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Abstract

In this paper we study 1D equations with nonlocal flux. These models have resemblance of
the 2D quasi-geostrophic equation. We show the existence of singularities in finite time and
construct explicit solutions to the equations where the singularities formed are shocks. For the
critical viscosity case we show formation of singularities and global existence of solutions for
small initial data.
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1. The model equations

The 2D quasi-geostrophic equation (QG), which models the dynamics of the mixture
of cold and hot air and the fronts between them, is given by

0, + (u- V)0 =0, (1.1)
w=viy, 0=—(-Miy,
0(x. 0) = Oo(x).

where V+ = (=0, 01). Here, 0(x, t) represents the temperature of the air. Besides its
direct physical significancfl6,21] the quasi-geostrophic equation has very interesting
features of resemblance to the 3D Euler equation, being also the finite time blow-up for
(QG) an outstanding open problem. With respect to that question there are pioneering
studies due to Constantin, et &F]. In particular they obtained a finite time blow-up
criterion, which says that the local smooth solution for initial dégae H*(R?), k > 3,

blows up atT if and only if

T
/ IVE0(t) | o dt = oc.
0

There are many studies on the equations following that w@rk,12,13,19,22,28]
Motivated mainly by Constantin et 6], we are concerned here on constructing and
studying a 1D model equation of QG. In order to derive that model equation we first
write QG in another equivalent form as follows: From the second equation of QG we
have the representation

U= —Vt(—A)"20 = —RrY0, (1.2)

where we have used the notatioR:0 = (—R20, R160) with R;j, j =12, for the 2D
Riesz transform defined by (see €[86])

(xj —y)O(y, 1)

dy.
R2 lx —y[®

1
Rj(O)(x.1) = PV

Using representationl(2), we find that {.1) is transformed into
0, + div[(R+0)0] = 0, (1.3)

because digR16) = 0. To construct the 1D model, we consider the unknown function
O(x, 1) defined for(x, 1) € Rx Ry or T x R, and replace the Riesz transfor®(.)
in (1.3, by the Hilbert transformH (-) defined by

Ho(x) = %P.V./ @0 4

—oc0 X =Y
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or

4 f(x—y)d

1
H =—P.V.
Fe0 2n —z tan3

in the periodic case. And finally we replace divin (1.3) by ¢,. Then Eq. L.3) is
transformed into

0: + (H(0)0), =0, (1.4)
0(x,0) = Og(x).

This was already studied ii,18], which was proposed in a different physical situation.
In [18] it was considered the following equation:

0, + S(H(0)0)x + (L— )HO), =0 with0<s<1 (1.5)

and the existence of singularities for<0d < % 0= % andd = 1 was proved: Also,
in [18], the question of singularities ofL(®) for the other ranges of & 6 < 1 was
left open. In Theoren?.1 below, we proved existence of singularities for the full range
of 0 < § < 1, thus solving the problem. The proof of existence of singularities in the
caseo = 0 is solved in[11] using a different technique.

In the case of 2D viscous Quasi-geostrophic equation Constantin arj@]Vehowed
that for o > 1 the system

(0 +u-V)0=—r(—4)20, (1.6)
u=Vhy, 0=—(-Miy

does not develop singularities in finite time. For the critical viscosity 1 it is an
open problem, considered as a model problem of the 3D Navier—Stokes equations (see
[3,4,5,9,10,17,22,23,24,25lor more details).

In Sections 3 and 4 we study the following 1D dimensional model of the critical
viscous QG:

0; + (0H(0))x = —xHO,,
Oo(x) = 0(x,0),

where the critical viscosity term;c(—A)%G in (1.6) is replaced by-«(H0),. We show
that the solutions to this equation may also develop singularities with the same initial
data as in the inviscid case for ary< ||0p|lL~. When the viscosityc > ||0p||L~ then
the solution remains smooth. In Section 4, we prove global existence of solutions for

1 Notice that after the changé — —0, Eq. (1.5 can be formulated as it originally appears [8].
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the periodic case with small initial data. If the second order viscosity t@tm added

Ht + (QH(H)))C = ,uexx,
Oo(x) = 0(x, 0),

then explicit solutions can be constructed for all positivey applying the Hopf—Cole
transform. See the appendix.

