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Abstract

In this paper we study 1D equations with nonlocal flux. These models have resemblance of
the 2D quasi-geostrophic equation. We show the existence of singularities in finite time and
construct explicit solutions to the equations where the singularities formed are shocks. For the
critical viscosity case we show formation of singularities and global existence of solutions for
small initial data.
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1. The model equations

The 2D quasi-geostrophic equation (QG), which models the dynamics of the mixture
of cold and hot air and the fronts between them, is given by

�t + (u · ∇)� = 0, (1.1)

u = ∇⊥�, � = −(−�)
1
2�,

�(x,0) = �0(x),

where∇⊥ = (−�2, �1). Here,�(x, t) represents the temperature of the air. Besides its
direct physical significance[16,21], the quasi-geostrophic equation has very interesting
features of resemblance to the 3D Euler equation, being also the finite time blow-up for
(QG) an outstanding open problem. With respect to that question there are pioneering
studies due to Constantin, et al.[7]. In particular they obtained a finite time blow-up
criterion, which says that the local smooth solution for initial data�0 ∈ Hk(R2), k ≥ 3,
blows up atT if and only if

∫ T

0
‖∇⊥�(t)‖L∞ dt = ∞.

There are many studies on the equations following that work[2,4,12,13,19,22,28].
Motivated mainly by Constantin et al.[6], we are concerned here on constructing and
studying a 1D model equation of QG. In order to derive that model equation we first
write QG in another equivalent form as follows: From the second equation of QG we
have the representation

u = −∇⊥(−�)−
1
2� = −R⊥�, (1.2)

where we have used the notation,R⊥� = (−R2�, R1�) with Rj , j = 1,2, for the 2D
Riesz transform defined by (see e.g.[26])

Rj (�)(x, t) = 1

2�
PV

∫
R2

(xj − yj )�(y, t)
|x − y|3 dy.

Using representation (1.2), we find that (1.1) is transformed into

�t + div[(R⊥�)�] = 0, (1.3)

because div(R⊥�) = 0. To construct the 1D model, we consider the unknown function
�(x, t) defined for(x, t) ∈ R × R+ or T × R+, and replace the Riesz transform,R⊥(·)
in (1.3), by the Hilbert transformH(·) defined by

H�(x) = 1

�
P.V .

∫ ∞

−∞
�(y)
x − y

dy,
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or

Hf (x) = 1

2�
P.V .

∫ �

−�

f (x − y)

tan y
2

dy

in the periodic case. And finally we replace div(·) in (1.3) by �x . Then Eq. (1.3) is
transformed into

�t + (H(�)�)x = 0, (1.4)

�(x,0) = �0(x).

This was already studied in[1,18], which was proposed in a different physical situation.
In [18] it was considered the following equation:

�t + �(H(�)�)x + (1− �)H(�)�x = 0 with 0≤ � ≤ 1 (1.5)

and the existence of singularities for 0< � < 1
3, � = 1

2 and� = 1 was proved.1 Also,
in [18], the question of singularities of (1.5) for the other ranges of 0< � ≤ 1 was
left open. In Theorem2.1 below, we proved existence of singularities for the full range
of 0 < � ≤ 1, thus solving the problem. The proof of existence of singularities in the
case� = 0 is solved in[11] using a different technique.
In the case of 2D viscous Quasi-geostrophic equation Constantin and Wu[8] showed

that for � > 1 the system

(
�t + u · ∇)

� = −�(−�)
�
2�, (1.6)

u = ∇⊥�, � = −(−�)
1
2�

does not develop singularities in finite time. For the critical viscosity� = 1 it is an
open problem, considered as a model problem of the 3D Navier–Stokes equations (see
[3,4,5,9,10,17,22,23,24,25], for more details).
In Sections 3 and 4 we study the following 1D dimensional model of the critical

viscous QG:

