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Abstract

We establish the first super-logarithmic lower bound for the num-
ber of conjugacy classes of a finite nilpotent group. In particular, for
any constant ¢ there are only finitely many finite p-groups of order p™
with at most ¢ - m conjugacy classes. This answers a question of L.
Pyber.

1 Introduction

Let p be a fixed prime number and G a finite p-group of order p™. Since GG
is nilpotent there exists a central series of subgroups

G:G0>G1>...>Gm:{1}

such that |G; : Giy1| = p. Since for each 0 < i < m — 1 there are at least
p— 1 conjugacy classes in G; \ G;41, we obtain that the number of conjugacy
classes k(G) of G satisfies

k(G) > (p— 1)m > log, |G|.

A slight improvement of this elementary bound was given by P. Hall. We
write m as m = 2n + e, where e = 0, 1. P. Hall showed (see, for example, |2,
Chapter 5, Theorem 15.2]) that there exists a non-negative integer a = a(G),
which we call the abundance of GG, such that

K(G) =p°+ (p* = 1)(n+alp - 1)). (1)
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This implies, in particular, that

pe—1
ME) > Em+ (- ) = Do - 1) )
In [8] J. Poland proved that if a = 0 then G is a p-group of maximal class
of order at most p?™2 and so there are only finitely many finite p-groups
of abundance 0 (for each prime p). Combining this with the bound (2) we
obtain that

—1
k(G) > b 5 m for all p-groups except finitely many of them.  (3)

Polland’s results suggested that for a fixed prime p there are only finitely
many finite p-groups G with a given value of a(G) (this appears, for example,
as Problem 4 in [10]). This problem was solved in [4]. It was shown that
a(G) > \g—?. However note that this result did not improve the constant ’%

in the bound (3). In this paper we establish the first super-logarithmic lower
bound for the number of conjugacy classes of a finite nilpotent group.

Theorem 1.1. There exists a (explicitly computable) constant C' > 0 such
that every finite nilpotent group G of order n > 8 satisfies

log, logy n

k
(@) > Olog2 log, log, n

- log, n.

As an immediate consequence we obtain the answer on a question of L.
Pyber posed in [9] (this question appears also as Problem 5 in [10]).

Corollary 1.2. For any constant c there exists only a finite number of finite
p-groups G of order p™ with at most ¢ - m conjugacy classes.

In his paper L. Pyber established a lower bound for k(G) for an arbitrary
finite group G. Recently T. Keller [7] has improved Pyber’s bound. We hope
that the techniques introduced in the proof of Theorem 1.1 may be also used
in obtaining further improvements of the Pyber-Keller bound. Recall the
main conjecture in this subject.

Conjecture. There exists a constant C' > 0 such that a finite group G of
order n satisfies k(G) > C'log, n.
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2 Preliminaries

Our notation is standard. If M is a subset of G, then we denote by kq(M)
the number of conjugacy classes that have a non-empty intersection with M.
As usual, d(G) denotes the minimal possible number of generators for G and
exp(@) the exponent of G. For any natural number n, G is the subgroup of
G generated by {¢"|g € G}. If G is a p-group, then for any real r we denote
by €,.(G) the subgroup generated by elements of order at most p". We will
use log for the logarithm to base 2.

2.1 Powerful groups

Recall that a finite p-group K is powerful if p is odd and K/K? is abelian,
or p =2 and K/K* is abelian. Throughout this paper we shall use various
facts about powerful p-groups, which can be found in [6] and [1]. Some of
them are recollected in the following proposition.

Proposition 2.1. Let K be a powerful p-group and P = K? (note that
P=K ifp>2). Then
1. The exponent of K coincides with the mazximum of the orders of ele-
ments from any generating set.
2. For anyi,j >0, [Kpi,Kpj] < KrT

i+k

3. For any 1, j and k such that k —1 < ¢ < j, the map Kpi/Kp —
K7 |KP"" which send aK?"" to a” K" is a surjective homomor-
phism of abelian groups.

4. Qi(P) has exponent less than or equal to p'.
5| (P)| = pP) and |Qi(P)| < pdP).

6. Any normal in K subgroup, which is contained in K?P, is powerful.

Let P be a powerful p-group. Consider a function
fr:{l,...,d(P)} = N
defined in the following way. We put

fp(i) = kif |P:Qu(P)®(P)| <p' and |P: Qp_1(P)®(P)| > p'.