2. The formation of finite time singularities
2.1. Blow-up in finite time: periodic case

We shall consider periodic solutions of Eq. (1.5) with>- 0, wheref(x + 27x, 1) =
0(x, t). Our goal is to show that, for very general smooth initial dé4athere is no
Cl([—=, n] x [0, T)) solution of (1.5) withd > O for all time T.

First let us observe that

() Hf(x) = f ACE

tan3 Ctanl

IORITO

@) Af) = HE@ =3PV [ =Caes

(iii) If the real valued functionf € C! has a maximum (respectively a minimum)
at xg then A f(xp) > 0 (respect.A f(xp) < 0).

Theorem 2.1. Given a periodic non-constant initial datég € C1([—x, n]) such that
J7 Oo(x)dx = 0, there is noC*([—, 7] x [0, 00)) solution to(1.5) with & > 0.

Proof. Suppose the existence of such a solutftgn, ). We have

d T T Y
7 O(x,t)dx = -6 (OHO) dx — (1 —9) 0. HOdx

dt J_n -7 -7

T
(1-9) 0HO,dx > 0.

-7

Therefore

M(t) = max0(x,r) >0,
X

m(t) = nlin 0(x, 1)
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and, int = 0, we have the strict inequalities? (0) > 0, m(0) < 0. Both M (), m(¢) are
continuous Lipschitz functions and Y. Rademacher’s theorem, they are differentiable
at almost every point.

Under the hypothesis of differentiability we may choose), x(¢) such that
M(1) = 0(x(), 1),
m(t) = 0(x(1), 1)
for everyr > 0. Let 1o be a point of differentiability ofM (). By compacity we may
choose a sequence of positive numbgfs— 0 so thatx(f + &;) converges taxo.

Then by continuity we will obtain thad/ (r9) = 0(xo, o).
Next, let us consider

M(to+ hj) — M(to) O(x(to+hj), 1o+ hj) — O(xo, 10)

hj hj
_ O0(x(to+hj), 10+ hj) — 0(x(to+ hj), to)
- "
+9(X(t0 + hj), to) — O(xo, 10)

hj

O;(x(to+hj), to+hj) h;
hj

IA

= —(1—0)0,(x(to+hj), to+hj)HO(x(to + hj), to+ h;)
—80(x(to + h ), to +hj)A0(x(to + hj), to + h )

for certaink;, 0<h; <h;.
Taking limit when’; — O we get the inequality

M'(10) < —00(x0, t0) A0(x0, 19) <O

and since this happens at almost every pgintve may conclude tha¥(¢) is a positive
decreasing function. Furthermore, if we compute the derivative taking a sequence of
negative 1; we will reverse the sign of the inequality. Therefore at each point of
differentiability of the functionM we will get the identity

M'(tg) = —60(xo, 10) A0(x0, t0).

By a completely analogous argument we obtain that the negative funationis also
decreasing and satisfies:

' (t) = — (t)f” 0G, 1) — H(y,t) dy <0
szx
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at almost everyt, wherex is a point such thain(r) = 0(x, t). Furthermore, since
ST Oo(x)dx = 0 and M(1) < M(0), m(t) < m(0) <O the set

.
o000 = 720

has strictly positive measure greater than a universal constant. In particular, there exists
a universal positive constaidt so that:

o [T O, t)—0x,1)

o> 3 dy = Cl0(x, D)l
2n J smz%

But then one obtains the inequality
ml'(t) = Clm(®)|?
which implies the blow-up ofn(z) in finite time contradicting our hypothesis about
the regularity of0(x, 7).
Since the Hilbert transforni maps the space® = {f € L>®, supL&=SWl _ )

- . . [x—y|*
0 < a < 1, into itself, we have the following:

Corollary 2.2. There is no non-zero solution ¢f.5) with 6 > 0 so thatff7I 0(x, 0)dx
=0and0(-, 1) e 1% for any o > 0 and for every t0 <t < T'(0p).

