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In his Habilitationschrift (Uber die Darstellbarkeit einer Function durch
eine trigonometrische Reihe) B. Riemann states the following: “. . . the use-
fullness of Fourier series is not limited to research in Physics; they have
been succesfully applied also to a field in pure mathematics, namely Num-
ber Theory, and here it seems to be of importance precisely to consider
those functions whose representability by trigonometric series has not been
yet investigated. . . ”.

Therefore the subject of this talk has a long and interesting history and
even the title, or a rather similar one, has been already used by several
authors. For example by H. Montgomery: Ten lectures on the interface
between analytic number theory and harmonic analysis (CBMS 84, Amer.
Math. Soc., 1994).

Along this paper we shall write f À g to denote that f(x) ≥ C g(x) for
some positive constant C independent of other parameters relevant to the
problem. Similarly f ³ g will express the existence of universal positive
constants Cj such that: C1f(x) ≤ g(x) ≤ C2f(x) for every x.

I. Euler’s evaluation of ζ(2)

To begin let us consider the famous identity

ζ(2) =
∞∑

n=1

1

n2
=

π2

6

whose original proof given by L. Euler uses the infinite product

sin(πz)

πz
=

∏ (
1− z2

n2

)
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2 A. Córdoba

and it is a beautiful expression of the power of eighteen century calculus.
Euler obtained several proofs but, years after him, we can find another one
based on Bessel’s identity applied to the Fourier series

{x} =
1

π

∞∑
n=1

(−1)n+1 1

n
sin(2πnx)

where

{x} =

{
x−m, if |x−m| < 1

2
,

0, if x = m + 1
2
,

m ∈ Z

which is, certainly, the more transparent example to be covered under the
title of this talk.

In the following I shall present a much more recent proof [6].

Since ζ(2) =
∞∑

n=1

1

n2
=

∞∑
n=1

1

(2n)2
+

∞∑
n=0

1

(2n + 1)2
, we have:

ζ(2) =
4

3

∞∑
n=1

1

(2n + 1)2
=

4

3

∞∑
n=1

∫ 1

0

∫ 1

0

s2n t2nds dt

=
4

3

∫ 1

0

∫ 1

0

ds dt

1− s2t2
=

1

3

∫ 1

−1

∫ 1

−1

ds dt

1− s2t2
.

The change of variables

s = tanh(u) =
1
2

(
eu − e−u

)
1
2

(
eu + e−u

) =
sinh(u)

cosh(u)
,

t = tanh(v) =
1
2

(
ev − e−v

)
1
2

(
ev + e−v

) =
sinh(v)

cosh(v)

yields

ζ(2) =
1

3

∫ +∞

−∞

∫ +∞

−∞

du dv

cosh2(u) cosh2(v)− sinh2(u) sinh2(v)

=
1

3

∫ +∞

−∞

∫ +∞

−∞

ds dt

cosh(u + v) · cosh(u− v)
.

Then we introduce the new variables s = u− v, t = u + v, to obtain

ζ(2) =
1

6

( ∫ +∞

−∞

ds

cosh(s)

)(∫ +∞

−∞

dt

cosh(t)

)
=

1

6

(∫ +∞

−∞

ds

cosh(s)

)2

=
π2

6
.
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Clearly it is a proof which could have been given by the eighteen cen-
tury mathematicians, and whose main new ingredient is the change of vari-
ables s=tanh(u). As a matter of curiosity let me add that the functions
y = tanh x

ε
, ε → 0, appear in the Ginzburg-Landau phase transition model,

about which I was writing a paper when J. Cilleruelo asked me to contribute
with an expository article (about the irrationality of ζ(2) and ζ(3)) for his
Devil of Numbers section in the Gaceta Matemática, 6.

As far as I know it was Riemann, in the same thesis quoted before, who
gave one of the first application of Euler’s identity:

Riemann introduces the function

f(x) =
∞∑

n=1

{nx}
n2

and shows that f is discontinuous precisely at the rational points of the
form a

2b
, mcd(a, 2b) = 1, which constitute a dense subset of the real line.

