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Abstract

We establish the first super-logarithmic lower bound for the num-
ber of conjugacy classes of a finite nilpotent group. In particular, for
any constant c there are only finitely many finite p-groups of order pm

with at most c ·m conjugacy classes. This answers a question of L.
Pyber.

1 Introduction

Let p be a fixed prime number and G a finite p-group of order pm. Since G
is nilpotent there exists a central series of subgroups

G = G0 > G1 > . . . > Gm = {1}

such that |Gi : Gi+1| = p. Since for each 0 ≤ i ≤ m − 1 there are at least
p− 1 conjugacy classes in Gi \Gi+1, we obtain that the number of conjugacy
classes k(G) of G satisfies

k(G) ≥ (p− 1)m ≥ log2 |G|.

A slight improvement of this elementary bound was given by P. Hall. We
write m as m = 2n+ e, where e = 0, 1. P. Hall showed (see, for example, [2,
Chapter 5, Theorem 15.2]) that there exists a non-negative integer a = a(G),
which we call the abundance of G, such that

k(G) = pe + (p2 − 1)(n+ a(p− 1)). (1)
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This implies, in particular, that

k(G) >
p2 − 1

2
m+ (a− 1)(p2 − 1)(p− 1). (2)

In [8] J. Poland proved that if a = 0 then G is a p-group of maximal class
of order at most pp+2 and so there are only finitely many finite p-groups
of abundance 0 (for each prime p). Combining this with the bound (2) we
obtain that

k(G) >
p2 − 1

2
m for all p-groups except finitely many of them. (3)

Polland’s results suggested that for a fixed prime p there are only finitely
many finite p-groups G with a given value of a(G) (this appears, for example,
as Problem 4 in [10]). This problem was solved in [4]. It was shown that

a(G) ≥
√
m
p3 . However note that this result did not improve the constant p2−1

2

in the bound (3). In this paper we establish the first super-logarithmic lower
bound for the number of conjugacy classes of a finite nilpotent group.

Theorem 1.1. There exists a (explicitly computable) constant C > 0 such
that every finite nilpotent group G of order n ≥ 8 satisfies

k(G) > C
log2 log2 n

log2 log2 log2 n
· log2 n.

As an immediate consequence we obtain the answer on a question of L.
Pyber posed in [9] (this question appears also as Problem 5 in [10]).

Corollary 1.2. For any constant c there exists only a finite number of finite
p-groups G of order pm with at most c ·m conjugacy classes.

In his paper L. Pyber established a lower bound for k(G) for an arbitrary
finite group G. Recently T. Keller [7] has improved Pyber’s bound. We hope
that the techniques introduced in the proof of Theorem 1.1 may be also used
in obtaining further improvements of the Pyber-Keller bound. Recall the
main conjecture in this subject.

Conjecture. There exists a constant C > 0 such that a finite group G of
order n satisfies k(G) ≥ C log2 n.

Acknowledgments: I would like to thank Jon Gonzalez who carefully
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2 Preliminaries

Our notation is standard. If M is a subset of G, then we denote by kG(M)
the number of conjugacy classes that have a non-empty intersection with M .
As usual, d(G) denotes the minimal possible number of generators for G and
exp(G) the exponent of G. For any natural number n, Gn is the subgroup of
G generated by {gn|g ∈ G}. If G is a p-group, then for any real r we denote
by Ωr(G) the subgroup generated by elements of order at most pr. We will
use log for the logarithm to base 2.

2.1 Powerful groups

Recall that a finite p-group K is powerful if p is odd and K/Kp is abelian,
or p = 2 and K/K4 is abelian. Throughout this paper we shall use various
facts about powerful p-groups, which can be found in [6] and [1]. Some of
them are recollected in the following proposition.

Proposition 2.1. Let K be a powerful p-group and P = K2 (note that
P = K if p > 2). Then

1. The exponent of K coincides with the maximum of the orders of ele-
ments from any generating set.

2. For any i, j ≥ 0, [Kpi , Kpj ] ≤ Kpi+j+1
.

3. For any i, j and k such that k − 1 ≤ i ≤ j, the map Kpi/Kpi+k →
Kpj/Kpj+k

which send aKpi+k
to ap

j−i
Kpj+k

is a surjective homomor-
phism of abelian groups.

