On the number of conjugacy classes of finite nilpotent groups

Andrei Jaikin-Zapirain *

Abstract

We establish the first super-logarithmic lower bound for the number of conjugacy classes of a finite nilpotent group. In particular, for any constant c there are only finitely many finite p-groups of order p^m with at most $c \cdot m$ conjugacy classes. This answers a question of L. Pyber.

1 Introduction

Let p be a fixed prime number and G a finite p-group of order p^m . Since G is nilpotent there exists a central series of subgroups

$$G = G_0 > G_1 > \ldots > G_m = \{1\}$$

such that $|G_i: G_{i+1}| = p$. Since for each $0 \le i \le m-1$ there are at least p-1 conjugacy classes in $G_i \setminus G_{i+1}$, we obtain that the number of conjugacy classes k(G) of G satisfies

$$k(G) \ge (p-1)m \ge \log_2 |G|.$$

A slight improvement of this elementary bound was given by P. Hall. We write m as m = 2n + e, where e = 0, 1. P. Hall showed (see, for example, [2, Chapter 5, Theorem 15.2]) that there exists a non-negative integer a = a(G), which we call the abundance of G, such that

$$k(G) = p^{e} + (p^{2} - 1)(n + a(p - 1)).$$
(1)

^{*}Supported by Spanish Ministry of Science and Innovation, grant MTM2008-06680.

This implies, in particular, that

$$k(G) > \frac{p^2 - 1}{2}m + (a - 1)(p^2 - 1)(p - 1).$$
⁽²⁾

In [8] J. Poland proved that if a = 0 then G is a p-group of maximal class of order at most p^{p+2} and so there are only finitely many finite p-groups of abundance 0 (for each prime p). Combining this with the bound (2) we obtain that

$$k(G) > \frac{p^2 - 1}{2}m$$
 for all *p*-groups except finitely many of them. (3)

Polland's results suggested that for a fixed prime p there are only finitely many finite p-groups G with a given value of a(G) (this appears, for example, as Problem 4 in [10]). This problem was solved in [4]. It was shown that $a(G) \geq \frac{\sqrt{m}}{p^3}$. However note that this result did not improve the constant $\frac{p^2-1}{2}$ in the bound (3). In this paper we establish the first super-logarithmic lower bound for the number of conjugacy classes of a finite nilpotent group.

Theorem 1.1. There exists a (explicitly computable) constant C > 0 such that every finite nilpotent group G of order $n \ge 8$ satisfies

$$k(G) > C \frac{\log_2 \log_2 n}{\log_2 \log_2 \log_2 n} \cdot \log_2 n.$$

As an immediate consequence we obtain the answer on a question of L. Pyber posed in [9] (this question appears also as Problem 5 in [10]).

Corollary 1.2. For any constant c there exists only a finite number of finite p-groups G of order p^m with at most $c \cdot m$ conjugacy classes.

In his paper L. Pyber established a lower bound for k(G) for an arbitrary finite group G. Recently T. Keller [7] has improved Pyber's bound. We hope that the techniques introduced in the proof of Theorem 1.1 may be also used in obtaining further improvements of the Pyber-Keller bound. Recall the main conjecture in this subject.

Conjecture. There exists a constant C > 0 such that a finite group G of order n satisfies $k(G) \ge C \log_2 n$.

Acknowledgments: I would like to thank Jon Gonzalez who carefully read the manuscript and made many useful suggestions.

2 Preliminaries

Our notation is standard. If M is a subset of G, then we denote by $k_G(M)$ the number of conjugacy classes that have a non-empty intersection with M. As usual, d(G) denotes the minimal possible number of generators for G and $\exp(G)$ the exponent of G. For any natural number n, G^n is the subgroup of G generated by $\{g^n | g \in G\}$. If G is a p-group, then for any real r we denote by $\Omega_r(G)$ the subgroup generated by elements of order at most p^r . We will use log for the logarithm to base 2.

2.1 Powerful groups

Recall that a finite *p*-group K is powerful if p is odd and K/K^p is abelian, or p = 2 and K/K^4 is abelian. Throughout this paper we shall use various facts about powerful *p*-groups, which can be found in [6] and [1]. Some of them are recollected in the following proposition.