�t + (�H(�))x = −�H�x,

�0(x) = �(x,0),

where the critical viscosity term−�(−�)
1
2� in (1.6) is replaced by−�(H�)x . We show

that the solutions to this equation may also develop singularities with the same initial
data as in the inviscid case for any� < ‖�0‖L∞ . When the viscosity� ≥ ‖�0‖L∞ then
the solution remains smooth. In Section 4, we prove global existence of solutions for

1Notice that after the change� → −�, Eq. (1.5) can be formulated as it originally appears in[18].
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the periodic case with small initial data. If the second order viscosity term	�xx added

�t + (�H(�))x = 	�xx,

�0(x) = �(x,0),

then explicit solutions can be constructed for all positive	 by applying the Hopf–Cole
transform. See the appendix.

2. The formation of finite time singularities

2.1. Blow-up in finite time: periodic case

We shall consider periodic solutions of Eq. (1.5) with� > 0, where�(x + 2�, t) =
�(x, t). Our goal is to show that, for very general smooth initial data�0, there is no
C1([−�,�] × [0, T )) solution of (1.5) with� > 0 for all time T.
First let us observe that

(i) Hf (x) = 1

2�
P.V .

∫ �

−�

f (x − y)

tan y
2

dy

(ii ) 
f (x) = Hfx(x) = 1

2�
P.V .

∫ �

−�

f (x) − f (y)

sin2 x−y
2

dy

(iii) If the real valued functionf ∈ C1 has a maximum (respectively a minimum)
at x0 then
f (x0) ≥ 0 (respect.
f (x0) ≤ 0).

Theorem 2.1.Given a periodic non-constant initial data�0 ∈ C1([−�,�]) such that∫ �
−� �0(x) dx = 0, there is noC1([−�,�] × [0,∞)) solution to (1.5) with � > 0.

Proof. Suppose the existence of such a solution�(x, t). We have

d

dt

∫ �

−�
�(x, t) dx = −�

∫ �

−�
(�H�)x dx − (1− �)

∫ �

−�
�xH� dx

= (1− �)
∫ �

−�
�H�x dx ≥ 0.

Therefore

M(t) ≡ max
x

�(x, t) ≥ 0,

m(t) ≡ min
x

�(x, t)
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and, int = 0, we have the strict inequalities:M(0) > 0,m(0) < 0. BothM(t), m(t) are
continuous Lipschitz functions and byH. Rademacher’s theorem, they are differentiable
at almost every pointt.

Under the hypothesis of differentiability we may choosex(t), x(t) such that

M(t) = �(x(t), t),

m(t) = �(x(t), t)

for every t ≥ 0. Let t0 be a point of differentiability ofM(t). By compacity we may
choose a sequence of positive numbershj → 0 so thatx(t0 + hj ) converges tox0.
Then by continuity we will obtain thatM(t0) = �(x0, t0).
Next, let us consider

M(t0 + hj ) − M(t0)

hj
= �(x(t0 + hj ), t0 + hj ) − �(x0, t0)

hj

= �(x(t0 + hj ), t0 + hj ) − �(x(t0 + hj ), t0)

hj

+�(x(t0 + hj ), t0) − �(x0, t0)
hj

≤ �t (x(t0 + hj ), t0 + hj ) · hj
hj

= −(1− �)�x(x(t0 + hj ), t0 + hj )H�(x(t0 + hj ), t0 + hj )

−��(x(t0 + hj ), t0 + hj )
�(x(t0 + hj ), t0 + hj )

for certainhj , 0≤ hj ≤ hj .
Taking limit whenhj → 0 we get the inequality

M ′(t0) ≤ −��(x0, t0)
�(x0, t0) ≤ 0

and since this happens at almost every pointt0, we may conclude thatM(t) is a positive
decreasing function. Furthermore, if we compute the derivative taking a sequence of
negativehj we will reverse the sign of the inequality. Therefore at each point of
differentiability of the functionM we will get the identity

M ′(t0) = −��(x0, t0)
�(x0, t0).