4. Ωi(P ) has exponent less than or equal to pi.

5. |Ω1(P )| = pd(P ) and |Ωi(P )| ≤ pd(P )i.

6. Any normal in K subgroup, which is contained in K2p, is powerful.

Let P be a powerful p-group. Consider a function

fP : {1, . . . , d(P )} → N

defined in the following way. We put

fP (i) = k if |P : Ωk(P )Φ(P )| < pi and |P : Ωk−1(P )Φ(P )| ≥ pi.

3



Example 2.2. Let n1 ≥ n2 ≥ . . . ≥ nk be k positive integers. Put P =
Cpn1 × · · · × Cpnk . Then we have d(P ) = k and fP (i) = ni.

Lemma 2.3. Let K be a powerful p-group and P = K2. Then for every
k ≤ logp exp(P ) we have that

|P/Ωk(P )| =
∏

fP (i)≥k

pfP (i)−k.

Proof. We will prove the lemma by induction on |P |. By Proposition 2.1(4),
Ωi(P/Ω1(P )) = Ωi+1(P )/Ω1(P ). Thus, if P̄ = P/Ω1(P ), then fP̄ (i) =
fP (i) − 1 when i ∈ {1, . . . , d(P̄ )}. Let us assume first that k ≥ 1. Then
applying the induction hypothesis we obtain that

|P/Ωk(P )| = |P̄ /Ωk−1(P̄ )| =
∏

fP̄ (i)≥k−1

pfP̄ (i)−k+1 =
∏

fP (i)≥k

pfP (i)−k.

Now consider the case k = 0. Using Proposition 2.1(5) and the induction
hypothesis, we obtain that

|P | = |Ω1(P )||P̄ | = pd(P )

d(P̄ )∏
i=1

pfP̄ (i) = pd(P )−d(P̄ )
∏

fP (i)≥1

pfP (i)

= |Ω1(P )Φ(P ) : Φ(P )|
∏

fP (i)≥1

pfP (i) =

d(P )∏
i=1

pfP (i).

Corollary 2.4. Let K be a powerful p-group and P = K2. Then for every
k ≤ logp exp(P ) we have that

|Ωk(P ) : Ωk−1(P )| = pmax{1≤i≤d(P ): fP (i)≥k}.

Proof. Applying the previous lemma we obtain that

|P/Ωk(P )| =
∏

fP (i)≥k

pfP (i)−k

and
|P/Ωk−1(P )| =

∏
fP (i)≥k−1

pfP (i)−k+1 =
∏

fP (i)≥k

pfP (i)−k+1.
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Thus, since fP (i) is a monotonically decreasing function,

|Ωk(P ) : Ωk−1(P )| = pmax{1≤i≤d(P ): fP (i)≥k}.

We also will need the following lemma.

Lemma 2.5. Let G be a finite p-group and P a maximal normal powerful
subgroup of G. Then CG(P/P 2p) = P . In particular, if n = d(P ) then

|G/P | ≤

{
2

n(3n−1)
2 p = 2

p
n(n−1)

2 p > 2

Proof. For simplicity we assume that p is odd. If CG(P/Φ(P )) 6= P then
there exists a 6∈ P such that aP ∈ Z(G/P ) ∩ (CG(P/Φ(P ))/P ). Put
R = 〈a, P 〉. Then [R,R] ≤ P p ≤ Rp and R is normal in G. We have a
contradiction. Thus, G/P can be embedded in GLn(Fp). Therefore it’s or-
der is at most the order of a Sylow p-subgroup of GLn(Fp) which is equal to

p
n(n−1)

2 .

2.2 The average order

If N is a normal subgroup of a finite group G and x ∈ G, we denote by
oG/N(x) = oG/N(xN) the order of xN in G/N . Then we put

o(G/N) =
1

|G|
∑
x∈G

oG/N(x).

The number o(G) is called the average order of G. For example, we may
estimate the average order a powerful p-group. This result appears in the
proof of [10, Lemma 4.7].

Lemma 2.6. Let P be a powerful p-group of exponent pk. Then

pk ≥ o(P ) ≥ (p− 1)pk−1.

