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Abstract. We develop a method to show that some (abstract) groups
can be embedded into a free pro-p group. In particular, we show that a
finitely generated subgroup of a free Q-group can be embedded into a free
pro-p group for almost all primes p. This solves an old problem raised
by G. Baumslag: free Q-groups are residually torsion-free nilpotent.

1. Introduction

A group G is called a Q-group if for any n ∈ N and g ∈ G there exists
exactly one h ∈ G satisfying hn = g. These groups were introduced by G.
Baumslag in [2] under the name of D-groups. He observed that Q-groups
may be viewed as universal algebras, and as such they constitute a variety.
Every variety of algebras contains free algebras (in that variety). In the
variety of Q-groups we call such free algebras free Q-groups. G. Baumslag
dedicated several papers to the study of residual properties of free Q-groups
[3, 5, 7]. For example, in [3] he showed that a free Q-group is residually
periodic-soluble and locally residually finite-soluble. He wrote in [3] “It
is, of course, still possible that, locally, free D-groups are, say, residually
finite p-groups” or in [5] “In particular it seems likely that free D-groups
are residually torsion-free nilpotent. However the complicated nature of free
D-groups makes it difficult to substantiate such a remark.” This conjecture
is part of two main collections of problems in Group Theory ([8, Problem
F12] and [35, Problem 13.39 (a),(c)]), and in addition to mentioned works of
Baumslag, it was also studied in [13, 20]. In this paper we solve Baumslag’s
conjecture.

Theorem 1.1. A free Q-group is residually torsion-free nilpotent.

Let I be a set and X = {xi : i ∈ I} and Y = {yi : i ∈ I} two sets indexed
by elements of I. We denote by FQ(X) the free Q-group on X and by
Q〈〈Y 〉〉 the ring of non-commutative power series in Y with coefficients in Q.
There is a unique group homomorphism φ : FQ(X)→ Q〈〈Y 〉〉∗ (the Magnus
homomorphism), that sends xi to 1+yi. G. Baumslag observed that FQ(X)
is residually torsion-free nilpotent if and only if φ is a monomorphism. Thus,
in order to prove Theorem 1.1 we have to show that the restriction of φ on
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any finitely generated subgroup of FQ(X) is injective. The structure of
finitely generated subgroups of FQ(X) was studied already in [2] (see also
[45, Section 8]). It was shown that FQ(X) is the end result of repeatedly
freely adjoining nth roots to the free group F (X). The key point of our
proof of Theorem 1.1 is to show that any finitely generated subgroup of
FQ(X) can be embedded into a finitely generated free pro-p group for some
prime p. In fact, we prove the following stronger result.

Theorem 1.2. Let p be a prime. Let H0 = F (X) be a free group on
generators X = {x1, . . . , xd} and let H0 ↪→ F be the canonical embedding
of H0 into its pro-p completion F. Construct subgroups Hi of F inductively
in the following way. Let Ai be a maximal abelian subgroup of Hi and let
Bi be a finitely generated abelian subgroup of F which contains Ai. Put
Hi+1 = 〈Hi, Bi〉. Then for every k ≥ 1, the canonical map

Hk−1 ∗Ak−1
Bk−1 → Hk

is an isomorphism.

Let us make few remarks about the groups Ai and Bi. It is relatively easy
to describe abelian subgroups of amalgamated products. In particular, the
conclusion of the theorem implies that all abelian subgroups of Hi are finitely
generated. Thus, an implicit hypothesis, which appears in the theorem,
that Ai are finitely generated, is automatically fulfilled. A maximal abelian
subgroup of F is isomorphic to the additive group of the ring of p-adic
numbers (Zp,+). Therefore, for any finitely generated (abstract) abelian
subgroup A of F and any finitely generated torsion-free abelian group B
which contains A and such that B/A has no p-torsion, it is posible to extend
the embedding A ↪→ F to an embedding B ↪→ F. This extension is unique
if and only if B/A is finite.

Let H be a group and A the centralizer of a non-trivial element. Then
the group G = H ∗A (A× Zk) is said to be obtained from H by extension
of a centralizer. A group is called an ICE group if it can be obtained
from a free group using iterated centralizer extensions. A group G is a limit
group if and only if it is a finitely generated subgroup of an ICE group
(see [34, 12]). All centralizers of non-trivial elements of an ICE group are
abelian. Thus, Theorem 1.1 provides explicit realizations of ICE groups
(and so limit groups) as subgroups of a non-abelian free pro-p-groups (for
this application we only need the case where all Bi/Ai are torsion-free).
Non-explicit realizations of limit groups as subgroups of a compact group
containing a non-abelian free group was obtained in [1] (see also [10]).

The most interesting part of Theorem 1.2 corresponds to the case where
Bi/Ai have non-trivial torsion. In the proof of Theorem 1.1 we only use the
case where all Bi and Ai are infinite cyclic.

A residually nilpotent group G is called parafree if its quotients by the
terms of its lower central series are the same as those of a free group. Baum-
slag introduced this family of groups and produced many examples of them
[4]. In [32] we apply the methods of the proof of Theorem 1.2 in order to
construct new examples of finitely generated parafree groups.
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The paper is organized as follows. In Section 2 we give basic preliminaries.
The proof of Theorem 1.2 uses the theory of mod-p L2-Betti numbers. In
Section 3 we explain how to define them for subgroups G of a free pro-
p group. In Section 4 we introduce a technical notion of D-torsion-free
modules and show that some relevant Fp[G]-modules are DFp[G]-torsion-free
(see Proposition 4.10). In Section 5 we prove Theorem 1.1 and Theorem 1.2.
In the last section we discuss two well-known problems concerning linearity
of free pro-p groups and free Q-groups.
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2. Preliminaries

2.1. R-rings. All rings in this paper have the identity element and ring
homomorphisms send the identity to the identity. We denote the invertible
elements of a ring R by R∗. A R-module means a left R-module. By an
R-ring we understand an homomorphism ϕ : R→ S. We will often refer to
S as R-ring and omit the homomorphism ϕ if ϕ is clear from the context.
Two R-rings ϕ1 : R → S1 and ϕ2 : R → S2 are said to be isomorphic if
there exists an isomorphism α : S1 → S2 such that α ◦ ϕ1 = ϕ2.

2.2. Left ideals in group algebras. Let G be a group and k a commu-
tative ring. We denote by IG the augmentation ideal of k[G]. If H is a
subgroup of G we denote by IGH the left ideal of k[G] generated by IH . The
following lemma gives an alternative description of the k[G]-module IGH .

Lemma 2.1. Let H ≤ T be subgroups of G. Then the following holds.
(a) The canonical map

k[G]⊗k[H] IH → IGH

sending a⊗ b to ab, is an isomorphism.
(b) The canonical map k[G]⊗k[T ] (IT /I

T
H)→ IGT /I

G
H , sending a⊗ (b+ ITH)

to ab+ IGH , is an isomorphism.

Proof. (a) Consider an exact sequence

0→ IH → k[H]→ k → 0.

The freeness of k[G] as k[H]-module implies that the sequence

0→ k[G]⊗k[H] IH
α−→ k[G]

β−→ k[G]⊗k[H] k → 0
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is also exact. Here α sends a ⊗ b to ab and β sends a to a ⊗ 1. Thus, α
establishes an isomorphisms between k[G] ⊗k[H] IH and kerβ = IGH . This
proves the lemma.

(b) Consider now the exact sequence

0→ ITH → IT → IT /I
T
H → 0.

Applying k[G]⊗k[T ] and taking again into account that k[G] is a free k[T ]-
module, we obtain the exact sequence

0→ IGH → IGT → k[G]⊗k[T ] (IT /I
T
H)→ 0.

This prove the second claim. �

2.3. Left ideals in completed group algebras. In this paper the letters
F, G, H, etc. will denote pro-p groups. Almost all pro-p groups that we
consider are free pro-p groups. Recall that a closed subgroup of a free pro-p
group is also free pro-p.

Let G be pro-p group. We denote by Fp[[G]] the inverse limit of Fp[G/U],
where the limit is taken over all open normal subgroups U of G. Fp[[G]] is
called the completed group algebra of G over Fp.