By a completely analogous argument we obtain that the negative functionm(t) is also
decreasing and satisfies:

m′(t) = − �
2�

m(t)

∫ �

−�

�(x, t) − �(y, t)

sin2 x−y
2

dy ≤ 0
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at almost everyt, where x is a point such thatm(t) = �(x, t). Furthermore, since∫ �
−� �0(x) dx ≥ 0 andM(t) ≤ M(0), m(t) ≤ m(0) < 0 the set

{y : �(y, t) ≥ �(x, t)
2

}

has strictly positive measure greater than a universal constant. In particular, there exists
a universal positive constantC so that:

�
2�

∫ �

−�

�(y, t) − �(x, t)

sin2 x−y
2

dy ≥ C|�(x, t)|.

But then one obtains the inequality

|m|′(t) ≥ C|m(t)|2

which implies the blow-up ofm(t) in finite time contradicting our hypothesis about
the regularity of�(x, t).
Since the Hilbert transformH maps the space
� = {f ∈ L∞, sup|f (x)−f (y)|

|x−y|� < ∞},
0< � < 1, into itself, we have the following:

Corollary 2.2. There is no non-zero solution of(1.5)with � > 0 so that
∫ �
−� �(x,0)dx

= 0 and �(·, t) ∈ C1,�, for any � > 0 and for every t, 0≤ t ≤ T (�0).

Remark 2.3. If
∫ �
−� �(x,0) dx ≥ 0 and minx �0 < 0, then Theorem2.1 and Corollary

2.2 also apply.

In the next section, we present some explicit solutions whose singularities go beyond
Theorem2.1 for � = 1.

2.2. Construction of exact solutions for� = 1

2.2.1. Periodic case
Following [6] (see[1]) closely, we can transform (1.4) into an equation for complex-

valued functions. Let us recall the formulas for the Hilbert transform (see e.g.[20]):

H(Hf ) = −f, (2.1)

H(fHg + gHf ) = (Hf )(Hg) − fg, (2.2)

(Hf )x = H(fx). (2.3)

Then, applyingH on both sides of the first equation of (1.4), we have

(H�)t + 1
2((H�)2 − (�)2)x = 0. (2.4)
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Thus, if we introduce the complex valued function

z(x, t) = H�(x, t) + i�(x, t), z0(x) = H�0(x) + i�0(x), (2.5)

then (1.4) are the imaginary and the real parts of the equation,

zt + zzx = 0, (2.6)

z(x,0) = z0(x).

This is the inviscid Burgers equation in complex variable form, which is actually a
condensed form of a system of two equations in contrast to the real Burgers equation,
which is a scalar equation. In this section, we are concerned with the solutions of the
following complex inviscid Burgers equation:

zt + zzx = 0, (2.7)

where

z(x, t) = u(x, t) + i�(x, t)

and u(x, t) ≡ H�(x, t). Expanding Eq. (2.7) in its real and imaginary parts one gets
the system

ut + uux − ��x = 0, (2.8)

�t + u�x + �ux = 0. (2.9)

In order to solve it let us introduce the hodograph transformation. This transformation
is commonly used in the analysis of problems in gas dynamics and was also intro-
duced, in a completely different context[14,15], in order to construct explicit solutions
developing singularities. It will be used here for the same purpose. In order to perform
the hodograph transformation we considerx(u, �) and t (u, �) instead ofu(x, t) and
�(x, t). Having in mind the relations

ux = J t�,

�x = −J tu,

ut = −Jx�,

�t = Jxu,

whereJ = (xut� − x�tu)
−1 we deduce by direct substitution that the following linear

system is equivalent to (2.8), (2.9):

−x� + ut� + �tu = 0, (2.10)

xu − utu + �t� = 0. (2.11)
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as far asJ−1 �= 0. System (2.10), (2.11) can be written more compactly in the form:

−(x − tu)� + (t�)u = 0,

(x − tu)u + (t�)� = 0,

which leads to the following Cauchy–Riemann system for�(u, �) ≡ −(x(u, �) −
t (u, �)u) and �(u, �) ≡ −t (u, �)�:

�u = ��,

�� = −�u.

