
http://www.elsevier.com/locate/aim

Advances in Mathematics 187 (2004) 228–239

A geometrical constraint for capillary jet breakup
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Abstract

The formation of thinning filaments is commonly observed previously to the break-up of a

very viscous jet. This paper shows that a fluid under capillary forces cannot break-up through

the uniform collapse of a filament.
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1. Introduction

A mass of fluid bounded by a free surface and occupying a simply connected
domain may evolve in such a way that, after some time, the domain becomes
disconnected. The simplest example in which this transition is observed consists of a
fluid jet emerging from a faucet. At a certain distance of the faucet, the jet breaks
into drops.

An obvious question is whether one can deduce from the equations for the fluids
(Euler and Navier–Stokes under the action of surface tension) this kind of transition
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or not. If the answer is positive, then this fact supports the self-consistency of the
theory. If not, one would have to modify the equations in a physically reasonable
manner in order to accommodate these phenomena.

The evolution and break-up of fluid jets has attracted the attention of scientists
since the early 19th century. In 1833 Savart [9] performed experiments in order to
measure the size of drops resulting out of the break-up of a jet. In 1879, Rayleigh [8]
presented the first analytical study of the problem. He showed that a stationary jet,
which is a solution for both Euler or Navier–Stokes systems, is unstable and
computed the dispersion relation for small perturbations. This dispersion relation is
such that it attains a maximum at a wavelength coherent with the size of the drops
measured by Savart. The celebrated linear theory of Rayleigh, nevertheless, fails to
show that breakup follows from the equations. The process is inherently nonlinear,
which is the main analytical obstacle that one has to face. At the end of the last
century, the problem was attacked again using the theoretical, computational and
experimental tools available at the time. A close experimental observation of the
evolution and breakup processes revealed their high degree of complexity, spanning
several time and length scales and being strongly dependent on physical parameters.
On the theoretical side, the main result is a universal self-similar breakup mechanism
postulated by Eggers [4]. The breakup happens at a point and in its neighborhood
the jet thins, close to the breakup time T ; at a rate aðT � tÞ: Experimental and
computational evidence shows that this mechanism is consistent with a large number
of observations but not with many others. In particular, in the limits of very low and
very high viscosity fluids, events unfold very differently. In low viscosity fluids, there
is an overturning phenomenon by which breakup happens at a point ‘‘inside’’ a drop
(see [12]). In high viscosity fluids, the breakup is preceded by the formation of long
and thin filaments (cf. [6,10]). In experiments, these filaments thin uniformly up to a
diameter of the order of a micron. Sometimes they generate new and smaller
filaments (see [10]), sometimes they become unstable and break. In [5] it is proved the
formation of filaments for very viscous fluids under the slender jet approximation.
The criterion obtained in [2] shows that in order to have a filament collapse at time T

is necessary for the quantity
R T

0 jujLNds to diverge.

The question that it is then natural to ask is whether breakup is possible in a jet
through the uniform collapse of a fluid filament or not. In the following, we prove
that the answer to this question is negative.

In our case we have coordinates ðr; zÞ where z is the vertical coordinate, and r

denote the distance to the axis of symmetry. Let us denote by hðz; tÞ the distance of a
point of the boundary of the tube to its axis.

We understand by collapse of a filament at time T the following:

lim
t-T

hðz; tÞ ¼ 0 for every zAI ; ð1:1Þ

where I is an interval that we take ½�L;L�: The collapse will by uniform if

1

C
%hðtÞphðz; tÞpC %hðtÞ for every zAI ; ð1:2Þ
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where C is a constant and %hðtÞ is the average of hðz; tÞ over I : We will also impose

jhzðz; tÞjpC for every zAI and every t: ð1:3Þ

Our main result is the following theorem:

Theorem 1. Under conditions (1.2) and (1.3) in a given interval I ; the uniform collapse

of a filament (in the sense of (1.1)) is impossible. Moreover, the volume of fluid enclosed

by the filament satisfies

VðtÞXCe�Ct2

for some positive constant C:

These results were announced in [1]. Similar approach was used in [3] for the
formation of fronts.

The article is organized as follows: In Section 2 we present the equations that
describe mathematically the evolution of a fluid tube in absence of external forces
such as gravity and show a well-known energy inequality. In Section 3 we deduce an
inequality satisfied by the volume enclosed by a filament. In Section 4 an inequality
satisfied over the cross sections of the tube is deduced. Finally, in Section 5 we finish
the proof of Theorem 1. Section 6 is devoted to the analysis of the problem when
external forces are present.