We denote by IG the augmentation ideal of Fp[[G]]. If H is a closed
subgroup of G, then IGH denotes the closed left ideal of Fp[[G]] generated by
IH.

A profinite Fp[[G]]-module is an inverse limit of finite topological Fp[[G]]-
modules. If M = lim←−Mi and N = lim←−Ni are right and left, respectively,

profinite Fp[[G]]-modules (Mi and Ni are finite topological Fp[[G]]-modules),

then the profinite tensor product is denoted by ⊗̂ and it is defined as the
inverse limit of Mi ⊗Fp[[G]] Ni.

Lemma 2.2. Let H be a closed subgroup of G and let M be a finitely
presented Fp[[H]]-module. Then M is a profinite module and the canonical
map

Fp[[G]]⊗Fp[[H]] M → Fp[[G]]⊗̂Fp[[H]]M

is an isomorphism.

Proof. SinceM is finitely presented, there exists an exact sequence of Fp[[H]]-
modules

Fp[[H]]r
α−→ Fp[[H]]d →M → 0.

Thus, we can write M ∼= Fp[[H]]d/I, where I = Imα. Since α is continuous

and Fp[[H]]r is compact, I is closed in Fp[[H]]d. Hence Fp[[H]]d/I, and so
M , are profinite.

In order to see the second claim of the lemma, we have to check that
Fp[[G]] ⊗Fp[[H]] M is profinite as a Fp[[G]]-module. This follows from the
same argument as before using the exact sequence

Fp[[G]]r → Fp[[G]]d → Fp[[G]]⊗Fp[[H]] M → 0.

�

Let us cite few applications of the previous lemma which we use in this
paper.
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Lemma 2.3. Let G be a pro-p group and let H ≤ T be closed subgroups of
G. Then the following holds.
(a) The continuous map

Fp[[G]]⊗̂Fp[[H]]IH → IGH

that sends a⊗ b to ab, is an isomorphism.
(b) If H is finitely presented, the map

Fp[[G]]⊗Fp[[H]] IH → IGH

that sends a⊗ b to ab, is an isomorphism.
(c) If T is finitely presented and H is finitely generated, the map

Fp[[G]]⊗Fp[[T]] (IT/I
T
H)→ IGT /I

G
H

sending a⊗ (b+ ITH) to ab+ IGH , is an isomorphism.

Proof. (a) Consider an exact sequence

0→ IH → Fp[[H]]→ Fp → 0.

The freeness of Fp[[G]] as profinite Fp[[H]]-module implies that

0→ Fp[[G]]⊗̂Fp[[H]]IH
α−→ Fp[[G]]

β−→ Fp[[G]]⊗̂Fp[[H]]Fp → 0

is also exact. Thus, Fp[[G]]⊗̂Fp[[H]]IH is isomorphic to kerβ = IGH .
(b) Since H is finitely presented IH is finitely presented as Fp[[H]]-module,

and so, by Lemma 2.2, Fp[[G]]⊗̂Fp[[H]]IH ∼= Fp[[G]] ⊗Fp[[H]] IH. Thus we

conclude that the natural map from Fp[[G]] ⊗Fp[[H]] IH to IGH is also an
isomorphism by (a).

(c) Consider now the exact sequence

0→ ITH → IT → IT/I
T
H → 0.

Applying Fp[[G]]⊗̂Fp[[T]] and taking again into account that Fp[[G]] is a free
profinite Fp[[T]]-module, we obtain the exact sequence

0→ IGH → IGT → Fp[[G]]⊗̂Fp[[T]](IT/I
T
H)→ 0.

Since T is finitely presented and H is finitely generated, IT/I
T
H is finitely

presented as Fp[[T]]-module. Thus, by Lemma 2.2, Fp[[G]]⊗̂Fp[[T]](IT/I
T
H) ∼=

Fp[[G]]⊗Fp[[T]] (IT/I
T
H). This prove the last claim. �

2.4. On amalgamated products of groups. Let G be a group and H1

and H2 two subgroups that generate G and have intersection A = H1 ∩H2.
The following result gives an algebraic condition for G to be isomorphic to
the amalgamated product of H1 and H2 over A.

Proposition 2.4. [49, 36] Let k be a commutative ring. Then the canonical
map H1 ∗AH2 → G is an isomorphism if and only if IGH1

∩IGH2
= IGA in k[G].

Proof. The “if” part follows from [49, Lemma 2.1] and the “only if” part
is proved in [36, Theorem 1] (the proof is given for k = Z, but the same
argument works also for an arbitrary ring k). �
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2.5. On convergence of Sylvester rank functions. Let R be a ring.
A Sylvester matrix rank function rk on R is a function that assigns a
non-negative real number to each matrix over R and satisfies the following
conditions.

(SMat1) rk(M) = 0 if M is any zero matrix and rk(1) = 1;
(SMat2) rk(M1M2) ≤ min{rk(M1), rk(M2)} for any matrices M1 and M2 which

can be multiplied;

(SMat3) rk

(
M1 0
0 M2

)
= rk(M1) + rk(M2) for any matrices M1 and M2;

(SMat4) rk

(
M1 M3

0 M2

)
≥ rk(M1) + rk(M2) for any matrices M1, M2 and M3

of appropriate sizes.
We denote by P(R) the set of Sylvester matrix rank functions on R, which
is a compact convex subset of the space of functions on matrices over R
considered with pointwise convergence.

Many problems can be reinterpreted in terms of convergence in P(R). For
example, ifG is group andG > G1 > G2 > . . . is a chain of normal subgroups
of G of finite index with trivial intersection, then the Lück approximations
over Q and C is equivalent to the convergence of rkG/Gi

to rkG in P(Q[G])
and P(C[G]) respectively (see [40, 27]).

An alternative way to introduce Sylvester rank functions is via Sylvester
module rank functions. A Sylvester module rank function dim on R is
a function that assigns a non-negative real number to each finitely presented
R-module and satisfies the following conditions.

(SMod1) dim{0} = 0, dimR = 1;
(SMod2) dim(M1 ⊕M2) = dimM1 + dimM2;
(SMod3) if M1 →M2 →M3 → 0 is exact then

dimM1 + dimM3 ≥ dimM2 ≥ dimM3.

There exists a natural bijection between Sylvester matrix and module rank
functions over a ring. Given a Sylvester matrix rank function rk on R and
a finitely presented R-module M ∼= Rn/RmA (A is a matrix over R), we
define the corresponding Sylvester module rank function dim by means of
dimM = n− rk(A). By a recent result of Li [37], any Sylvester module rank
function dim on R can be extended to a function (satisfying some natural
conditions) on arbitrary modules over R. We will call this extension, the
extended Sylvester module rank function and denote it also by dim.
For example, if M is finitely generated module, then dimM is defined as
(1)

dimM = inf{dim M̃ : M̃ is finitely presented and M is a quotient of M̃}.

If rk, rki ∈ P(R) (i ∈ N) are Sylvester matrix rank functions corre-
sponding to Sylvester module rank functions dim, dimi, respectively, then
rk = lim

i→∞
rk if and only if for any finitely presented R-module M , dimM =

lim
i→∞

dimiM .
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However, the existence of the limit rk = lim
i→∞

rk does not imply that

dimM = lim
i→∞

dimiM for any finitely generated R-module M . This phe-

nomena is well-known. For example, it explains why the Lück approxima-
tion of the first L2-Betti numbers is valid for finitely presented groups but
not always valid for finitely generated groups (see [41]).

If M is a finitely generated R-module, we only have that

(2) dimM ≥ lim sup
i→∞

dimiM.

Indeed, let F be the set of all finitely presented R-modules M̃ such that M
is a quotient of M̃ . Then

dimM = inf
M̃∈F

dim M̃ = inf
M̃∈F

lim
i→∞

dimi M̃ ≥

lim sup
i→∞

inf
M̃∈F

dimi M̃ = lim sup
i→∞

dimiM.