Hence,f (z) = �(u, �) + i�(u, �) where z = u + i� is an analytic function. From the
initial data for (2.7) one getsu(x,0)+i�(x,0) which represents a curve in the complex
plane parameterized byx. On the other hand, att = 0 one has�(u, �) = x(u, �) and
�(u, �) = 0 defining the values of� and� along. Therefore, to solve the initial value
problem for (2.7) is equivalent to extend analytically a complex variable function with
values given along a certain curve. Let us consider the example

f (z) = ln z.

The functionf (z) is analytic in the whole complex plane except for a branch that we
locate at(u,0) with u > 0. Writing z = rei� we have

f (z) = ln r + i� = ln
√
u2 + �2 + i arctan

�
u
. (2.12)

The real part off (z) is zero along the circumference of radius 1: = {(u, �) :
u2 + �2 = 1}. Parameterizing in the form (u, �) = (cos�, sin�) one gets� =
Im f (z) = �. Since along one has�(u, �) = −x(u, �) it follows that � = −x which
yields the following initial data forz:

z(x,0) = cosx − i sinx.

This initial data is compatible with (2.4), sinceH(sinx) = − cosx. From (2.12) and
the definition of� and � it follows

−t� = ln
√
u2 + �2, (2.13)

−(x − tu) = arctan
�
u

(2.14)

which define implicitly the real and imaginary parts(u(x, t), �(x, t)) of the solution to
(2.7) at any given(x, t). From (2.14) one can get

� = −u tan(x − tu)
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which inserted in (2.13) yields

tu tan(x − tu) = ln

∣∣∣∣ u

cos(x − tu)

∣∣∣∣ . (2.15)

Expression (2.15) definesu(x, t) implicitly. Notice thatu(x,0) = cosx satisfies (2.15).
Our aim now is to show thatu(x, t) develops shock-type singularities at finite time.
Let us fix our attention to points in a neighborhood ofx = �

2 ; that is, in points of the
form x = �

2 + �x with
∣∣�x∣∣ � 1. From (2.15) we get

−tu
cos(�x − tu)

sin(�x − tu)
= ln

∣∣∣∣ u

sin(�x − tu)

∣∣∣∣ . (2.16)

which allows the construction of local solutionsu(x, t) of (2.15) near x = �
2 in the

form

u
(�
2

+ �x, t
)

� A(t)�x.

Inserting this into (2.16) and letting�x → 0 it follows:

−tA(t)
1

1− tA(t)
= ln

∣∣∣∣ A(t)

1− tA(t)

∣∣∣∣ . (2.17)

It is easy to show thatA(t), defined implicitly by (2.17) in such a way thatA(0) = −1
(notice thatux(�

2 ,0) = − sin �
2 = −1), decreases fort > 0 and blows-up to−∞ at

t = e−1 � 0.36788. Hence, our conclusion is thatux(�
2 , t) blows-up at finite time.

This phenomena represents the formation of a shock atx = �
2 . We also claim that

�x(�
2 , t) blows up at the same timet = e−1. Indeed,�x(x, t) = −ux tan(x − tu) −

u sec2(x − tu)(1− tux), and atx = �
2 we have

�x
(�
2
, t

)
= −ux cot(tu) − u csc2(tu)(1− tux)

= −ux

[
1
2 sin(2tu) − tu

sin2(tu)

]
− u

sin2(tu)

� 2

3
tuux − 1

t2u

for |t − e−1| � 1. Sinceux(�
2 , t) ↘ −∞ and u(�

2 , t) → 0 as t → e−1, we conclude
that �x(�

2 , t) blows up att = e−1.
In Figs. 1 and 2, we represent the profiles foru and � at five different times

t = 0,0.09,0.18,0.27, e−1. Observe the appearance of a discontinuity in the derivative
with respect tox both for u and � at x = (2n + 1)�

2 , n ∈ Z.