Furthermore using the formula

∞∑
n=1

1

n2
=

π2

6

(
or

∞∑
n=0

1

(2n + 1)2
=

π2

8

)

he proves that at those points of discontinuity there is a jump

f−
(

a
2b

)− f+
(

a
2b

)
=

π2

8b2
.

Since |f(x)| ≤ π2

6
and the set of discontinuity is countable, it follows that f

is Riemann’s integrable and its indefinite integral

F (x) =

∫ x

0

f(t) dt

turns out to be a continuous but non-differentiable function at those rational
points

lim
h→0+

F
(

a
2b

+ h
)− F

(
a
2b

)

h
= f+

(
a
2b

+ h
)

lim
h→0−

F
(

a
2b

+ h
)− F

(
a
2b

)

h
= f−

(
a
2b

+ h
)
.
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II. Gaussian trigonometric series

In part iv of Riemann’s Habilitationschrift one find the function

f(x) =
∞∑

n=1

{nx}
n

.

We know that f is Lebesgue-integrable but not Riemann-integrable, because
its oscillation is unbounded on any interval. It can be represented by the
trigonometric series

f(x) =
1

π

∞∑
n=1

do(n)− de(n)

n
sin(πnx)

where do(n) (respectively de(n)) is the number of odd (respectively even)
divisors of n.

Riemann writes: “One can obtain similar examples with series of the
form

∞∑
n=0

Cn e2πin2x

when the positive quantities Cn are decreasing to 0 but for which
∑

Cn =∞”.

We find here a very interesting problem whose solution remains open.

Question: If f is a Lebesgue-integrable function whose Fourier spectrum is
contained in the set of square numbers, does it follow that ‖f‖p ¿ ‖f‖1, for
every p < 4?

An equivalent formulation is the following: let S be the Fourier multiplier
operator given by the characteristic function of the set of square numbers,
i.e., if f has the Fourier series

∑
f̂(k)e2πikx then the Fourier series of Sf is

given by
∞∑

n=0

f̂(n2) e2πin2x .

Question: Is S a bounded operator from L2[0, 1] to Lp[0, 1], 2 ≤ p < 4?

By duality it is equivalent to the boundedness of S from Lq[0, 1] to
L2[0, 1], for every q > 4/3. A positive answer would have very interesting
arithmetical consequences. It would imply, for example, that any arithmetic
progression of length N ,

{
a + br : 0 ≤ r ≤ N − 1

}
, may contains, at most,

O
(
N

1
2
+ε

)
square numbers for every ε > 0 (see reference [4] for more details

about this problem).
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If G(x) =
N−1∑
r=0

e2πi(a+br)x then we have ‖G‖p ∼ N
p−1

p , p > 1. On the

other hand if n2
1 < n2

2 < · · · < n2
k are the square numbers contained in the

arithmetic progression
{
a+ br

}
r=0,...,N−1

, and assuming a positive answer to

our question about S we obtain

k1/2 = ‖S(G)‖2 ¿ ‖S(G)‖p ¿ N
p−1

p

for every p > 4
3
, implying that k = O

(
N

1
2
+ε

)
where p = 1

3/4−ε
.

Proposition 1. Suppose that {an} is a monotonically decreasing sequence

of non-negative real numbers such that
∞∑

n=0

ane2πin2x is the Fourier series of

an integrable function f . Then f ∈ Lp[0, 1] for every p, 1 ≤ p < 4, and
satisfies the estimate

‖f‖p ¿ ‖f‖1 .

The proof of the above proposition will be based on the following fact.

Lemma 2. Let f be continuous in [0, 1] and such that:

i) ‖f‖∞ ≤ N , ‖f‖2 ≤ N
1
2

ii) If
∣∣x− p

q

∣∣ ≤ 1
q2 then

|f(x)| ≤ C0

{
q1/k +

N

q1/k

}
, for some constant C0 .