In this subsection we will explain how to overcome this problem in some
situations. For two Sylvester rank functions rk1 and rk2 ∈ P(R) we write
rk1 ≥ rk2 if rk1(A) ≥ rk2(A) for any matrix A over R. If dim1 and dim2

are the Sylvester module rank functions on R corresponding to rk1 and rk2,
then the condition rk1 ≥ rk2 is equivalent to the condition dim1 ≤ dim2,
meaning that dim1M ≤ dim2M for any finitely presented R-module M .

Proposition 2.5. Let R be a ring and let rk, rki ∈ P(R) (i ∈ N) be Sylvester
matrix rank functions on R corresponding to (extended) Sylvester module
rank functions dim, dimi respectively. Assume that rk = lim

i→∞
rk and for all

i, rk ≥ rki. Then, for any finitely generated R-module M ,

dimM = lim
i→∞

dimiM.

Proof. Fix ε > 0. Let k be such that

lim inf
i→∞

dimiM ≥ dimkM − ε.

There exists a finitely presented R-module M̃ such that M is a quotient of M̃
and dimkM ≥ dimk M̃ − ε. Since rk ≥ rkk, we have that dimk M̃ ≥ dim M̃ .
Thus, we obtain

lim inf
i→∞

dimiM ≥ dimkM − ε ≥ dimk M̃ − 2ε ≥ dim M̃ − 2ε ≥ dimM − 2ε.

Since ε is arbitrary, we conclude that lim inf
i→∞

dimiM ≥ dimM . In view of

(2), we are done. �

2.6. Epic division R-rings. Let R be a ring. An epic division R-ring is a
R-ring φ : R→ D where D is a division ring generated by φ(R). Moreover,
we say that D is a division R-ring of fractions if φ is injective. In this
case we will normally omit φ and see R as a subring of D.

Each epic division R-ring D induces an (extended) Sylvester module rank
function dimD on R (see, for example, [29]): for every R-module M we define
dimDM to be equal to the dimension of D⊗RM as a D-module. We will use
dimD for the Sylvester module rank function on R and for the D-dimension
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of D-spaces. This is a coherent notation because, since D is epic, D⊗RD is
isomorphic to D as R-bimodule (see [28, Section 4]).

The following result of P. M. Cohn will be used several times in the paper.

Proposition 2.6. [16, Theorem 4.4.1] Two epic division R-rings D1 and
D2 are isomorphic if and only if dimD1 M = dimD2 M for every finitely
presented R-module M .

2.7. Natural extensions of Sylvester rank functions. Let G be a group
with trivial element e. We say that a ring R is G-graded if R is equal to
the direct sum ⊕g∈GRg and RgRh ⊆ Rgh for all g and h in G. If for each
g ∈ G, Rg contains an invertible element ug, then we say that R is a crossed
product of Re and G and we will write R = S ∗G if Re = S.

Let R = S ∗ G be a crossed product. Let rk be a Sylvester matrix rank
function on S and dim its associated Sylvester module rank function. We
say that rk (and dim) are R-compatible if for any g ∈ G and any matrix
A over S, rk(A) = rk(ugAu

−1
g ). If G is finite and dim is R-compatible, we

define

(3) d̃im M =
dimM

|G|
,

where M is a finitely presented R-module. This defines a Sylvester module
rank function on R, called the natural extension of dim. This notion was
studied, for example, in [33]. We notice that the same formula (3) holds
also for extended Sylvester module rank functions (that is, when M is an
arbitrary R-module). In this subsection we prove the following result.

Proposition 2.7. Let R = S ∗G be a crossed product with G finite and let
R ↪→ D be a division R-ring of fractions. Denote by De the division closure
of S in D. Then the following are equivalent.

(a) d̃imDe = dimD as Sylvester functions on R.
(b) dimDe D = |G|.
(c) D is isomorphic to a crossed product De ∗G.
(d) D is isomorphic to De⊗SR as (De, R)-bimodule.
(e) D is isomorphic to R⊗S De as (R,De)-bimodule

Proof. For any h, g ∈ G, define α(g, h) = uguh(ugh)−1 ∈ R. Since the
conjugation by ug fixes S, it also fixes De. Therefore, we can define a ring
structure on T = ⊕g∈GDe vg defining the multiplication on homogenous
elements by means of

(d1vg) · (d2vh) = (d1ugd2(ug)
−1α(g, h))vgh, d1, d2 ∈ De, g, h ∈ G.

It is clear that T = De ∗G is a crossed product, it contains R as a subring,
and T is isomorphic to De⊗SR as (De, R)-bimodule.

There exists a natural map γ : T → D, sending
∑

g∈G dgvg (dg ∈ De) to∑
g∈G dgug. Observe that γ(T ) is a domain and of finite dimension over De.

Thus, γ(T ) is a division subring of D. Since T contains R, D = γ(T ). This
implies that (c) and (d) are equivalent.

Since dimDe T = |G|, (b) implies that γ is an isomorphism, and so, (b)
implies (c).
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Now, let us assume (d). Let M be an R-module. We have the following.

d̃imDe M =
dimDe(De⊗SM)

|G|
=

dimDe(De⊗S(R⊗RM))

|G|
=

dimDe((De⊗SR)⊗RM))

|G|
(c)
=

dimDe(D⊗RM)

|G|
=

dimD(D⊗RM) = dimDM.

This proves (a).
Now, we assume that (a) holds. Since De es an epic S-ring De⊗S De

is isomorphic to De as De-bimodule and by the same reason, D⊗RD is
isomorphic to D as D-bimodule. Consider M = D as an R-module and
N = De as a S-module. Then

1 = dimD(D⊗RM) = dimDM
(a)
= d̃imDeM =

dimDe(De⊗SM)

|G|
=

dimDe(De⊗S(NdimDe D))

|G|
=

dimDe D
|G|

This implies (b).
Since the condition (c) is symmetric, the conditions (d) and (e) are equiv-

alent. �

3. On mod-p L2-Betti numbers of subgroups of a free pro-p
groups

3.1. Universal division ring of fractions. Given two epic division R-
rings D1 and D2 the condition dimD1 ≤ dimD2 is equivalent to the existence
of a specialization from D1 to D2 in the sense of P. Cohn ([16, Subsection
4.1]). We say that an epic division R-ring D is universal if for every division
R-ring E , dimD ≤ dimE . If a universal epic division R-ring exists, it is unique
up to R-isomorphism. We will denote it by DR and instead of dimDR

we
will simply write dimR.

We say that a ring R is a semifir if every finitely generated left ideal
of R is free of fixed rank. For example, if K is a field, the ring K〈〈X〉〉
of non-commutative power series is a semifir ([15, Theorem 2.9.4]). By a
theorem of P. M. Cohn [14] a semifir R has a universal division R-ring. P.
M. Cohn proved that in this case DR can be obtained from R by formally
inverting all full matrices over R and dimR is the smallest Sylvester module
rank function among all the Sylvester module rank functions on R. We will
need the following result.

Proposition 3.1. [29, Proposition 2.2] Let R be a semifir. Then

TorR1 (DR,M) = 0

for any R-submodule of a DR-module.

Let G be a residually torsion-free nilpotent group (for example, G is a
subgroup of a free pro-p group). LetK be a field. Then the universal division
ring of fractions DK[G] exists (see [30]). It can be constructed in the following
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way. Since G is residually torsion free nilpotent, G is bi-orderable. Fix a bi-
invariant order � on G. A. Malcev [43] and B. Neumann [46] (following an
idea of H. Hahn [22]) showed independently that the set K((G,�)) of formal
power series over G with coefficients in K having well-ordered support has
a natural structure of a ring and, moreover, it is a division ring. DK[G] can
be defined as the division closure of K[G] in K((G,�)). The universality of
this division ring is shown in [30, Theorem 1.1].

If A is a torsion-free abelian group, then DK[A] coincides with the classical
ring of fractions Q(K[A]) of K[A].

3.2. The division ring DFp[[F]]. If F is a free pro-p group freely generated
by f1, . . . , fd, then the continuous homomorphism Fp〈〈x1, . . . , xd〉〉 → Fp[[F]]
that sends xi to f1 − 1, is an isomorphism. Thus, there exists a universal
division ring of fraction DFp[[F]]. Using results of [29] we establish the fol-
lowing formula for dimFp[[F]] which is one of main ingredients of the proof
of Theorem 1.2.

