# On the number of conjugacy classes of finite nilpotent groups 

Andrei Jaikin-Zapirain *


#### Abstract

We establish the first super-logarithmic lower bound for the number of conjugacy classes of a finite nilpotent group. In particular, for any constant $c$ there are only finitely many finite $p$-groups of order $p^{m}$ with at most $c \cdot m$ conjugacy classes. This answers a question of L . Pyber.


## 1 Introduction

Let $p$ be a fixed prime number and $G$ a finite $p$-group of order $p^{m}$. Since $G$ is nilpotent there exists a central series of subgroups

$$
G=G_{0}>G_{1}>\ldots>G_{m}=\{1\}
$$

such that $\left|G_{i}: G_{i+1}\right|=p$. Since for each $0 \leq i \leq m-1$ there are at least $p-1$ conjugacy classes in $G_{i} \backslash G_{i+1}$, we obtain that the number of conjugacy classes $k(G)$ of $G$ satisfies

$$
k(G) \geq(p-1) m \geq \log _{2}|G| .
$$

A slight improvement of this elementary bound was given by P. Hall. We write $m$ as $m=2 n+e$, where $e=0,1$. P. Hall showed (see, for example, [2, Chapter 5, Theorem 15.2]) that there exists a non-negative integer $a=a(G)$, which we call the abundance of $G$, such that

$$
\begin{equation*}
k(G)=p^{e}+\left(p^{2}-1\right)(n+a(p-1)) . \tag{1}
\end{equation*}
$$

[^0]This implies, in particular, that

$$
\begin{equation*}
k(G)>\frac{p^{2}-1}{2} m+(a-1)\left(p^{2}-1\right)(p-1) . \tag{2}
\end{equation*}
$$

In [8] J. Poland proved that if $a=0$ then $G$ is a $p$-group of maximal class of order at most $p^{p+2}$ and so there are only finitely many finite $p$-groups of abundance 0 (for each prime $p$ ). Combining this with the bound (2) we obtain that

$$
\begin{equation*}
k(G)>\frac{p^{2}-1}{2} m \text { for all } p \text {-groups except finitely many of them. } \tag{3}
\end{equation*}
$$

Polland's results suggested that for a fixed prime $p$ there are only finitely many finite $p$-groups $G$ with a given value of $a(G)$ (this appears, for example, as Problem 4 in [10]). This problem was solved in [4]. It was shown that $a(G) \geq \frac{\sqrt{m}}{p^{3}}$. However note that this result did not improve the constant $\frac{p^{2}-1}{2}$ in the bound (3). In this paper we establish the first super-logarithmic lower bound for the number of conjugacy classes of a finite nilpotent group.

Theorem 1.1. There exists a (explicitly computable) constant $C>0$ such that every finite nilpotent group $G$ of order $n \geq 8$ satisfies

$$
k(G)>C \frac{\log _{2} \log _{2} n}{\log _{2} \log _{2} \log _{2} n} \cdot \log _{2} n .
$$

As an immediate consequence we obtain the answer on a question of L . Pyber posed in [9] (this question appears also as Problem 5 in [10]).

Corollary 1.2. For any constant c there exists only a finite number of finite $p$-groups $G$ of order $p^{m}$ with at most $c \cdot m$ conjugacy classes.

In his paper L. Pyber established a lower bound for $k(G)$ for an arbitrary finite group $G$. Recently T. Keller [7] has improved Pyber's bound. We hope that the techniques introduced in the proof of Theorem 1.1 may be also used in obtaining further improvements of the Pyber-Keller bound. Recall the main conjecture in this subject.

Conjecture. There exists a constant $C>0$ such that a finite group $G$ of order $n$ satisfies $k(G) \geq C \log _{2} n$.

Acknowledgments: I would like to thank Jon Gonzalez who carefully read the manuscript and made many useful suggestions.

## 2 Preliminaries

Our notation is standard. If $M$ is a subset of $G$, then we denote by $k_{G}(M)$ the number of conjugacy classes that have a non-empty intersection with $M$. As usual, $d(G)$ denotes the minimal possible number of generators for $G$ and $\exp (G)$ the exponent of $G$. For any natural number $n, G^{n}$ is the subgroup of $G$ generated by $\left\{g^{n} \mid g \in G\right\}$. If $G$ is a $p$-group, then for any real $r$ we denote by $\Omega_{r}(G)$ the subgroup generated by elements of order at most $p^{r}$. We will use $\log$ for the logarithm to base 2 .

### 2.1 Powerful groups

Recall that a finite $p$-group $K$ is powerful if $p$ is odd and $K / K^{p}$ is abelian, or $p=2$ and $K / K^{4}$ is abelian. Throughout this paper we shall use various facts about powerful $p$-groups, which can be found in [6] and [1]. Some of them are recollected in the following proposition.