2. The equations and an energy identity

The equations describing the evolution of a Newtonian fluid in a bounded domain
OðtÞ limited by a free surface @OðtÞ are the Navier–Stokes system:

r
@~vv

@t
þ ð~vv 
 rÞ~vv

� �
¼ �rp þ mD~vv þ ~FF ; ð2:1Þ

r 
~vv ¼ 0; ð2:2Þ

together with the boundary condition

�pdij þ m
@vi

@xj

þ @vj

@xi

� �� �
nj ¼ sHni in @OðtÞ; ð2:3Þ

where ~nn is the field of outer normal vectors to OðtÞ and H is the mean curvature of
@OðtÞ; and the following kinematic condition for the evolution of @OðtÞ:

VN ¼~vv 
~nn; ð2:4Þ
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expressing the fact that the particles of the boundary move with a velocity whose
normal component VN equals the normal component of the velocity field defined in
it. The parameters r and m are the density and viscosity of the fluid, respectively,
while s denotes the surface tension coefficient of the interface which depends upon

the fluid itself and the surrounding media. ~FF denotes an external force that we will
take, for the sake of simplicity, as zero. In Section 6 we will retake the problem with
~FFa~00:

From Eqs. (2.1) and (2.2) it is very simple to deduce the following equation:

d

dt

Z
OðtÞ

1

2
rj~vvj2 dV þ sj@OðtÞj

" #
¼ �m

Z
OðtÞ

j@xi
vj þ @xj

vij2 dV ; ð2:5Þ

where j@OðtÞj denotes the area of @OðtÞ: It follows then

Z
OðtÞ

1

2
rj~vvj2 dV þ sj@OðtÞj þ m

Z t

0

Z
OðtÞ

j@xi
vj þ @xj

vij2 dV dt ¼ C: ð2:6Þ

In order to obtain (2.5) one takes the dot product of (2.1) with~vv; integrate over the
volume of OðtÞ; integrate by parts, and use (2.2). Then

r
Z
OðtÞ

@

@t

1

2
j~vvj2

� �
þ~vv 
 ð~vv 
 rÞ~vv

� �
dV

¼ �m
Z
OðtÞ

j@xi
vj þ @xj

vij2 dV þ s
Z
@OðtÞ

H~vv 
~nn dS: ð2:7Þ

Since @~vv
@t
þ ð~vv 
 rÞ~vv ¼ d~vv

dt
(the material derivative of ~vv), we have that the left-hand

side of (2.7) is

1

2

Z
OðtÞ

dj~vvj2

dt
dV ¼ 1

2

Z
Oð0Þ

dj~vvj2

dt
dV � ¼ 1

2

d

dt

Z
Oð0Þ

j~vvj2 dV � ¼ 1

2

d

dt

Z
OðtÞ

j~vvj2 dV ;

where we have performed a change to Lagrangian coordinates in which the domain
O remains fixed, extracted the time derivative outside the integral, and returned to
Eulerian coordinates.

As for the second term at the right-hand side of (2.7), we take into account the
following: let ~xxðu; vÞ be a parametrization of a surface @O and generate another

surface @O0 parametrized by ~xxðu; vÞ þ dðu; vÞ~nn (with ~nn being the field of unitary
vectors normal to S). The variation of the area is (cf. [7]):

j@O0j � j@Oj ¼ �
Z

S

dHdS þ Oðd2Þ:
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If d ¼~vv 
~nndt; then we conclude

dj@OðtÞj
dt

¼ �
Z

SðtÞ
H~vv 
~nndS:

In the case of a fluid (with viscosity m1 and density r1) surrounded by another fluid
(with viscosity m2 and density r2), each fluid satisfies Navier–Stokes equations and
the kinematic condition at the interface is

½T ð1Þ
ij � T

ð2Þ
ij �nj ¼ sHni in @OðtÞ ð2:8Þ

with

T
ðkÞ
ij ¼ �pdij þ mk

@vi

@xj

þ @vj

@xi

� �� �

and s being the surface tension coefficient for the interface between both fluids.
Also, continuity of the velocity field across the interface has to be imposed
(cf. [11]).