212 D. Chae et al. /Advances in Mathematics 194 (2005) 203–223

–2.5

–2

–1.5

–1

–0.5

0

0.5

1

–4 –2 2 4

Fig. 1. � at t = 0, 0.09, 0.18, 0.27, e−1.

3. The critical viscous equation

If we add the first-order viscous term(−�)
1
2� to the 1D inviscid model, we get the

following equation:

�t + ((H�)�)x = −�H�x.

Again, introducingz = u + i� with u = H� one gets the following viscous complex
Burger’s equation:

zt + zzx = −i�zx.

The use of the hodograph transformation allows us to obtain a system analogous to
(2.10), (2.11):

−x� + ut� + �tu = −�tu, (3.1)

xu − utu + �t� = −�t�, (3.2)

which can be written as the Cauchy–Riemann system

�u = ��,

�� = −�u.



D. Chae et al. /Advances in Mathematics 194 (2005) 203–223 213
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1
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Fig. 2. u at t = 0, 0.09, 0.18, 0.27, e−1.

for �(u, �) ≡ −(x(u, �) − t (u, �)u) and �(u, �) ≡ −t (u, �)(� + �). With the same
example studied in the previous section,f (z) = ln z, one would get the following
implicit equations definingu(x, t) and �(x, t):

−t (� + �) = ln
√
u2 + �2, (3.3)

−(x − tu) = arctan
�
u
. (3.4)

The initial data are alsou(x,0) = cosx, �(x,0) = − sinx. Fixing our attention to a
neighborhood ofx = �

2 , writing u(�
2 + �x, t) � A(t)�x and letting�x → 0 one gets,

analogously to (2.17), the following equation forA(t):

−�t − tA(t)
1

1− tA(t)
= ln

∣∣∣∣ A(t)

1− tA(t)

∣∣∣∣ . (3.5)

If we hadA(t) → −∞ at t → T −, then Eq. (3.5) would converge to the equation

−�T + 1= ln
1

T
,
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Fig. 3. � at t = 0, 0.11, 0.22, 0.33, 0.45 for� = 0.5.

which can be written in the form

g(T ) ≡ ln T − �T + 1= 0.

The functiong(T ) has a unique maximum atT = �−1 andg(�−1) = ln(�−1), provided
that � is positive, so thatg(T ) has roots if and only if� ≤ 1. Hence, the solutions
will form finite time singularities if� ≤ 1 and will exist globally if� > 1.
In Figs. 3 and4, we represent�(x, t) andu(x, t) at t = 0,0.11,0.22,0.33 and 0.45

when � = 0.5. As we can see, theL∞ norm of u(x, t) tends to decrease but the
solution forms a finite time singularity (later than in the case� = 0). In Figs. 5 and
6, we represent�(x, t) and u(x, t) at t = 0,0.11,0.22,0.33 and 0.45 when� = 1.5.
The solution exists globally and theL∞ norms of�(x, t) and u(x, t) decay.

4. Global existence of solutions in the periodic case for small data

In this section we will consider the equation with critical viscosity and� > 0

�t + ((H�)�)x = −�H�x. (4.6)

Our aim is to prove the following:
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Fig. 4. u at t = 0, 0.11, 0.22, 0.33, 0.45 for� = 0.5.

Theorem 4.1. If the initial data �0 verifies
∫ �
−� �0(x) dx = 0, ‖�0‖L∞ < � and

‖
 3
2�0‖L2 < ∞, then there is a classical solution of Eq.(4.6) that satisfies� ∈

C1([0,∞)); W
3
2 ([−�,�]) and ‖�(−, t)‖L∞ < � for every t ≥ 0.

Proof. This will be based in the following sequence of facts:

Fact 1. If � ∈ C1([−�,�] × [0, T ]) is a solution of(4.6) where the initial data�0
satisfies the hypothesis given in the theorem above, then we have:

(i) M(t) = maxx �(x, t), is a positive monotonically decreasing Lipschitz function.
(ii) m(t) = minx �(x, t), is a negative monotonically increasing Lipschitz function.