Proof. By Proposition 2.1(1), Ωk−1(P ) is a proper normal subgroup of P . If
x ∈ P \ Ωk−1(P ), then o(x) = pk. Thus,

o(P ) ≥ 1

|P |
∑

x∈P\Ωk−1(P )

|o(x)| ≥ (p− 1)pk−1.

This proves the second inequality. The first inequality is obvious.
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In the following lemma we show that the average order of a finite group
is at least the average order of its center.

Lemma 2.7. Let G be a finite group. Then o(G) ≥ o(Z(G)).

Proof. Let x ∈ G and

m = m(x) = min{oG(y) : y ∈ xZ(G)}.

Then there exists y ∈ xZ(G) such that ym = 1. Take a ∈ Z(G). Then
(ya)m = am ∈ Z(G)m. Hence l = oG/Z(G)m(ya) divides m. On the other
hand, there exists z ∈ Z(G) such that (ya)l = zm. Therefore (yaz−m/l)l = 1,
and so by the choice of m, l ≥ m. Thus, m = oG/Z(G)m(ya).

Since oG/Z(G)m(ya) divides oG(ya), we obtain that

oG(ya) = m · oG((ya)m) = m · oG(am) = m · oG(a)

(m, oG(a))
≥ oG(a).

Now, calculating the average order of elements of xZ(G) we see that

1

|Z(G)|
∑

g∈xZ(G)

oG(g) =
1

|Z(G)|
∑

a∈Z(G)

oG(ya) ≥ 1

|Z(G)|
∑

a∈Z(G)

oG(a) = o(Z(G)).

Hence o(G) ≥ o(Z(G)).

It would be very interesting to understand the relation between o(G) and
o(N), where N is a normal subgroup of G. We pose the following question.

Question. Let G be a finite (p-) group and N a normal (abelian) subgroup
of G. Is it true that o(G) ≥ o(N)1/2?

The following lemma is proved in [5]. We include the proof for the con-
venience of the reader.

Lemma 2.8. Let G be a finite p-group and M a normal subgroup of G. Then
for any x ∈ G

|CG(x)| ≥ oG/M(x)|CM(x)|.

Moreover, if M is elementary abelian and oG/M(x) ≤ t ≤ ln |M | then

|CG(x)| ≥ t|M |1/t.
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Proof. Since CM(x) = M ∩ CG(x),

|CG(x)/CM(x)| = |CG(x)M/M | ≥ oG/M(x).

Hence |CG(x)| ≥ oG/M(x)|CM(x)|.

Now, if M is elementary abelian we may consider M as a Fp[x]-module.
Then M is a direct sum of principal submodules of order ≤ poG/M (x). Hence
|CM(x)| ≥ |M |1/oG/M (x).

Consider the function f(z) = z|M |1/z. Then f decreases in the interval
1 ≤ z ≤ ln |M |. Hence we have that

|CG(x)| ≥ oG/M(x)|CM(x)| ≥ oG/M(x)|M |1/oG/M (x) ≥ t|M |1/t.

3 Proof of Theorem 1.1

Without loss of generality we may assume that G in Theorem 1.1 is a p-group.
In this case Theorem 1.1 is a consequence of the following result.

Theorem 3.1. There exists a constant c > 0 such that a finite p-group G of
order pm ≥ p4 satisfies

k(G) ≥ c · p · m · logm

log logm
.

Proof. For simplicity we assume that p is odd. The same proof with few
changes works also when p = 2.

Fix a maximal powerful normal subgroup P of G and let d = d(P ).

Claim 3.2. The theorem holds if m ≥ d(d2 + 1).

Proof. Let pk be the exponent of P . Since P is powerful, by Proposition 2.1
(5), |P | ≤ pd(P )k = pdk. Thus, by Lemma 2.6,

k(P ) ≥ o(P ) ≥ (p− 1)pk−1 ≥ p− 1

p
|P |1/d

By Lemma 2.5, |G/P | ≤ p
d(d−1)

2 . Therefore,

k(G) ≥ k(P )

|G : P |
≥ p− 1

p

|P |1/d

pd(d−1)/2
≥ p

m
d
− d(d−1)

2d
− d(d−1)

2
−1 = p

m
d
− d2+1

2 .
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Now, let us assume that m ≥ d(d2 + 1). In this case we obtain that

k(G) ≥ p
m
d
− d2+1

2 ≥ p
m
2d ≥ p · p

m
2
3−2
2 ≥ c · p ·m2

for some constant c > 0.