Then f is in the space weak
(
L2k

)
and satisfies the estimate:

µ
{
x : |f(x)| > α > 0

} ≤ C
Nk

α2k

for every α > 0, where the constant C = C(C0), is independent of α and N ,
and µ denotes Lebesgue measure in [0, 1].

Proof. Without loss of generality we may assume that C0 = 1, because if
C0 > 1 we will just consider then the function f/C0. It will be equivalent
to show that for every α > 0 we have

µ(Eα) = µ
{|f(x)| ≥ 2N

1
2 α

} ≤ C̃
1

α2k

with C̃ independent of N and α.
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Observe that it is enough to prove it in the case 1
2
N

1
2 ≥ α ≥ 1, because if

α < 1 then the inequality trivializes, and if α ≥ 1
2
N

1
2 we have that Eα = ∅.

If

x =
1

x1 + 1
1

x2+ 1
x3+...

is the continuous fraction expansion of the irrational number x ∈ Eα with
convergents

{
Pν

Qν

}
then the following holds

Q1/k
ν +

N

Q
1/k
ν

≥ 2N
1
2 α .

That is, for every ν

either Q1/k
ν ≥ N

1
2 α

or
N

Q
1/k
ν

≥ N
1
2 α .

We have two possible cases:

1st Case: Q
1/k
1 ≥ N

1
k α =⇒ Q1 ≥ N

k
2 αk.

Since x ≤ 1
Q1

we have that x ∈ I0 =
[
0 , 1

Nk/2αk

]
and µ(I0) = 1

Nk/2αk ≤
2k

α2k .

2nd Case: There exists ν ≥ 1 such that

• N

Q
1/k
ν

≥ N
1
2 α =⇒ Qν ≤ Nk/2

αk

• Q
1/k
ν+1 ≥ N

1
2 α =⇒ Qν+1 ≥ N

k
2 αk.

We have ∣∣∣∣x−
Pν

Qν

∣∣∣∣ ≤
1

Qν Qν+1

≤ 1

Qν

1

Nk/2αk

that is

x ∈
(

Pν

Qν

− 1

Qν

1

Nk/2αk
,

Pν

Qν

+
1

Qν

1

Nk/2αk

)
.

Given integers r , s such that r < s, mcd(r, s) = 1, s ≤ Nk/2

αk
, let us

consider the interval

Ir,s =

(
r

s
− 1

s

1

Nk/2αk
,

r

s
+

1

s

1

Nk/2αk

)
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Then the previous observations give us the inclusion

Eα − {rationals} ⊂ I0 ∪
(⋃

r,s

Ir,s

)
.

Therefore

µ(Eα) ≤ µ(I0) +
s−1∑
r=1

(r,s)=1

Nk/2

αk∑
s=1

µ(Ir,s)

≤ 2k

α2k
+

Nk/2

αk∑
s=1

s−1∑
r=1

2

s

1

Nk/2αk
≤ 2k

α2k
+

Nk/2

αk∑
s=1

2

Nk/2αk
≤ 2 + 2k

α2k
.
¥

Next let us consider the trigonometric polynomials

SN(x ; y) =
N∑

n=1

e2πi(n2x+ny)

and its Carleson maximal operator

C∗N(x ; y) = sup
1≤M≤N

∣∣SM(x ; y)
∣∣ .

We will use now Carleson’s maximal theorem to continue the proof of propo-
sition 1 showing that, for every y ∈ [0, 1], SN(x ; y) verifies the hypothesis
of lemma 2 in the case k = 2.

Lemma 3. Let x have a rational approximation of the form |x − p
q
| ≤ 1

q2 ,

1 ≤ q ≤ N2, mcd(p, q) = 1, then

C∗N(x ; y) ¿ {
q1/2 +

N

q1/2

}
.

This result was known to Hardy and Littlewood who proved it using
the approximate functional equation for θ-functions. The following proof
of E. Bombieri [1] emphasizes the relationship between number theory and
harmonic analysis throughout the use of Carleson’s theorem [2].