Proposition 2.1. Let $K$ be a powerful $p$-group and $P=K^{2}$ (note that $P=K$ if $p>2)$. Then

1. The exponent of $K$ coincides with the maximum of the orders of elements from any generating set.
2. For any $i, j \geq 0,\left[K^{p^{i}}, K^{p^{j}}\right] \leq K^{p^{i+j+1}}$.
3. For any $i, j$ and $k$ such that $k-1 \leq i \leq j$, the map $K^{p^{i}} / K^{p^{i+k}} \rightarrow$ $K^{p^{j}} / K^{p^{j+k}}$ which send a $K^{p^{i+k}}$ to $a^{p^{j-i}} K^{p^{j+k}}$ is a surjective homomorphism of abelian groups.
4. $\Omega_{i}(P)$ has exponent less than or equal to $p^{i}$.
5. $\left|\Omega_{1}(P)\right|=p^{d(P)}$ and $\left|\Omega_{i}(P)\right| \leq p^{d(P) i}$.
6. Any normal in $K$ subgroup, which is contained in $K^{2 p}$, is powerful.

Let $P$ be a powerful $p$-group. Consider a function

$$
f_{P}:\{1, \ldots, d(P)\} \rightarrow \mathbb{N}
$$

defined in the following way. We put

$$
f_{P}(i)=k \text { if }\left|P: \Omega_{k}(P) \Phi(P)\right|<p^{i} \text { and }\left|P: \Omega_{k-1}(P) \Phi(P)\right| \geq p^{i} .
$$

Example 2.2. Let $n_{1} \geq n_{2} \geq \ldots \geq n_{k}$ be $k$ positive integers. Put $P=$ $C_{p^{n_{1}}} \times \cdots \times C_{p^{n_{k}}}$. Then we have $d(P)=k$ and $f_{P}(i)=n_{i}$.

Lemma 2.3. Let $K$ be a powerful p-group and $P=K^{2}$. Then for every $k \leq \log _{p} \exp (P)$ we have that

$$
\left|P / \Omega_{k}(P)\right|=\prod_{f_{P}(i) \geq k} p^{f_{P}(i)-k} .
$$

Proof. We will prove the lemma by induction on $|P|$. By Proposition 2.1(4), $\Omega_{i}\left(P / \Omega_{1}(P)\right)=\Omega_{i+1}(P) / \Omega_{1}(P)$. Thus, if $\bar{P}=P / \Omega_{1}(P)$, then $f_{\bar{P}}(i)=$ $f_{P}(i)-1$ when $i \in\{1, \ldots, d(\bar{P})\}$. Let us assume first that $k \geq 1$. Then applying the induction hypothesis we obtain that

$$
\left|P / \Omega_{k}(P)\right|=\left|\bar{P} / \Omega_{k-1}(\bar{P})\right|=\prod_{f_{\bar{P}}(i) \geq k-1} p^{f_{\bar{P}}(i)-k+1}=\prod_{f_{P}(i) \geq k} p^{f_{P}(i)-k} .
$$

Now consider the case $k=0$. Using Proposition 2.1(5) and the induction hypothesis, we obtain that

$$
\begin{aligned}
|P| & =\left|\Omega_{1}(P)\right||\bar{P}|=p^{d(P)} \prod_{i=1}^{d(\bar{P})} p^{f_{\bar{P}}(i)}=p^{d(P)-d(\bar{P})} \prod_{f_{P}(i) \geq 1} p^{f_{P}(i)} \\
& =\left|\Omega_{1}(P) \Phi(P): \Phi(P)\right| \prod_{f_{P}(i) \geq 1} p^{f_{P}(i)}=\prod_{i=1}^{d(P)} p^{f_{P}(i)} .
\end{aligned}
$$

Corollary 2.4. Let $K$ be a powerful $p$-group and $P=K^{2}$. Then for every $k \leq \log _{p} \exp (P)$ we have that

$$
\left|\Omega_{k}(P): \Omega_{k-1}(P)\right|=p^{\max \left\{1 \leq i \leq d(P): f_{P}(i) \geq k\right\}} .
$$

Proof. Applying the previous lemma we obtain that

$$
\left|P / \Omega_{k}(P)\right|=\prod_{f_{P}(i) \geq k} p^{f_{P}(i)-k}
$$

and

$$
\left|P / \Omega_{k-1}(P)\right|=\prod_{f_{P}(i) \geq k-1} p^{f_{P}(i)-k+1}=\prod_{f_{P}(i) \geq k} p^{f_{P}(i)-k+1}
$$