Proposition 3.2. Let F = N1 > N2 > N3 > . . . be a chain of open normal
subgroups of a finitely generated free pro-p group F with trivial intersection.
Let M be a finitely generated Fp[[F]]-module. Then

dimFp[[F]]M = lim
i→∞

dimFp(Fp[F/Ni]⊗Fp[[F]] M)

|F : Ni|
.

Proof. Let N be a normal open subgroup of F and let dimFp[F/N] be a
Sylvester module rank function on Fp[[F]] defined by

dimFp[F/N] L =
dimFp(Fp[F/N]⊗Fp[[F]] L)

|F : N|
,

where L is a finitely presented Fp[[F]]-module.
Let M be a finitely generated Fp[[F]]-module. Since Fp[F/N] ⊗Fp[[F]] M

is finite, there exists a finitely presented Fp[[F]]-module M̃ such that

(1) M is a quotient of M̃ and

(2) Fp[F/N]⊗Fp[[F]] M̃ ∼= Fp[F/N]⊗Fp[[F]] M.
Therefore, from (1) we obtain that

dimFp[F/N]M =
dimFp(Fp[F/N]⊗Fp[[F]] M)

|F : N|
.

In the case where M is finitely presented, [29, Theorem 1.4] implies that

(4) dimFp[[F]]M = lim
i→∞

dimFp[F/Ni]M.

Since we also have dimFp[[F]]M ≤ dimFp[F/Ni]M for all i, Proposition 2.5
implies that (4) holds also when M is finitely generated. �

In the following proposition we collect some basic properties of DFp[[F]].

Proposition 3.3. Let H be a finitely generated closed subgroup of F. The
following holds.
(a) Let DH be the division closure of Fp[[H]] in DFp[[F]]. Then DH is iso-

morphic to DFp[[H]] as a Fp[[H]]-ring.
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(b) If M is a finitely generated Fp[[H]]-module, then

dimFp[[H]](M) = dimFp[[F]](Fp[[F]]⊗Fp[[H]] M).

(c) If H is open then,

DFp[[F]]
∼= Fp[[F]]⊗Fp[[H]] DFp[[H]]

as (Fp[[F]],Fp[[H]])-bimodules.

Proof. (a) Fix a normal chain F = N1 > N2 > N3 > . . . of open normal
subgroups of F, and let Hi = Ni∩H. Let M be a finitely generated Fp[[H]]-
module. Observe first, that by Proposition 3.2,

(5) dimFp[[H]]M = lim
i→∞

dimFp(Fp[H/Hi]⊗Fp[[H]] M)

|H : Hi|
.

Considering Fp[F/Ni] as a right Fp[[H]]-module, we obtain that

Fp[F/Ni] ∼= Fp[H/Hi]
|F:NiH|

as right Fp[[H]]-modules. Thus,

(6) dimFp(Fp[H/Hi]⊗Fp[[H]] M) =
dimFp(Fp[F/Ni]⊗Fp[[H]] M)

|F : NiH|
.

Therefore, from (5, (6) and Proposition 3.2, we conclude that

(7) dimFp[[H]]M = lim
i→∞

dimFp(Fp[F/Ni]⊗Fp[[F]] (Fp[[F]]⊗Fp[[H]] M)

|F : Ni|
=

dimFp[[F]](Fp[[F]]⊗Fp[[H]] M).

On the other hand, we have

dimFp[[F]](Fp[[F]]⊗Fp[[H]] M) =

dimDFp[[F]]
(DFp[[F]]⊗Fp[[F]](Fp[[F]]⊗Fp[[H]] M)) =

dimDFp[[F]]
(DFp[[F]]⊗Fp[[H]]M)) = dimDH

(DH⊗Fp[[H]]M).

Thus, we conclude that

dimFp[[H]]M = dimDH
(DH⊗Fp[[H]]M),

and so, by Proposition 2.6, DH is isomorphic to DFp[[H]] as a Fp[[H]]-ring.
(b) This is the equality (7).
(c) First assume that H is normal in F. Observe that for large i, Ni ≤ H.

Let M be a finitely presented Fp[[F ]]-module. Then we obtain that

dimFp[[F]]M = lim
i→∞

dimFp(Fp ⊗Fp[[Ni]] M)

|F : Ni|
=

lim
i→∞

dimFp(Fp ⊗Fp[[Ni]] M)

|F : H||H : Ni|
=

dimFp[[H]]M

|F : H|
.

Therefore, dimFp[[F]] = ˜dimFp[[H]]. Now, the result follows from Proposition
2.7.
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Now we assume that H is arbitrary, We argue by induction on |F : H|. If
H has index p in F, then it is normal. If |F : H| > p, we find H1 of index p
in F containing H. Then by induction,

DFp[[F]]
∼= Fp[[F]]⊗Fp[[H1]] DFp[[H1]]

∼=
Fp[[F]]⊗Fp[[H1]] (Fp[[H1]]⊗Fp[[H]] DFp[[H]]) ∼= Fp[[F]]⊗Fp[[H]] DFp[[H]] .

�

In view of the previous proposition, we will identify DFp[[H]] and the di-
vision closure of Fp[[H]] in DFp[[F]], and see DFp[[H]] as a subring of DFp[[F]].

3.3. The division rings D(Fp[G],DFp[[F]]). Let G be a subgroup of F. As
we have explained in Subsection 3.1 there exists the universal division Fp[G]-
ring of fractions DFp[G]. Let DG = D(Fp[G],DFp[[F]]) be the division closure
of Fp[G] in DFp[[F]]. In this subsection we will show that DFp[G] and DG
are isomorphic as Fp[G]-rings. In the case G = F is a finitely generated
free group and F is the pro-p completion of F , this result follows from [15,
Corollary 2.9.16].

Proposition 3.4. Let F be a finitely generated free pro-p group and let G
be a finitely generated subgroup of F. Let F = N1 > N2 > N3 > . . . be
a chain of open normal subgroups of F with trivial intersection. We put
Gj = G ∩Nj. Let DG = D(Fp[G],DFp[[F]]) be the division closure of Fp[G]
in DFp[[F]]. Then for every finitely generated Fp[G]-module M ,

dimDG
(DG⊗Fp[G]M) = lim

i→∞

dimFp(Fp ⊗Fp[Gi] M)

|G : Gi|
=

dimDFp[G]
(DFp[G]⊗Fp[G]M).

In particular, the divison rings DG and DFp[G] are isomorphic as Fp[G]-rings.

Proof. First observe that

(8) dimDG
(DG⊗Fp[G]M) = dimDFp[[F]]

(DFp[[F]]⊗Fp[G]M) =

dimDFp[[F]]
(DFp[[F]]⊗Fp[[F]](Fp[[F]]⊗Fp[G]M)) = dimFp[[F]](Fp[[F]]⊗Fp[G]M).

Observe also that |F : Ni| = |G : Gi| and

Fp ⊗Fp[Gi] M
∼= Fp[G/Gi]⊗Fp[G] M ∼=

Fp[F/Ni]⊗Fp[G] M ∼= Fp[F/Ni]⊗Fp[[F]] (Fp[[F]]⊗Fp[G] M)).

Thus, Proposition 3.2 implies that

(9) dimDG
(DG⊗Fp[G]M) = lim

i→∞

dimFp(Fp ⊗Fp[Gi] M)

|G : Gi|
.

Let Fi = γi(F) and we put Hi = G ∩ Fi. The ring Fp[G/Hi] is a Noe-
therian domain and its classical field of fractions Q(Fp[G/Hi]) is universal.
Moreover, by [30, Theorem 1.2], we have that

(10) dimDFp[G]
(DFp[G]⊗Fp[G]M) = lim

i→∞
dimDFp[G/Hi]

(DFp[G/Hi]⊗Fp[G]M).



FREE Q-GROUPS ARE RESIDUALLY TORSION-FREE NILPOTENT 13

Observe that Fp[[F/Fi]] is also a Noetherian domain, and so the division
closure of Fp[G/Hi] in Q(Fp[[F/Fi]]) is isomorphic to DFp[G/Hi] (as a Fp[G]-
ring). Therefore,
(11)
dimQ(Fp[[F/Fi]])(Q(Fp[[F/Fi]])⊗Fp[G]M) = dimDFp[G/Hi]

(DFp[G/Hi]⊗Fp[G]M).