One can deduce the following energy identity:Z
OðtÞ

1

2
r1j~vvj

2
dV þ m1

Z t

0

Z
OðtÞ

j@xi
vj þ @xj

vij2 dV dt þ sj@OðtÞj

þ
Z
R3

\OðtÞ

1

2
r2j~vvj

2
dV þ m2

Z t

0

Z
R3

\OðtÞ
j@xi

vj þ @xj
vij2 dV dt ¼ C:

An immediate consequence of this is the following inequality:

min
i
ðriÞ

Z
R3

1

2
j~vvj2 dV þ min

i
ðmiÞ

Z t

0

Z
R3

j@xi
vj þ @xj

vij2 dV dt þ sj@OðtÞjpC: ð2:9Þ

3. A differential inequality for the volume enclosed by a filament

Given a mass of fluid in the interval ½�z0; z0�; the variation of its volume with time
is given by the equation:

dVðt; z0Þ
dt

¼
Z 2p

0

Z hðz0;y;tÞ

0

vzðz0; r; y; tÞr dr dy

�
Z 2p

0

Z hð�z0;y;tÞ

0

vzð�z0; r; y; tÞr dr dy:
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Next, we integrate the previous equation in z0 between 0 and L to obtain

d

dt

Z L

0

Vðt; zÞdz ¼
Z L

0

Z 2p

0

Z hðz;y;tÞ

0

vzðz; r; y; tÞr dr dy dz

�
Z L

0

Z 2p

0

Z hð�z;y;tÞ

z0

vzð�z; r; y; tÞr dr dy dz: ð3:1Þ

The triple integrals at the right-hand side of (3.1) can be viewed as integrals over
the domain 0pzpL; 0pyp2p; 0prphðz; y; tÞ: Let us introduce now the following
change of variables:

z0 ¼ z;

r0 ¼
%h

hðz; y; tÞ r;

y0 ¼ y;

where %h denotes the average of h over the interval zA½�L;L�: The Jacobian of this
transformation is

@ðz0; r0; y0Þ
@ðz; r; yÞ

				
				 ¼

1 0 0

�hzðz; y; tÞ %h
h2ðz; y; tÞ r

%h

hðz; y; tÞ �hyðz; y; tÞ %h
h2ðz; y; tÞ r

0 0 1

								

								
¼

%h

hðz; y; tÞ ¼
r0

r
:

Then, the integrals at the right-hand side of (3.1) are

Z L

0

Z 2p

0

Z %h

0

vzðz0; y0; r0; tÞ hðz0; y0; tÞ
%h

� �2

r0dr0dy0dz0

�
Z L

0

Z 2p

0

Z %h

0

vzð�z0; y0; r0; tÞ hðz0; y0; tÞ
%h

� �2

r0dr0dy0dz0

¼
Z L

�L

Z 2p

0

Z %h

0

signðz0Þvzðz0; y0; r0; tÞ hðz0; y0; tÞ
%h

� �2

r0dr0dy0dz0

¼
Z %h

0

Z L

�L

Z 2p

0

signðz0Þvzðz0; y0; r0; tÞ hðz0; y0; tÞ
%h

� �2

dy0dz0

" #
r0dr0:
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We can estimate

Z %h

0

Z L

�L

Z 2p

0

signðz0Þvzðz; y0; r0; tÞ hðz0; y0; tÞ
%h

� �2

dy0dz0

" #
r0dr0

					
					

pC %h2jln %hj
1
2

Z L

�L

Z 2p

0

sup
r0

jvzðz0; y0; r0; tÞj

jln r0j
1
2

dy0dz0:

Under the hypothesis of uniform collapse (1.2) and (1.3), we can conclude, for a

given L and %h small enough

p %h2jln %hj
1
2pCVðtÞjln VðtÞj

1
2;

where

VðtÞ 
 1

L

Z L

0

Vðt; zÞ dz

and we arrive to the inequality

dVðtÞ
dt

X� C

Z L

�L

Z 2p

0

sup
r0

jvzðz0; y0; r0; tÞj

jln r0j
1
2

dy0dz0

0
@

1
AVðtÞjln VðtÞj

1
2: ð3:2Þ

4. An inequality in a disc

Consider a radial function vðrÞ defined in the disc 0prpR (we assume, without

loss of generality, Ro1
2
). Given a point a40 we have

vðaÞ ¼ vðrÞ þ
Z a

r

dvðrÞ
dr

dr:

Hence,

v2ðaÞp 2v2ðrÞ þ 2

Z a

r

dvðrÞ
dr

dr
� �2

p 2v2ðrÞ þ 2

Z a

r

1

r
dr

				
				
Z a

r

dvðrÞ
dr

� �2

r dr

					
					

p 2v2ðrÞ þ 2 ln
r

a

			 			 Z R

0

dvðrÞ
dr

� �2

r dr:
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We multiply the previous inequality by r and integrate to obtain

R2

2
v2ðaÞp2

Z R

0

v2ðrÞr dr þ 2

Z R

0

r ln
r

a

			 			dr

Z R

0

dvðrÞ
dr

� �2

r dr

					
					:

Now we can take

Z R

0

r ln
r

a

			 			dr ¼ a2

Z R
a

0

ujln ujduCjln aj as a-0

and globally,

Z R

0

r ln
r

a

			 			drpCjln aj;

so that

v2ðaÞ
jln ajp

C

jln aj

Z R

0

v2ðrÞr dr þ C

Z R

0

dvðrÞ
dr

� �2

r dr

pC

Z R

0

v2ðrÞr dr þ
Z R

0

dvðrÞ
dr

� �2

r dr

 !
; ð4:1Þ

where C depends only on R:
Then, for the function vzðz; y; r; tÞ one has

sup
r

jvzðz; y; r; tÞj

jln rj
1
2

pC

Z R

0

v2
zðz; y; r; tÞr dr þ

Z R

0

@vz

@r
ðz; y; r; tÞ

				
				
2

r dr

 !1
2


CG
1
2ðz; y; tÞ: ð4:2Þ

Hence,

Z 2p

0

sup
r

jvzðz; y; r; tÞj

jln rj
1
2

dypC

Z 2p

0

G
1
2ðz; y; tÞdy

pC
ffiffiffiffiffiffi
2p

p Z 2p

0

Gðz; y; tÞdy
� �1

2


 C
ffiffiffiffiffiffi
2p

p
F

1
2ðz; tÞ: ð4:3Þ

Remark 1. The ln a at the left-hand side of (4.1) cannot be eliminated from the

estimate. Notice at this respect that the functions vðrÞ ¼ jln rja with 0oao1 are not
bounded at r ¼ 0 but the integrals at the right-hand side of (4.1) are bounded.
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5. Proof of Theorem 1

In this section we put together the results of the previous sections and prove
Theorem 1.

First let us observe the inequality (see the appendix):

Z t

0

Z
R3

@vz

@r

				
				
2

dV dtp
3

2

Z t

0

Z
R3

j@xi
vj þ @xj

vij2 dV dt; ð5:1Þ

which implies, by (2.9),

Z t

0

Z
R3

@vz

@r

				
				
2

dV dtpC: ð5:2Þ

From (2.9) we also obtain, integrating once in t;Z t

0

Z
OðtÞ

1

2
j~vvj2 dVpCt: ð5:3Þ

Second, we can estimate by (4.3),

Z L

�L

Z 2p

0

sup
r0

jvzðz0; y0; r0; tÞj

jln r0j
1
2

dy0dz0pC
ffiffiffiffiffiffi
2p

p Z L

�L

F
1
2ðz0; tÞ dz0

� �

pC
ffiffiffiffiffiffi
2p

p ffiffiffiffiffiffi
2L

p Z L

�L

Fðz0; tÞdz0
� �1

2

;

so that

Z t

0

Z L

�L

sup
r0

jvzðz0; r0; tÞj

jln r0j
1
2

dz0dtpC
ffiffiffiffiffiffi
2p

p ffiffiffiffiffiffi
2L

p Z t

0

Z L

�L

Fðz0; tÞdz0
� �1

2

dt

pC
ffiffiffiffiffiffi
2p

p ffiffiffiffiffiffiffiffi
2Lt

p Z t

0

Z L

�L

Fðz0; tÞdz0dt

� �1
2

pCð1 þ tÞ; ð5:4Þ

where we have used inequality (4.2), the definition of F in (4.3), and inequalities (5.2)
and (5.3).