Thus, since $f_{P}(i)$ is a monotonically decreasing function,

$$
\left|\Omega_{k}(P): \Omega_{k-1}(P)\right|=p^{\max \left\{1 \leq i \leq d(P): f_{P}(i) \geq k\right\}} .
$$

We also will need the following lemma.
Lemma 2.5. Let $G$ be a finite p-group and $P$ a maximal normal powerful subgroup of $G$. Then $C_{G}\left(P / P^{2 p}\right)=P$. In particular, if $n=d(P)$ then

$$
|G / P| \leq \begin{cases}2^{\frac{n(3 n-1)}{2}} & p=2 \\ p^{\frac{n(n-1)}{2}} & p>2\end{cases}
$$

Proof. For simplicity we assume that $p$ is odd. If $C_{G}(P / \Phi(P)) \neq P$ then there exists $a \notin P$ such that $a P \in Z(G / P) \cap\left(C_{G}(P / \Phi(P)) / P\right)$. Put $R=\langle a, P\rangle$. Then $[R, R] \leq P^{p} \leq R^{p}$ and $R$ is normal in $G$. We have a contradiction. Thus, $G / P$ can be embedded in $\mathrm{GL}_{n}\left(\mathbf{F}_{p}\right)$. Therefore it's order is at most the order of a Sylow $p$-subgroup of $\mathrm{GL}_{n}\left(\mathbf{F}_{p}\right)$ which is equal to $p^{\frac{n(n-1)}{2}}$.

### 2.2 The average order

If $N$ is a normal subgroup of a finite group $G$ and $x \in G$, we denote by $o_{G / N}(x)=o_{G / N}(x N)$ the order of $x N$ in $G / N$. Then we put

$$
o(G / N)=\frac{1}{|G|} \sum_{x \in G} o_{G / N}(x) .
$$

The number $o(G)$ is called the average order of $G$. For example, we may estimate the average order a powerful $p$-group. This result appears in the proof of [10, Lemma 4.7].
Lemma 2.6. Let $P$ be a powerful p-group of exponent $p^{k}$. Then

$$
p^{k} \geq o(P) \geq(p-1) p^{k-1}
$$

Proof. By Proposition 2.1(1), $\Omega_{k-1}(P)$ is a proper normal subgroup of $P$. If $x \in P \backslash \Omega_{k-1}(P)$, then $o(x)=p^{k}$. Thus,

$$
o(P) \geq \frac{1}{|P|} \sum_{x \in P \backslash \Omega_{k-1}(P)}|o(x)| \geq(p-1) p^{k-1} .
$$

This proves the second inequality. The first inequality is obvious.

In the following lemma we show that the average order of a finite group is at least the average order of its center.

Lemma 2.7. Let $G$ be a finite group. Then $o(G) \geq o(Z(G))$.
Proof. Let $x \in G$ and

$$
m=m(x)=\min \left\{o_{G}(y): y \in x Z(G)\right\} .
$$

Then there exists $y \in x Z(G)$ such that $y^{m}=1$. Take $a \in Z(G)$. Then $(y a)^{m}=a^{m} \in Z(G)^{m}$. Hence $l=o_{G / Z(G)^{m}}(y a)$ divides $m$. On the other hand, there exists $z \in Z(G)$ such that $(y a)^{l}=z^{m}$. Therefore $\left(y a z^{-m / l}\right)^{l}=1$, and so by the choice of $m, l \geq m$. Thus, $m=o_{G / Z(G)^{m}}(y a)$.

Since $o_{G / Z(G)^{m}}(y a)$ divides $o_{G}(y a)$, we obtain that

$$
o_{G}(y a)=m \cdot o_{G}\left((y a)^{m}\right)=m \cdot o_{G}\left(a^{m}\right)=m \cdot \frac{o_{G}(a)}{\left(m, o_{G}(a)\right)} \geq o_{G}(a) .
$$

Now, calculating the average order of elements of $x Z(G)$ we see that

$$
\frac{1}{|Z(G)|} \sum_{g \in x Z(G)} o_{G}(g)=\frac{1}{|Z(G)|} \sum_{a \in Z(G)} o_{G}(y a) \geq \frac{1}{|Z(G)|} \sum_{a \in Z(G)} o_{G}(a)=o(Z(G)) .
$$

Hence $o(G) \geq o(Z(G))$.
It would be very interesting to understand the relation between $o(G)$ and $o(N)$, where $N$ is a normal subgroup of $G$. We pose the following question.

Question. Let $G$ be a finite ( $p$-) group and $N$ a normal (abelian) subgroup of $G$. Is it true that $o(G) \geq o(N)^{1 / 2}$ ?

The following lemma is proved in [5]. We include the proof for the convenience of the reader.