Proposition 2.1. Let K be a powerful p-group and $P = K^2$ (note that P = K if p > 2). Then

- 1. The exponent of K coincides with the maximum of the orders of elements from any generating set.
- 2. For any $i, j \ge 0$, $[K^{p^i}, K^{p^j}] \le K^{p^{i+j+1}}$.
- 3. For any *i*, *j* and *k* such that $k 1 \leq i \leq j$, the map $K^{p^i}/K^{p^{i+k}} \to K^{p^j}/K^{p^{j+k}}$ which send $aK^{p^{i+k}}$ to $a^{p^{j-i}}K^{p^{j+k}}$ is a surjective homomorphism of abelian groups.
- 4. $\Omega_i(P)$ has exponent less than or equal to p^i .
- 5. $|\Omega_1(P)| = p^{d(P)}$ and $|\Omega_i(P)| \le p^{d(P)i}$.
- 6. Any normal in K subgroup, which is contained in K^{2p} , is powerful.

Let P be a powerful p-group. Consider a function

$$f_P: \{1, \ldots, d(P)\} \to \mathbb{N}$$

defined in the following way. We put

 $f_P(i) = k$ if $|P: \Omega_k(P)\Phi(P)| < p^i$ and $|P: \Omega_{k-1}(P)\Phi(P)| \ge p^i$.

Example 2.2. Let $n_1 \ge n_2 \ge \ldots \ge n_k$ be k positive integers. Put $P = C_{p^{n_1}} \times \cdots \times C_{p^{n_k}}$. Then we have d(P) = k and $f_P(i) = n_i$.

Lemma 2.3. Let K be a powerful p-group and $P = K^2$. Then for every $k \leq \log_p \exp(P)$ we have that

$$|P/\Omega_k(P)| = \prod_{f_P(i) \ge k} p^{f_P(i)-k}.$$

Proof. We will prove the lemma by induction on |P|. By Proposition 2.1(4), $\Omega_i(P/\Omega_1(P)) = \Omega_{i+1}(P)/\Omega_1(P)$. Thus, if $\bar{P} = P/\Omega_1(P)$, then $f_{\bar{P}}(i) = f_P(i) - 1$ when $i \in \{1, \ldots, d(\bar{P})\}$. Let us assume first that $k \ge 1$. Then applying the induction hypothesis we obtain that

$$|P/\Omega_k(P)| = |\bar{P}/\Omega_{k-1}(\bar{P})| = \prod_{f_{\bar{P}}(i) \ge k-1} p^{f_{\bar{P}}(i)-k+1} = \prod_{f_{\bar{P}}(i) \ge k} p^{f_{\bar{P}}(i)-k}$$

Now consider the case k = 0. Using Proposition 2.1(5) and the induction hypothesis, we obtain that

$$|P| = |\Omega_1(P)||\bar{P}| = p^{d(P)} \prod_{i=1}^{d(\bar{P})} p^{f_{\bar{P}}(i)} = p^{d(P)-d(\bar{P})} \prod_{f_P(i) \ge 1} p^{f_P(i)}$$
$$= |\Omega_1(P)\Phi(P) : \Phi(P)| \prod_{f_P(i) \ge 1} p^{f_P(i)} = \prod_{i=1}^{d(P)} p^{f_P(i)}.$$

Corollary 2.4. Let K be a powerful p-group and $P = K^2$. Then for every $k \leq \log_p \exp(P)$ we have that

$$|\Omega_k(P):\Omega_{k-1}(P)| = p^{\max\{1 \le i \le d(P): f_P(i) \ge k\}}.$$

Proof. Applying the previous lemma we obtain that

$$|P/\Omega_k(P)| = \prod_{f_P(i) \ge k} p^{f_P(i) - k}$$

and

$$|P/\Omega_{k-1}(P)| = \prod_{f_P(i) \ge k-1} p^{f_P(i)-k+1} = \prod_{f_P(i) \ge k} p^{f_P(i)-k+1}.$$

Thus, since $f_P(i)$ is a monotonically decreasing function,

$$|\Omega_k(P):\Omega_{k-1}(P)| = p^{\max\{1 \le i \le d(P): f_P(i) \ge k\}}.$$

We also will need the following lemma.