Example 2.2. Let ny > ny > ... > ny be k positive integers. Put P =
Cpni X -+ X Cpni,. Then we have d(P) = k and fp(i) = n,.

Lemma 2.3. Let K be a powerful p-group and P = K?. Then for every
k <log, exp(P) we have that

1P/w(P) = [] »™

fp(i)=k

Proof. We will prove the lemma by induction on |P|. By Proposition 2.1(4),
Q(P/(P)) = Qipa(P)/U(P). Thus, if P = P/Q(P), then fp(i) =
fp(i) —1 when i € {1,...,d(P)}. Let us assume first that & > 1. Then
applying the induction hypothesis we obtain that

PIP) = IP/us(P)] = [ »ro- = ] pfeo-

(1) >k—1 fp(i)>k

Now consider the case k = 0. Using Proposition 2.1(5) and the induction
hypothesis, we obtain that

[Pl = |u(P)||IP|= P)pr” = p"P= ™ 1T o7

fp 1,)>]_

d(P)
= [uP)er): o) [T o0 = [[o".

fp 1,)>]_

]

Corollary 2.4. Let K be a powerful p-group and P = K?. Then for every
k <log, exp(P) we have that

Q4(P) : Q1 (P)] = pmex{ISisd(P): fe()2k},

Proof. Applying the previous lemma we obtain that
1P/(P) = ] »™"
fp(l)>k:

and

PP = ] o0t = T o0k

fp(i)=k—1 fr(i)=k



Thus, since fp(i) is a monotonically decreasing function,

[ (P) : sy (P)] = prex(Sisirr 1024,

We also will need the following lemma.

Lemma 2.5. Let G be a finite p-group and P a mazimal normal powerful
subgroup of G. Then Cg(P/P?) = P. In particular, if n = d(P) then

271(3721,71) p _ 2
|G/P| < n(n—1)
P2 p>2

Proof. For simplicity we assume that p is odd. If Cq(P/®(P)) # P then
there exists a ¢ P such that aP € Z(G/P) N (Ce(P/®(P))/P). Put
R = (a,P). Then [R,R] < PP < RP and R is normal in G. We have a
contradiction. Thus, G/P can be embedded in GL,(F,). Therefore it’s or-
der is at most the order of a Sylow p-subgroup of GL,,(F,) which is equal to

n(n—1)

p =z . 0

2.2 The average order

If N is a normal subgroup of a finite group G and x € G, we denote by
og/n(x) = og/n(zN) the order of xN in G/N. Then we put

EPIRLE

zeG

o(G/N) =

The number o(G) is called the average order of G. For example, we may
estimate the average order a powerful p-group. This result appears in the
proof of [10, Lemma 4.7].

Lemma 2.6. Let P be a powerful p-group of exponent p*. Then
P >o(P) > (p—1p*"

Proof. By Proposition 2.1(1), Qx_1(P) is a proper normal subgroup of P. If
x € P\ Q_1(P), then o(z) = p*. Thus,

oP) 2 3 lo()| = (-

’ | z€P\Q;1(P)

This proves the second inequality. The first inequality is obvious. O

b}



In the following lemma we show that the average order of a finite group
is at least the average order of its center.

Lemma 2.7. Let G be a finite group. Then o(G) > o(Z(Q)).

Proof. Let x € G and
m =m(z) =min{og(y): y € 2Z(G)}.

Then there exists y € Z(G) such that y™ = 1. Take a € Z(G). Then
(ya)™ = a™ € Z(G)™. Hence | = og/z(cym(ya) divides m. On the other
hand, there exists z € Z(G) such that (ya)! = 2™. Therefore (yaz=™")! =1,
and so by the choice of m, [ > m. Thus, m = og/z(=(ya).

Since og/z(cym (ya) divides og(ya), we obtain that

og(ya) =m-og((ya)™) =m-og(a™) =m - % > og(a).

Now, calculating the average order of elements of 2Z(G) we see that

1 1 1
7@, 2, Y 176N 2, ) 2 T 2, ) T D)
Hence o(G) > o(Z(G)). =

It would be very interesting to understand the relation between o(G) and
o(N), where N is a normal subgroup of G. We pose the following question.