Lemma 2.8. Let $G$ be a finite $p$-group and $M$ a normal subgroup of $G$. Then for any $x \in G$

$$
\left|C_{G}(x)\right| \geq o_{G / M}(x)\left|C_{M}(x)\right| .
$$

Moreover, if $M$ is elementary abelian and $o_{G / M}(x) \leq t \leq \ln |M|$ then

$$
\left|C_{G}(x)\right| \geq t|M|^{1 / t} .
$$

Proof. Since $C_{M}(x)=M \cap C_{G}(x)$,

$$
\left|C_{G}(x) / C_{M}(x)\right|=\left|C_{G}(x) M / M\right| \geq o_{G / M}(x)
$$

Hence $\left|C_{G}(x)\right| \geq o_{G / M}(x)\left|C_{M}(x)\right|$.
Now, if $M$ is elementary abelian we may consider $M$ as a $\mathbb{F}_{p}[x]$-module. Then $M$ is a direct sum of principal submodules of order $\leq p^{o_{G / M}(x)}$. Hence $\left|C_{M}(x)\right| \geq|M|^{1 / o_{G / M}(x)}$.

Consider the function $f(z)=z|M|^{1 / z}$. Then $f$ decreases in the interval $1 \leq z \leq \ln |M|$. Hence we have that

$$
\left|C_{G}(x)\right| \geq o_{G / M}(x)\left|C_{M}(x)\right| \geq o_{G / M}(x)|M|^{1 / o_{G / M}(x)} \geq t|M|^{1 / t} .
$$

## 3 Proof of Theorem 1.1

Without loss of generality we may assume that $G$ in Theorem 1.1 is a $p$-group. In this case Theorem 1.1 is a consequence of the following result.

Theorem 3.1. There exists a constant $c>0$ such that a finite $p$-group $G$ of order $p^{m} \geq p^{4}$ satisfies

$$
k(G) \geq c \cdot p \cdot \frac{m \cdot \log m}{\log \log m}
$$

Proof. For simplicity we assume that $p$ is odd. The same proof with few changes works also when $p=2$.

Fix a maximal powerful normal subgroup $P$ of $G$ and let $d=d(P)$.
Claim 3.2. The theorem holds if $m \geq d\left(d^{2}+1\right)$.
Proof. Let $p^{k}$ be the exponent of $P$. Since $P$ is powerful, by Proposition 2.1 (5), $|P| \leq p^{d(P) k}=p^{d k}$. Thus, by Lemma 2.6,

$$
k(P) \geq o(P) \geq(p-1) p^{k-1} \geq \frac{p-1}{p}|P|^{1 / d}
$$

By Lemma 2.5, $|G / P| \leq p^{\frac{d(d-1)}{2}}$. Therefore,

$$
k(G) \geq \frac{k(P)}{|G: P|} \geq \frac{p-1}{p} \frac{|P|^{1 / d}}{p^{d(d-1) / 2}} \geq p^{\frac{m}{d}-\frac{d(d-1)}{2 d}-\frac{d(d-1)}{2}-1}=p^{\frac{m}{d}-\frac{d^{2}+1}{2}} .
$$

Now, let us assume that $m \geq d\left(d^{2}+1\right)$. In this case we obtain that

$$
k(G) \geq p^{\frac{m}{d}-\frac{d^{2}+1}{2}} \geq p^{\frac{m}{2 d}} \geq p \cdot p^{\frac{m^{\frac{2}{3}-2}}{2}} \geq c \cdot p \cdot m^{2}
$$

for some constant $c>0$.

Claim 3.3. The theorem holds if $d \leq 2^{12}$.
Proof. By Claim 3.2, we may assume that $m<d\left(d^{2}+1\right)$. Thus, if $d \leq 2^{12}$, then $m<2^{37}$. Since $k(G) \geq(p-1) m$, we are done.

So, from now on, we will assume that $m<d\left(d^{2}+1\right)$ and $d>2^{12}$.
Claim 3.4. Assume $|G / P|=p^{x d}$. Then $k(G) \geq d p^{x}$.
Proof. Let $\bar{G}=G / P$. By Lemma 2.5, the nilpotency class of $\bar{G}$ is at most $d$. Define $p^{a_{i}}=\left|\gamma_{i}(\bar{G}): \gamma_{i+1}(\bar{G})\right|$. Thus, $k_{G}\left(\gamma_{i}(G) P \backslash \gamma_{i+1}(G) P\right) \geq p^{a_{i}}-1$. On the other hand $k_{G}(P) \geq(p-1) \log _{p}|P| \geq d$. Hence

$$
\begin{aligned}
k(G) & \geq k_{G}(P)+\sum_{i=1}^{d} k_{G}\left(\gamma_{i}(G) P \backslash \gamma_{i+1}(G) P\right) \geq d+\sum_{i=1}^{d}\left(p^{a_{i}}-1\right) \\
& =\sum_{i=1}^{d} p^{a_{i}} \geq d \sqrt[n]{p^{\sum_{i} a_{i}}}=d\left(|\bar{G}|^{1 / d}\right)=d p^{x} .
\end{aligned}
$$

We put $S=P^{p}$. Since $P$ is powerful, by Proposition 2.1, $S$ is also powerful.
Claim 3.5. We have that $k(G / S)>\frac{p \cdot d \log d}{24}$.
Proof. Without loss of generality we may assume in the proof of this claim that $S=P^{p}=\{1\}$. Thus $|P|=p^{d}$.