Lemma 2.5. Let G be a finite p-group and P a maximal normal powerful subgroup of G. Then $C_G(P/P^{2p}) = P$. In particular, if n = d(P) then

$$|G/P| \le \begin{cases} 2^{\frac{n(3n-1)}{2}} & p=2\\ p^{\frac{n(n-1)}{2}} & p>2 \end{cases}$$

Proof. For simplicity we assume that p is odd. If $C_G(P/\Phi(P)) \neq P$ then there exists $a \notin P$ such that $aP \in Z(G/P) \cap (C_G(P/\Phi(P))/P)$. Put $R = \langle a, P \rangle$. Then $[R, R] \leq P^p \leq R^p$ and R is normal in G. We have a contradiction. Thus, G/P can be embedded in $\operatorname{GL}_n(\mathbf{F}_p)$. Therefore it's order is at most the order of a Sylow p-subgroup of $\operatorname{GL}_n(\mathbf{F}_p)$ which is equal to $p^{\frac{n(n-1)}{2}}$.

2.2 The average order

If N is a normal subgroup of a finite group G and $x \in G$, we denote by $o_{G/N}(x) = o_{G/N}(xN)$ the order of xN in G/N. Then we put

$$o(G/N) = \frac{1}{|G|} \sum_{x \in G} o_{G/N}(x).$$

The number o(G) is called the average order of G. For example, we may estimate the average order a powerful p-group. This result appears in the proof of [10, Lemma 4.7].

Lemma 2.6. Let P be a powerful p-group of exponent p^k . Then

$$p^k \ge o(P) \ge (p-1)p^{k-1}.$$

Proof. By Proposition 2.1(1), $\Omega_{k-1}(P)$ is a proper normal subgroup of P. If $x \in P \setminus \Omega_{k-1}(P)$, then $o(x) = p^k$. Thus,

$$o(P) \ge \frac{1}{|P|} \sum_{x \in P \setminus \Omega_{k-1}(P)} |o(x)| \ge (p-1)p^{k-1}.$$

This proves the second inequality. The first inequality is obvious.

In the following lemma we show that the average order of a finite group is at least the average order of its center.

Lemma 2.7. Let G be a finite group. Then $o(G) \ge o(Z(G))$.

Proof. Let $x \in G$ and

$$m = m(x) = \min\{o_G(y) : y \in xZ(G)\}.$$

Then there exists $y \in xZ(G)$ such that $y^m = 1$. Take $a \in Z(G)$. Then $(ya)^m = a^m \in Z(G)^m$. Hence $l = o_{G/Z(G)^m}(ya)$ divides m. On the other hand, there exists $z \in Z(G)$ such that $(ya)^l = z^m$. Therefore $(yaz^{-m/l})^l = 1$, and so by the choice of $m, l \ge m$. Thus, $m = o_{G/Z(G)^m}(ya)$.

Since $o_{G/Z(G)^m}(ya)$ divides $o_G(ya)$, we obtain that

$$o_G(ya) = m \cdot o_G((ya)^m) = m \cdot o_G(a^m) = m \cdot \frac{o_G(a)}{(m, o_G(a))} \ge o_G(a).$$

Now, calculating the average order of elements of xZ(G) we see that

$$\frac{1}{|Z(G)|} \sum_{g \in xZ(G)} o_G(g) = \frac{1}{|Z(G)|} \sum_{a \in Z(G)} o_G(ya) \ge \frac{1}{|Z(G)|} \sum_{a \in Z(G)} o_G(a) = o(Z(G))$$

Hence $o(G) \ge o(Z(G))$.

Hence $o(G) \ge o(Z(G))$.

It would be very interesting to understand the relation between o(G) and o(N), where N is a normal subgroup of G. We pose the following question.