Using Proposition 3.2 and arguing as in the proof of [26, Theorem 2.3], we
obtain that
(12)
dimFp[[F]](Fp[[F]]⊗Fp[G]M) = lim

i→∞
dimQ(Fp[[F/Fi]])(Q(Fp[[F/Fi]])⊗Fp[G]M).

Therefore, putting together (10), (11), (12), (8) and (9), we obtain that

dimDFp[G]
(DFp[G]⊗Fp[G]M) = dimDG

(DG⊗Fp[G]M) =

lim
i→∞

dimFp(Fp ⊗Fp[Gi] M)

|G : Gi|
.

Applying Proposition 2.6, we obtain that the divison rings DG and DFp[G]

are isomorphic as Fp[G]-rings. �

An alternative approach of proving that DG is isomorphic to DFp[G] as
Fp[G]-ring is taken in [44, Lemma 7.5.5], where the result is proved by using
a variation from [47, Theorem 6.3] of the uniqueness of Hughes-free division
rings [24] (see also [17]).

3.4. Mod-p L2-Betti numbers. L2-Betti numbers play an important role
in the solution of many problems in Group Theory. In the last years there
was an attempt to develop a theory of mod-p L2-Betti numbers for different
families of groups (see [28]). If G is torsion-free and satisfies the Atiyah
conjecture, P. Linnell [38] showed that L2-Betti numbers of G can be defined
as

b
(2)
i (G) = dimD(G)Hi(G;D(G)),

where D(G) is the division ring obtained as the division closure of Q[G] in
the ring of affilated operators U(G). It turns out that if G is residually
torsion-free nilpotent, D(G) is isomorphic to the universal division ring of
fractions DQ[G] (see, for example, [31]). Therefore, we have

b
(2)
i (G) = dimDQ[G]

Hi(G;DQ[G]).

Thus, by analogy, if G is a residually torsion-free nilpotent group, we define
the ith mod-p L2-Betti number of G as

βmod p
i (G) = dimDFp[G]

Hi(G;DFp[G]).

In the case, where G is a subgroup of a free pro-p group, we also obtain
the following formula, which can be seen as a mod-p analogue of the Lück
approximation theorem [40].

Proposition 3.5. Let F be a finitely generated free pro-p group and let
G be a finitely generated subgroup of F of type FPk for some k ≥ 1. Let
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F = N1 > N2 > N3 > . . . be a chain of open normal subgroups of F with
trivial intersection. We put Gj = G ∩Nj. Then

βmod p
k (G) = lim

j→∞

dimFp Hk(Gj ;Fp)
|G : Gj |

.

Proof. There exists a resolution of the Fp[G]-module Fp

0→ Rk → Fp[G]nk−1
φ−→ . . .→ Fp[G]n0 → Fp → 0

with Rk finitely generated. The relevant part of the sequence for calculation
of Hk(G; ∗) is the following exact sequence

0→ Rk → Fp[G]nk−1 → Sk → 0,

where Sk = Imφ. Then we obtain that

βmod p
k (G) = dimDFp[G]

Hk(G;DFp[G]) = dimFp[G]Rk−nk−1+dimFp[G] Sk and

dimFp Hk(Gj ;Fp) = dimFp(Fp⊗Fp[Gj ]Rk)−nk−1|G : Gj |+dimFp(Fp⊗Fp[Gj ]Sk).

Thus, Proposition 3.4 implies the proposition. �

In this paper we will work only with βmod p
1 (G). Observe that in this case,

if G is infinite, we have the formula

βmod p
1 (G) = dimFp[G] IG − 1.

Also observe that if A is a non-trivial torsion-free abelian group, then since
DFp[A] = Q(Fp[A]) is the field of fractions of Fp[A],

(13) βmod p
1 (A) = dimFp[A] IA−1 = dimQ(Fp[A])(Q(Fp[A])⊗Fp[A] IA)−1 = 0

3.5. Strong embeddings into free pro-p groups. Assume that a finitely
generated group G is a subgroup of a free pro-p group F. Changing F by the
closure of G in F, we may assume that G is dense in F. Let F = N1 > N2 >
N3 > . . . be a chain of open normal subgroups of F with trivial intersection
and put Gj = G ∩Nj . Observe that the closure of Gj in F is equal to Nj ,
and so

(14) |Gj : Gpj [Gj , Gj ]| ≥ |Nj : Np
j [Nj ,Nj ]|.

Denote by d(F) the number of profinite generators of F. Then we obtain

dimFp H1(Gj ;Fp) = logp |Gj : Gpj [Gj , Gj ]| ≥ logp |Nj : Np
j [Nj ,Nj ]| =

d(Nj) = (d(F)− 1)|F : Nj |+ 1 = (d(F)− 1)|G : Gj |+ 1.

Thus, Proposition 3.5 implies the following corollary.

Corollary 3.6. Let G be a finitely generated subgroup of a free pro-p group
F. Then

(15) dimFpG IG = βmod p
1 (G) + 1 ≥ d(F)
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We say that an embedding G ↪→ F of a finitely generated group G into a

free pro-p group F is strong if G is dense in F and dimFpG IG = βmod p
1 (G)+

1 = d(F). A finitely generated group G is called strongly embeddable in
a free pro-p group (SE(p) for simplicity) if there exists a strong embedding
G ↪→ F.

Let G be a parafree group. Observe that G is residually-p for every prime
p. Thus, if G is finitely generated, its pro-p completion Gp̂ is a finitely
generated free pro-p group and G is a subgroup of Gp̂. In this case the
inequality (14) is an equality, and so in the same way as we obtained the

inequality (15), we obtain that βmod p
1 (G) = d(Gp̂) − 1. Therefore, the

embedding G ↪→ Gp̂ is strong. Thus, all finitely generated parafree groups
are SE(p). On the other hand, not every subgroup of a parafree group is
SE(p). For example, the fundamental group of an oriented surface of genus
greater than 1 is not SE(p). However the fundamental group of an oriented
surface of genus greater than 2 can be embedded in a parafree group (see
[6, Section 4.1]).

By [11, Proposition 7.5], if G is a finitely generated dense subgroup of a

finitely generated free pro-p group F, then b
(2)
1 (G) ≥ d(F)−1. On the other

hand, by [19, Theorem 1.6] and Proposition 3.5 , b
(2)
1 (G) ≤ βmod p

1 (G). Thus,

if G ↪→ F is a strong embedding, we have b
(2)
1 (G) = βmod p

1 (G) = d(F)− 1.

4. On D-torsion-free modules.

4.1. General results. Let R be a ring and let R ↪→ D be an embedding
of R into a division ring D. Let M be a left R-module. We say that M is
D-torsion-free if the canonical map

M → D ⊗RM, m 7→ 1⊗m,
is injective. The following lemma describes several equivalent definitions of
D-torsion-free modules.

Lemma 4.1. The following statements for a left R-module M are equiva-
lent.
(a) M is D-torsion-free.
(b) There are a D-module N and an injective homomorphism ϕ : M → N

of R-modules.
(c) For any 0 6= m ∈ M , there exists a homomorphism of R-modules ϕ :

M → D, such that ϕ(m) 6= 0.

Proof. The proof is straightforward and we leave it to the reader. �

Let M be a left R-module. Recall that we use dimDM to denote the
dimension of D⊗RM as a D-module. Observe that if dimDM is finite, it is
also equal to the dimension of HomR(M,D) as a right D-module.

Lemma 4.2. Let 0 → M1 → M2 → M3 → 0 be an exact sequence of
R-modules. Assume that
(1) M1 and M3 are D-torsion-free,
(2) dimDM1 and dimDM3 are finite and
(3) dimDM2 = dimDM1 + dimDM3.
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Then M2 is also D-torsion-free.

Proof. We are going to use the third characterization of D-torsion-free mod-
ules from Lemma 4.1. Consider the following exact sequence of right D-
modules.