Remark 2.3. If ffn 0(x,0)dx > 0 and minp g < O, then Theoren?.1 and Corollary
2.2 also apply.

In the next section, we present some explicit solutions whose singularities go beyond
Theorem2.1 for 6 = 1.

2.2. Construction of exact solutions fér= 1
2.2.1. Periodic case

Following [6] (see[1]) closely, we can transfornil(4) into an equation for complex-
valued functions. Let us recall the formulas for the Hilbert transform (see[203):

H(Hf) = —f, (2.1)
H(fHg+gHf) = (Hf)(Hg) — fg, (2.2)

Then, applyingH on both sides of the first equation df.4), we have

(HO); + 2((HO? — (0)>, = 0. (2.4)
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Thus, if we introduce the complex valued function

z(x,t) = HO(x, 1) +i0(x, 1), zo(x) = HOp(x) +iblp(x), (2.5)

then (L.4) are the imaginary and the real parts of the equation,

Zt +2z, =0, (2.6)

z(x, 0) = zo(x).
This is the inviscid Burgers equation in complex variable form, which is actually a
condensed form of a system of two equations in contrast to the real Burgers equation,

which is a scalar equation. In this section, we are concerned with the solutions of the
following complex inviscid Burgers equation:

zt+22, =0, 2.7)

where

z2(x, 1) = u(x,t) +i0(x, 1)

and u(x,t) = HO(x, t). Expanding Eq.Z.7) in its real and imaginary parts one gets
the system

u, +uu, — 00, =0, (2.8)
0; +ub, + 0u, = 0. (2.9)

In order to solve it let us introduce the hodograph transformation. This transformation
is commonly used in the analysis of problems in gas dynamics and was also intro-
duced, in a completely different contepdi4,15] in order to construct explicit solutions
developing singularities. It will be used here for the same purpose. In order to perform
the hodograph transformation we considgr, 0) and ¢ (u, 0) instead ofu(x,r) and
0(x,t). Having in mind the relations

uy = Jtp,
0, = —Jt,,
ur = —Jxg,
0, = Jx,,

where J = (x,t9 — xgt,)~* we deduce by direct substitution that the following linear
system is equivalent ta2(8), (2.9):

—xg +utg+ 01, = 0, (2.10)
X, — uty + 0ty = 0. (2.112)
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as far as/~1 # 0. System 2.10, (2.11) can be written more compactly in the form:
—(x =t + 0, = 0,
(x —tu)y, + (tO)O =0,

which leads to the following Cauchy—Riemann system f#an, 0) = —(x(u, 0) —
t(u, Ou) and &(u, 0) = —t(u, 6)0:

514 = Ny,

59 = _nu'

Hence, f(z) = &(u, 0) + in(u, 0) wherez = u + i6 is an analytic function. From the
initial data for @.7) one gets:(x, 0)+i0(x, 0) which represents a curyein the complex
plane parameterized by On the other hand, at= 0 one hasj(u, 0) = x(u, 0) and
E(u, 0) = 0 defining the values of and ¢ alongy. Therefore, to solve the initial value
problem for @.7) is equivalent to extend analytically a complex variable function with
values given along a certain curye Let us consider the example

f@=Inz.

The function f(z) is analytic in the whole complex plane except for a branch that we
locate at(u, 0) with u > 0. Writing z = re'? we have

f(z):Inr+iq>:Im/u2+62+iarctang. (2.12)
u

The real part of f(z) is zero along the circumference of radius 1:= {(u, 0) :
u? + 0% = 1}. Parameterizingy in the form (u, 0) = (cose, sing) one getsny =
Im f(z) = ¢. Since alongy one hasy(u, 0) = —x(u, 0) it follows that ¢ = —x which
yields the following initial data forz:

z(x,0) = cosx — i Sinx.

