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1. INTRODUCTION

Taking into account that the frequencies of Fourier expansions are
integers it is not surprising that some arithmetical results play an impor-
tant role in many theorems and examples in harmonic analysis. This relation
is even clearer from the historical point of view and Hardy and Littlewood
can be considered at the same time as founders of a substantial part of
harmonic analysis and analytic number theory. For instance, in [Ha-Li]
they considered

S:= :
�

n=1

e(n2x)
n: where e(t)=e2?it

and proved, using diophantine techniques, that Re S: and Im S: are not
Fourier series of a L1 function when 0<:<1�2 (in fact the same happens
for :=1�2); this result was used to give an easy counterexample to some
Young type inequalities. It is also known that for 1�2<:<1, S: belongs to
the Lebesgue space L p ([0, 1]) if p<2�(1&:) and that S1 is in B.M.O., the
class of functions of bounded mean oscillation. Even the naive question
about characterizing the values of x for which S: converges leads to non-trivial
problems in diophantine approximation and modular transformations. In
[Ha-Li] it is proved that for 0<:<1�2

S: converges � x # [a�q # Q : gcd(a, q)=1, 4 | q&2].

Article ID aima.1998.1792, available online at http:��www.idealibrary.com on

335
0001-8708�99 �30.00

Copyright � 1999 by Academic Press
All rights of reproduction in any form reserved.



This family of series has an even longer history going back to Riemann
who, according to Weierstrass [We], in 1872 thought Im S2 to be an
example of a continuous but nowhere differentiable function. Hardy [Ha]
in 1916 confirmed partially Riemann's assertion proving that Im S2 is not
differentiable at any irrational value of x and at several kinds of rational
values, but more than 50 years later J. Gerver [Ge] found infinitely many
rational numbers in which the derivative exists, disproving Riemann's belief
(almost a century after it was stated). As a matter of curiosity Riemann's
function is differentiable exactly in the forementioned convergence set
of S: .

Riemann's function has also attracted the attention of modern authors
because its relation with selfsimilarity, fractals and wavelets (see [Du]
and [Ho-Tc]). The purpose of this paper is to use some tools in number
theory to study several analytic properties of trigonometric series whose
frequencies are squares or, more generally, kth powers. We shall be specially
interested in the fractal (box-counting) dimension of their graphs and in
their differentiability properties. The structure of the next sections is as
follows:

In Section 2 we introduce some notation and state some known results
that could be unfamiliar for non number theorists.

In Section 3 we estimate the fractal dimension of the graphs of trigono-
metric series having frequencies in the k th powers. This estimation is sharp
even under mild conditions over the coefficients, extending the results of
[Ch-Co]. In particular, it is obtained that the graph of these series has a
fractal behavior (non-integral dimension).

In Section 4 we study the differentiability properties of

:
e(nkx)

nk ,

which is an analog of Riemann's function, and the Lipschitz order of some
closely related series. We get, among other things, a complete characteriza-
tion of the differentiability at rational values.

Finally in Section 5 we present a collection of computer graphics to
illustrate the theoretical results obtained in previous sections. These pic-
tures can be composed to obtain a collection of fractal-like sets in the
plane. For the sake of curiosity we present here some examples which were
obtained in the Seismic Park laboratory of Professor D. Co� rdoba.
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Scheme 1. _1 (t)=\:
sin(n2t)

n3�2 , :
cos(n2t)

n3�2 + .

Scheme 2. _2 (t)=\:
sin(n3t)

n2 , :
cos(n3t)

n2 + .
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Scheme 3. _3 (t)=\:
sin(n3t)

n3 , :
cos(n3t)

n3 + .

Scheme 4. _4 (t)=\:
sin(n5t)

n5�2 , :
cos(n5t)

n5�2 + .
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2. NOTATION AND AUXILIARY RESULTS

As we mentioned before we shall write e(t) instead of e2?it. We shall also
use Vinogradov's symbols f<<g and f>>g meaning | f |�C | g| and
| f |�C | g| for a certain constant, C; and Landau's notation f =O(g)
meaning 0�| f |�g<C.

The interval [0, 1) can be written as the disjoint union of the intervals
Ij=[( j&1) h, jh) with j=1, 2, ..., N and h=N&1. The number of boxes of
edge h needed to cover the graph of a continuous function f: [0, 1) � C is

Ah=:
j

h&1 sup
x, y # Ij

|F(x)&F( y)|+O(h&1).