0→ HomR(M3,D)→ HomR(M2,D)→ HomR(M1,D).

Since dimDM2 = dimDM1 + dimDM3, the last map is surjective.
Let m ∈ M2. If m 6∈ M1, then since M3 is D-torsion-free, there exists

ϕ ∈ HomR(M2/M1,D) such that ϕ(m + M1) 6= 0. Hence there exists ϕ̃ ∈
HomR(M2,D), such that ϕ̃(m) 6= 0.

If m ∈M1, then since M1 is D-torsion-free, there exists ϕ ∈ HomR(M1,D)
such that ϕ(m) 6= 0. Using that the restriction map

HomR(M2,D)→ HomR(M1,D)

is surjective, we obtain again that there exists ϕ̃ ∈ HomR(M2,D), such that
ϕ̃(m) 6= 0. �

In the calculations of dimD the following elementary lemma will be useful.

Lemma 4.3. Let D be a division R-ring and M be a D-torsion-free R-
module of finite D-dimension. Let L be a non-trivial R-submodule of M .
Then dimD(M/L) < dimDM . Moreover, if dimD L = 1, then dimD(M/L) =
dimDM − 1.

Proof. SinceM isD-torsion-free, D⊗R(M/L) is a proper quotient ofD⊗RM .
Hence dimDM/L < dimDM .

Now assume that dimD L = 1. In this case dimD(M/L) ≥ dimDM − 1.
Therefore, dimD(M/L) = dimDM − 1. �

4.2. DFp[[F]]-torsion-free modules. Let F be a finitely generated free pro-
p group. The main purpose of this subsection is to prove the following
result.

Proposition 4.4. Assume that 1 6= z ∈ F is not a proper p-power of an
element of F. Denote by Z the closed subgroup of F generated by z. Then
the module IF/I

F
Z is DFp[[F]]-torsion-free.

Before proving the proposition we have to establish several preliminary
results.

Lemma 4.5. Let H be an open subgroup of F Let M be a Fp[[H]]-module.
Then Fp[[F]] ⊗Fp[[H]] M is DFp[[F]]-torsion-free if and only if M is DFp[[H]]-
torsion-free.

Proof. Assume that M is DFp[[H]]-torsion-free. We have that the map M →
DFp[[H]]⊗Fp[[H]]M is injective. Then, since Fp[[F]] is a free right Fp[[H]]-
module, the map

Fp[[F]]⊗Fp[[H]] M
α−→ Fp[[F]]⊗Fp[[H]] (DFp[[H]]⊗Fp[[H]]M)

is also injective.
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Consider the canonical isomorphism between tensor products

Fp[[F]]⊗Fp[[H]] (DFp[[H]]⊗Fp[[H]]M)
β−→ (Fp[[F]]⊗Fp[[H]] DFp[[H]])⊗Fp[[H]] M.

By Propositopn 3.3(c),

DFp[[F]]
∼= Fp[[F]]⊗Fp[[H]] DFp[[H]]

as (Fp[[F]],Fp[[H]])-bimodules. Thus, there exists an isomorphism of Fp[[F]]-
modules

(Fp[[F]]⊗Fp[[H]] DFp[[H)]])⊗Fp[[H]] M
γ−→ DFp[[F]]⊗Fp[[H]]M.

We put ϕ = γ ◦ β ◦ α and apply Lemma 4.1. Since DFp[[F]]⊗Fp[[H]]M is a
DFp[[F]]-module and ϕ is an injective Fp[[F]]-homomorphism, Fp[[F]]⊗Fp[[H]]

M is DFp[[F]]-torsion-free.
Another direction of the proposition is clear because M is a Fp[[H]]-

submodule of Fp[[F]]⊗Fp[[H]] M . �

Lemma 4.6. Let H be an open normal subgroup of F and assume that
1 6= z ∈ H. Let Z be the closed subgroup of H generated by z. Then the
following are equivalent.
(a) The Fp[[F]]-module IFH/I

F
Z is not DFp[[F]]-torsion-free.

(b) The Fp[[H]]-module IH/I
H
Z is not DFp[[H]]-torsion-free.

(c) There are a ∈ IFH and b ∈ IF such that ba = z − 1.

(d) There are a ∈ IFH and b ∈ IF such that ab = z − 1.

Proof. (a)⇐⇒(b): This follows from Lemma 4.5 and Lemma 2.3.
(c)=⇒(a): Put N = Fp[[F]]a/IFZ . Since, b is not invertible in Fp[[F]],

N = Fp[[F]]a/IFZ = Fp[[F]]a/Fp[[F]](z − 1) = Fp[[F]]a/Fp[[F]]ba ∼=
Fp[[F]]/Fp[[F]]b

is a non-trivial submodule of IFH/I
F
Z . Clearly DFp[[F]]⊗Fp[[F]]N = 0, and so

(a) holds.
(a)=⇒(c): We put M = IFH/I

F
Z and let φ : M → DFp[[F]]⊗Fp[[F]]M be the

canonical map. Let L = L/IFZ be the kernel of φ and M the image of φ.
Hence we have the exact sequence

0→ L→ IFH →M → 0.

After applying DFp[[F]]⊗Fp[[F]] we obtain the exact sequence

(16) Tor
Fp[[F]]
1 (DFp[[F]],M)→ DFp[[F]]⊗Fp[[F]]L→

(DFp[[F]])
d(H) → DFp[[F]]⊗Fp[[F]]M → 0.

The Fp[F]]-module IFH is free of rank d(H) and the Fp[[F]]-module IFZ is
cyclic. Thus, by Lemma 4.3,

dimDFp[[F]]
(DFp[[F]]⊗Fp[[F]]M) = d(H)− 1.

Therefore,

dimDFp[[F]]
(DFp[[F]]⊗Fp[[F]]M) = dimDFp[[F]]

(DFp[[F]]⊗Fp[[F]]M) = d(H)− 1.
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Observe also that by Proposition 3.1, Tor
Fp[[F]]
1 (DFp[[F]],M) = 0. Therefore,

(16) implies that

dimDFp[[F]]
(DFp[[F]]⊗Fp[[F]]L) = 1.

Since L is a free profinite Fp[[F]]-module (see, for example [26, Lemma 3.1]),
L should be cyclic Fp[[F]]-module. We write L = Fp[[F]]a for some a ∈ IFH.
Then there exists b ∈ Fp[[F]] such that ba = z − 1. By our assumption
L 6= IFZ . Thus, b is not invertible, and so b ∈ IF.

(c)=⇒(d): The map g 7→ g−1 on F can be extended to a continuous anti-
isomorphism α : Fp[[F]]→ Fp[[F]]. If z − 1 = ba, then z−1 − 1 = α(z − 1) =
α(a)α(b) and so z − 1 = (−zα(a))α(b). Now note that −zα(a) ∈ IHFp[[F]]
and α(b) ∈ IF

(d)=⇒(a): It is proved in the same way as (c)=⇒(d). �

Now we are ready to prove Proposition 4.4.

Proof of Proposition 4.4. We can assume that F is not cyclic. There exists
a normal open subgroup N of F such that zN is not a p-power in F/N. We
will prove the proposition by induction on |F/N|.

If F/N is cyclic, then z 6∈ Φ(F) and so z is a member of a free generating
system of F. Thus IF/I

F
Z is a free Fp[[F]]-module and we are done.

Assume now that F/N, and so F/NΦ(F) are not cyclic. Let M be the
closed subgroup of F containing the commutator subgroup [F,F] and the
element z and such that M/([F,F]Z) is the torsion part of F/([F,F]Z).
Observe that MΦ(F)/Φ(F) is cyclic or trivial and so, since F/NΦ(F) is not
cyclic, MN is a proper subgroup of F.

By the construction of M, F/M ∼= Zkp for some k ≥ 1. Since MN is a
proper subgroup of F, MN/M is a proper subgroup of F/M. Therefore,
there exists a surjective map σ : F→ Zp such that M ≤ kerσ and N kerσ 6=
F. We put H = N kerσ and extend σ to the map σ̃ : Fp[[F]] → Fp[[Zp]].
Observe that ker σ̃ = IFkerσ.

By way of contradiction, assume that IF/I
F
Z is not DFp[[F]]-torsion-free.