Claim 3.3. The theorem holds if d ≤ 212.

Proof. By Claim 3.2, we may assume that m < d(d2 + 1). Thus, if d ≤ 212,
then m < 237. Since k(G) ≥ (p− 1)m, we are done.

So, from now on, we will assume that m < d(d2 + 1) and d > 212.

Claim 3.4. Assume |G/P | = pxd. Then k(G) ≥ dpx.

Proof. Let Ḡ = G/P . By Lemma 2.5, the nilpotency class of Ḡ is at most d.
Define pai = |γi(Ḡ) : γi+1(Ḡ)|. Thus, kG(γi(G)P \ γi+1(G)P ) ≥ pai − 1. On
the other hand kG(P ) ≥ (p− 1) logp |P | ≥ d. Hence

k(G) ≥ kG(P ) +
∑d

i=1 kG(γi(G)P \ γi+1(G)P ) ≥ d+
∑d

i=1(pai − 1)

=
∑d

i=1 p
ai ≥ d n

√
p
∑

i ai = d(|Ḡ|1/d) = dpx.

We put S = P p. Since P is powerful, by Proposition 2.1, S is also
powerful.

Claim 3.5. We have that k(G/S) > p·d log d
24

.

Proof. Without loss of generality we may assume in the proof of this claim
that S = P p = {1}. Thus |P | = pd.

Let H be a subgroup of G. Put tH = d
2 logp |G:H|+log d+1

and denote by

A(H) the following subset of H:

A = A(H) = {x ∈ H : oG/P (x) ≥ tH}.

Note that if x ∈ H \ A(H) then, by Lemma 2.8,

|CG(x)| ≥ oG/P (x)|P |
1

oG/P (x) ≥ tH |P |1/tH ≥ d·p2 logp |G:H|+log d+1

2 logp |G:H|+log d+1

≥ p|G:H|2d2

2 logp |G:H|+log d+1
≥ p|G:H|d log d

2
.
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Since kG(H) ≥ 1
|G|

∑
x∈H\A(H) |CG(x)|, we have

kG(H) ≥ p|G : H||H \ A(H)|d log d

2|G|
=
p|H \ A(H)|d log d

2|H|
.

Thus, if |A(H)| < |H|
2

, then kG(H) > p·d log d
4

. Thus we may assume that

|A(H)| ≥ |H|
2

for any H ≤ G.

Note that by Lemma 2.8,

k(G) =
1

|G|
∑
x∈G

|CG(x)| ≥ 1

|G|
∑
x∈G

oG/P (x)|CP (x)|.

Let χ(x) = |CP (x)| be the permutation character associated with the action
of G on P (see [3, p.68]). Then the last inequality can be rewritten as

k(G) ≥ 〈oG/P , χ〉.

For each 0 ≤ i ≤ d− 1 we fix an element mi ∈ P in the following way:

First, let 1 6= m0 ∈ Z(G)∩P . Now, suppose we have chosen m0, . . . ,mk.
Then let mk+1 ∈ P , mk+1 6∈ 〈m0, · · · ,mk〉 and [G,mk+1] ⊆ 〈m0, · · · ,mk〉. It
is clear that the elements {mα

i |α = 0, . . . , p − 1} lie in different conjugacy
classes of G. Put Ni = CG(mi). Note that since |[G,mi]| ≤ pi, the index of
Ni in G is at most pi.

If Λ is a set of representatives of the G-conjugacy classes in P , then it is
known that χ =

∑
m∈Λ 1GCG(m). In particular, χ(x) ≥ (p− 1)

∑d−1
i=0 1GNi

(x) for
every x ∈ G.

Note that, by Frobenius Reciprocity,

〈oG/P , 1GNi
〉 = 〈oNi/P , 1Ni

〉 = o(Ni/P ) ≥ |A(Ni)|tNi

|Ni| ≥ tNi

2

= d
4 logp |G:Ni|+2 log d+2

≥ d
4i+2 log d+2

.