Question. Let G be a finite (p-) group and N a normal (abelian) subgroup
of G. Is it true that o(G) > o(N)'/??
The following lemma is proved in [5]. We include the proof for the con-

venience of the reader.

Lemma 2.8. Let G be a finite p-group and M a normal subgroup of G. Then
for any x € G
|Ca(z)| = ogm ()| Cu ().

Moreover, if M is elementary abelian and og/n(x) <t < In|M| then

|Ca(x)| >t MM,



Proof. Since Cy(x) = M N Cg(x),
Ca(2)/Cu()| = [Co(z) M/M| = ogm ().
Hence |Cq(2)] > og/m(x)|Cu(x)].

Now, if M is elementary abelian we may consider M as a [F,[z]-module.
Then M is a direct sum of principal submodules of order < p°c/# () Hence
Cas(a)| 2 |M|Vowsnts),

Consider the function f(z) = z|M|*?. Then f decreases in the interval
1 <z <In|M|. Hence we have that

|Ca ()] > o /a(x)|Car ()] = o ya(x)| M|Moerm @ > ¢ M|,

3 Proof of Theorem 1.1

Without loss of generality we may assume that GG in Theorem 1.1 is a p-group.
In this case Theorem 1.1 is a consequence of the following result.

Theorem 3.1. There exists a constant ¢ > 0 such that a finite p-group G of
order p™ > p* satisfies

-1
kE(G)>c-p meosm

“loglogm

Proof. For simplicity we assume that p is odd. The same proof with few
changes works also when p = 2.

Fix a maximal powerful normal subgroup P of G and let d = d(P).

Claim 3.2. The theorem holds if m > d(d* + 1).

Proof. Let p* be the exponent of P. Since P is powerful, by Proposition 2.1
(5), |P| < pP* = p? Thus, by Lemma 2.6,

K(P) > o(P) > (p— Dt = P pa
p

d(d—1)

By Lemma 2.5, |G/P| < p~z . Therefore,

k(P p—1 |P|Vd m_d(d—1) _d(d—1) _ m_ d241
M@= |G(' J)3| - p pc|i(d|_1)/2 >pa a2 = pd :



Now, let us assume that m > d(d? + 1). In this case we obtain that

Cﬂ\l\'}

d24+1 m m
d

> p2 >p-p

k(G) > pi~ “>copeom?

for some constant ¢ > 0.

Claim 3.3. The theorem holds if d < 212.

Proof. By Claim 3.2, we may assume that m < d(d? + 1). Thus, if d < 2'2,
then m < 237, Since k(G) > (p — 1)m, we are done. O

So, from now on, we will assume that m < d(d? + 1) and d > 2'2.

Claim 3.4. Assume |G/P|=p*@. Then k(G) > dp®.

Proof. Let G = G/P. By Lemma 2.5, the nilpotency class of G is at most d.
Define p% = |v;(G) : vi41(G)|. Thus, kg(v:(G)P \ Yiz1(G)P) > p* — 1. On
the other hand kg (P) > (p — 1) log, |P| > d. Hence

k(G) > ka(P)+ Y0, ka(3(G)P\vix1(G)P) > d + S0 (p% — 1)

= YL p% = dy/pris = d(|GVY) = dp*
0

We put S = PP. Since P is powerful, by Proposition 2.1, S is also
powerful.

Claim 3.5. We have that k(G/S) > 244,
Proof. Without loss of generality we may assume in the proof of this claim
that S = PP = {1}. Thus |P| = p?