Let $H$ be a subgroup of $G$. Put $t_{H}=\frac{d}{2 \log _{p}|G: H|+\log d+1}$ and denote by $A(H)$ the following subset of $H$ :

$$
A=A(H)=\left\{x \in H: o_{G / P}(x) \geq t_{H}\right\} .
$$

Note that if $x \in H \backslash A(H)$ then, by Lemma 2.8,

$$
\begin{aligned}
\left|C_{G}(x)\right| & \geq o_{G / P}(x)|P|^{\frac{1}{G_{G} P^{(x)}}} \geq t_{H}|P|^{1 / t_{H}} \geq \frac{d \cdot p^{2 \log _{p}|G: H|+\log d+1}}{2 \log _{p}|G: H|+\log d+1} \\
& \geq \frac{p|G: H|^{2} d^{2}}{2 \log _{p}|G: H|+\log d+1} \geq \frac{p|G: H| d \log d}{2} .
\end{aligned}
$$

Since $k_{G}(H) \geq \frac{1}{|G|} \sum_{x \in H \backslash A(H)}\left|C_{G}(x)\right|$, we have

$$
k_{G}(H) \geq \frac{p|G: H||H \backslash A(H)| d \log d}{2|G|}=\frac{p|H \backslash A(H)| d \log d}{2|H|} .
$$

Thus, if $|A(H)|<\frac{|H|}{2}$, then $k_{G}(H)>\frac{p \cdot d \log d}{4}$. Thus we may assume that $|A(H)| \geq \frac{|H|}{2}$ for any $H \leq G$.

Note that by Lemma 2.8,

$$
k(G)=\frac{1}{|G|} \sum_{x \in G}\left|C_{G}(x)\right| \geq \frac{1}{|G|} \sum_{x \in G} o_{G / P}(x)\left|C_{P}(x)\right| .
$$

Let $\chi(x)=\left|C_{P}(x)\right|$ be the permutation character associated with the action of $G$ on $P$ (see [3, p.68]). Then the last inequality can be rewritten as

$$
k(G) \geq\left\langle o_{G / P}, \chi\right\rangle
$$

For each $0 \leq i \leq d-1$ we fix an element $m_{i} \in P$ in the following way:
First, let $1 \neq m_{0} \in Z(G) \cap P$. Now, suppose we have chosen $m_{0}, \ldots, m_{k}$. Then let $m_{k+1} \in P, m_{k+1} \notin\left\langle m_{0}, \cdots, m_{k}\right\rangle$ and $\left[G, m_{k+1}\right] \subseteq\left\langle m_{0}, \cdots, m_{k}\right\rangle$. It is clear that the elements $\left\{m_{i}^{\alpha} \mid \alpha=0, \ldots, p-1\right\}$ lie in different conjugacy classes of $G$. Put $N_{i}=C_{G}\left(m_{i}\right)$. Note that since $\left|\left[G, m_{i}\right]\right| \leq p^{i}$, the index of $N_{i}$ in $G$ is at most $p^{i}$.

If $\Lambda$ is a set of representatives of the $G$-conjugacy classes in $P$, then it is known that $\chi=\sum_{m \in \Lambda} 1_{C_{G}(m)}^{G}$. In particular, $\chi(x) \geq(p-1) \sum_{i=0}^{d-1} 1_{N_{i}}^{G}(x)$ for every $x \in G$.

