
g(x′)
|x′|α dx′ blows up in finite time and consequently fx also blows up

in finite time since

L∫
−L

g(x′)
|x′|α dx′ � sup

x′

g(x′)
|x′|

L∫
−L

dx′

|x′|α−1
� 2L2−α

2 − α
sup
x

|gx |.

4. Proof of Theorems 1.3 and 1.4

In the proof of Theorem 1.3 we will consider two different cases of f (x), even and odd, and then discuss the
general case.

If f (x) is even, i.e. f (x) = f (−x), then
∞∫

−∞

|(Hf )(x)|2
|x|α+1

dx =
∞∫

−∞

|H [f (x) − f (0)]|2
|x|α+1

dx = 2

∞∫
0

|(Hf )(x)|2
|x|α+1

dx, (17)

since Hf is an odd function. In order to simplify the notation we can assume, without loss of generality, that f (0) = 0.
To estimate the right-hand side of (17) we make use of the Mellin transform and write,

∞∫
0

|(Hf )(x)|2
|x|α+1

dx = 1

2π

∞∫
−∞

dλm(λ)
∣∣F(λ)

∣∣2
, (18)

where

F(λ) =
∞∫

0

xiλ−α/2−1f (x)dx,

and m(λ) = |G(λ)|2 with G(λ) being the Mellin multiplier for Hf with f an even function, that is:
∞∫

0

xiλ−α/2−1Hf (x)dx = G(λ)F (λ),

where

G(λ) = − tan

(−iλ + α/2

2
π

)
.

Then

m(λ) =
∣∣∣∣tan

(−iλ + α/2

2
π

)∣∣∣∣2

= cos2( 1
4πα) sinh2( 1

2πλ) + sin2( 1
4πα) cosh2( 1

2πλ)

cos2( 1
4πα) cosh2( 1

2πλ) + sin2( 1
4πα) sinh2( 1

2πλ)
� tan2

(
1

4
πα

)
,

as one can easily verify.
Therefore, inequality (7) follows immediately for the even case since
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1

2π

∞∫
−∞

dλm(λ)
∣∣F(λ)

∣∣2 � 1

2π
tan2

(
1

4
πα

) ∞∫
−∞

dλ
∣∣F(λ)

∣∣2 = tan2
(

1

4
πα

) ∞∫
−∞

|f (x)|2
|x|α+1

dx,

in the range 0 < α < 2. In fact, one can show
∞∫

−∞

|(Hf )(x)|2
|x|α+1

dx � min

{
tan2

(
1

4
πα

)
,1

} ∞∫
−∞

|f (x)|2
|x|α+1

dx

for −2 < α < 2, α �= 0.
Next we consider f (x) to be an odd function and −2 < α < 0. Then (17) and (18) still hold, and we have to

compute:

∞∫
0

xiλ−α/2−1Hf (x)dx = cot

(−iλ + α/2

2
π

) ∞∫
0

yiλ−α/2−1f (y)dy = cot

(−iλ + α/2

2
π

)
F(λ).

Therefore,

m(λ) =
∣∣∣∣cot

(−iλ + α/2

2
π

)∣∣∣∣2

= cos2( 1
4πα) cosh2( 1

2πλ) + sin2( 1
4πα) sinh2( 1

2πλ)

cos2( 1
4πα) sinh2( 1

2πλ) + sin2( 1
4πα) cosh2( 1

2πλ)

� min

{
cot2

(
1

4
πα

)
,1

}
,

which yields the inequality
∞∫

−∞

|(Hf )(x)|2
|x|α+1

dx � min

{
cot2

(
1

4
πα

)
,1

} ∞∫
−∞

|f (x)|2
|x|α+1

dx,

for −2 < α < 0. When 0 < α < 2, we estimate:
∞∫

−∞

|(Hf )(x) − (Hf )(0)|2
|x|α+1

dx.

As before let us now evaluate:
∞∫

0

xiλ−α/2−1((Hf )(x) − (Hf )(0)
)

dx = cot

(−iλ + α/2

2
π

) ∞∫
0

yiλ−α/2−1f (y)dy,

so that
∞∫

−∞

|(Hf )(x) − (Hf )(0)|2
|x|α+1

dx � min

{
cot2

(
1

4
πα

)
,1

} ∞∫
−∞

|f (x)|2
|x|α+1

dx.

Finally, given an arbitrary function f , we write:

f (x) = f (x) + f (−x)

2
+ f (x) − f (−x)

2
≡ fs(x) + fa(x),

where fs(x) and fa(x) are even and odd respectively. Therefore we have:

∞∫
−∞

|(Hf )(x)|2
|x|α+1

dx =
∞∫

−∞

|H [fs(x) − fs(0)]|2
|x|α+1

dx +
∞∫

−∞

|(Hfa)(x)|2
|x|α+1

dx

+ 2

∞∫
H [fs(x) − fs(0)](Hfa)(x)

|x|α+1
dx
−∞
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=
∞∫

−∞

|H [fs(x) − fs(0)]|2
|x|α+1

dx +
∞∫

−∞

|(Hfa)(x)|2
|x|α+1

dx

� min

{
tan2

(
1

4
πα

)
,1

} ∞∫
−∞

|fs(x) − fs(0)|2
|x|α+1

dx + min

{
cot2

(
1

4
πα

)
,1

} ∞∫
−∞

|fa(x)|2
|x|α+1

dx

� min

{
tan2

(
1

4
πα

)
, cot2

(
1

4
πα

)} ∞∫
−∞

|f (x) − f (0)|2
|x|α+1

dx,

for −2 < α < 0.
Analogously, for 0 < α < 2 we get the estimate:

∞∫
−∞

|(Hf )(x) − (Hf )(0)|2
|x|α+1

dx � min

{
tan2

(
1

4
πα

)
, cot2

(
1

4
πα

)} ∞∫
−∞

|f (x)|2
|x|α+1

dx.

This completes the proof of Theorem 1.3.
Next, in order to prove Theorem 1.4 we will consider two different cases of f (x), even and odd.
If f (x) is even and 0 < α < 2, then

∞∫
−∞

[f (x) − f (0)]Hf (x)

|x|αx
dx = 2

∞∫
0

[f (x) − f (0)]Hf (x)

xα+1
dx, (19)

and again we can assume, without loss of generality, that f (0) = 0. As in the previous section we write:
∞∫

0

f (x)Hf (x)

xα+1
dx = 1

2π

∞∫
−∞

dλF(λ)m(λ)F (λ), (20)

where m(λ)F (λ) is the Mellin transform of Hf (x), that is,

m(λ) = − tan

(−iλ + α/2

2
π

)
and therefore,

∞∫
0

f (x)Hf (x)

xα+1
dx = − 1

2π

∞∫
−∞

dλ
sin 1

2πα

coshπλ + cos 1
2πα

∣∣F(λ)
∣∣2

. (21)

This last identity implies:
∞∫

0

f (x)Hf (x)

xα+1
dx < 0,

if 0 < α < 2, and
∞∫

0

f (x)Hf (x)

xα+1
dx > 0,

if −2 < α < 0.
If f (x) is odd then Hf (x) is even and by the properties of the Hilbert transform we can write:

∞∫
f (x)Hf (x)

|x|αx
dx = −

∞∫
H(Hf (x))Hf (x)

|x|αx
dx, (22)
−∞ −∞
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and applying previous inequalities to the even function Hf (x) yields
∞∫

0

f (x)Hf (x)

xα+1
dx > 0,

if 0 < α < 2, and
∞∫

0

f (x)Hf (x)

xα+1
dx < 0,

if −2 < α < 0.
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