The fractal dimension (also named box-counting dimension or Minkowski
dimension) of the graph of f is defined as the following limit

dim( f )=& lim
h � 0+

log Ah

log h
.

This definition only makes sense when the limit exists, by this reason it is
convenient to define the lower and upper fractal dimension, dim( f ) and
dim( f ), in which lim is replaced by lim and lim, respectively.

In Section 4 we shall use 4; (x) to denote the set of functions satisfying
a Lipschitz condition of order ; at x, i.e. the functions, f, such that

| f (x+h)& f (x)|<C |h|;

holds for a certain constant, C, and small enough values of h.
As usually, we shall denote by = an arbitrary small positive constant, not

necessarily always the same. On the other hand, k will represent an integer
k>1.

Now we recall some results from number theory.
The proof of many interesting propositions in analytic number theory can

be sometimes reduced to get a non-trivial upper bound for an exponential
sum. The first method to estimate these kind of sums was created in 1916 by
Weyl and it is completely based on the following lemma (see [Va]).

Lemma (Weyl's inequality). If P is a polynomial of degree k and a�q is
an irreducible fraction such that the leading coefficient of P, say A, satisfies
|A&a�q|�q&2, then

:
n�N

e(P(n))<< = (Nq&1�K+N1&1�K+N 1&k�Kq1�K) N =

for K=2k&1 and every =>0.
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Using a method due to I. M. Vinogradov it is possible to improve Weyl's
inequality for large values of k. There are several kinds of results obtainable
by Vinogradov's method, the following one is taken from [El-Me] (see
Th. 10.1) after some simplifications in the statement.

Lemma. Let P, k, A and q as in Weyl's inequality, then for k�9 and
N�q�Nk&2 we have the estimate

:
n�N

e(P(n))<<k N 1&$

where $=(9k2 log k)&1.

In some contexts (e.g. studying sums of primes) exponential sums appear
with coefficients that are only controlled in average and so partial summa-
tion is not applicable. Large sieve inequality allows to obtain cancellation
in some cases if we have a large enough number of these exponential sums.
There are several formulations of the large sieve inequality depending on
the context, perhaps the simplest is (see [Bo]).

Lemma (Large sieve inequality). Let $>0 and [t&]R
&=1 be such that

0�t1<t2< } } } <tR<1&$ and t&+1&t&>$, then

:
R

&=1
} :

n�N

ane(nt&)}
2

�(N+$&1) :
n�N

|an | 2

for arbitrary complex numbers an .

Finally, we shall denote (Z�p#Z)* the group of units of the ring Z�p#Z.
Its order is given by the Euler totient function ,( p#)= p#&1 ( p&1). It can
be proved that (Z�p#Z)* is isomorphic to the Galois group G(Q(`)�Q)
with `=e(1�p#). In particular, G(Q(`)�Q(` p)) is cyclic of order p.

3. FRACTAL DIMENSION

In this section we consider the family of functions

F:, k (x)= :
�

n=1

cne(nkx)
n: with 0<lim cn�lim cn<�,

and we compute the fractal dimension of their graphs.
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Theorem 3.1. If (k+1)�2�:�k+1�2, then we have

dim(F:, k)=2+
1

2k
&

:
k

.

Remark. Note that this result implies that the fractal dimension of F:, k

is non-integral for (k+1)�2�:<k+1�2. On the other hand, if :>k+1�2,
F:, k is absolutely continuous (note that F $:, k # L2) and the fractal dimen-
sion is trivially one. The range can be completed to 1<:�k+1�2 under
the conjectural bound &�n�N cn e(nkx)&2k=O(N1�2+=) which is true for
k=2.

