AN INFINITE COMPACT HAUSDORFF GROUP HAS
UNCOUNTABLY MANY CONJUGACY CLASSES

ANDREI JAIKIN-ZAPIRAIN AND NIKOLAY NIKOLOV

ABSTRACT. We show that an infinite compact Hausdorff group has uncount-
ably many conjugacy classes.
MSC: 22C05, 20E45, 20E18

1. Introduction

A compact group is a topological group whose topology is compact. All groups
we consider are assumed to be Hausdorff spaces. The study of algebraic properties
of compact groups is a well-established topic in Group Theory. Normal subgroups
and homomorphic images of compact groups have been recently studied in [7, 8]
(see also [9]). In this paper we consider properties of conjugacy classes of a compact
group and we prove the following result.

Theorem 1.1. The number of conjugacy classes in an infinite compact Hausdorff
group is uncountable.

The structure of an arbitrary compact group G breaks into two pieces in a natural
way. Let G^0 be the identity component of G. Then G^0 is normal and G/G^0 is a
profinite group. The structure of G^0 is also well understood: $G^0 = ZP$, where Z
is the center of G^0 and $P \cong \prod S_i/D$ is a Cartesian product of compact connected
simple Lie groups S_i modulo a central subgroup D. Therefore, problems about a
general compact group G reduce to two cases, first dealing with Lie groups and
second with profinite groups. The Lie group part of the proof of Theorem 1.1 is
straightforward. However, the profinite part is more sophisticated. In particular,
the proof relies, indirectly, on the Classification of the Finite Simple Groups via
Hartley’s generalization of the Brauer-Fowler theorem and it also uses the Hall-
Higman theory and the theory of finite groups with almost regular automorphisms.

One of the first consequences for a compact group G to have countably many
conjugacy classes is to have an open conjugacy class. In our proof we use that,
in fact, G has many conjugacy classes with this property. It will be interesting
to investigate what we can obtain if we assume this condition only on a single
conjugacy class. Topological properties of conjugacy classes in totally disconnected
locally compact groups have been studied in [11], in particular it is proved there
that such groups cannot have a comeager conjugacy class. The following question
is still open.

Question 1.2 (see also remark 3.5 (2) of [11].) Let G be a compact Hausdorff
group. Assume that G has an open conjugacy class. Is it true that G is virtually
soluble?

Date: December 2018.
This question is related to the following well-known problem in finite group theory.

Question 1.3. Is there a function \(f = f(m) \) such that a finite group \(G \), having an element \(g \) satisfying \(|C_G(g)| \leq m \), contains a soluble subgroup of derived length and of index bounded by \(f(m) \)?

More details about this problem can be found, for example, in [5].

After this paper was written John Wilson obtained a more general result for profinite groups: a profinite group \(G \) has fewer than \(2^{ℵ₀} \) conjugacy classes of \(p \)-elements (for a prime \(p \)) if and only if its Sylow pro-\(p \) subgroups are finite.

Acknowledgments. The work of Andrei Jaikin-Zapirain is partially supported by the grant MTM2014-53810-C2-01 of the Spanish MINECO, the mobility program “Salvador de Madariaga” of the Spanish MECD (the grant PRX16/00179) and by the ICMAT Severo Ochoa project SEV-2015-0554.

This paper was done while the first author was visiting the Mathematical Institute of the University of Oxford. He would like to thank everyone involved for their fine hospitality.

The authors would like to thank John Wilson for useful comments on a preliminary version of this paper and for indicating to us the reference [3]. They also thank the referee for suggesting improvements to the exposition.

2. The proof of Theorem 1.1

Let \(G \) be a compact group and assume that \(G \) has countable number of conjugacy classes. We want to show that \(G \) is finite. We divide our proof in several steps.

Step 2.1. Let \(H \) be an open subgroup of \(G \) and let \(N \) be a closed normal subgroup of \(H \). Then \(H/N \) has countably many conjugacy classes.

Proof. Since \(G \) is compact, \(H \) is of finite index, say \(n \) in \(G \). Let \(T = \{t_1, \ldots, t_n\} \) be a left transversal of \(G \) in \(H \): \(G = \cup_{i=1}^{n} t_i H \). Then for every \(g \in H \), \(g^G = \cup_{i=1}^{n} (g^{t_i})^H \) contains at most \(n \) different \(H \)-conjugacy classes. Thus, \(H \) and also \(H/N \) have countably many conjugacy classes. \(\square \)

Step 2.2. Let \(U \) be a closed subset of \(G \). Then there exists \(g \in U \) such that \(g^G \) contains an open subset of \(U \).