This initial data is compatible with2(4), since H(sinx) = —cosx. From .12 and
the definition ofy and & it follows
—10 = In\/u? + 62, (2.13)
0
—(x — tu) = arctan— (2.14)
u

which define implicitly the real and imaginary paits(x, 7), 0(x, t)) of the solution to
(2.7) at any given(x, t). From @.14 one can get

0 = —u tan(x — ru)
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which inserted in 2.13 yields

u

(2.15)

Expression 2.15 definesu(x, ¢) implicitly. Notice thatu(x, 0) = cosx satisfies 2.15.
Our aim now is to show that(x, ¢) develops shock-type singularities at finite time.
Let us fix our attention to points in a neighborhoodxof 7; that is, in points of the
form x = 5 + 6x with |éx| <« 1. From @.15 we get

coq0x — tu)
U————" =
sin(dx — tu)

v
sin(éx — tu) |’

(2.16)

which allows the construction of local solutiomgx, ) of (2.15 nearx = % in the
form

Y
u (5 + ox, t) ~ A(t)ox.
Inserting this into 2.16 and lettingdx — O it follows:

—t (t) n ‘ A@)

1—tA@) |

— tA(t) (2.17)

It is easy to show that (r), defined implicitly by €.17) in such a way thatA(0) = —
(notice thatu,(3,0) = —sinj = —1), decreases for > 0 and blows-up to—oc at
t = e~1 ~ 0.36788. Hence, our conclusion is tha;(%,t) blows-up at finite time.
This phenomena represents the formation of a shock at 5. We also claim that
0x(5.1) blows up at the same time = e 1. Indeed, 0, (x, 1) = —u,tan(x — tu) —
use(x —tu)(1—tuy), and atx = % we have

0, (g z) = —u, cOt(ru) — u csC(tu)(1 — tuy)
%Sin(Ztu) —tu u

B _ux|: sin?(tu) i|_ Sin?(tu)
2 1

~ —fUUy

3 t2u

for |t —e 1 « 1. Sinceu,(5,1) \y —oo andu(3,t) — 0 ast — e~1, we conclude
that 0, (%, 1) blows up atr = e~ ™.

In Figs. 1 and 2, we represent the profiles far and 0 at five different times
t =0,0.09,0.18 0.27, ¢ 1. Observe the appearance of a discontinuity in the derivative
with respect tox both foruandf atx = (2n +1)7, n € Z.
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14

-0.54

-1

-1.5

2

—2.5

Fig. 1. 0 atr =0, 009, 018, 027, ¢~ 1.

3. The critical viscous equation

If we add the first-order viscous ter(’prA)%G to the 1D inviscid model, we get the
following equation:

0: + (HDO), = —xHO,.

Again, introducingz = u +i0 with u = H0O one gets the following viscous complex
Burger’s equation:

Zr +22x = —1KZx.

The use of the hodograph transformation allows us to obtain a system analogous to

(2.10, (2.11:
—xg + utg + 01, = —xty, (3.1)
Xy — uty + 0ty = —xty, 3.2)
which can be written as the Cauchy—Riemann system
Sy = Ngs
<o = —My-
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0.5+

Fig. 2. u at 7 =0, 009, 018, 027, ¢~ L.

for n(u,0) = —(x(u, 0) — t(u, Ou) and E(u, 0) = —t(u, 0)(0 + k). With the same
example studied in the previous sectiofi(z) = Inz, one would get the following
implicit equations defining:(x, r) and 0(x, t):

—1(k+0) = Iny/u? + 0%, (3.3)

—(x —tu) = arctang. (3.4)
u

The initial data are alsa(x, 0) = cosx, 0(x,0) = —sinx. Fixing our attention to a
neighborhood oft = 7, writing u(3 + ox, 1) =~ A(t)éx and lettingdx — O one gets,
analogously to 4.17), the following equation forA(z):

B ‘ A1)
—tAG)  |1—1A@®)

—Kt — tA(t
K 07

. (3.5)

If we had A(r) > —oc0 att — T, then Eq. 8.5 would converge to the equation

T+1 Inl
—K — —,
T
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14

0.5

—0.5 1

-1.51

Fig. 3. 0 atr =0, 0.11, 0.22, 0.33, 0.45 fox = 0.5.

which can be written in the form

g(T)=INT —kT +1=0.