Question. Let G be a finite (p-) group and N a normal (abelian) subgroup of G. Is it true that $o(G) \ge o(N)^{1/2}$?

The following lemma is proved in [5]. We include the proof for the convenience of the reader.

Lemma 2.8. Let G be a finite p-group and M a normal subgroup of G. Then for any $x \in G$

$$|C_G(x)| \ge o_{G/M}(x)|C_M(x)|.$$

Moreover, if M is elementary abelian and $o_{G/M}(x) \leq t \leq \ln |M|$ then

$$|C_G(x)| \ge t |M|^{1/t}$$

Proof. Since $C_M(x) = M \cap C_G(x)$,

$$|C_G(x)/C_M(x)| = |C_G(x)M/M| \ge o_{G/M}(x).$$

Hence $|C_G(x)| \ge o_{G/M}(x)|C_M(x)|$.

Now, if M is elementary abelian we may consider M as a $\mathbb{F}_p[x]$ -module. Then M is a direct sum of principal submodules of order $\leq p^{o_{G/M}(x)}$. Hence $|C_M(x)| \geq |M|^{1/o_{G/M}(x)}$.

Consider the function $f(z) = z|M|^{1/z}$. Then f decreases in the interval $1 \le z \le \ln |M|$. Hence we have that

$$|C_G(x)| \ge o_{G/M}(x)|C_M(x)| \ge o_{G/M}(x)|M|^{1/o_{G/M}(x)} \ge t|M|^{1/t}.$$

3 Proof of Theorem 1.1

Without loss of generality we may assume that G in Theorem 1.1 is a p-group. In this case Theorem 1.1 is a consequence of the following result.

Theorem 3.1. There exists a constant c > 0 such that a finite p-group G of order $p^m \ge p^4$ satisfies

$$k(G) \ge c \cdot p \cdot \frac{m \cdot \log m}{\log \log m}.$$

Proof. For simplicity we assume that p is odd. The same proof with few changes works also when p = 2.

Fix a maximal powerful normal subgroup P of G and let d = d(P).

Claim 3.2. The theorem holds if $m \ge d(d^2 + 1)$.

Proof. Let p^k be the exponent of P. Since P is powerful, by Proposition 2.1 (5), $|P| \le p^{d(P)k} = p^{dk}$. Thus, by Lemma 2.6,

$$k(P) \ge o(P) \ge (p-1)p^{k-1} \ge \frac{p-1}{p}|P|^{1/d}$$

By Lemma 2.5, $|G/P| \leq p^{\frac{d(d-1)}{2}}.$ Therefore,

$$k(G) \ge \frac{k(P)}{|G:P|} \ge \frac{p-1}{p} \frac{|P|^{1/d}}{p^{d(d-1)/2}} \ge p^{\frac{m}{d} - \frac{d(d-1)}{2d} - \frac{d(d-1)}{2} - 1} = p^{\frac{m}{d} - \frac{d^2+1}{2}}.$$

Now, let us assume that $m \ge d(d^2 + 1)$. In this case we obtain that

$$k(G) \ge p^{\frac{m}{d} - \frac{d^2 + 1}{2}} \ge p^{\frac{m}{2d}} \ge p \cdot p^{\frac{m^2}{2} - 2} \ge c \cdot p \cdot m^2$$

for some constant c > 0.

Claim 3.3. The theorem holds if $d \leq 2^{12}$.

Proof. By Claim 3.2, we may assume that $m < d(d^2 + 1)$. Thus, if $d \le 2^{12}$, then $m < 2^{37}$. Since $k(G) \ge (p-1)m$, we are done.

So, from now on, we will assume that $m < d(d^2 + 1)$ and $d > 2^{12}$. Claim 3.4. Assume $|G/P| = p^{xd}$. Then $k(G) \ge dp^x$.