8 A. Córdoba

Proof. First let us observe that if |x−x0| ≤ 1
4N2 and |y− y0| ≤ 1

4N
then we

have the inequality
C∗N(x ; y) ≤ 100 C∗N(x0 ; y0) .

This is because

SM(x ; y) =
M∑

n=1

e2πi(n2x+ny)

=
M∑

n=1

e2πi(n2x0+ny0) · e2πi(n2(x−x0)+n(y−y0))

=
M∑

n=1

(
Sn(x0 ; y0)− Sn−1(x0 ; y0)

)
e2πi(n2(x−x0)+n(y−y0))

=
M−1∑
n=1

Sn(x0 ; y0)
(
e2πi(n2(x−x0)+n(y−y0)) − e2πi((n+1)2(x−x0)+(n+1)(y−y0))

)

+ SM(x0 ; y0)e
2πi(M2(x−x0)+M(y−y0))

Taking the supremum in M , 1 ≤ M ≤ N , we obtain

C∗N(x ; y) ≤ 2 C∗N(x0 ; y0)
[
1 +

N∑
n=1

(|x− x0|4πn + 4π|y − y0|
)]

≤ 100 C∗N(x0 ; y0) .

Next we have ∀M , 1 ≤ M ≤ N , the following inequality

C∗N(x ; y) ≤ 2 C∗2N(x ; y − 2Mx)

This is because

∣∣SK(x ; y)
∣∣ =

∣∣∣
K∑

n=1

e2πi(n2x+ny)
∣∣∣ =

∣∣∣
K+M∑

n=M+1

e2πi((n−M)2x+(n−M)y)
∣∣∣

=
∣∣∣

K+M∑
n=M+1

e2πi(n2x+n(y−2Mx))
∣∣∣ ≤ 2 C∗2N(x ; y − 2Mx) .

Taking the supremum over K ≤ N , rising the inequality to the square power
and averaging over M , we get

∣∣C∗N(x ; y)
∣∣2 ≤ 4

N

N∑
M=1

∣∣C∗2N(x ; y − 2Mx)
∣∣2

≤ 4

N

M∑
n=1

(100)28N

∫

I(2Mx−y)

∣∣C∗2N(x ; y0)
∣∣2 dy0
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where I(z) =
{
w : |z − w| ≤ 1

8N

}
.

An elementary calculation gives us an upper bound for the overlapping
of the family of intervals

{
I(2Mx−y)

}

∥∥∥
N∑

M=1

χ
I(2Mx−y)

∥∥∥
∞
¿

(N

q
+

q

N

)
,

and applying Carleson’s maximal theorem we obtain

C∗N(x ; y)2 ¿
{

q +
N2

q

}
. ¥

Proof of proposition 1. Let us consider the maximal function

C∗N(x) = sup
1≤M≤N

∣∣∣
N∑

n=1

e2πin2x
∣∣∣ ,

then lemmas 2 and 3 give us the estimate

µ
({C∗N(x) ≥ 2N

1
2 α

})
¿ 1

α4

and, in particular, we obtain

∥∥C∗N
∥∥

p
≤ Cp N

1
2 , for 2 ≤ p < 4 .

Given the Fourier series f =
∑

ane2πin2x we have the Littlewood-Paley
equivalence of norms

‖f‖p ∼
∥∥∥
( ∑

k

∣∣∆k(x)
∣∣2

) 1
2
∥∥∥

p
, 1 < p < ∞

where

∆k(x) =
2k+1−1∑

n=2k

ane
2πin2x .

In particular, for 2 ≤ p < 4 we have

‖f‖p

p ¿
[ ∫ 1

0

( ∑

k

∣∣∆k(x)
∣∣2

) p
2
] 2

p
· 1
2

≤
[ ∑

k

( ∫ 1

0

∣∣∆k

∣∣p
) 2

p
] 1

2
=

( ∑

k

‖∆k‖p
2
) 1

2
.
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But

∆k(x) =
2k+1−1∑

n=2k

ane
2πin2x =

2k+1−1∑

n=2k

an

[
Sn(x)− Sn−1(x)

]

=
2k+1−1∑

n=2k

(an − an+1)Sn(x) + a2k+1−1S2k+1−1(x) ,

and since the coefficients are monotonically decreasing we get
∣∣∆k(x)

∣∣ ≤ 2C∗2k+1(x) · a2k .