The functiong(T) has a unique maximum &t = k1 andg(x~1) = In(x~1), provided
that x is positive, so thatg(7T) has roots if and only ific < 1. Hence, the solutions
will form finite time singularities ifx < 1 and will exist globally ifx > 1.

In Figs. 3 and 4, we represent(x, r) andu(x, ) atr = 0,0.11, 0.22,0.33 and 045
when k = 0.5. As we can see, thé&é® norm of u(x,t) tends to decrease but the
solution forms a finite time singularity (later than in the case- 0). In Figs.5 and
6, we representi(x,t) andu(x,r) att = 0,0.11, 0.22,0.33 and 045 whenk = 1.5.
The solution exists globally and the* norms of0(x, t) and u(x, ) decay.

4. Global existence of solutions in the periodic case for small data
In this section we will consider the equation with critical viscosity and 0
0, + (H0)0), = —kHO,. (4.6)

Our aim is to prove the following:



D. Chae et al./Advances in Mathematics 194 (2005) 203-223 215

-0.51

_1_
Fig. 4. u at + =0, 0.11, 0.22, 0.33, 0.45 fokx = 0.5.

Theorem 4.1. If the initial data 0y verifies ffn Oo(x)dx = 0, ||0g|lz~ < x and

||A%60||L2 < oo, then there is a classical solution of E@4.6) that satisfiesf e
Cc1([0, o0)); W%([—n, n]) and ||0(—, t)||L~ < k for everyt > 0.

Proof. This will be based in the following sequence of facts:

Fact 1. If 0 € CY([—=n, ] x [0, T]) is a solution of(4.6) where the initial datafg
satisfies the hypothesis given in the theorem abthen we have

(i) M) =max, 0(x, 1), is a positive monotonically decreasing Lipschitz function.
(i) m(@r) = min, 0(x, 1), is a negative monotonically increasing Lipschitz function.

Proof. The proof follows the scheme introduced in Section 2. L@), x(¢) be chosen
in such a way that

M(t) = 0(x (1), 1),
m(t) = 0(x(t), 1)

and assume thdtis a point of differentiability of both Lipschitz functionf(-), m(-).
Then we have

M () < —(M(@t) + ) A0(x(t), 1) <O,
m'(t) > —(m(t) + k) A0 (¢), t) > 0. O
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1_

0.5+

-4 -2 ] 2 4
-0.5

_1_

Fig. 5. 0 at r =0, 0.11, 0.22, 0.33, 0.45 fox = 1.5.

Fact 2. |0(—, 1)||;2 is monotonically decreasing.

Proof. From Eq. 4.6) we have

;jn 12, =f09t=f9xeﬂe-xfem9
1 2
—5/6 AG—K/@AH.

Since
/ 0?(x)A0(x) dx = f 02(x) f 0c) — €(y> /92( ) / 0(x) — G(y) dx dy
n=%12 [sin=5¥]
/'/' 9(x)+9(y) [0(x) x9(y)] dy dx
smTy]2
and

_ 2
/G(x)/lf)(x)dx =/ wdydx,
[sin*2]2
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—0.51

_1_

Fi

g. 6.uatr=0, 0.11, 0.22, 0.33, 0.45 fox = 1.5.

we obtain

1d O(x) + 0 0 0(y)1?
55”9”22 _ //[ (x) (y) ][ (x) = 0(y)] dy dx

[sin=52]2

IA

K 1 K
—5 142017, < =5 1017, 4.7)

which implies the result. Furthermore we ggft||?, < [|6o[|2,e ™. [
Fact 3.