Hence

k(G) ≥ 〈oG/P , χ〉 ≥ 〈oG/P , (p− 1)
∑d−1

i=0 1GNi
〉 ≥ (p− 1)d

∑d−1
i=0

1
4i+2 log d+2

≥ p·d
4

∑d−1
i=0

1
2i+log d+1

> p·d
8

ln 2d+log d−1
log d+1

≥ p·d log d
24

.
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Remark. The proofs of Claims 3.4 and 3.5 essentially repeat the argument
of the proof of [5, Theorem 1.10]. The main new ingredients in the proof of
Theorem 3.1 are Claims 3.6 and 3.7.

Claim 3.6. Let s ∈ {1, . . . , d(S)}. Then

k(G) ≥ p(fS(s)−1)/3s.

Remark. It may be helpful in the first reading of the proof of this claim
assume that S is abelian. In this case the function fS is described in Example
2.2.

Proof. It is clear that without loss of generality we may assume that fS(s+
1) ≤ fS(s)−1 or s = d(S). Put k = fS(s), T = Ωk(S) and let t be the integer
part of (k + 1)/3. Since T is a normal subgroup of P and it is contained in
S = P p, Proposition 2.1(6) implies that T is powerful. Let A = T p

k−2t

and B = T p
k−t

. Note that A and B are characteristic subgroups of P and
so they are normal in G. Since, T is powerful, Proposition 2.1(2) implies
that [A,B] = 1. Moreover, by Proposition 2.1(3), the map α : A/B → B
which sends aB to ap

t
is a surjective homomorphism of abelian groups. Since

α commutes with G-action, α is also a homomorphism of G-modules. In
particular, A/ kerα ∼= B as G-modules.

Note that Ωk−1(T ) = Ωk−1(S). Since we assume that fS(s+1) ≤ fS(s)−1
or s = d(S), Corollary 2.4 implies that

|T/Ωk−1(T )| = |Ωk(S) : Ωk−1(S)| = ps.

Since G is a p-group, there are at least (p − 1)s non-trivial G-conjugacy
classes in T/Ωk−1(T ). Hence the claim holds if k = 1. So, we assume now
that k ≥ 2. In this case t ≥ 1.

Choose m1, . . . ,m(p−1)s ∈ T \Ωk−1(T ) such that {miΩk−1(T )} lie in differ-

ent G-conjugacy classes. Consider the map β : T/T p → T p
k−t
/T p

k−t+1
which

sends xT p to xp
k−t
T p

k−t+1
. Applying again Proposition 2.1(3) we conclude

that β is a homomorphism of G-modules. Let x ∈ ker β be an arbitrary
element of ker β. This means that xp

k−t ∈ T pk−t+1
. On the other hand, by

Proposition 2.1(4),

T p
k−t+1

= Ωk(S)p
k−t+1 ≤ Ωt−1(S) = Ωt−1(T ).

Proposition 2.1(4) also implies that Ωt−1(T )p
t−1

= 1, and so

xp
k−1

= (xp
k−t

)p
t−1

= 1.
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Hence we conclude that ker β ≤ Ωk−1(T ). Thus we obtain that

T/Ωk−1(T ) ∼= T p
k−t

/Ωk−1(T )p
k−t

T p
k−t+1

, (4)

as G-modules.

Put ai = mpk−2t

i and bi = mpk−t

i = ap
t

i . The isomorphism (4) implies that
{bi} lie in different G-conjugacy classes in B. Note that

oB(bi) =
oG(mi)

pk−t
=

pk

pk−t
= pt.

Let χ be the permutation character corresponding to the action of G on
B. Thus, χ(g) = |CB(g)|. Since {bi} lie in different G-conjugacy classes in

B, we obtain that χ(g) ≥
∑(p−1)s

i=1 1GCG(bi)
(g) for all g ∈ G. Therefore we have

the following.

k(G) = 1
|G|

∑
g∈G |CG(g)| ≥ 1

|G|
∑

g∈G oG/B(g)|CB(g)| Lemma 2.8

= 〈oG/B, χ〉 ≥ 〈oG/B,
∑(p−1)s

i=1 1GCG(bi)
〉

=
∑(p−1)s

i=1 〈oCG(bi)/B, 1CG(bi)〉 =
∑(p−1)s

i=1 o(CG(bi)/B)

≥
∑(p−1)s

i=1 o(CG(bi)/ kerα) ≥
∑(p−1)s

i=1 o(Z(CG(bi)/ kerα)) Lemma 2.7.