Therefore

‖f‖
p
¿

( ∑

k

a2
2k · 2k

) 1
2

= ‖f‖
2
. ¥

III. The fractal dimension of Riemann’s graphs

In his thesis Riemann introduces also several examples of continuous func-
tions lacking derivatives in a dense set of points, a project culminated by
Weierstrass who produced the first known continuous and nowhere differ-
entiable function using lacunary trigonometric series. It seems that Weier-
strass was inspired by the erroneous claim, attributed to Riemann, that the
following two continuous functions are nowhere differentiable

F (x) =
∞∑

n=1

sin(2πn2x)

n2
, G(x) =

∞∑
n=1

cos(2πn2x)

n2
.

These functions have been studied by several authors and nowadays we have
a rather complete knowledge of its points of differentiability. In the following
we shall be concerned about the Minkowski or box counting dimension of
their graphs.

Given 0 < δ ≤ 1 let us consider the family of continuous functions

Fδ(x) =
∞∑

n=1

sin(2πn2x)

n1+δ
, Gδ(x) =

∞∑
n=1

cos(2πn2x)

n1+δ
.

Theorem 4. dimB

(
graph(Fδ)

)
= dimB

(
graph(Gδ)

)
= 7

4
− δ

2
.

Proof. With a fixed (big) integer N let us denote Ja/q be the arc containing

a/q in the Farey disection of (0, 1] of order N
1
2 , that is

(0, 1] =
⋃

Ja/q , Ja/q =
(

a′+a
q′+q

, a+a′′
q+q′′

]

where a′
q′ <

a
q
< a′′

q′′ are three consecutive fractions in the Farey sequence FN1/2 .
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It happens that

Ja/q ⊂
{
x ∈ (0, 1] :

∣∣x− a
q

∣∣ < 1
q N1/2

}
.

Next we shall consider incomplete gaussians sums

Sn,m(x) =
n∑

k=m+1

e2πik2x , Sn(x) = Sn,0(x) .

From the previous section we know the estimate

∣∣Sn,m(x)
∣∣ ¿ n√

q
+
√

q

so long as
∣∣x− a

q

∣∣ ≤ 1
q2 .

For the complete sums we have the explicit evaluation

q∑

k=1

e2πi a
q
k2

= εq
√

q

(
a

q

)
, if mcd(a, q) = 1

where

εq =





1 if q ≡ 1 mod (4)

i if q ≡ 3 mod (4)

0 if q ≡ 2 mod (4)

1 + i if q ≡ 0 mod (4) .

Given n′ = m + q
[

n−m
q

]
we have

Sn,m

(a

q

)
= Sn′−1,m

(a

q

)
+ Sn,n′

(a

q

)
= εq

(a

q

)n−m√
q

+ O
(√

q
)
.

Let α
(

a
q
; N

)
be the number of boxes of the mesh

MN =
{
x =

`

N
, y =

m

n
; 0 ≤ ` ≤ N

}

which are needed to cover the intersection graph(Fδ)∩(Ja/q×R), and denote
by α

(
a
q
; N , k

)
the number of them contained inside the strip Ik×R, where

Ik =
[

k
N

, k+1
N

]
.

i) We shall prove first the upper bound

dimB

(
graph(Fδ)

) ≤ 7

4
− δ

2
.
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Let M be a positive integer to be chosen later. From the definition of
α
(

a
q
; N , k

)
and after applying the mean value theorem we get

α
(

a
q
; N , k

) ≤ 2 + N sup
x,y∈Ik∩Ja/q

|Fδ(x)− Fδ(y)|

≤ 2 + 2π
∣∣∣
∑
n≤M

n1−δe2πin2ξ
∣∣∣ + N

∣∣∣
∑
n≥M

1

n1+δ

(
e2πin2x0 − e2πin2y0

)∣∣∣

where ξ, x0, y0 ∈ Ik ∩ Ja/q.
Partial summation yields

α
(

a
q
; N , k

) ¿ 2 + 2π
∣∣∣
∑
n≤M

[
n1−δ − (n + 1)1−δ

]
Sn(ξ)

∣∣∣

+
∣∣SM(ξ)

∣∣M1−δ + (1 + δ)N
∑
n≥M

|Sn,M(x0)|+ |Sn,M(y0)|
n2+δ

.