Note that, by Frobenius Reciprocity,

$$
\begin{aligned}
\left\langle o_{G / P}, 1_{N_{i}}^{G}\right\rangle & =\left\langle o_{N_{i} / P}, 1_{N_{i}}\right\rangle=o\left(N_{i} / P\right) \geq \frac{\left|A\left(N_{i}\right)\right| t_{N_{i}}}{\left|N_{i}\right|} \geq \frac{t_{N_{i}}}{2} \\
& =\frac{d}{4 \log \left|G: N_{p}\right|+2 \log d+2} \geq \frac{d}{4 i+2 \log d+2} .
\end{aligned}
$$

Hence

$$
\begin{aligned}
k(G) & \geq\left\langle o_{G / P}, \chi\right\rangle \geq\left\langle o_{G / P},(p-1) \sum_{i=0}^{d-1} 1_{N_{i}}^{G}\right\rangle \geq(p-1) d \sum_{i=0}^{d-1} \frac{1}{4 i+2 \log d+2} \\
& \geq \frac{p \cdot d}{4} \sum_{i=0}^{d-1} \frac{1}{2 i+\log d+1}>\frac{p \cdot d}{8} \ln \frac{2 d+\log d-1}{\log d+1} \geq \frac{p \cdot d \log d}{24} .
\end{aligned}
$$

Remark. The proofs of Claims 3.4 and 3.5 essentially repeat the argument of the proof of [5, Theorem 1.10]. The main new ingredients in the proof of Theorem 3.1 are Claims 3.6 and 3.7.
Claim 3.6. Let $s \in\{1, \ldots, d(S)\}$. Then

$$
k(G) \geq p^{\left(f_{S}(s)-1\right) / 3} s .
$$

Remark. It may be helpful in the first reading of the proof of this claim assume that $S$ is abelian. In this case the function $f_{S}$ is described in Example 2.2.

Proof. It is clear that without loss of generality we may assume that $f_{S}(s+$ $1) \leq f_{S}(s)-1$ or $s=d(S)$. Put $k=f_{S}(s), T=\Omega_{k}(S)$ and let $t$ be the integer part of $(k+1) / 3$. Since $T$ is a normal subgroup of $P$ and it is contained in $S=P^{p}$, Proposition 2.1(6) implies that $T$ is powerful. Let $A=T^{p^{k-2 t}}$ and $B=T^{p^{k-t}}$. Note that $A$ and $B$ are characteristic subgroups of $P$ and so they are normal in $G$. Since, $T$ is powerful, Proposition 2.1(2) implies that $[A, B]=1$. Moreover, by Proposition 2.1(3), the map $\alpha: A / B \rightarrow B$ which sends $a B$ to $a^{p^{t}}$ is a surjective homomorphism of abelian groups. Since $\alpha$ commutes with $G$-action, $\alpha$ is also a homomorphism of $G$-modules. In particular, $A / \operatorname{ker} \alpha \cong B$ as $G$-modules.

Note that $\Omega_{k-1}(T)=\Omega_{k-1}(S)$. Since we assume that $f_{S}(s+1) \leq f_{S}(s)-1$ or $s=d(S)$, Corollary 2.4 implies that

$$
\left|T / \Omega_{k-1}(T)\right|=\left|\Omega_{k}(S): \Omega_{k-1}(S)\right|=p^{s} .
$$

Since $G$ is a $p$-group, there are at least $(p-1) s$ non-trivial $G$-conjugacy classes in $T / \Omega_{k-1}(T)$. Hence the claim holds if $k=1$. So, we assume now that $k \geq 2$. In this case $t \geq 1$.

Choose $m_{1}, \ldots, m_{(p-1) s} \in T \backslash \Omega_{k-1}(T)$ such that $\left\{m_{i} \Omega_{k-1}(T)\right\}$ lie in different $G$-conjugacy classes. Consider the map $\beta: T / T^{p} \rightarrow T^{p^{k-t}} / T^{p^{k-t+1}}$ which sends $x T^{p}$ to $x^{p^{k-t}} T^{p^{k-t+1}}$. Applying again Proposition 2.1(3) we conclude that $\beta$ is a homomorphism of $G$-modules. Let $x \in \operatorname{ker} \beta$ be an arbitrary element of $\operatorname{ker} \beta$. This means that $x^{p^{k-t}} \in T^{p^{k-t+1}}$. On the other hand, by Proposition 2.1(4),

$$
T^{p^{k-t+1}}=\Omega_{k}(S)^{p^{k-t+1}} \leq \Omega_{t-1}(S)=\Omega_{t-1}(T)
$$

Proposition 2.1(4) also implies that $\Omega_{t-1}(T)^{p^{t-1}}=1$, and so

$$
x^{p^{k-1}}=\left(x^{p^{k-t}}\right)^{p^{t-1}}=1 .
$$

Hence we conclude that ker $\beta \leq \Omega_{k-1}(T)$. Thus we obtain that

$$
\begin{equation*}
T / \Omega_{k-1}(T) \cong T^{p^{k-t}} / \Omega_{k-1}(T)^{p^{k-t}} T^{p^{k-t+1}} \tag{4}
\end{equation*}
$$

as $G$-modules.
Put $a_{i}=m_{i}^{p^{k-2 t}}$ and $b_{i}=m_{i}^{p^{k-t}}=a_{i}^{p^{t}}$. The isomorphism (4) implies that $\left\{b_{i}\right\}$ lie in different $G$-conjugacy classes in $B$. Note that

$$
o_{B}\left(b_{i}\right)=\frac{o_{G}\left(m_{i}\right)}{p^{k-t}}=\frac{p^{k}}{p^{k-t}}=p^{t} .
$$