Let H be a subgroup of G. Put ty = 510 |G:I—CIZ\+10gd+1 and denote by
A(H) the following subset of H:

A=AH)={xe€ H: og/p(x) >t}
Note that if x € H \ A(H) then, by Lemma 2.8,

d~p2 logp |G:H|+log d+1

1
|Ca(@)] > ogp(x)|P|°e/P™ > ty| PV > 2log, [G-H+log d+1

p|G:H|?d? p|G:H|dlogd
= 2log, |G:H|+logd+1 = 2 :
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Since kg(H) > ﬁ > vemam) Ca ()], we have

ke (H) > p|G: H||H\ A(H)|dlogd _ p|H \ A(H)|dlogd
= 2G| 2|H]

Thus, if |[A(H)| < %, then kg(H) > p'd{#. Thus we may assume that

|A(H)| > @ for any H < G.
Note that by Lemma 2.8,

|Z|OG |— | |ZOG/P |CP )|

zeG zeG

Let x(z) = |Cp(x)| be the permutation character associated with the action
of G on P (see [3, p.68]). Then the last inequality can be rewritten as

k(G) Z <OG/P7X>‘
For each 0 <7 < d — 1 we fix an element m; € P in the following way:

First, let 1 # mg € Z(G) N P. Now, suppose we have chosen my, . . ., my.
Then let myyq € P, mgy1 & (mo, -+ ,myg) and [G, mgi1] C (mo, -+ ,my). It
is clear that the elements {m®|a = 0,...,p — 1} lie in different conjugacy
classes of G. Put N; = Cg(m;). Note that since |[G, m;]| < p', the index of

N; in G is at most p'.

If Ais a set of representatives of the G-conjugacy classes in P, then it is
known that x =, ., 19 Co(m)- 10 particular, x(z) > (p —1) Z?;ol 1§ (z) for
every x € G.

Note that, by Frobenius Reciprocity,

A(N;
<OG/P’ 1%) = <0Ni/P7 1N,> = O(NZ/P) | (‘N)“tNZ 2

d > d
4log,, |G:N;|+2logd+2 — 4i+2logd+2"

Hence
d—1
KG) > (og/p,X) = (oa/p, (p— 1) X0 15) = (0 — DAY ) 1m5irs
-d .d 1. 2d+logd—1 .dlogd
Z p Zz 0 22+logd+1 > %ln 11_g0§+1 Z E ZZg '



Remark. The proofs of Claims 3.4 and 3.5 essentially repeat the argument
of the proof of [5, Theorem 1.10]. The main new ingredients in the proof of
Theorem 3.1 are Claims 3.6 and 3.7.

Claim 3.6. Let s € {1,...,d(S)}. Then
k(G) > pIs()=D/3g,

Remark. It may be helpful in the first reading of the proof of this claim
assume that S is abelian. In this case the function fg is described in Example
2.2.

Proof. 1t is clear that without loss of generality we may assume that fg(s +
1) < fs(s)—1lors=4d(S). Put k = fs(s), T = Q(S) and let ¢ be the integer
part of (k+ 1)/3. Since T' is a normal subgroup of P and it is contained in
S = PP, Proposition 2.1(6) implies that 7' is powerful. Let A = T
and B = TP"~". Note that A and B are characteristic subgroups of P and
so they are normal in G. Since, T is powerful, Proposition 2.1(2) implies
that [A, B] = 1. Moreover, by Proposition 2.1(3), the map a: A/B — B
which sends aB to @ is a surjective homomorphism of abelian groups. Since
a commutes with G-action, « is also a homomorphism of G-modules. In
particular, A/ kera = B as G-modules.

Note that Q1 (T") = Q_1(5). Since we assume that fs(s+1) < fs(s)—1
or s = d(S), Corollary 2.4 implies that

T/ (T)] = [2(5) : ua (S)] = p°.

Since G is a p-group, there are at least (p — 1)s non-trivial G-conjugacy
classes in T//Q,_1(T). Hence the claim holds if £ = 1. So, we assume now
that £ > 2. In this case t > 1.

Choose my, ..., mp-1)s € T\Q_1(T") such that {m;Q_,(T")} lie in differ-
ent G-conjugacy classes. Consider the map §: T'/TP — Tpk_t/Tpk_t+1 which
sends 217 to z¢" TP Applying again Proposition 2.1(3) we conclude
that [ is a homomorphism of G-modules. Let x € ker S be an arbitrary
element of ker 8. This means that 27" " € T**"™". On the other hand, by
Proposition 2.1(4),

k—t+1

7 = (S

Proposition 2.1(4) also implies that Q,_;(T)*"" = 1, and so



Hence we conclude that ker 8 < Q_1(T"). Thus we obtain that

pF—t ppk—t+1

T/Qur(T) = TP (TP TP (4)

as G-modules.