Since [A,B] = 1, A ≤ CG(bi). As we observed already α : A/B → B is a
surjective homomorphism of G-modules. Therefore since α(aiB) = bi, we
obtain that CG(ai kerα) = CG(bi) and so ai kerα ∈ Z(CG(bi)/ kerα). Thus
the exponent of Z(CG(bi)/ kerα) is at least oA/ kerα(ai) = oB(bi) = pt. Hence,
by Lemma 2.6, o(Z(CG(bi)/ kerα)) ≥ (p− 1)pt−1. Finnaly we conclude that

k(G) ≥
(p−1)s∑
i=1

o(Z(CG(bi)/ kerα)) ≥ (p− 1)s(p− 1)pt−1 ≥ sp(fP (s)−1)/3.

Claim 3.7. Assume |S/Ω9 log log d+4(S)| = pyd. Then there exists s ∈ {1, . . . , d(S)}
such that

sp(fS(s)−4)/3 > y · d log d.

In particular, k(G) > p · y · d log d.
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Proof. Let M = y · d log d. Since we assume that m < d(d2 + 1), we have
y < d2 + 1. Thus,

M < d4. (5)

By the way of contradiction let us assume that sp(fS(s)−4)/3 ≤ M for all
s ∈ {1, . . . , d(S)}. Thus,

fS(s) ≤ 3 logp
M

s
+ 4 < 3 logM + 4. (6)

By Lemma 2.3,

M = (logp |S/Ω9 log logp n+4(S)|) log d

= log d
∑

fS(i)≥9 log logp d+4

(fS(i)− 9 log logp d− 4)

≤ 3 log d · logM · |{i : fS(i) ≥ 9 log logp d+ 4}|.

Note that if fS(i) ≥ 9 log logp d+ 4, then, using the inequality (6), we obtain
that

3 logp
M

i
+ 4 ≥ fS(i) ≥ 9 log logp d+ 4 ≥ 9 logp log d+ 4

and so i ≤ M
(log d)3 . Thus, using (5), we obtain

M ≤ 3 log d · logM
M

(log d)3
= M

3 logM

(log d)2
≤M

12

log d
.

Since we assume that d > 212, we obtain that M < M . We have a contra-
diction.

Thus, there exists s ∈ {1, . . . , d(S)} such that sp(fS(s)−4)/3 > y · d log d.
By Claim 3.6, k(G) ≥ p · y · d log d.

Now we are ready to finish the proof. Note that since P is powerful,
Proposition 2.1(5) implies that

|Ω9 log log d+4(S)| ≤ |Ω9 log log d+4(P )| ≤ pd(9 log log d+4).

Thus,

m = logp |G| = logp |G/P |+ logp |P/S|+ logp |S/Ω9 log log d+4(S)

+ logp |Ω9 log log d+4(S)| ≤ d(x+ y + 9 log log d+ 5).
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If x = max{x, y, 3 log log d+2}, then m ≤ 5xd and log d ≤ p(x−2)/3. Applying
Claim 3.4, we obtain that

k(G) ≥ pxd ≥ p · x · d log d log x ≥ p

15
m logm.

If y = max{x, y, 3 log log d + 2}, then m ≤ 5yd. Since we suppose that
m < d(d2 + 1), y < d2 + 1 and since we assume that d > 212, log d > 12.
Applying Claim 3.7 we obtain that

k(G) ≥ p · y · d log d ≥ p

4
· y · d(log d+ log y + 3) ≥ p

20
m logm.

Finally, if 3 log log d+2 = max{x, y, 3 log log d+2}, then m ≤ d(15 log log d+
9). Hence, by Claim 3.5,

k(G) ≥ p

24
d log d ≥ p ·m logm

800 · log logm
.
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andrei.jaikin@uam.es

14