Finally, we can take inequality (3.2) and obtain

VðtÞXCe�Ct2

:

Under the assumptions of uniform collapse, analogous inequality follows for
Vðt;LÞ:
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Remark 2. We have assumed OðtÞ bounded, but this assumption is not essential. The
results easily extend to infinite periodic domains (jets) provided that the integrals in
(2.9) are taken in a period or even in domains with part of its boundary being a solid
wall since the boundary integrals are zero there.

6. The case ~FFa~00

We assume in this section the existence of an external force ~FF such that

jj~FF jjL2pC:

Then, multiplying (2.1) by ~vv and integrating over the volume, we obtain the
inequality

d

dt

Z
OðtÞ

1

2
r1j~vvj

2
dV þ m1

Z
OðtÞ

j@xi
vj þ @xj

vij2 dV þ sj@OðtÞj

þ d

dt

Z
R3

\OðtÞ

1

2
r2j~vvj

2
dV þ m2

Z
R3

\OðtÞ
j@xi

vj þ @xj
vij2 dV ¼

Z
R3

\O

~FF 
~vv dV

pjj~FF jjL2 jj~vvjjL2pCjj~vvjjL2 :

Hence,

d

dt
jj~vvjj2L2pCjj~vvjjL2 ;

which implies jj~vvðtÞjjL2pjj~vvð0ÞjjL2 þ 1
2
Ct: Then, the equivalent to inequality

(2.9) is:

min
i
ðriÞ

Z
R3

1

2
j~vvj2 dV þ min

i
ðmiÞ

Z t

0

Z
R3

j@xi
vj þ @xj

vij2 dV dt þ sj@OðtÞjpCð1 þ t2Þ:

We can use this last inequality and operate as in (5.4) to conclude

Z t

0

Z L

�L

sup
r0

jvzðz0; r0; tÞj

jln r0j
1
2

dz0dtpCð1 þ t
3
2Þ:

Finally, using inequality (3.2) we find

VðtÞXCe�Ct3

:

The filament cannot collapse in finite time.
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7. A proof of inequality (5.1)

We present here a simple proof of inequality (5.1). Notice that

X
i; j

@vi

@xj

þ @vj

@xi

				
				

				
				
2

L2ðR3Þ
¼ 4

X
i

@vi

@xi

				
				

				
				
2

L2ðR3Þ
þ2
X
ioj

@vi

@xj

þ @vj

@xi

				
				

				
				
2

L2ðR3Þ

¼ 4
X

i

@vi

@xi

				
				

				
				
2

L2ðR3Þ
þ2
X
ioj

@vi

@xj

				
				

				
				
2

L2ðR3Þ
þ @vj

@xi

				
				

				
				
2

L2ðR3Þ

 

þ2

Z
R3

@vi

@xj

@vj

@xi

dV

�
: ð7:1Þ

Integration by parts in the last integral yields

Z
R3

@vi

@xj

@vj

@xi

dV ¼
Z
R3

@vi

@xi

@vj

@xj

dV :

Hence

X
i; j

@vi

@xj

þ @vj

@xi

				
				

				
				
2

L2ðR3Þ
¼ 4

X
i

@vi

@xi

				
				

				
				
2

L2ðR3Þ
þ2
X
iaj

@vi

@xj

				
				

				
				
2

L2ðR3Þ
þ4
X
ioj

Z
R3

@vi

@xi

@vj

@xj

dV

X 4
X

i

@vi

@xi

				
				

				
				
2

L2ðR3Þ
þ2
X
iaj

@vi

@xj

				
				

				
				
2

L2ðR3Þ

� 2
X
ioj

@vi

@xi

				
				

				
				
2

L2ðR3Þ
þ @vj

@xj

				
				

				
				
2

L2ðR3Þ

 !

¼ 2
X
iaj

@vi

@xj

				
				

				
				
2

L2ðR3Þ
: ð7:2Þ

By the first line in (7.1) and (7.2) we have

X
i

@vi

@xi

				
				

				
				
2

L2ðR3Þ
þ
X
iaj

@vi

@xj

				
				

				
				
2

L2ðR3Þ
p

1

2
þ 1

4

� �X
i; j

@vi

@xj

þ @vj

@xi

				
				

				
				
2

L2ðR3Þ
: ð7:3Þ

Finally, observe that given the definition of the radial coordinate r;

Z
R3

@vz

@r

				
				
2

dVp2

Z
R3

@vz

@x

				
				
2

þ @vz

@y

				
				
2

 !
dV ;

so that, using (7.3), inequality (5.1) follows.
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