r 1.2 1 2
5 1420]|72dt < ;Ileolle-

We obtain integrating inequality4(7).
Next, let us consider

1
E%HA%OHig = /A%OA%(L - —/AO(OHO)x —K/ A0 dx
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= —/AOOXH()—/(/10)20—;c||/10||i2

fH(A@@x)é)—/(Ae)ze—K||A9||§2
1
= 3 f OL(H 0,2 — (0.2 - / (40)20 — 1] A0]12,

1
- —5/9[(H0x)2+(9x)2]_K”Ae”iZ

IA

(110l — ©)[140]2.
Since ||0p||.~ < k, we have

1d

1
EEnAzeniz < —c(1)]1 402,

wherec(k) = (x — ||0]|L~) > 0.
An integration of our last inequality yields

T
/ 14612, dt < C)l| A3 60112,
0
where C (k) = le)

Fact 4. The evolution of the normA%HHLz exists

This follows from the following estimates:
1d 3. - 3, 3 2
St = —fAzeAsze)x N
= /A%QA%AH(QHQ) — k]l A0)12,
1 > 1., 2
_ /A@A[E(HH) — 5071 - kl1A0)2,
— /AQ(A(HH)HG +|VHO? = 0A0 — |V0]?) — k|| AO)2,.
Let us observe that

|/[A9A(H9)H0 — 0A0]] = |/[0%((AH6)2 — (AD)®) + 0(AD)|

A

1011 A0]12,
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and since||/1(9||i4 < C||/19||L2||/1%0||L2 we have

|fA6[|VH0|2—|ve|2]| < C||A0||21140]2,

3
CllAD] 211 401 211 A20]] 2

IA

IA

C 3
SIA012, + 3||A@||iz||/129||i2,

whereC is a constant and we choose= %. By Fact1 follows that

1d
2dt

3 c 3 1
1420172 < < 1401721 4201Z2 + (00l — ©)IAOIZ.
Therefore

< fo 14012

1
3 3 [ 5) d: 3 A2 0|2
142012,(1) < [14200]12 ¢ 120D < 422, 142 %0l

by Fact3.

Fact 5. Facts 1-4 continue to hold for the equation
0; + (0HO), = —KA0 + &0y, (4.8)
0(x,0) = 0o,

uniformly one > 0, under the hypothesis thagt130g]|,;2 < co.
(a) Givene > 0 and initial data 0y € W3(—=, n) such that

Y
Oo(x)dx =0 and |0g|Le~ < K,

—T

there exists
T =T(e, [|0olle>, [1(00)xxxll 2) > O,

with [|(0)xxxll;2 <oco for0<t <T.

The part (a) follows from the following estimates:

1d 7
éE”&cxx”iz = - / Qxxx(HHg)xxxx - K”A?H”%Z - 3”/149”%2

7
/ Orrx (OHO) sy — K AB012, — e 420]2,.
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Let us observe that

IA

| f GXX)CX (HHQ)XXX | || GXXX)C ||L2 || (GHG)XXX || L2

IA

10xcxx Il 20 Oxx Nl 2 (1 H O oo + 110]] Loo)
F(10xx Nl Lo 4 11 H O l25) 10x ]l 2]
CIIA%0) 1211 Orxx Nl 1211 A0 12

IA

IA

3 C
214%01Z2 + 110 122114013,
That is

d C
En@mniz < Ocxx 2514012, (4.9)

NI =

and since||A40];2 < C||A39||L2, we obtain local existence faf0,y x|l 2.
Therefored € €2 for 0 <t < T and Factsl-3 follows for ¢ > 0.
In particular from 4.9) and using the following inequality

1 d
||9||Lz

1
—5/02/19—;«/9/19—3||A0||§2

—&]| 40)2,.