Then by Lemma 4.6, there are a, b ∈ IF such that ab = z − 1. Applying σ̃
we obtain that σ̃(a)σ̃(b) = 0. Since Fp[[Zp]] is a domain, either a or b lie in
ker σ̃ = IFkerσ ⊂ IFH. Applying again Lemma 4.6, we conclude that IH/I

H
Z is

not DFp[[H]]-torsion-free.
However, observe that N is also a normal subgroup of H, zN is not a

p-power in H/N and |H/N| < |F/N|. Thus, we can apply the inductive as-
sumption and conclude that IH/I

H
Z is DFp[[H]]-torsion-free. We have arrived

to a contradiction. Thus, IF/I
F
Z is DFp[[F]]-torsion-free. �

4.3. DFp[G]-torsion-free modules. Let F be a finitely generated free pro-p
group and let G be an (abstract) dense finitely generated subgroup of F.
First we prove the following analogue of Lemma 4.5.

Lemma 4.7. Let H be a subgroup of G and let M be a DFp[H]-torsion-free
left Fp[H]-module. Then Fp[G]⊗Fp[H] M is DFp[G]-torsion-free.
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Proof. Let DH be the division closure of Fp[H] in DFp[G]. Observe that
DH and DFp[H] are isomorphic as Fp[H]-rings (it follows, for example, from
Proposition 3.4).

We have that the map M → DH ⊗Fp[H]M is injective. Then, since Fp[G]
is a free right Fp[H]-module, the map

Fp[G]⊗Fp[H] M
α−→ Fp[G]⊗Fp[H] (DH ⊗Fp[H]M)

is also injective.
Consider the canonical isomorphism between tensor products

Fp[G]⊗Fp[H] (DH ⊗Fp[H]M)
β−→ (Fp[G]⊗Fp[H] DH)⊗Fp[H] M.

By [21], DFp[G] is strongly Hughes-free. This means that the canonical
map of (Fp[G],Fp[H])-bimodules

Fp[G]⊗Fp[H] DH → DFp[G]

is injective. Moreover, the image of Fp[G] ⊗Fp[H] DH is a direct summand
of DFp[G] as a right DH -submodule (and so, it is also a direct summand
as a right Fp[H]-submodule). Thus, the following canonical map of Fp[G]-
modules

(Fp[G]⊗Fp[H] DH)⊗Fp[H] M
γ
↪−→ DFp[G]⊗Fp[H]M

is injective. We put ϕ = γ◦β◦α and apply Lemma 4.1. SinceDFp[G]⊗Fp[H]M
is a DFp[G]-module and ϕ is an injective Fp[G]-homomorphism, Fp[G]⊗Fp[H]

M is DFp[G]-torsion-free.
�

Now we can present our first example of a DFp[G]-torsion-free Fp[G]-
module.

Proposition 4.8. Let H be a subgroup of G and A a maximal abelian
subgroup of H. Then the Fp[G]-module IGH/I

G
A is DFp[G]-torsion-free.

Proof. From Lemma 2.1 we know that

IGH/I
G
A
∼= Fp[G]⊗Fp[H] (IH/I

H
A ).

Thus, in view of Lemma 4.7, it is enough to show that IH/I
H
A is DFp[H]-

torsion-free.
Let Z = CF(A). Since F is a free pro-p group, Z is a maximal cyclic pro-p

subgroup of F.

Claim 4.9. The canonical map Fp[H/A]→ Fp[[F/Z]] is injective.

Proof. Since A is maximal abelian in H, we have that A = Z ∩H. Hence
the obvious map Fp[H/A] → Fp[F/Z] in injective. The map Fp[F/Z] →
Fp[[F/Z]] is also injective, because Z is closed in F. This finishes the proof
of the claim. �

Observe that Fp[H/A] ∼= Fp[H]/IHA and Fp[[F]]/IFZ
∼= Fp[[F/Z]]. There-

fore, by Claim 4.9, IH/I
H
A is a Fp[H]-submodule of IF/I

F
Z . By Proposition

4.4, we can embed IF/I
F
Z in a DFp[[F]]-module. By Proposition 3.4, every
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DFp[[F]]-module is also a DFp[H]-module. Therefore, by Lemma 4.1, IH/I
H
A

is DFp[H]-torsion-free. �

The following proposition shows another example of a DFp[G]-torsion-free
Fp[G]-module. This is the main result of this section.

Proposition 4.10. Let F be a finitely generated free pro-p group and let G
be an (abstract) dense finitely generated subgroup of F. Let H be a subgroup
of G and A a maximal abelian subgroup of H. Let B be an abelian subgroup
of G containing A. We put

J = {(x,−x) ∈ IGH ⊕ IGB : x ∈ IGA}.
Then M = (IGH⊕IGB )/J is DFp[G]-torsion-free and dimFp[G]M = dimFp[G] I

G
H .

Proof. Let L = (IGA ⊕ IGB )/J ≤M . Then L ∼= IGB is DFp[G]-torsion-free. The

Fp[G]-module M/L is isomorphic to IGH/I
G
A , and so it is DFp[G]-torsion-free

by Proposition 4.8.
By (13), dimFp[A] IA = 1. Therefore, by Proposition 3.3(b),

dimFp[G] I
G
A = dimFp[A] IA = 1.

In the same way we obtain that dimFp[G] I
G
B = 1.

Since dimFp[G](I
G
H ⊕ IGB ) = dimFp[G] I

G
H + 1, by Lemma 4.3,

dimFp[G]M = dimFp[G] I
G
H + 1− 1 = dimFp[G] I

G
H and

dimFp[G](I
G
H/I

G
A ) = dimFp[G] I

G
H − 1 = dimFp[G]M − 1.

Therefore,

dimFp[G](M/L) = dimFp[G](I
G
H/I

G
A ) = dimFp[G]M − 1.

Thus, we have obtained that M/L and L are DFp[G]-torsion-free and

dimFp[G]M = dimFp[G](M/L) + dimFp[G] L.

Applying Lemma 4.2, we conclude that M is also DFp[G]-torsion-free. �

5. Proof of main results

The following theorem is the main result of this section. Theorem 1.2
follows from it directly.

Theorem 5.1. Let F be a finitely generated free pro-p group and let H ↪→ F
be a strong embedding of finitely generated group H. Let A be a maximal
abelian subgroup of H and let B be an abelian finitely generated subgroup
of F containing A. Then G = 〈H,B〉 is isomorphic to H ∗A B, and the
embedding G ↪→ F is strong.

Proof. In view of Proposition 2.4 we have to show that IGH ∩ IGB = IGA in
Fp[G]. Let

J = {(x,−x) ∈ IGH ⊕ IGB : x ∈ IGA} and M = (IGH ⊕ IGB )/J.

Then by Proposition 4.10, dimFp[G]M = dimFp[G] I
G
H . Therefore,

dimFp[G]M = dimFp[G] I
G
H = dimFp[H] IH = βmod p

1 (H) + 1 = d(F).
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Since IG = IGH +IGB , we have that the natural map α : M → IG is surjective.
In particular

βmod p
1 (G) = dimFp[G] IG − 1 ≤ dimFp[G]M − 1 = d(F)− 1.

Thus, using (15) we obtain that βmod p
1 (G) = d(F) − 1 and dimFp[G] IG =

dimFp[G]M . This shows that the embedding G ↪→ F is strong.
By Proposition 4.10, M is DFp[G]-torsion-free. Therefore, by Lemma 4.3,

for any proper quotient M of M , dimFp[G]M < dimFp[G]M . This implies

that α is an isomorphism, and so IGH ∩ IGB = IGA . Hence, Proposition 2.4
implies that G ∼= H ∗A B �

Another direct consequence of Theorem 5.1 is the following corollary.

Corollary 5.2. Let F be a finitely generated free pro-p group and let H ↪→ F
be a strong embedding of finitely generated group H. Let A be a maximal
abelian subgroup of H. Assume that A is finitely generated. Let B be a
finitely generated torsion-free abelian group containing A and such that B/A
has no p-torsion. Then there exists an embedding of H ∗A B into F that
extends H ↪→ F. In particular, H ∗A B is SE(p).