Now we choose M =
[√

N
]

and from the known estimates for gaussian
sums we get

α
(

a
q
; N , k

) ¿
(

M√
q

+
√

q

)
+

(
M√

q
+
√

q

)
M1−δ

+ N

[
1

q1/2
· 1

N
1
2
( 1
2
+δ)

]

¿ N1− δ
2

1√
q

+ N
1
2
− δ

2
√

q .

Next we observe that

α
(

a
q
; N

) ¿ |Ja/q|
1/N

(
N1− δ

2
1√
q

+ N1− δ
2
√

q

)

¿ N
3
2
− δ

2

q3/2
+ N1− δ

2
1

q1/2
.

Therefore the number of boxes of the mesh MN needed to cover the
graph is bounded by

∑

q≤N1/2

∑

(a,q)=1

(
N

3
2
− δ

2

q3/2
+ N1− δ

2
1

q1/2

)

¿
∑

q≤N1/2

(
N

3
2
− δ

2

q1/2
+ N1− δ

2 q1/2

)
¿ N

7
4
− δ

2
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implying the upper bound

dimB

(
graph(Fδ)

) ≤ lim sup
N→∞

log
(
N

7
4
− δ

2

)

log N
=

7

4
− δ

2
.

Obviously the same proof also shows that

dimB

(
graph(Gδ)

) ≤ 7

4
− δ

2
.

ii) We shall prove now the lower bounds

dim B

(
graph(Fδ)

) ≥ 7

4
− δ

2

dim B

(
graph(Gδ)

) ≥ 7

4
− δ

2
.

Here we need to separate both cases. For Fδ we choose P to be the set
of prime numbers such that p ≡ 3 mod (4) and p ³ √

N (i.e. C1

√
N ≤ p ≤

C2

√
N , where 0 < C1 < 1, 1 < C2 < 2 are fixed).

For Gδ we will proceed similarly but changing to the primes p ≡ 1
mod (4) for obvious reasons.

From the definition of Minkowski dimension we have

dim B

(
graph(Fδ)

) ≥ lim inf
N→∞

log
(
N

∑
p∈P

∑
0≤a≤p

∣∣Fδ

(
a
p

)− Fδ

(
a
p

+ 1
p2

)∣∣
)

log N

Next we shall consider only the setR(p) of values of a which are quadratic
residues mod(p). The corresponding sum over those a is greater than the
absolute value of

∑

a∈R(p)

(
Fδ

(
a
p

)− Fδ

(
a
p

+ 1
p2

))
= Im

( ∑
n

p−1
2∑

r=1

e
2πir2 n2

p2

n1+δ

(
1− e

2πi n2

p2

))

= Im

( ∑
n

(− 1 + i
√

p
)(

1− e
2πi n2

p2

)

2n1+δ

)

=
√

p
∑

n

sin2
(
π n2

q2

)

n1+δ
+

∑
n

sin
(
π n2

q2

)

2n1+δ

À p
1
2
−δ .

The prime number theorem in arithmetic progressions yields

dim B

(
graph(Fδ)

) ≥ lim
N→∞

log
(
NN

1
4
− δ

2 N
1
2 / log N1/2

)

log N
=

7

4
− δ

2
.

¥
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IV. Convergence and divergence of Fourier series

For any function f ∈ L1[0, 1] we can write its Fourier series

f(x) ∼
+∞∑
−∞

f̂(k)e2πikx , f̂(k) =

∫ 1

0

f(x)e−2πikx dx .