Proof. Firstly we shall prove the upper bound

dim(F:, k)�2+
1

2k
&

:
k

. (3.1)

Given x, y # I where I is a closed interval of length h, we separate the terms
of F:, k with n>h&1�(k&1) and we apply then mean value theorem to those
with n�h&1�k. Then we obtain

|F:, k (x)&F:, k ( y)|<<h |S1 (!)|+|S2 (x)|+|S2 ( y)|+h(:&1)�(k&1)

where

S1 (!)= :
n�h&1�k

cnnk&:e(nk!), S2 (t)= :
h&1�k<n�h&1�(k&1)

cne(nkt)
n:

and ! # I. Taking I=Ij (with Ij as in the definition of fractal dimension)
and separating the contribution of odd and even j's to Ah , we have

Ah<<:
&

|S1 (t&)|+h&1 :
&

|S2 (t$&)|+h(:&2k+1)�(k&1) (3.2)

where h<t&+1&t& , t$&+1&t$&<3h.
Subdividing S2 into dyadic intervals we get

S2 (t$&)<<:
M } :

M<n�2M

cne(nkt$&)
n: }

where M=2mh&1�k with h&1�k�M<h&1�(k&1). A further subdivision of
each dyadic interval (M, 2M] into intervals of length h&1M 1&k, we find
M1 and M2 , for each M, with M<M1<M2�2M and M2<M1+
h&1M1&k such that

:
&

|S2 (t$&)|<<:
M

M
h&1M1&k :

& } :
M1<n�M2

cne(nkt$&)
n: } .
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Let us denote S2M (t$&) the innermost sum, then by (3.2) and Cauchy's
inequality we obtain

A2
h<<h&1 :

&

|S1 (t&)|2+h&1 :
M

M2k+= :
&

|S2M (t$&)|2+h(2:&4k+2)�(k&1).

(3.3)

Large sieve inequality implies

:
&

|S1 (t&)|2<<(h&1+h&1) :
n�h&1�k

|cn | 2 n2k&2:<<h&3+(2:&1)�k&=

and

:
&

|S2M (t$&)| 2<<(h&1+h&1) :
M1<n<M2

|cn | 2 M&2:

<<h&2M1&k&2:.

Therefore, substituting in (3.3)

A2
h<<h&4+(2:&1)�k&=

and (3.1) follows.
Now we shall prove the lower bound

dim(F:, k)�2+
1

2k
&

:
k

. (3.4)

Let f (x)=F:, k (x+h)&F:, k (x), by the definition of Ah and Ho� lder
inequality

Ah�h&2 & f &1�h&2 & f &3
2 �& f &2

4 . (3.5)

Parseval's identity proves

& f &2
2=:

n

|cn |2 |1&e(nkh)|2

n2: .

Considering only the contribution of 1�4h<nk<3�4h, we obtain

& f &2
2>>h (2:&1)�k.

On the other hand, subdividing into dyadic intervals we have that for every
=>0

& f &4
4<<sup

N
N = " :

N�n<2N

cn
1&e(nkh)

n: e(nkx)"
4

4

;
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hence, using again Parseval's identity

& f &4
4 <<sup

N
N =&4: :

N�n<2N

:
N�m<2N

|rk (nk+mk)|2 |cn |2

_|cm | 2 |1&e(nkh)| 2 |1&e(mkh)|2

where rk denotes the number of representations as a sum of two k th-
powers. It holds that rk (l )<<l= (because l=mk+nk implies that m+n
divides l if k is odd or mk�2+ink�2 divides l in Z[i] if k is even, and the
number of divisors grows less than any positive power), then

& f &4
4 <<sup

N
N =&4: \ :

N�n<2N

|cn | 2 |1&e(nkh)|2+
2

<<sup
N

N =&4: min(N2, N2+2kh&2)<<h (4:&2)�k&=.

Substituting the bounds for & f &2 and & f &4 in (3.5) we conclude

Ah>>h&2&1�2k+:�k+=

for every =>0, which implies (3.4). K

4. LIPSCHITZ ORDER AND DIFFERENTIABILITY

It is known (see [Ha] and [Du]) that the Lipschitz order of F2, 2 with
cn=1 at x depends on diophantine properties of x. Analogous results are
more difficult to obtain for F:, k with k>2 among other things, because
usually |x&a�q|<q&k does not hold for infinitely many a�q; in the
terminology of the circle method (see [Va]) ``major arcs'' are very short.
We shall firstly use Weyl's inequality to prove.

Theorem 4.1. If [cn]�
n=1 is a bounded monotonic sequence and x is irra-

tional whose continuous fraction has bounded partial quotients, then for
1<:�k+1�2 we have

F:, k # 4;$ (x) for every ;$<;=
:&1+21&k

k
.