Proof. Since \(G \) is compact all conjugacy classes of \(G \) are closed. Thus, \(U = \cup_{i=1}^{∞} (g_i^G \cap U) \) is a union of countable number of closed sets. Then the claim follows from the Baire category theorem. \(\square \)

Step 2.3. Assume that \(G \) is profinite and let \(U \) be a clopen subset of \(G \). Then there exists \(g \in U \) of finite order and \(C > 0 \), such that for any normal open subgroup \(N \) of \(G \), \(|C_{G/N}(gN)| \leq C \) (see also Lemma 3.1 of [11]).

Proof. By the previous step, there exists \(g \in U \) such that \(g^G \) contains an open subset of \(G \). Hence \(g^G \) contains \(gH \) for some open subgroup \(H \) of \(G \) and so

\[
|C_{G/N}(gN)| = \frac{|G/N|}{|g^G N/N|} \leq \frac{|G/N|}{|HN/N|} \leq |G : H|
\]

for every normal open subgroup \(N \) of \(G \).
Since the sizes of $C_{G/N}(gN)$ are uniformly bounded when N runs over all the open normal subgroups of G, the order of g should be finite. \hfill \Box

Recall that a prosolvable group is a profinite group isomorphic to an inverse limit of finite solvable groups. Any finite group G has a unique maximal solvable normal subgroup $\text{sol}(G)$, called the solvable radical of G. Similarly, a profinite group G has a unique maximal normal prosolvable subgroup $\text{sol}(G)$ called the prosolvable radical of G.

Step 2.4. Assume that G is profinite. Then the prosolvable radical of G is open.

Proof. By Step 2.3 there exists an element $g \in G$ of finite order and a constant C such that for any normal open subgroup N of G, $|C_{G/N}(gN)| \leq C$. Hence, by Hartley’s generalization of the Brauer-Fowler theorem [2 Theorem A], there exists a constant K depending only on C such that

$$|G/N : \text{sol}(G/N)| \leq K.$$

Let $K_0 = \max\{|G/N : \text{sol}(G/N)| : N \trianglelefteq_o G\}$ and consider $S = \{N \trianglelefteq_o G : |G/N : \text{sol}(G/N)| = K_0\}$. For any $N \trianglelefteq_o G$ let S_N be the subgroup of G, containing N, such that $S_N/N = \text{sol}(G/N)$.

If $N_1 \leq N_2$ are open normal subgroups of G, then the canonical image of S_{N_1}/N_1 in G/N_1 is contained in $\text{sol}(G/N_1)$. Hence $S_{N_1} \leq S_{N_1}N_2 \leq S_{N_2}$. Thus, if N_2 is in S, then $S_{N_1} = S_{N_2}$ because $K_0 \geq |G : S_{N_1}| \geq |G : S_{N_2}| = K_0$. From this we also obtain that $N_1 \in S$.

On one hand the argument from the previous paragraph implies that if $L \leq N \leq N$ and $N \in S$, then $N \cap L \in S$. Therefore, S is a base of neighborhoods of 1 in G. On the other hand, we also have that if $N_1, N_2 \in S$, then

$$S_{N_1} = S_{N_1 \cap N_2} = S_{N_2}.$$

Hence, if $N \in S$, $S = S_N$ does not depend on N. Since S is a base of neighborhoods of 1 in G, we obtain that S is isomorphic to the inverse limit of $\{S/N = \text{sol}(G/N)\}_{N \in S}$, and so, S is prosolvable. Thus, $\text{sol}(G)$ is open in G. \hfill \Box

A (profinite) order is an abstract expression $\prod_i p_i^{k_i}$ where p_i runs over all the primes and $k_i \in \{0, 1, 2, \ldots\} \cup \{\infty\}$. We say that p_i divides $\prod_i p_i^{k_i}$ if $k_i \neq 0$. For any natural number a and prime p we denote by $\text{ord}_p(a)$ the number k such that the p-part of a is equal to p^k.

Let G be a profinite group, then the (profinite) order of G is $\prod_i p_i^{k_i}$, where $k_i = \sup\{\text{ord}_p(|G/N|) : N \trianglelefteq_o G\}$. The (profinite) order of an element $g \in G$ is the order of the cyclic profinite subgroup generated by g. Observe that the order of an element is a conjugacy invariant.