Proof. Let $\overline{G} = G/P$. By Lemma 2.5, the nilpotency class of \overline{G} is at most d. Define $p^{a_i} = |\gamma_i(\overline{G}) : \gamma_{i+1}(\overline{G})|$. Thus, $k_G(\gamma_i(G)P \setminus \gamma_{i+1}(G)P) \ge p^{a_i} - 1$. On the other hand $k_G(P) \ge (p-1)\log_p |P| \ge d$. Hence

$$k(G) \geq k_G(P) + \sum_{i=1}^d k_G(\gamma_i(G)P \setminus \gamma_{i+1}(G)P) \geq d + \sum_{i=1}^d (p^{a_i} - 1)$$

= $\sum_{i=1}^d p^{a_i} \geq d\sqrt[n]{p^{\sum_i a_i}} = d(|\bar{G}|^{1/d}) = dp^x.$

We put $S = P^p$. Since P is powerful, by Proposition 2.1, S is also powerful.

Claim 3.5. We have that $k(G/S) > \frac{p \cdot d \log d}{24}$.

Proof. Without loss of generality we may assume in the proof of this claim that $S = P^p = \{1\}$. Thus $|P| = p^d$.

Let *H* be a subgroup of *G*. Put $t_H = \frac{d}{2\log_p |G:H| + \log d + 1}$ and denote by A(H) the following subset of *H*:

$$A = A(H) = \{ x \in H : o_{G/P}(x) \ge t_H \}.$$

Note that if $x \in H \setminus A(H)$ then, by Lemma 2.8,

$$\begin{aligned} |C_G(x)| &\geq o_{G/P}(x)|P|^{\frac{1}{o_{G/P}(x)}} \geq t_H|P|^{1/t_H} \geq \frac{d \cdot p^{2\log_p |G:H| + \log d + 1}}{2\log_p |G:H| + \log d + 1} \\ &\geq \frac{p|G:H|^2 d^2}{2\log_p |G:H| + \log d + 1} \geq \frac{p|G:H| d \log d}{2}. \end{aligned}$$

Since $k_G(H) \ge \frac{1}{|G|} \sum_{x \in H \setminus A(H)} |C_G(x)|$, we have

$$k_G(H) \ge \frac{p|G:H||H \setminus A(H)|d\log d}{2|G|} = \frac{p|H \setminus A(H)|d\log d}{2|H|}$$

Thus, if $|A(H)| < \frac{|H|}{2}$, then $k_G(H) > \frac{p \cdot d \log d}{4}$. Thus we may assume that $|A(H)| \ge \frac{|H|}{2}$ for any $H \le G$.

Note that by Lemma 2.8,

$$k(G) = \frac{1}{|G|} \sum_{x \in G} |C_G(x)| \ge \frac{1}{|G|} \sum_{x \in G} o_{G/P}(x) |C_P(x)|.$$

Let $\chi(x) = |C_P(x)|$ be the permutation character associated with the action of G on P (see [3, p.68]). Then the last inequality can be rewritten as

$$k(G) \ge \langle o_{G/P}, \chi \rangle$$

For each $0 \le i \le d-1$ we fix an element $m_i \in P$ in the following way:

First, let $1 \neq m_0 \in Z(G) \cap P$. Now, suppose we have chosen m_0, \ldots, m_k . Then let $m_{k+1} \in P$, $m_{k+1} \notin \langle m_0, \cdots, m_k \rangle$ and $[G, m_{k+1}] \subseteq \langle m_0, \cdots, m_k \rangle$. It is clear that the elements $\{m_i^{\alpha} | \alpha = 0, \ldots, p-1\}$ lie in different conjugacy classes of G. Put $N_i = C_G(m_i)$. Note that since $|[G, m_i]| \leq p^i$, the index of N_i in G is at most p^i .

If Λ is a set of representatives of the *G*-conjugacy classes in *P*, then it is known that $\chi = \sum_{m \in \Lambda} 1^G_{C_G(m)}$. In particular, $\chi(x) \ge (p-1) \sum_{i=0}^{d-1} 1^G_{N_i}(x)$ for every $x \in G$.