Remark. Note that the condition of the theorem is fulfilled by all quad-
ratic irrationals. Several other results can be proved, using the same
arguments, with different information about the behavior of the coefficients
of the continuous fraction.
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Furthermore, one can check that the previous result is sharp for k=2
(compare with [Du]), i.e. that F:, 2 � 4;$ (x) for any ;$>;. Nevertheless,
for large values of k we obtain the following improvement

Theorem 4.2. Let [cn] and x be as before, then there exists an absolute
constant, 3�C�9, such that for 1+(k3 log k)&1�:�k+1�2

F:, k # 4; (x) with ;=
:&1

k
+

1
Ck3 log k

.

We specialize now the family of functions of the previous section
focusing in

fk (x)=:
n

e(nkx)
nk ,

which constitute an analog of Riemann's function. By the reasons men-
tioned before, when k>2 it seems very difficult to perform a sharp analysis
of the differentiability at irrational points. In our next result we give a
complete characterization of the differentiability at rational points. The
proof will follow the lines of [Ge] when k=2 but substantially simplified
and generalized.

Theorem 4.3. Let a�q # Q be an irreducible fraction and

S(a�q)= :
q

n=1

e(ank�q).

Then fk is differentiable at a�q if and only if S(a�q)=0. Moreover, in this
case,

f $k (a�q)=&
2?i
q

:
q

n=1

ne(ank�q).

From the well known evaluation of Gauss'sums (see for instance [Da])
it follows at once a result proved in [Du].

Corollary 4.4. If a�q is an irreducible fraction, f2 is differentiable at
a�q if and only if q#2(4).
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Remark. In fact it is possible to deduce from the theorem that
f $2 (a�q)=&?i when it exists, because

f $2 (a�q)=&
2?i
q \q�2+ :

n{q, q�2

ne(an2�q)+
and the summation vanishes for q=4m+2 and a odd due to the fact that
the terms can be arranged four by four in the following manner

ne(an2�q)+(q�2&n) e(a(q�2&n)2�q)+(q�2+n) e(a(q�2+n)2�q)

+(q&n) e(a(q&n)2�q)=0.

In general, to decide the vanishing of S(a�q) it is not needed to carry out
the calculation thanks to the following lemmas.

Lemma 4.5. If a�q is an irreducible fraction and q factorizes as
q= p#1

1 p#2
2 } } } p#r

r where pj are different prime numbers and #j>0, then
S(a�q)=0 if and only if S(1�p#j

j )=0 for some 1� j�r.

Lemma 4.6. If p is prime then S(1�p)=0 if and only if gcd(k, p&1)=1.

Lemma 4.7. If p is prime and p |% k then S(1�p#)=0 if and only if
gcd(k, p&1)=1 and k | #&1.

From these lemmas we deduce at once the following.

Corollary 4.8. If a�q is an irreducible fraction and q is squarefree, fk

is differentiable at a�q if and only if there is a prime factor of q, say p, such
that gcd(k, p&1)=1.

Corollary 4.9. If gcd(k, q)=1 and a�q is an irreducible fraction then
fk is differentiable at a�q if and only if there exists p# | q, p#+1 |% q with p
prime such that gcd(k, p&1)=1 and k | #&1.

Proof of Theorem 4.1. By the mean value theorem

F:, k (x+h)&F:, k (x)=2?ih :
n�h&1�k

cnnk&:e(nk!)

+ :
n>h&1�k

cn
e(nk (x+h))

n: & :
n>h&1�k

cn
e(nkx)

n: (4.1)

where ! # [x, x+h] (we assume h>0, the case h<0 is similar).
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By a well known theorem due to Hurwitz (see Th. 195 of [Ha-Wr]), if
pn �qn is the nth convergent of the continuous fraction of x,
|x& pn+ j�qn+ j |<5&1�2q&2

n+ j holds for j=0, 1 or 2. On the other hand,
qn+1 �qn is bounded (because so are the coefficients of the continuous
fraction), then we can choose qn such that q&2

n <<h<q&2
n and by Weyl's

inequality we get

:
n�N

e(nkt)<< = (Nh1�2K+N1&1�K+N1&k�Kh&1�2K) N = (4.2)

for every =>0 and t # [x+h, x].
By partial summation in (4.1), (4.2) implies

|F:, k (x+h)&F:, k (x)|

<<h } h:�k&1 } (h&1�k+1�2K+h&1�k+1�kK+h&1�k+1�2K) h&=

for every =>0, which proves the result. K

Proof of Theorem 4.2. We can assume k�9 because otherwise
Theorem 4.1 gives a stronger result. Proceeding as in the previous proof
but separating the contribution of n>>h&1�2, we have that
F:, k (x+h)&F:, k (x) equals

2?ih :
n�h&1�k

cnnk&:e(nk!)+ :
h&1�k<n<<h&1�2

cn
e(nk (x+h))

n:

& :
h&1�k<n<<h&1�2

cn
e(nkx)

n: +O(h(:&1)�2).