Step 2.5. Assume that G is profinite. Then the order of any element g of G is divisible by finitely many primes.

Proof. Let C be the cyclic profinite subgroup generated by g and let C_p be its Sylow pro-p subgroup. Let P be the set of primes p such that $C_p \neq \{1\}$. For any $p \in P$, we choose some $a_p \in C_p \setminus \{1\}$. For any subset S of P we put $a_S = \prod_{p \in S} a_p$.

Let S_1 and S_2 two subsets of P. Observe that the orders of a_{S_1} and a_{S_2} coincide if and only if $S_1 = S_2$. Any infinite set contains uncountably many subsets. Thus, since the order of an element is a conjugacy invariant, P can not be infinite. \hfill \Box
Let G be a finite group. We denote by $F(G)$ the Fitting subgroup of G. This is the product of all normal nilpotent subgroups. We set $F_0(G) = \{1\}$ and if $i \geq 1$, $F_i(G)/F_{i-1}(G) = F(G/F_{i-1}(G))$. If G is a solvable group, the least number h such that $G = F_h(G)$ is called the Fitting height of G.

Recall that a pronilpotent group is a profinite group isomorphic to an inverse limit of finite nilpotent groups. If G is profinite group, we put $F^0(G) = G$ and we denote by $F^i(G)$ the least normal closed subgroup of G such that $G/F^i(G)$ is pro-nilpotent and if $i \geq 1$, $F^{i+1}(G) = F^i(F^i(G))$. If G is finite solvable, G has Fitting height h if $F^h(G) = \{1\}$ and $F^{h-1}(G) \neq \{1\}$. Thus, we say that a solvable group G has Fitting height h if $F^h(G) = \{1\}$ and h is the smallest number satisfying this property.

The following step can be obtained from Step 2.5 using a result of W. Herfort [3]. We include its proof for the completeness of exposition.

Step 2.6. Assume that G is prosolvable group. Then G is a pro-π group for a finite set of primes π.

Proof. By Steps 2.2 and 2.3 there exists an element $g \in G$ of finite order and a constant C such that for any normal open subgroup L of G, $|C_{G/L}(gL)| \leq C$ and $gN \subseteq g^C$ for some open normal subgroup N of G.

Let π the set of primes dividing the order of g. Denote by N_π' a pro-π' Hall subgroup of N (since N is prosolvable, a pro-π' Hall subgroup exists). Since all the pro-π' Hall subgroups of N are conjugated in N, there exists $n \in N$ such that $N_\pi'' = N_\pi'$. We put $h = gn$. Observe that $h \in gN \subseteq g^2$. Hence the order of h is equal to the order of g.

Let $L \leq N$ be an open normal subgroup of G. Then h acts on $N_\pi' L/L$. Take $aL \in C_{N_\pi'L/L}(h)$. The order of haL is equal to the products of the orders of hL and aL, because they are coprime. On the other hand, since $ha \in gN$, the order of ha is equal to the order of g. These together imply that the order of aL is one, i.e. $aL = L$ and we conclude that h acts fixed point freely on $N_\pi' L/L$. Applying a result of J. Thompson [10, Corollary], we obtain that the Fitting heights of the quotients $N_\pi' L/L$ are uniformly bounded. Hence the Fitting height of N_π' is finite (let say f).

Assume that for some $0 \leq i < f - 1$, the profinite order of $F^i(N_\pi')/F^{i+1}(N_\pi')$ is divided by infinitely many primes $\{p_j\}$. Take $a_j \in G$ such that $a_j F^{i+1}(N_\pi')$ is not trivial element of the Sylow pro-p_j subgroup of $F^i(N_\pi')/F^{i+1}(N_\pi')$. Then the order of $a_j F^{i+1}(N_\pi')$ is divisible by infinitely many primes $\{p_j\}$. This contradicts Step 2.5. Thus for every $0 \leq i < f - 1$, the profinite order of $F^i(N_\pi')/F^{i+1}(N_\pi')$ is divided by finitely many primes. Hence, the same is true for N_π'. Since N is open in G and π is finite, we are done.

Let G be a profinite group. We say that G has a finite p-length if there exists a series of normal closed subgroups of G

$$\{1\} = N_{-1} \leq P_0 < N_0 < P_1 < N_1 \leq \ldots < P_h \leq N_h = G,$$

such that P_i/N_{i-1} is pro-p and N_i/P_i is pro-p'. The smallest possible h is called the p-length of G. Clearly the p-length of a profinite group is equal to the supremum of the p-lengths of its finite quotients.