Proof. The proof follows the scheme introduced in Section 2. Letx(t), x(t) be chosen
in such a way that

M(t) = �(x(t), t),

m(t) = �(x(t), t)

and assume thatt is a point of differentiability of both Lipschitz functionsM(·), m(·).
Then we have

M ′(t) ≤ −(M(t) + �)
�(x(t), t) ≤ 0,

m′(t) ≥ −(m(t) + �)
�(x(t), t) ≥ 0. �
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Fig. 5. � at t = 0, 0.11, 0.22, 0.33, 0.45 for� = 1.5.

Fact 2. ‖�(−, t)‖L2 is monotonically decreasing.

Proof. From Eq. (4.6) we have

1

2

d

dt
‖�‖2

L2 =
∫

��t =
∫

�x�H� − �
∫

�
�

= −1

2

∫
�2
� − �

∫
�
�.

Since∫
�2(x)
�(x) dx =

∫
�2(x)

∫
�(x) − �(y)

[sin x−y
2 ]2 dy dx = −

∫
�2(y)

∫
�(x) − �(y)

[sin x−y
2 ]2 dx dy

=
∫ ∫

�(x) + �(y)
2

[�(x) − �(y)]2
[sin x−y

2 ]2 dy dx

and ∫
�(x)
�(x) dx =

∫ ∫ [�(x) − �(y)]2
[sin x−y

2 ]2 dy dx,
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Fig. 6. u at t = 0, 0.11, 0.22, 0.33, 0.45 for� = 1.5.

we obtain

1

2

d

dt
‖�‖2

L2 = −1

2

∫ ∫ [
�(x) + �(y)

2
+ 2�

] [�(x) − �(y)]2
[sin x−y

2 ]2 dy dx

≤ −�
2
‖
 1

2�‖2
L2 ≤ −�

2
‖�‖2

L2, (4.7)

which implies the result. Furthermore we get‖�‖2
L2 ≤ ‖�0‖2L2e

−�t . �

Fact 3. ∫ T

0
‖
 1

2�‖2
L2 dt ≤ 1

�
‖�0‖2L2.

We obtain integrating inequality (4.7).
Next, let us consider

1

2

d

dt
‖
 1

2�‖2
L2 =

∫



1
2�


1
2�t = −

∫

�(�H�)x − �

∫
|
�|2 dx
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= −
∫


��xH� −
∫
(
�)2� − �‖
�‖2

L2

=
∫

H(
��x)� −
∫
(
�)2� − �‖
�‖2

L2

= 1

2

∫
�[(H�x)2 − (�x)2] −

∫
(
�)2� − �‖
�‖2

L2

= −1

2

∫
�[(H�x)2 + (�x)2] − �‖
�‖2

L2

≤ (‖�‖L∞ − �)‖
�‖2
L2.

Since‖�0‖L∞ < �, we have

1

2

d

dt
‖
 1

2�‖2
L2 ≤ −c(�)‖
�‖2

L2,

wherec(�) = (� − ‖�‖L∞) > 0.
An integration of our last inequality yields

∫ T

0
‖
�‖2

L2 dt ≤ C(�)‖
 1
2�0‖2L2,

whereC(�) = 1
2c(�) .

Fact 4. The evolution of the norm‖
 3
2�‖L2 exists.

This follows from the following estimates:

1

2

d

dt
‖
 3

2�‖2
L2 = −

∫



3
2�


3
2 (�H�)x − �‖��‖2

L2

=
∫



3
2�


3
2
H(�H�) − �‖��‖2

L2

=
∫

���[1
2
(H�)2 − 1

2
�2] − �‖��‖2

L2

=
∫

��(�(H�)H� + |∇H�|2 − ��� − |∇�|2) − �‖��‖2
L2.