Note that (:&1)�2>(:&1)�k+(Ck3 log k)&1, hence the result follows by
partial summation if we prove the bound

:
n�N

e(nkt)<<N1&$

with $=(9k2 log k)&1 for 1�N<<h&1�2 and t # [x, x+h]. Proceeding as
before, we can always find a convergent, pn �qn of the continuous fraction
of x such that qn<h&1�2 and N<qn<<N, so we are in the hypothesis of
the lemma quoted in Section 2. K
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Proof of Theorem 4.3. (O) If fk is differentiable at a�q, then

lim
r � 1&

�
�: }:=a�q

|
1

0
f (t) Pr (:&t) dt= f $k (a�q)

where Pr (u) is the Poisson kernel in R�Z (see III.7.6 of [Zy]). Hence

2?i lim
r � 1&

(S1 (r)+S2 (r))= f $k (a�q) (4.3)

where

S1 (r)= :
�

n=1
\e(ank�q)&

1
q

S(a�q)+ rnk
, S2 (r)=

1
q

S(a�q) :
�

n=1

rnk
.

Note that since the sum of q consecutives coefficients of rnk
in S1 (r)

vanishes, then the sequence of coefficients is summable by Cesa� ro means,
in particular limr � 1& S1 (r)<� (see III.1.33 of [Zy]). Hence it is clear
that (4.3) can only hold if S(a�q)=0.

As a byproduct of the proof we get that f $k (a�q), if exists, coincides with
the limit of the Cesa� ro sums of the sequence an=2?ie(ank�q), i.e.

f $k (a�q)=&
2?i
q

:
q

n=1

ne(ank�q).

(o) By partial summation fk (a�q+h)& fk (a�q) equals, up to a constant,

:
n \

e(nkh)
nk &

e((n+1)kh)
(n+1)k + an where an= :

n

m=1

e(amk�q).

As S(a�q)=0, an=am for n#m(q). Hence the differentiability of fk at a�q
follows from that at h=0 of the functions g1 , g2 , g3 , ..., gq defined by

gj (h)= :
n#j(q)

\e(nkh)
nk &

e((n+1)k h)
(n+1)k + .

Let us write gj as

gj (h)=G1 j (h)+G2 j (h)+G3 j (h)
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where

G1 j (h)= :

n�N
n#j(q)

\q&1
q

e(nkh)
nk &

e((n+1)k h)
(n+1)k +

e((n+q)k h)
q(n+q)k + ,

G2 j (h)= :

n�N
n#j(q)

\e(nkh)
nk &

e((n+q)k h)
(n+q)k + and

G3 j (h)= :

n>N
n#j(q)

\e(nkh)
nk &

e((n+1)k h)
(n+1)k +

with N==h&1�(k&1) and = to be chosen later.
Weyl's inequality implies (note that if H is the nearest integer to h&1

then |h&1�H|<1�H2)

G3 j (h)<<(=1&kh1+1�K+=1&k&k�Kh1+1�K(k&1))(=h)&' (4.4)

for ' arbitrarily small. On the other hand, G2 j (h) telescopes and trivially

G2 j (h)=e( j kh)�qj k+O(=&kh1+1�(k&1)). (4.5)

Finally, we shall treat G1 j (h). Taylor expansion proves that for n�N

q&1
qnk &

e(((n+1)k&nk) h)
(n+1)k +

e(((n+q)k&nk) h)
q(n+q)k =Cn (h)+O(nk&2h2)

where Cn=an+bnh with an<<n&2&k, bn<<n&2. Hence completing the
sum of Cn (h)

G1j (h)= :
n#J(q)

Cn (h) e(nkh)+O(=h)+O(=&1&kh1+2�(k&1))

+O(=&1h1+1�(k&1)). (4.6)

Choosing = to be a small enough power of h, we conclude from (4.4), (4.5)
and (4.6) that gj (h) is differentiable at h=0. K