Step 2.7. Assume that G is prosolvable group. Let $p > 2$ be a prime. Then G is of finite p-length.
Proof. Let S_p be the set of pro-p elements of G. Observe that S_p is a closed set. Hence, by Step 2.2, there exists $g \in S_p$ and an open normal subgroup H of G such that $gH \cap S_p \subseteq g^G$. First let us show that g has finite order.

Applying Step 2.3 with $U = gH$, we obtain that there exists $h \in gH$ of finite order such that h^{-1} contains an open set. Let h_p be the p-part of h. Now $hH = gH$ is a p-element of G/H because we chose $g \in S_p$. Therefore $h_pH = gH$. Hence $h_p \in gH \cap S_p \subseteq g^G$. Thus g is of finite order.

Let P be a Sylow pro-p subgroup of G containing g. We have just shown that the order of elements of $g(P \cap H) = gH \cap P \subseteq g^G$ is finite and uniformly bounded. By [12, Theorem 3*], H has finite p-length. Since G is prosolvable and H is open in G, G also has finite p-length.

Step 2.8. Let p be a prime and assume that G is a pro-p group. Then G is finite.

Proof. By Step 2.3, there exists $g \in G$ and a constant C such that for every an open normal subgroup N of G, $|C_{G/N}(gN)| \leq C$. By a result of A. Shalev, [9, Theorem A*], the derived length of G/N is bounded by some number which depends only on C. Hence G is soluble. If G was infinite, it would have an infinite virtually abelian quotient. Thus, Step 2.4 would imply that an infinite abelian profinite group has a countable number of conjugacy classes. But this is impossible, because an infinite profinite group is uncountable. Therefore, G is finite.

Step 2.9. Assume that G is prosolvable. Then G is finite.

Proof. By Step 2.6, only finitely many primes divide the order of G. We will prove the statement by induction on the number of primes dividing the order of G. The base of induction, when G is pro-p, is considered in Step 2.8. Assume that we have proved that G is finite if its order is divided by at most $n \geq 1$ primes. Let us now consider G which order is divided by $n + 1$ primes.

Let p be an odd prime dividing the order of G. By Step 2.7, G has finite p-length. Thus, there exists a series of normal closed subgroups of G

$$\{1\} = N_{-1} \leq P_0 < N_0 < P_1 < N_1 < \ldots < P_h < N_h = G,$$

such that P_i/N_{i-1} is pro-p and N_i/P_i is pro-p'. Now G/P_h has countably many conjugacy classes and hence by the inductive assumption G/P_h is finite. Step 2.1 gives that P_h/N_{h-1} has countably many conjugacy classes and is therefore finite by Step 2.8. Continuing in the same way we conclude that N_i/P_i and P_i/N_{i-1} are finite for all $i = h, h - 1,\ldots, 0$. Hence G is finite.

Step 2.10. Assume that $G = G^0$ is connected. Then G is trivial.

Proof. By way of contradiction, we assume that G is non-trivial. Therefore, since G is connected, it is infinite. By [4, Corollary 2.43], G has an infinite quotient isomorphic to a compact connected Lie group. Thus, without loss of generality we may assume that G is a non-trivial compact connected Lie group.

Let $g \in G$. Then, by [4, Theorem 6.30], the centralizer $C_G(g)$ is of positive dimension (as a real manifold). Hence, the dimension of g^G is less than the dimension of G, and so, the Haar measure of g^G is 0. Thus, G can not be the union of countable number of conjugacy classes. We have obtained a contradiction. Therefore, G is trivial.
Step 2.11. G is finite.

Proof. Let $\bar{G} = G/G^0$. Then by van Dantzig’s Theorem (see Appendix B5 in [1]), \bar{G} is a profinite group with countable number of conjugacy classes. By Step 2.4 $\text{sol}(\bar{G})$ is open in \bar{G}. Thus $\text{sol}(\bar{G})$ is a prosolvable group with countable number of conjugacy classes. By Step 2.9 $\text{sol}(\bar{G})$ is finite. Therefore, \bar{G} is finite and so G^0 is open in G. Hence, G^0 is a connected compact group with countable number of conjugacy classes. By Step 2.10 G^0 is trivial and so G is finite. \[\square\]

References