Let $\chi$ be the permutation character corresponding to the action of $G$ on $B$. Thus, $\chi(g)=\left|C_{B}(g)\right|$. Since $\left\{b_{i}\right\}$ lie in different $G$-conjugacy classes in $B$, we obtain that $\chi(g) \geq \sum_{i=1}^{(p-1) s} 1_{C_{G}\left(b_{i}\right)}^{G}(g)$ for all $g \in G$. Therefore we have the following.

$$
\begin{aligned}
k(G) & =\frac{1}{|G|} \sum_{g \in G}\left|C_{G}(g)\right| \geq \frac{1}{|G|} \sum_{g \in G} o_{G / B}(g)\left|C_{B}(g)\right| & \text { Lemma } 2.8 \\
& =\left\langle o_{G / B}, \chi\right\rangle \geq\left\langle o_{G / B}, \sum_{i=1}^{(p-1) s} 1_{C_{G}\left(b_{i}\right)}^{G}\right\rangle & \\
& =\sum_{i=1}^{(p-1) s}\left\langle o_{C_{G}\left(b_{i}\right) / B}, 1_{C_{G}\left(b_{i}\right)}\right\rangle=\sum_{i=1}^{(p-1) s} o\left(C_{G}\left(b_{i}\right) / B\right) & \\
& \geq \sum_{i=1}^{(p-1) s} o\left(C_{G}\left(b_{i}\right) / \operatorname{ker} \alpha\right) \geq \sum_{i=1}^{(p-1) s} o\left(Z\left(C_{G}\left(b_{i}\right) / \operatorname{ker} \alpha\right)\right) & \text { Lemma 2.7. }
\end{aligned}
$$

Since $[A, B]=1, A \leq C_{G}\left(b_{i}\right)$. As we observed already $\alpha: A / B \rightarrow B$ is a surjective homomorphism of $G$-modules. Therefore since $\alpha\left(a_{i} B\right)=b_{i}$, we obtain that $C_{G}\left(a_{i} \operatorname{ker} \alpha\right)=C_{G}\left(b_{i}\right)$ and so $a_{i} \operatorname{ker} \alpha \in Z\left(C_{G}\left(b_{i}\right) / \operatorname{ker} \alpha\right)$. Thus the exponent of $Z\left(C_{G}\left(b_{i}\right) / \operatorname{ker} \alpha\right)$ is at least $o_{A / \operatorname{ker} \alpha}\left(a_{i}\right)=o_{B}\left(b_{i}\right)=p^{t}$. Hence, by Lemma 2.6,o( $\left.Z\left(C_{G}\left(b_{i}\right) / \operatorname{ker} \alpha\right)\right) \geq(p-1) p^{t-1}$. Finnaly we conclude that

$$
k(G) \geq \sum_{i=1}^{(p-1) s} o\left(Z\left(C_{G}\left(b_{i}\right) / \operatorname{ker} \alpha\right)\right) \geq(p-1) s(p-1) p^{t-1} \geq s p^{\left(f_{p}(s)-1\right) / 3} .
$$

Claim 3.7. Assume $\left|S / \Omega_{9 \log \log d+4}(S)\right|=p^{y d}$. Then there exists $s \in\{1, \ldots, d(S)\}$ such that

$$
s p^{\left(f_{S}(s)-4\right) / 3}>y \cdot d \log d .
$$

In particular, $k(G)>p \cdot y \cdot d \log d$.

Proof. Let $M=y \cdot d \log d$. Since we assume that $m<d\left(d^{2}+1\right)$, we have $y<d^{2}+1$. Thus,

$$
\begin{equation*}
M<d^{4} . \tag{5}
\end{equation*}
$$

By the way of contradiction let us assume that $s p^{\left(f_{S}(s)-4\right) / 3} \leq M$ for all $s \in\{1, \ldots, d(S)\}$. Thus,

$$
\begin{equation*}
f_{S}(s) \leq 3 \log _{p} \frac{M}{s}+4<3 \log M+4 \tag{6}
\end{equation*}
$$

By Lemma 2.3,

$$
\begin{aligned}
M & =\left(\log _{p}\left|S / \Omega_{9} \log _{\log _{p} n+4}(S)\right|\right) \log d \\
& =\log d \sum_{f_{S}(i) \geq 9 \log _{\log }^{p} d+4}\left(f_{S}(i)-9 \log \log _{p} d-4\right) \\
& \leq 3 \log d \cdot \log M \cdot\left|\left\{i: f_{S}(i) \geq 9 \log \log _{p} d+4\right\}\right| .
\end{aligned}
$$