Note that, by Frobenius Reciprocity,

$$\begin{aligned} \langle o_{G/P}, 1_{N_i}^G \rangle &= \langle o_{N_i/P}, 1_{N_i} \rangle = o(N_i/P) \ge \frac{|A(N_i)|t_{N_i}|}{|N_i|} \ge \frac{t_{N_i}}{2} \\ &= \frac{d}{4\log_n |G:N_i| + 2\log d + 2} \ge \frac{d}{4i + 2\log d + 2}. \end{aligned}$$

Hence

$$k(G) \geq \langle o_{G/P}, \chi \rangle \geq \langle o_{G/P}, (p-1) \sum_{i=0}^{d-1} 1_{N_i}^G \rangle \geq (p-1)d \sum_{i=0}^{d-1} \frac{1}{4i+2\log d+2}$$
$$\geq \frac{p \cdot d}{4} \sum_{i=0}^{d-1} \frac{1}{2i+\log d+1} > \frac{p \cdot d}{8} \ln \frac{2d+\log d-1}{\log d+1} \geq \frac{p \cdot d\log d}{24}.$$

Remark. The proofs of Claims 3.4 and 3.5 essentially repeat the argument of the proof of [5, Theorem 1.10]. The main new ingredients in the proof of Theorem 3.1 are Claims 3.6 and 3.7.

Claim 3.6. Let $s \in \{1, ..., d(S)\}$. Then

$$k(G) \ge p^{(f_S(s)-1)/3}s$$

Remark. It may be helpful in the first reading of the proof of this claim assume that S is abelian. In this case the function f_S is described in Example 2.2.

Proof. It is clear that without loss of generality we may assume that $f_S(s + 1) \leq f_S(s) - 1$ or s = d(S). Put $k = f_S(s), T = \Omega_k(S)$ and let t be the integer part of (k + 1)/3. Since T is a normal subgroup of P and it is contained in $S = P^p$, Proposition 2.1(6) implies that T is powerful. Let $A = T^{p^{k-2t}}$ and $B = T^{p^{k-t}}$. Note that A and B are characteristic subgroups of P and so they are normal in G. Since, T is powerful, Proposition 2.1(2) implies that [A, B] = 1. Moreover, by Proposition 2.1(3), the map $\alpha \colon A/B \to B$ which sends aB to a^{p^t} is a surjective homomorphism of abelian groups. Since α commutes with G-action, α is also a homomorphism of G-modules. In particular, $A/\ker \alpha \cong B$ as G-modules.

Note that $\Omega_{k-1}(T) = \Omega_{k-1}(S)$. Since we assume that $f_S(s+1) \leq f_S(s) - 1$ or s = d(S), Corollary 2.4 implies that

$$|T/\Omega_{k-1}(T)| = |\Omega_k(S) : \Omega_{k-1}(S)| = p^s.$$

Since G is a p-group, there are at least (p-1)s non-trivial G-conjugacy classes in $T/\Omega_{k-1}(T)$. Hence the claim holds if k = 1. So, we assume now that $k \geq 2$. In this case $t \geq 1$.

Choose $m_1, \ldots, m_{(p-1)s} \in T \setminus \Omega_{k-1}(T)$ such that $\{m_i \Omega_{k-1}(T)\}$ lie in different *G*-conjugacy classes. Consider the map $\beta \colon T/T^p \to T^{p^{k-t}}/T^{p^{k-t+1}}$ which sends xT^p to $x^{p^{k-t}}T^{p^{k-t+1}}$. Applying again Proposition 2.1(3) we conclude that β is a homomorphism of *G*-modules. Let $x \in \ker \beta$ be an arbitrary element of ker β . This means that $x^{p^{k-t}} \in T^{p^{k-t+1}}$. On the other hand, by Proposition 2.1(4),

$$T^{p^{k-t+1}} = \Omega_k(S)^{p^{k-t+1}} \le \Omega_{t-1}(S) = \Omega_{t-1}(T).$$

Proposition 2.1(4) also implies that $\Omega_{t-1}(T)^{p^{t-1}} = 1$, and so

$$x^{p^{k-1}} = (x^{p^{k-t}})^{p^{t-1}} = 1.$$

Hence we conclude that ker $\beta \leq \Omega_{k-1}(T)$. Thus we obtain that

$$T/\Omega_{k-1}(T) \cong T^{p^{k-t}}/\Omega_{k-1}(T)^{p^{k-t}}T^{p^{k-t+1}},$$
(4)

as G-modules.