Let us observe that

|
∫

[���(H�)H� − ���]| = |
∫

[�1
2
((�H�)2 − (��)2) + �(��)2]|

≤ ‖�‖L∞‖��‖2
L2
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and since‖
�‖2
L4 ≤ C‖
�‖L2‖
 3

2�‖L2 we have

|
∫

��[|∇H�|2 − |∇�|2]| ≤ C‖��‖L2‖
�‖2
L4

≤ C‖��‖L2‖
�‖L2‖
 3
2�‖L2

≤ �‖��‖2
L2 + C

�
‖
�‖2

L2‖
 3
2�‖2

L2,

whereC is a constant and we choose� = �−‖�0‖L∞
2 . By Fact 1 follows that

1

2

d

dt
‖
 3

2�‖2
L2 ≤ C

�
‖
�‖2

L2‖
 3
2�‖2

L2 + 1

2
(‖�0‖L∞ − �)‖��‖2

L2.

Therefore

‖
 3
2�‖2

L2(t) ≤ ‖
 3
2�0‖2L2e

C
�

∫ t
0 ‖
�‖2

L2
(s) ds ≤ ‖
 3

2�0‖2L2e
C(�)‖
 1

2 �0‖2
L2

by Fact3.

Fact 5. Facts 1–4 continue to hold for the equation

�t + (�H�)x = −�
� + ��xx, (4.8)

�(x,0) = �0,

uniformly on � > 0, under the hypothesis that‖
3�0‖L2 < ∞.
(a) Given � > 0 and initial data �0 ∈ W3(−�,�) such that:∫ �

−�
�0(x) dx = 0 and ‖�0‖L∞ < �,

there exists

T = T (�, ‖�0‖L∞ , ‖(�0)xxx‖L2) > 0,

with ‖(�)xxx‖L2 < ∞ for 0 ≤ t ≤ T .

The part (a) follows from the following estimates:

1

2

d

dt
‖�xxx‖2L2 = −

∫
�xxx(�H�)xxxx − �‖
 7

2�‖2
L2 − �‖
4�‖2

L2

=
∫

�xxxx(�H�)xxx − �‖
 7
2�‖2

L2 − �‖
4�‖2
L2.
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Let us observe that

|
∫

�xxxx(�H�)xxx | ≤ ‖�xxxx‖L2‖(�H�)xxx‖L2

≤ ‖�xxxx‖L2[‖�xxx‖L2(‖H�‖L∞ + ‖�‖L∞)

+(‖�xx‖L∞ + ‖H�xx‖L∞)‖�x‖L2]
≤ C‖
4�‖L2‖�xxx‖L2‖
�‖L2

≤ �
4
‖
4�‖2

L2 + C

�
‖�xxx‖2L2‖
�‖2

L2.

That is

1

2

d

dt
‖�xxx‖2L2 ≤ C

�
‖�xxx‖2L2‖
�‖2

L2 (4.9)

and since‖
�‖L2 ≤ C‖
3�‖L2, we obtain local existence for‖�xxx‖L2.
Therefore� ∈ C2 for 0 ≤ t ≤ T and Facts1–3 follows for � > 0.
In particular from (4.9) and using the following inequality

1

2

d

dt
‖�‖2

L2 = −1

2

∫
�2
� − �

∫
�
� − �‖
�‖2

L2

≤ −�‖
�‖2
L2.

we get

‖�xxx‖2L2 ≤ ‖(�0)xxx‖2L2e
C�

∫ T
0 ‖
�‖2

L2
ds ≤ ‖(�0)xxx‖2L2e

C�‖�0‖2
L2

whereC� = C�(�, �0) is a constant, allowing us to conclude that‖�xxx‖L2 < C for all
time and that�xx is a continuous function, which gives us the maximum principle for
(4.8).