Proof of Lemma 4.5. As gcd( p, q�p)=1, an application of Euclid's
algorithm proves (see Lemma 2.10 of [Va])

S(a�q)=S(a1�p#1
1 ) } S(a2 �p#2

2 ) } } } } } S(ar �p#r
r )

for some a1 , a2 , ..., ar with gcd(aj , p j)=1, 1� j�r. Finally, applying a
suitable automorphism of the Galois group of Q(e(1�p#j

j ))�Q it is deduced
that S(aj �p#j

r ) vanishes if and only if S(1�p#j
r ) vanishes. K
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Proof of Lemma 4.6. first of all, note that S(1�p)=0 if and only if nk

runs over all of the residue classes when 1�n�p, because otherwise
S(1�p) would be a linear combination of less than p distinct p-roots of
unity, which is non zero (because the cyclotomic polynomial
t p&1+t p&2+ } } } +t+1 is irreducible). Hence, defining the group
homomorphism

,: (Z�pZ)* � (Z�pZ)*

x � xk

it is enough to prove

, is injective � gcd(k, p&1)=1.

But note that p&1 is the order of (Z�pZ)*, so if gcd(k, p&1)=d all the
group elements with order dividing d are in Ker , (and the converse is also
true). K

Proof of Lemma 4.7. We can assume #>1 because otherwise the result
is covered by Lemma 4.6. By notational convenience we shall write
`=e(1�p#) and `j=` pj

. Separating the terms of S(1�p#) according the
power of p dividing n, we have

S(1�p#)=!0+!1+!2+ } } } +!# , where !j= :
p#&j

n=1
p |% n

`nk

jk .

If J is the greatest integer less than (#&1)�k then !j=,( p#& j) for
J+1< j�# and !J+1=,( p#&J&1) or !J+1= p#&J&2 (S(1�p)&1) depend-
ing on k | #&1 or k |% #&1. Hence

S(1�p#)=!0+!1+!2+ } } } +!J+(1&=0) p#&J&2S(1�p)+=0 p#&J&1 (4.7)

where =0=0 if k | #&1 and =0=1 if k |% #&1.
After writing S(1�p#) in this manner, we shall prove separately the two

implications of the lemma.

( O ) The Galois group G(Q(`)�Q(` p)) is cyclic of order p generated
by _0 : ` � `#&1`. A plain calculation proves T0 !0=0 where T0 is the
``trace'' function T0=1�p(_0+_2

0+_3
0+ } } } +_ p

0 ). In the same way, con-
sidering the generator of G(Q(`jk)�Q(`jk+1)) given by _ j : ` jk � `#&1`jk , it
holds for 0� j�J

Tj !j=0 where Tj=
1
p

(_j+_2
j +_3

j + } } } +_ p
j ).
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Hence by (4.7) if S=0 we have, note that Tj fixes Q(`jk+1),

0=(TJ b TJ&1 b } } } b T1 b T0)(S(1�p#))

=(1&=0) p#&J&2S(1�p)+=0 p#&J&1.

Obviously, this equality requires =0=0 and S(1�p)=0, so k | #&1 and
gcd(k, p&1)=1 by Lemma 4.6.

(o) As it was proves in Lemma 4.6, gcd(k, p&1)=1 implies that
,: (Z�pZ)* � (Z�pZ)* given by ,(x)=xk is an isomorphism. If p |% k each
solution of xk=a{0 in Z�pZ can be lifted, by Hensel's lemma, to a solu-
tion in Z�plZ, 0<l�# (in fact to a p-adic solution). Hence ,(x)=xk is an
epimorphism, indeed an isomorphism, acting on (Z�pl Z)*. Then we can
write for 0� j�J

!j= :
p#&j

n=1
p |% n

`n
jk= p j(k&1) :

p#&jk

n=1
p |% n

e(n�p#& jk).

The last sum is a Ramanujan sum that can be explicitly evaluated (see for
instance p. 31 of [Va]) and in this case it vanishes (note that #& jk>1
because j�J) then the result follows from (4.7) and Lemma 4.6. K

FIG. 1. Graph of Im F3, 2 .
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FIG. 2. Graph of Im F4, 2 .

5. SOME COMPUTER GRAPHICS

A global view of graphs of Re F:, k and Im F:, k reveals a chaotic
behavior that increases with k when : is fixed, which agrees with
Theorem 3.1. On the other hand the graphs of Re fk and Im fk become less
chaotic as k grows due to the formula dim fk=1+1�2k. This situation is
reflected in Figs. 1�4 in which the sequence cn has been chosen to be
constant.

