Drops: The collapse of capillary jets
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The appearance of fluid filaments during the evolution of a viscous
fluid jet is a commonly observed phenomenon. It is shown here
that the break-up of such a jet subject to capillary forces is
impossible through the collapse of a uniform filament.

Model

he formation of thinning filaments is commonly observed
previously to the break-up of a viscous jet.

In “Traité du movement des eaux et des autres corps fluides,”
in 1686, E. Mariotte already attacked the problem of drop
formation. Later on, in 1833, F. Savart performed experiments
to estimate the size of drops resulting from the breaking-up of
a jet (see ref. 1). In 1879 Lord Rayleigh presented the first
analytical study of that problem (see ref. 2). He showed the
instability of the stationary-jet solutions to the Navier-Stokes
equations, explaining, at least partially, Savart’s observations.

With the more sophisticated experimental and numerical tools
now available, the subject has recently gained considerable
momentum. This is in part due to the technological importance
of controlling the drops generation mechanism, which is rele-
vant, for example, to the modern ink-jet printing systems. Let us
refer to ref. 3 for an updated presentation of the state of this art.

In high viscosity fluids, the break-up is preceded by the
formation of long filaments, which, in experiments, are thin
uniformly up to a diameter of the order of a micron (cf. ref. 4
where experimental data were collected by using a high-
resolution charge-coupled device sensor). Sometimes they gen-
erate new and smaller drops, but often they become unstable and
break (cf. ref. 5). At this small scale it is possible that molecular
forces, which are not considered in a continuum description,
come into play, but it is important to know whether the
continuum equations predict break-up or not. In particular, it is
important to rule out the possibility of collapse of a whole
filament, so that the pinching has to occur at “isolated” points.
In the process of understanding this phenomenon, M. A. Fon-
telos has proved the formation of filaments for very viscous
fluids under the slender jet approximation (unpublished work).
In connection to this, let us mention the existence of a self-
similar mechanism for break-up at isolated points suggested by
Eggers (cf. ref. 6).

In ref. 7 it was shown that under the mild assumption
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the volume of a “regular tube” moving with the flow cannot
reach zero thickness at time 7. In particular, the thickness of the
neck of a drop cannot reach zero thickness in finite time, unless
it bends and twists so violently that no part of it forms a regular
tube.

Estimates

In this article we shall consider the case of a fluid of viscosity w1,
density p;, and velocity field vy, occupying at time ¢ a region €)(¢),
and being surrounded by another fluid whose respective param-
eters are u, and p, and whose velocity is v,. We shall assume a
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smooth external force (such as gravity), which together with the
fundamental laws (Navier—Stokes equations) and an appropriate
interphase condition, involving surface tension forces, will pro-
vide us the mathematical model.

In Eulerian coordinates we shall consider our domain €(7) to
be a tube whose lateral wall is the interphase. The fluid will be
“entering” throughout the two “cups” D(¢), D»(t), while I'y =
aQ(t) — (Di(f) U Dy(2)) is moving with the fluid.

The tube €(¢) is uniformly collapsing to a smooth curve vy at
time 7, if there exists a function A(¢) such that:

i) lim h(t) =0

t—T
1
if) c h(t) = dist(x, y) = Ch(t) for eachx €T,

We may state our main result:

Tueorem 1. Under the conditions described above the uniform
collapse of a fluid tube (filament) is impossible. Moreover, the
volume V(t) of fluid enclosed by the tube satisfies:

V(t) = Ce™ "

for some positive constant C.

The proof starts with the Navier—Stokes equations for each
one of our two incompressible fluids. Then one has to use the
boundary conditions, implying that there is a continuity of the
velocity field at 9€)(f) together with the following pressure
equilibrium:

[T,‘-j” — Tsz)]nj = oHn; in 0)(¢),
with
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k =1, 2, on 9Q(¢). Here n is the field of normal vectors to €(¢),
H is the mean curvature of 900)(¢), and o > 0 is the surface tension
coefficient.

Then one obtains the fundamental estimate:
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where

in Q(7)
inR®— Q).
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From that formula it follows the differential inequality:

% = —CV@)ln V)|,

which allows us to conclude the estimate:
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