Then the traditional way of reconstructing f from its Fourier coefficients is
to consider the partial sums

SNf(x) =
∑

|k|≤N

f̂(k)e2πikx .

It is well known (Marcel Riesz’s theorem) that we have the norm con-
vergence

lim
N→∞

SNf = f in Lp[0, 1] , 1 < p < ∞ .

Furthermore Lennart Carleson [2] proved that there is also convergence at
almost every point

lim
N→∞

SNf = f a.e. x , for f ∈ Lp[0, 1] , p > 1 .

However, in many applications it seems natural to pay more attention
to the set of bigger Fourier coefficients, and to reconstruct the function
ordering them in decreasing magnitude. The mathematical expression of
this fact leads us to consider, for each λ > 0, the partial sum

S̃λf(x) =
∑

|f̂(k)|≥λ

f̂(k)e2πikx

and their limit when λ → 0+.
In reference [9] T. Körner answered in the negative a question asked by

L. Carleson and R. Coifman, proving the existence of a function f ∈ L2[0, 1]
such that

lim sup
λ→0+

∣∣∣
∑

|f̂(k)|≥λ

f̂(k)e2πikx
∣∣∣ = ∞ , a.e. x ∈ [0, 1] .

Körner’s proof is based on an ingenious modification of a construction
due to Olevskii for the Haar system, and it also uses a probabilistic lemma
of Salem and Zygmund. In the following we shall present several number
theoretical arguments to analyze this type of convergence (see reference [5]).
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Theorem 5. a) Define the maximal operator

S̃∗f(x) = sup
λ>0

∣∣S̃λf(x)
∣∣ .

Then for all 1 ≤ p < 2, there is a function f ∈ Lp[0, 1] (explicitly con-
structed) such that ∥∥S̃∗f

∥∥
p

= ∞ .

b) For each p < 2 there exists f ∈ Lp[0, 1] such that

lim sup
λ→0+

∥∥S̃λf
∥∥

p
= ∞ .

The details of the proof are given in [5] but they rely on several number
theoretical estimates. A typical one is the following.

Lemma 6. Let

P ∗
N(x) = max

1≤j≤N

∣∣∣∣
∑

p prime
N≤p≤N+j

e2πipx

∣∣∣∣ ,

then
∥∥P ∗

N

∥∥
r
À N

3
4 − 1

2r(
log N

)e(r)
, 1 < r ≤ 2 , e(r) = 1 +

1

r
.

Assuming the lemma and with a given α > 0 let us introduce the func-
tions

f0(x) =
∞∑

k=0

1

2kα
B0

k(x) , f(x) =
∞∑

k=0

1

2kα
Bk(x)

where

B0
k =

2k+1−1∑

n=2k

e2πinx

Bk =
2k+1−1∑

n=2k

ck
ne

2πinx , ck
n =

{
1 + 1

n
, if n is prime

1− 1
2k , if n is composite.

Then we have

‖f‖p ¿ 1 + ‖f0‖p ≤ 1 + 2−kα

∞∑

k=0

‖B0
k‖p ¿ 1 +

∞∑

k=0

2k(1− 1
p
−α) < ∞

if α > 1− 1
p
.
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Next let us define ak,j =
1

2kα

(
1 +

1

j

)
for every k = 0 , 1 , 2 , . . . , and j

such that 2k ≤ j < 2k+1. Then

S̃ak,j
f(x) =

∑

|ν|≤2k

f̂(ν)e2πiνx +
1

2kα

∑
p prime

2k≤p≤j

e2πipx +
1

2kα

∑
p prime

2k≤p≤j

1

p
e2πipx .

Therefore

sup
λ>0

∣∣S̃λf(x)
∣∣ ≥ 1

2kα
P ∗

2k(x)− C∗f(x)−O(1)

where C∗f(x) designs the Carleson’s maximal operator. In particular we
obtain

∥∥∥ sup
λ

∣∣S̃λf
∣∣
∥∥∥

p
À 1

2kα

2k( 3
4
− 1

2p
−α)

ke(p)
−→∞

if 1− 1
p

< α < 3
4
− 1

2p
⇐⇒ p < 2.