FIG. 3. Graph of Re F3, 3 .
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FIG. 4. Graph of Re F6, 6 .

Although this global chaotic behavior, Theorem 4.3 and its corollaries
imply that the functions Re fk and Im fk are differentiable at infinitely
many rational points. If one of these functions is differentiable at x=a�q
then its graph can be approximated by a straight line in a small neighbour-
hood of x. The size of this neighbourhood decreases drastically when q or
k grow. For instance, according with Corollary 4.8, Re f3 is differentiable
at x1=1�3 and at x2=3�5. In Figs. 4�5 it is possible to check how different
are the needed ranges to visualize differentiability at x1 and x2 even in this

FIG. 5. Graph of Re f3 , 0.331�x�0.336.
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FIG. 6. Graph of Ref3 , 0.5999�x�0.6001.

case in which denominators are very close. These pictures also show the
complexity of the graphs of Re fk and Im fk , which suitably magnified
reveal a quite different local-global behavior (compare Fig. 3 with 5 and 6)
depending on diophantine approximations.

REFERENCES

[Bo] E. Bombieri, Le grand Crible dans la The� orie Analytique des Nombres, Soc. Math.
France, Aste� risque 18 (1974).

[Ch-Co] F. Chamizo and A. Co� rdoba, The fractal dimensions of a family of Riemann's
graphs, C.R. Acad. Sci. Paris, Se� rie I 317 (1993), 455�460. [Erratum 320 (1994),
649�650]

[Da] H. Davenport, ``Multiplicative Number Theory,'' 2nd ed., Graduate texts in Mathe-
matics, Vol. 74, Springer-Verlag, Berlin, 1980.

[Du] J. J. Duistermaat, Selfsimilarity of ``Riemann's nondifferentiable function'', Nieuw.
Arch. Wisk. 9, No. 4 (1991), 303�337.

[El-Me] W. J. Ellison and P. Mende� s-France, ``Les nombres premiers,'' Publications de
l'institut de mathe� matique de l'universite� de Nancago IX, Hermann, Paris, 1975.

[Ge] J. Gerver, The differentiability of the Riemann function at certain rational multiples
of ?, Amer. J. Math. 92 (1970), 33�55.

[Ha] G. H. Hardy, Weierstrass's non-differentiable function, Trans. Amer. Math. Soc. 17
(1916), 301�325.

[Ha-Li] G. H. Hardy and J. E. Littlewood, Some problems in diophantine approximation
II, Acta. Math. 37 (1914), 194�238.

[Ha-Wr] G. H. Hardy and E. M. Wright, ``An Introduction to the Theory of Numbers,''
4th ed., Clarendon Press, Oxford, 1964.

[Ho-Tc] M. Holschneider and Ph. Tchamitchian, Pointwise analysis of Riemann's ``non dif-
ferentiable'' function, Invent. Math. 105 (1991), 157�175.

353SOME FRACTAL FOURIER SERIES



[Va] R. C. Vaughan, ``The Hardy�Littlewood Method,'' Cambridge Tracts in Mathe-
matics 80, Cambridge Univ. Press, Cambridge, UK, 1981.

[We] K. Weierstrass, ``U� ber continuierliche Functionen eines reellen Arguments, die fu� r
keinen Werth des letzteren einen bestimmten Differentialquotienten besitzen,''
Mathematische Werke II, pp. 71�74, Mayer u. Mu� ller, Berlin, 1895.

[Zy] A. Zygmund, ``Trigonometric Series,'' 2nd ed., Vol. I and II combined, Cambridge
Univ. Press, Cambridge, UK, 1990.

354 CHAMIZO AND CO� RDOBA


	1. INTRODUCTION 
	Scheme 1 
	Scheme 2 
	Scheme 3 
	Scheme 4 

	2. NOTATION AND AUXILIARY RESULTS 
	3. FRACTAL DIMENSION 
	4. LIPSCHITZ ORDER AND DIFFERENTIABILITY 
	FIG. 1 
	FIG. 2 
	FIG. 3 

	5. SOME COMPUTER GRAPHICS 
	FIG. 4 
	FIG. 5 
	FIG. 6 

	REFERENCES 