Put $a_i = m_i^{p^{k-2t}}$ and $b_i = m_i^{p^{k-t}} = a_i^{p^t}$. The isomorphism (4) implies that $\{b_i\}$ lie in different *G*-conjugacy classes in *B*. Note that

$$o_B(b_i) = \frac{o_G(m_i)}{p^{k-t}} = \frac{p^k}{p^{k-t}} = p^t.$$

Let χ be the permutation character corresponding to the action of G on B. Thus, $\chi(g) = |C_B(g)|$. Since $\{b_i\}$ lie in different G-conjugacy classes in B, we obtain that $\chi(g) \geq \sum_{i=1}^{(p-1)s} \mathbb{1}_{C_G(b_i)}^G(g)$ for all $g \in G$. Therefore we have the following.

$$k(G) = \frac{1}{|G|} \sum_{g \in G} |C_G(g)| \ge \frac{1}{|G|} \sum_{g \in G} o_{G/B}(g) |C_B(g)|$$
 Lemma 2.8
$$= \langle o_{G/B}, \chi \rangle \ge \langle o_{G/B}, \sum_{i=1}^{(p-1)s} 1_{C_G(b_i)}^G \rangle$$

$$= \sum_{i=1}^{(p-1)s} \langle o_{C_G(b_i)/B}, 1_{C_G(b_i)} \rangle = \sum_{i=1}^{(p-1)s} o(C_G(b_i)/B)$$

$$\ge \sum_{i=1}^{(p-1)s} o(C_G(b_i)/\ker \alpha) \ge \sum_{i=1}^{(p-1)s} o(Z(C_G(b_i)/\ker \alpha))$$
 Lemma 2.7.

Since [A, B] = 1, $A \leq C_G(b_i)$. As we observed already $\alpha \colon A/B \to B$ is a surjective homomorphism of *G*-modules. Therefore since $\alpha(a_iB) = b_i$, we obtain that $C_G(a_i \ker \alpha) = C_G(b_i)$ and so $a_i \ker \alpha \in Z(C_G(b_i)/\ker \alpha)$. Thus the exponent of $Z(C_G(b_i)/\ker \alpha)$ is at least $o_{A/\ker \alpha}(a_i) = o_B(b_i) = p^t$. Hence, by Lemma 2.6, $o(Z(C_G(b_i)/\ker \alpha)) \geq (p-1)p^{t-1}$. Finnally we conclude that

$$k(G) \ge \sum_{i=1}^{(p-1)s} o(Z(C_G(b_i)/\ker\alpha)) \ge (p-1)s(p-1)p^{t-1} \ge sp^{(f_P(s)-1)/3}.$$

Claim 3.7. Assume $|S/\Omega_{9\log\log d+4}(S)| = p^{yd}$. Then there exists $s \in \{1, \ldots, d(S)\}$ such that

$$sp^{(f_S(s)-4)/3} > y \cdot d\log d.$$

In particular, $k(G) > p \cdot y \cdot d \log d$.

Proof. Let $M = y \cdot d \log d$. Since we assume that $m < d(d^2 + 1)$, we have $y < d^2 + 1$. Thus,

$$M < d^4. (5)$$

By the way of contradiction let us assume that $sp^{(f_S(s)-4)/3} \leq M$ for all $s \in \{1, \ldots, d(S)\}$. Thus,

$$f_S(s) \le 3\log_p \frac{M}{s} + 4 < 3\log M + 4.$$
 (6)

By Lemma 2.3,

$$M = (\log_p |S/\Omega_{9\log\log_p n+4}(S)|) \log d$$
$$= \log d \sum_{f_S(i) \ge 9\log\log_p d+4} (f_S(i) - 9\log\log_p d - 4)$$

 $\leq 3\log d \cdot \log M \cdot |\{i: f_S(i) \geq 9\log \log_p d + 4\}|.$

Note that if $f_S(i) \ge 9 \log \log_p d + 4$, then, using the inequality (6), we obtain that

$$3\log_p \frac{M}{i} + 4 \ge f_S(i) \ge 9\log\log_p d + 4 \ge 9\log_p \log d + 4$$

and so $i \leq \frac{M}{(\log d)^3}$. Thus, using (5), we obtain

$$M \le 3 \log d \cdot \log M \frac{M}{(\log d)^3} = M \frac{3 \log M}{(\log d)^2} \le M \frac{12}{\log d}.$$

Since we assume that $d > 2^{12}$, we obtain that M < M. We have a contradiction.