There are variations of this construction which prove part b) of theorem
5. To finish let us sketch the proof of lemma 6.

First we consider the primes q in the interval
√

N ≤ q <
√

2N and for
each 1 ≤ a ≤ q − 1 we have the arc

Ja/q =
(a

q
− 1

8q2
,

a

q
+

1

8q2

)
.

It is easy to see that the Ja/q are disjoints. Let us introduce the set

EN =
⋃

q prime√
N≤q<

√
2N

q−1⋃
a=1

Ja/q .

Then

∥∥P ∗
N

∥∥r

r
=

∫ 1

0

(
P ∗

N(x)
)r

dx ≥
∫

EN

(
P ∗

N(x)
)r

dx

=
∑

q prime√
N≤q<

√
2N

q−1∑
a=1

Ja/q .

∫

Ja/q

(
P ∗

N(x)
)r

dx .

But we have seen in (II) that |x − y| <
1

8q2
, q ≥ √

n implies that
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P ∗
N(x) ≥ CP ∗

N(y), for some universal positive constant C. Therefore

∥∥P ∗
N

∥∥r

r
À

∑
q prime√
N≤q

√
2N

q−1∑
a=1

∫

Ja/q

∣∣P ∗
N

(
a
q

)∣∣r dx

À
∑

q prime√
N≤q

√
2N

1

q2

q−1∑
a=1

∣∣∣
∑

p prime
N≤p<2N

e2πip a
q

∣∣∣
r

=
∑

q prime√
N≤q

√
2N

1

q2

q−1∑
a=1

∣∣∣
q−1∑
s=1

∑
p prime

N≤p<2N
p≡s(q)

e2πi as
q

∣∣∣
r

=
∑

q prime√
N≤q

√
2N

1

q2

q−1∑
a=1

∣∣∣
q−1∑
s=1

e2πi as
q
(
π(2N ; q , s)− π(N ; q , s)

)∣∣∣
r

where π(x ; α , β), mcd(α, β) = 1, counts the number of primes less than or
equal to x in the arithmetical progression

β , β + a , β + 2α , β + 3α , . . .

Then writing bN,q,s = π(2N ; q , s)−π(N ; q , s) and since 1 ≤ r ≤ 2, we get

∥∥P ∗
N

∥∥r

r
À

∑
q prime√
N≤q

√
2N

1

q2

( q−1∑
a=1

∣∣∣
q−1∑
s=1

e2πis a
q bN,q,s

∣∣∣
2
)r/2

=
∑

q prime√
N≤q

√
2N

1

q2

{
(q − 1)

q−1∑
s=1

b2
N,q,s +

∑

s6=s′
bN,q,sbN,q,s′

q−1∑
a=1

e2πia s−s′
q

}r/2

=
∑

q prime√
N≤q

√
2N

1

q2

{
(q − 1)

q−1∑
s=1

b2
N,q,s −

∑

s 6=s′
bN,q,sbN,q,s′

}r/2

≥
∑

q prime√
N≤q

√
2N

1

q2

{ q−1∑
s=1

b2
N,q,s

}r/2

À 1

N

∑
q prime√
N≤q

√
2N

{ q−1∑
s=1

b2
N,q,s

}r/2

where we have used the inequality

M

M∑
j=1

a2
j −

∑

j 6=k

ajak ≥
M∑

j=1

a2
j .
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To finish let us observe that Cauchy’s inequality together with the prime
number theorem yields

(q − 1)

q−1∑
s=1

b2
N,q,s ≥

( q−1∑
s=1

bN,q,s

)2

À N2

log2 N

and, therefore

∥∥P ∗
N

∥∥r

r
À 1

N

∑
q prime√
N≤q

√
2N

( N2

(q − 1) log2 N

)r/2

À N r

N(log N)rN r/4

N1/2

log N
À N

3r
4
− 1

2

(log N)1+r
.
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