Proof. Let H ↪→ F be a strong embedding. Since B/A has no p-torsion and
B is torsion-free abelian, the embedding of A into F can be extended to an
embedding of B into F. Now, we can apply Theorem 5.1. �

Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. Let φ : FQ(X) → Q〈〈Y 〉〉 be the Magnus homomor-
phism defined in the Introduction. Let H be a finitely generated subgroup
of FQ(X) and let φH be the restriction of φ on H. As we explained in the
Introduction it is enough to show that φH is injective.

The group H is a subgroup of a group obtained from the free group F (X)
by adjoining progressively a n1th root, a n2th root, ..., and finally nkth root.
Take a prime p that does not divide the product n1 · · ·nk. Let F be the pro-p
completion of F (X). By iterated use of Corollary 5.2, we obtain that H can
be embedded into F and this embedding extends the canonical embedding
F (X) ↪→ F. Let Qp be the field of p-adic numbers and Zp its valuation
ring. The ring Zp〈〈y1, . . . , yd〉〉 is profinite and it is isomorphic to Zp[[F]].
Therefore, there exists a unique continuous group homomorphism of F into
Zp〈〈y1, . . . , yd〉〉∗ that sends xi to 1+yi. Denote by ψ the composition of this
map with the embedding of Zp〈〈y1, . . . , yd〉〉∗ into Qp〈〈y1, . . . , yd〉〉∗. Since
φH(xi) = ψ(xi) in Qp〈〈y1, . . . , yd〉〉∗, and there is only one way to take roots
in Qp〈〈y1, . . . , yd〉〉∗, we obtain the following commutative diagram

H
φH−−→ Q〈〈y1, . . . , yd〉〉∗↪→ ↪→

F
ψ
↪−→ Qp〈〈y1, . . . , yd〉〉∗

.

This implies that φH is injective as well. This proves Theorem 1.1. �
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6. Linearity of free Q-groups and free pro-p groups

We finish this paper with a discussion on another two well-known prob-
lems concerning linearity of free Q-groups and free pro-p groups.

The problem of whether a free Q-group FQ(X) is linear appears in [8,
Problem F13] and it is attributed to I. Kapovich (see also [35, Problem
13.39(b)]). The problem of whether a free pro-p group F is linear is usu-
ally attributed to A. Lubotzky (for example, we discussed this question in
Jerusalem in November, 2001).

In the context of profinite groups, one can consider two kinds of linearity
(see, for example, [25]). On one hand, we say that a profinite group G is
linear if it is linear as an abstract group, that is it has a faithful representa-
tion by matrices of fixed degree over a field. On the other hand, the concept
of t-linear profinite group takes into account the topology of G and means
that G can be faithfully represented as a closed subgroup of the group of
invertible matrices of fixed degree over a profinite commutative ring.

It is commonly believed that a non-abelian free pro-p group is not t-linear
(see, [39, Conjecture 3.8] and [48, Section 5.3]). An equivalent reformulation
of this statement is that a p-adic analytic pro-p group satisfies a non-trvial
pro-p identity. A. Zubkov [53] proved that if p > 2, then a non-abelian
free pro-p group cannot be represented by 2-by-2 matrices over a profinite
commutative ring. E. Zelmanov announced that given a fixed n, a non-
abelian free pro-p group cannot be represented by n-by-n matrices over a
profinite commutative ring for every large enough prime p >> n (see [51,
52]). Recently, D. El-Chai Ben-Ezra, E. Zelmanov showed that a free pro-2
group cannot be represented by 2-by-2 matrices over a profinite commutative
ring of characteristic 2 [18].

Recall that by a result of A. Malcev [42, Theorem IV], a group can be rep-
resented by matrices of degree n over a field if and only if every its finitely
generated subgroup has this property. Thus, in order to decide whether
FQ(X) or F are linear, we have to analyze the structure of their finitely
generated (abstract) subgroups. In order to apply the Malcev criterion one
should find a uniform n which does not depend on a finitely generated sub-
group. We may ask a weaker question of whether FQ(X) and F are locally
linear. Using recent advances in geometric group theory one can answer this
positively in the case of FQ(X).

Theorem 6.1. The groups FQ(X) are locally linear over Z.

Proof. Let H be a finitely generated subgroup of FQ(X). Then H is a
subgroup of a group G obtained from the free group F (X) by adjoining
progressively several roots. Thus, from [9] we obtain that G is hyperbolic,
and so [23, Theorem A] implies that G is virtually special. Thus, by [50],
G, and so H, are linear over Z. �

I would not be surprised if all groups Hk considered in Theorem 1.2 are
linear over Z. However, I am not so sure that there exists a universal upper
bound on the minimal degree of faithful complex representations of these
groups. Observe that, since a limit group is fully residually free, it can be
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embedded into GL2(C). This shows that the main difficulty in showing that
the groups from Theorem 1.2 are linear of bounded degree appears when we
attach roots.

References

[1] J. Barlev, T. Gelander, Compactifications and algebraic completions of limit groups.
J. Anal. Math. 112 (2010), 261–287.

[2] G. Baumslag, Some aspects of groups with unique roots. Acta Math. 104 (1960),
217–303.

[3] G. Baumslag, On free D-groups. Comm. Pure Appl. Math. 18 (1965), 25-30.
[4] G. Baumslag, Groups with the same lower central sequence as a relatively free group.

I. The groups. Trans. Amer. Math. Soc. 129 (1967), 308–321.
[5] G. Baumslag, On the residual nilpotence of certain one-relator groups. Comm. Pure

Appl. Math. 21 (1968), 491–506.
[6] G. Baumslag, Groups with the same lower central sequence as a relatively free group.

II. Properties. Trans. Amer. Math. Soc. 142 (1969), 507–538.
[7] G. Baumslag, Some reflections on proving groups residually torsion-free nilpotent. I.

Illinois J. Math. 54 (2010), 315–325.
[8] G. Baumslag, A. Myasnikov, V. Shpilrain, Open problems in combinatorial group

theory. Second edition. Combinatorial and geometric group theory (New York,
2000/Hoboken, NJ, 2001), 1–38, Contemp. Math., 296, Amer. Math. Soc., Provi-
dence, RI, 2002.

[9] M. Bestvina, M. Feighn, A combination theorem for negatively curved groups. J.
Differential Geom. 35 (1992), 85–101.

[10] E. Breuillard, T. Gelander, J. Souto, P. Storm, Dense embeddings of surface groups.
Geom. Topol. 10 (2006), 1373–1389.

[11] M. Bridson, A. Reid, Nilpotent completions of groups, Grothendieck pairs, and four
problems of Baumslag. Int. Math. Res. Not. IMRN 2015, 2111–2140.

[12] C. Champetier, V. Guirardel, Limit groups as limits of free groups. Israel J. Math.,
146 (2005), 1–75.

[13] B. Chandler, The representation of a generalized free product in an associative ring.
Comm. Pure Appl. Math. 21 (1968), 271–288.

[14] P. M. Cohn, Localization in semifirs. Bull. London Math. Soc. 6 (1974), 13–20.
[15] P. M. Cohn, Free rings and their relations. Second edition. London Mathematical

Society Monographs, 19. Academic Press, Inc., London, 1985.
[16] P. M. Cohn, Skew fields. Theory of general division rings. Encyclopedia of Mathe-

matics and its Applications, 57. Cambridge University Press, Cambridge, 1995.
[17] W. Dicks, D. Herbera, J. Sánchez, On a theorem of Ian Hughes about division rings

of fractions. Comm. Algebra 32 (2004), 1127–1149.
[18] D. El-Chai Ben-Ezra, E. Zelmanov, On Pro-2 Identities of 2×2 Linear Groups, Trans.

Amer. Math. Soc. 374 (2021), 4093–4128
[19] M. Ershov, W. Lück, The first L2-Betti number and approximation in arbitrary

characteristic, Doc. Math. 19 (2014), 313–332.
[20] A. Gaglione, A. Myasnikov, V. Remeslennikov, D. Spellman, Formal power series

representations of free exponential groups. Comm. Algebra 25 (1997), 631–648.
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