Proof of Theorem 4.1 (Conclusion). Therefore, for fixed� > 0, one obtains a solution
�� ∈ C2([−�,�] × [0,∞)) of the problem

��
t + (��H��)x = −�
�� + ���

xx,

��(x,0) = ��
0,

where��
0 is the convolution of�0 with a smooth approximation of the identity, so that,

uniformly on � > 0, we have

‖��(−, t)‖L∞ < � for every t ≥ 0,
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‖��(−, t)‖2
L2 ≤ ‖�0‖2L2e

−�t ,∫ ∞

0
‖
��‖2

L2 dt ≤ C(�)‖
 1
2�0‖2L2,

‖
 3
2��‖L2 ≤ C(�, �0)‖
 3

2�0‖L2.

We are now in position to use compacity to select a converging subsequence�� to
obtain a solution� of Eq. (4.6) satisfying the requirements of Theorem4.1. �

Appendix

Adding the second-order viscosity term	�xx to the 1D inviscid QG model equation,
we obtain

�t + (H(�)�)x = 	�xx, (A.1)

�(x,0) = �0(x).

In [1,18] they show the existence of singularities with a specific initial data for Eq.
(A.1).
Introducing the complex valued function,z(x, t) = H�(x, t)+ i�(x, t) as previously,

we find that (A.1) is the imaginary part of the complex viscous Burgers equation,

zt + zzx = 	zxx, (A.2)

z(x,0) = z0(x).

One can solve (A.2) explicitly by the (complex) Hopf–Cole transform as follows. We
consider the change of variablez �→ w, defined by

z(x, t) = −2	
wx(x, t)

w(x, t)
.

By elementary computations we find thatw(x, t) satisfies the complex heat equation,

wt = 	wxx,

w(x,0) = exp

(
1

2	

∫ x

−∞
z0(s) ds

)
.

We first consider the case of the whole domain ofR. Using the well-known heat kernel
representation of the solutionw(x, t), we obtain the explicit solution of the complex
Burgers equation as

z(x, t) =
∫ ∞
−∞

x−y
t

exp
[
−|x−y|2

2	t − 1
2	

∫ y

−∞ z0(s) ds
]
dy∫ ∞

−∞ exp
[
−|x−y|2

2	t − 1
2	

∫ y

−∞ z0(s) ds
]
dy

. (A.3)
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Substitutingz0(x) = (H�0)(x) + i�0(x), and taking the imaginary part of (A.3), we
find explicitly the solution of (A.1) given by

�(x, t) = −B̃(x, t)
∫ ∞
−∞

x−y
t
A(x, y, t) dy + Ã(x, t)

∫ ∞
−∞

x−y
t
B(x, y, t) dy

Ã2(x, t) + B̃2(x, t)
, (A.4)

where we denoted

A(x, y, t) = exp

[
−|x − y|2

2	t
− 1

2	

∫ y

−∞
H�0(s) ds

]
cos

(
1

2	

∫ y

−∞
�0(s) ds

)
,

B(x, y, t) = exp

[
−|x − y|2

2	t
− 1

2	

∫ y

−∞
H�0(s) ds

]
sin

(
1

2	

∫ y

−∞
�0(s) ds

)

and

Ã(x, t) =
∫ ∞

−∞
A(x, y, t) dy, B̃(x, t) =

∫ ∞

−∞
B(x, y, t) dy.

Next, in the periodic case, we can solve (A.2) explicitly, using the Fourier series
combined with the Hopf–Cole transform. We first solve the complex heat equation by
the standard Fourier series method as

w(x, t) =
∑
k∈Z

ŵ0(k)e
−	k2t+ikx,

where

ŵ0(k) = 1

2�

∫ �

−�
w0(x)e

−ikx dx = 1

2�

∫ �

−�
exp

[
1

2	

∫ x

0
z0(y) dy − ikx

]
dx

= 1

2�

∫ �

−�
exp

[
1

2	

∫ x

0
(H�0)(y) dy + i

(
1

2	

∫ x

0
�0(y) dy − kx

)]
dx.

Hence,

�(x, t) = −2	 Im
{wx

w

}
= −2	Re

{∑
k∈Z kŵ0(k)e

−	k2t+ikx∑
k∈Z ŵ0(k)e−	k2t+ikx

}

with ŵ0(k) given above.
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