Put a; = m? " and b; = m¥ = = ¥, The isomorphism (4) implies that

{b;} lie in different G-conjugacy Classes in B. Note that

og(mi) _ p ‘
pkft _pkft

OB(bi) =

Let x be the permutation character corresponding to the action of G on
B. Thus, x(g9) = |Cg(g)|. Since {b;} lie in different G-conjugacy classes in
B, we obtain that y(g) > S>% V* 18 ) (9) for all g € G. Therefore we have
the following.

KG) = & 2 gec |Ca(o)l = g Xgea 06/8(9)|Cr(9)] Lemma 2.8
= {oa/B:X) Z (0a/8, 0" 18 )
= X 0camo/n: Leatn) = 01 0(Calbi) /B)

> S D o(Ch (b)) kera) > SPTV 0(Z(Ca(bi) ) ker @) Lemma 2.7.

Since [A,B] = 1, A < Cg(b;). As we observed already a: A/B — B is a
surjective homomorphism of G-modules. Therefore since a(a;B) = b;, we
obtain that Cg(a;ker o) = Cg(b;) and so a; kera € Z(Cgq(b;)/ ker o). Thus
the exponent of Z(Ce(b;)/ ker o) is at least 04/kera(a;) = 0p(b;) = p'. Hence,
by Lemma 2.6, o(Z(Cq(b;)/ ker ) > (p — 1)p'~!. Finnaly we conclude that

(p—1)s

K(G) > Y o(Z(Calby)/kera)) > (p— 1)s(p — 1)p'~" > spl/r)=1/3,

i=1
[l

Claim 3.7. Assume |S/Qg1oglogara(S)| = p¥®. Then there exists s € {1,...,d(S)}
such that
spst)=9/3 5 4. dlog d.

In particular, k(G) > p-y - dlogd.

11



Proof. Let M = y - dlogd. Since we assume that m < d(d* + 1), we have
y < d?>+ 1. Thus,
M < d*. (5)

By the way of contradiction let us assume that sp/s()=4/3 < A for all
se{l,...,d(S)}. Thus,

M
fs(s) §310gp?+4<310gM+4. (6)

By Lemma 2.3,
M

(log,, [S/Q910g10g, n-+4(5)]) log d

= logd Z (fs(i) — 9loglog, d — 4)

fs(i)>9loglog,, d+4
< 3logd-log M - [{i: fs(i) > 9loglog,d + 4}|.

Note that if fs(i) > 9loglog, d + 4, then, using the inequality (6), we obtain
that

M
310gp7 +4 > fs(i) > 9loglog,d + 4 > 9log, logd + 4

and so0 i < %. Thus, using (5), we obtain

M 3log M 12
M < 3logd-log M =M :
=208 a o8 (logd)3 (logd)? = logd

Since we assume that d > 2'2, we obtain that M < M. We have a contra-
diction.

Thus, there exists s € {1,...,d(S)} such that sp/s(=)=4/3 > 4 . dlogd.
By Claim 3.6, k(G) > p-y - dlogd. O

Now we are ready to finish the proof. Note that since P is powerful,
Proposition 2.1(5) implies that

129 10g10g d+4(S)| < [Q910g10gd+4(P)] < prOloslosdta),
Thus,
m = log, |G| =log,|G/P|+log, |P/S|+log,|S/Q10g10g d+4(S)
+ log, [Q910g10gd+4(5)| < d(@ +y + 9loglogd + 5).

12



If 2 = max{z,y, 3loglog d+2}, then m < 5xd and logd < p(*=2/3. Applying
Claim 3.4, we obtain that

k(G) > p*d > p-x-dlogdlogz > %mlogm.

If y = max{z,y,3loglogd + 2}, then m < 5yd. Since we suppose that
m < d(d*+ 1), y < d* + 1 and since we assume that d > 2, logd > 12.
Applying Claim 3.7 we obtain that

k(G)>p-y-dlogd > %-yd(logd—i—logy—{—i’)) > 2%mlogm.

Finally, if 3loglog d+2 = max{x,y, 3loglog d+2}, then m < d(15loglogd+
9). Hence, by Claim 3.5,

P p-mlogm
k > —dlogd > ——F——.
(@) = 24 e = 800 - log log m
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