Note that if $f_{S}(i) \geq 9 \log _{\log }^{p}$ $d+4$, then, using the inequality (6), we obtain that

$$
3 \log _{p} \frac{M}{i}+4 \geq f_{S}(i) \geq 9 \log \log _{p} d+4 \geq 9 \log _{p} \log d+4
$$

and so $i \leq \frac{M}{(\log d)^{3}}$. Thus, using (5), we obtain

$$
M \leq 3 \log d \cdot \log M \frac{M}{(\log d)^{3}}=M \frac{3 \log M}{(\log d)^{2}} \leq M \frac{12}{\log d} .
$$

Since we assume that $d>2^{12}$, we obtain that $M<M$. We have a contradiction.

Thus, there exists $s \in\{1, \ldots, d(S)\}$ such that $s p^{\left(f_{S}(s)-4\right) / 3}>y \cdot d \log d$. By Claim 3.6, $k(G) \geq p \cdot y \cdot d \log d$.

Now we are ready to finish the proof. Note that since $P$ is powerful, Proposition 2.1(5) implies that

$$
\left|\Omega_{9 \log \log d+4}(S)\right| \leq\left|\Omega_{9 \log \log d+4}(P)\right| \leq p^{d(9 \log \log d+4)}
$$

Thus,

$$
\begin{aligned}
m & =\log _{p}|G|=\log _{p}|G / P|+\log _{p}|P / S|+\log _{p} \mid S / \Omega_{9 \log \log d+4}(S) \\
& +\log _{p}\left|\Omega_{9 \log \log d+4}(S)\right| \leq d(x+y+9 \log \log d+5) .
\end{aligned}
$$

If $x=\max \{x, y, 3 \log \log d+2\}$, then $m \leq 5 x d$ and $\log d \leq p^{(x-2) / 3}$. Applying Claim 3.4, we obtain that

$$
k(G) \geq p^{x} d \geq p \cdot x \cdot d \log d \log x \geq \frac{p}{15} m \log m
$$

If $y=\max \{x, y, 3 \log \log d+2\}$, then $m \leq 5 y d$. Since we suppose that $m<d\left(d^{2}+1\right), y<d^{2}+1$ and since we assume that $d>2^{12}, \log d>12$. Applying Claim 3.7 we obtain that

$$
k(G) \geq p \cdot y \cdot d \log d \geq \frac{p}{4} \cdot y \cdot d(\log d+\log y+3) \geq \frac{p}{20} m \log m .
$$

Finally, if $3 \log \log d+2=\max \{x, y, 3 \log \log d+2\}$, then $m \leq d(15 \log \log d+$ $9)$. Hence, by Claim 3.5,

$$
k(G) \geq \frac{p}{24} d \log d \geq \frac{p \cdot m \log m}{800 \cdot \log \log m}
$$

## References

[1] J. González-Sánchez, A. Jaikin-Zapirain, On the structure of normal subgroups of potent $p$-groups, J. Algebra 276 (2004), no. 1, 193-209.
[2] B. Huppert, Endliche Gruppen I, Springer, Berlin-Heidelberg-New York, 1982.
[3] M. Isaacs, Character theory of finite groups (Dover Publications, Inc., New York, 1994).
[4] A. Jaikin Zapirain, On the abundance of finite $p$-groups, Journal Group Theory 3 (2000) 225-231.
[5] A. Jaikin-Zapirain, On the number of conjugacy classes in finite $p$ groups, J. London Math. Soc. (2) 68 (2003), no. 3, 699-711.
[6] A. Lubotzky and A. Mann, Powerful p-groups. I. Finite groups, J. Algebra, 105 (1987), 484-505.
[7] T. Keller, Finite groups have even more conjugacy classes, arXiv:0812.2590, to appear in Israel Journal of Math..
[8] J. Poland, Two problems with finite groups with $k$ conjugate classes, $J$. Austr. Math. Soc.(Ser. A), 8 (1968), 49-55.
[9] L. Pyber, Finite groups have many conjugacy classes, J. London Math. Soc. (2) 46 (1992), no. 2, 239-249.
[10] A. Shalev, 'Finite p-groups', Finite and locally finite groups (Istanbul, 1994), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 471 (1995) 401450.

Departamento de Matemáticas, Universidad Autonoma de Madrid and Instituto de Ciencias Matemáticas, CSIC-UAM-UC3M-UCM andrei.jaikin@uam.es


[^0]:    *Supported by Spanish Ministry of Science and Innovation, grant MTM2008-06680.