Thus, there exists $s \in \{1, \ldots, d(S)\}$ such that $sp^{(f_S(s)-4)/3} > y \cdot d \log d$. By Claim 3.6, $k(G) \ge p \cdot y \cdot d \log d$.

Now we are ready to finish the proof. Note that since P is powerful, Proposition 2.1(5) implies that

$$|\Omega_{9\log\log d+4}(S)| \le |\Omega_{9\log\log d+4}(P)| \le p^{d(9\log\log d+4)}$$

Thus,

$$m = \log_p |G| = \log_p |G/P| + \log_p |P/S| + \log_p |S/\Omega_{9\log\log d+4}(S)$$

+ $\log_p |\Omega_{9\log\log d+4}(S)| \le d(x+y+9\log\log d+5).$

If $x = \max\{x, y, 3 \log \log d + 2\}$, then $m \le 5xd$ and $\log d \le p^{(x-2)/3}$. Applying Claim 3.4, we obtain that

$$k(G) \ge p^{x}d \ge p \cdot x \cdot d\log d\log x \ge \frac{p}{15}m\log m.$$

If $y = \max\{x, y, 3 \log \log d + 2\}$, then $m \leq 5yd$. Since we suppose that $m < d(d^2 + 1), y < d^2 + 1$ and since we assume that $d > 2^{12}, \log d > 12$. Applying Claim 3.7 we obtain that

$$k(G) \ge p \cdot y \cdot d \log d \ge \frac{p}{4} \cdot y \cdot d(\log d + \log y + 3) \ge \frac{p}{20}m\log m.$$

Finally, if $3 \log \log d + 2 = \max\{x, y, 3 \log \log d + 2\}$, then $m \le d(15 \log \log d + 9)$. Hence, by Claim 3.5,

$$k(G) \ge \frac{p}{24} d\log d \ge \frac{p \cdot m \log m}{800 \cdot \log \log m}$$

г				1	
L				L	
				L	
-	-	-	-	۰	

References

- J. González-Sánchez, A. Jaikin-Zapirain, On the structure of normal subgroups of potent p-groups, J. Algebra 276 (2004), no. 1, 193–209.
- [2] B. Huppert, Endliche Gruppen I, Springer, Berlin-Heidelberg-New York, 1982.
- [3] M. Isaacs, Character theory of finite groups (Dover Publications, Inc., New York, 1994).
- [4] A. Jaikin Zapirain, On the abundance of finite p-groups, Journal Group Theory 3 (2000) 225–231.
- [5] A. Jaikin-Zapirain, On the number of conjugacy classes in finite pgroups, J. London Math. Soc. (2) 68 (2003), no. 3, 699–711.
- [6] A. Lubotzky and A. Mann, Powerful p-groups. I. Finite groups, J. Algebra, 105 (1987), 484-505.
- [7] T. Keller, Finite groups have even more conjugacy classes, arXiv:0812.2590, to appear in Israel Journal of Math..

- [8] J. Poland, Two problems with finite groups with k conjugate classes, J. Austr. Math. Soc.(Ser. A), 8 (1968), 49-55.
- [9] L. Pyber, Finite groups have many conjugacy classes, J. London Math. Soc. (2) 46 (1992), no. 2, 239–249.
- [10] A. Shalev, 'Finite p-groups', Finite and locally finite groups (Istanbul, 1994), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 471 (1995) 401– 450.

Departamento de Matemáticas, Universidad Autonoma de Madrid and Instituto de Ciencias Matemáticas, CSIC-UAM-UC3M-UCM andrei.jaikin@uam.es