IA

we get

2 2 Cifo 114012 ds 2 C HOOH
||0xxx||L2 = ”(GO)xxx”Lze oo 127 < ”(HO)XXXHLze )

where C, = C¢(¢, 0p) is a constant, allowing us to conclude thigk,, .| ;2 < C for all
time and that,, is a continuous function, which gives us the maximum principle for
(4.9.

Proof of Theorem 4.1 Conclusio). Therefore, for fixed > 0, one obtains a solution
0¢ € C3([—m, 7] x [0, 00)) of the problem

4+ (0°HO%), = —KkAO° + 0%,
0°(x, 0) = g,

where 0 is the convolution o)y with a smooth approximation of the identity, so that,
uniformly on ¢ > 0, we have

16°(—, t)|lL~ < x for everyt >0,
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3 2 2 -
10°(— D12, < 100]122¢ 7,

o0
1
/O 146912, dt < C(x)[42060]12,,

3 3
420°] 2 < C(x, 0o) [ 4200]| 2.

We are now in position to use compacity to select a converging subseqdénce
obtain a solutiord of Eq. 4.6) satisfying the requirements of Theorefri. [

Appendix

Adding the second-order viscosity temd,, to the 1D inviscid QG model equation,
we obtain

O + (H(0)0)x = puOyxy, (A.1)
0(x,0) = Og(x).

In [1,18] they show the existence of singularities with a specific initial data for Eq.
(A.1).
Introducing the complex valued function(x, t) = HO(x, t) +i0(x, t) as previously,
we find that A.1) is the imaginary part of the complex viscous Burgers equation,
Zt +22¢ = UZyx, (A2)

z(x, 0) = zo(x).

One can solveA.2) explicitly by the (complex) Hopf-Cole transform as follows. We
consider the change of variable— w, defined by
wy(x, 1)

2(x, 1) = —2u EE

By elementary computations we find thatx, 7) satisfies the complex heat equation,

Wy = UWyxx,

w(x,0) = exp(% /x zo(s) ds> .

We first consider the case of the whole domainRofUsing the well-known heat kernel
representation of the solutiom(x, t), we obtain the explicit solution of the complex
Burgers equation as

—y ‘ — 2 ’
1% 57 b gt — 2 [ ot ds ]y

1% exp[— lxﬁlz - ﬁ [7 o z0(s) ds] dy

Z(x, 1) = (A.3)
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Substitutingzo(x) = (H0Op)(x) + i0p(x), and taking the imaginary part oA@3), we
find explicitly the solution of A.1) given by

—B(x,t) [, 2 A, y, ) dy + A(x, 1) (50 2 B(x, y, 1) dy
A2(x, 1) + B2(x, 1)

H(X, f) = ’ (A4)

where we denoted

—v|2 1 1Y 1 1Y
A(x,y,t) = exp|:— X 2,uty| — Z/ HOy(s) ds:| COS(Z_,u / 0o(s) ds> ,
—0o0 —00

x—y® 1 Y (1Y
B(x,y,t) =exp|— — —/ HOp(s)ds | sin —/ Oo(s) ds
2ut 2u ) oo 2u J oo

and

A(x,t):/oo A(x, y, 1) dy, B(x,t):/oo B(x,y,1)dy.

—00 —00

Next, in the periodic case, we can solw.q) explicitly, using the Fourier series
combined with the Hopf—Cole transform. We first solve the complex heat equation by
the standard Fourier series method as

N — kPt i
we, 1) =) do(k)e HTHIY,
keZ

where

1 /" ; 1 (7 1
ﬁ)o(k) = E‘/ wo(x)e*lkx dx = E/ expl:ﬂ/(; Zo(y) dy — lk.x] dx
—T —T
Y

1 1/ (1 [
= — exp[—/ (HOo)(y)dy +i (—/ Oo(y)dy — kx)i| dx.
2n J_, 2u Jo 21 Jo

Hence,

ke (l)e—tkPi+ikx
O(x, 1) = —2uIm {&} = —2uRe 2 kez on( )e -
v Y rez Wolk)erkeiFiks

with wg(k) given above.
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