Teoría de Códigos y Criptografía Curso 2009-2010

Hoja 1 (Repaso)

- 1. Demostrar que existen infinitos enteros no representables como suma de tres cuadrados. (Sugerencia: Estudiar los cuadrados módulo 8).
- **2.** Demostrar que si $(n-1)! + 1 \equiv 0 \pmod{n}$ entonces n es primo.
- **3.** Escribir una sola congruencia que sea equivalente al par de congruencias $x \equiv 1 \pmod{4}$ y $x \equiv 2 \pmod{3}$.
- **4.** Demostrar que si p es primo $(p \neq 3)$ entonces $(p-2)2^{p-2}+1$ no es primo.
- **5.** Demostrar que $2222^{5555} + 5555^{2222}$ es divisible por 7.
- **6.** Probar que $n^7 n$ es divisible entre 42, para cualquier entero n.
- 7. Probar que $\frac{1}{5}n^5 + \frac{1}{3}n^3 + \frac{7}{15}n$ es un entero para todo n.
- 8. Oliana Molls trabaja cuatro días consecutivos y descansa uno. Betty trabaja dos y descansa uno. Sólo se ven los días de luna llena (uno de cada veintiocho días). Betty tuvo fiesta ayer, Oliana la tendrá pasado mañana y hace diez días había luna llena. ¿Cuántos días faltan par que se vean? ¿Cuántos días libres comunes habrán perdido mientras tanto por falta de luna llena?
- 9. Sea (a, b, c) una terna pitagórica, esto es, una solución en \mathbb{Z}^3 de la ecuación $X^2 + Y^2 = Z^2$. Demostrar lo siguiente:
 - i) al menos uno de los valores a, b o c es múltiplo de 3;
 - ii) abc es múltiplo de 4;
 - iii) al menos uno de los valores a, b o c es múltiplo de 5;
 - iv) $abc \equiv 0 \ (60)$.
- **10.** Demostrar que si (a, n) = 1 ó (b, n) = 1 la ecuación ax + by = c tiene exactamente n soluciones en $\mathbb{Z}/n\mathbb{Z}$.
- 11. Resolver las siguientes ecuaciones en números eneteros.
 - 1) 2x + 3y = -1.
 - 2) 7x 12y = 4.
- 12. Hallar el conjunto de soluciones de cada uno de los siguientes sistemas en $\mathbb{Z}/10\mathbb{Z}$.

$$\begin{array}{c} x + y = \bar{5} \\ \bar{2}x + \bar{9}y = 1 \end{array} \right\} \hspace{1cm} \begin{array}{c} \bar{2}x + 4y = \bar{6} \\ x + y = \bar{4} \end{array} \right\} \hspace{1cm} \begin{array}{c} x + \bar{3}y = 1 \\ \bar{3}x - y = \bar{3} \end{array} \right\}$$

13. Calcular:

a) 234^{432} (mód 11); b) 145^{197} (mód 13); c) 2025^{2025} (mód 14); d) 4002^{4002} (mód 35).

14. Hallar las raíces del polinomio siguiente en \mathbb{Z}_5 .

$$X^{14} + X^{11} + X^{10} - 3X^5$$

- **15.** Demostrar que $(n^5 1)n(n^5 + 1)$ es divisible por 22.
- 16. Resolver, si es posible, los siguientes sistemas de congruencias:

$$\left. \begin{array}{c} x \equiv 13 \pmod{91} \\ x \equiv -1 \pmod{119} \end{array} \right\} \hspace{1cm} \begin{array}{c} x \equiv -5 \pmod{77} \\ x \equiv 17 \pmod{143} \end{array} \right\}$$

- 17. ¿Cuántas unidades hay en $\mathbb{Z}/2310\mathbb{Z}$? ¿y en $\mathbb{Z}/1764\mathbb{Z}$?
- **18.** Hallar $\phi(n)$ para $5 \le n \le 24$.
- 19. Demostrar que

$$\sum_{d|n} \phi(d) = n \qquad \text{ para todo } n \in \mathbb{N}, \, n > 0.$$

(En el sumatorio d recorre todos los divisores positivos de n.)

- **20.** 1. Encontrar el inverso multiplicativo de $23 + 35\mathbb{Z}$ en \mathbb{Z}_{35} .
 - 2. Encontrar el inverso multiplicativo de $13 + 46\mathbb{Z}$ en \mathbb{Z}_{46} .

21.

- 1. Probar que la composición de homomorfismos de grupos es un homomorfismo de grupos.
- 2. Si $f: G \to H$ es un isomorfismo de grupos, probar que $f^{-1}: H \to G$ es un isomorfismo. Así, si $G \cong H$, entonces $H \cong G$.
- 3. Si $G \cong H$ y $H \cong K$, probar que $G \cong K$.
- 4. Si G es un grupo, el conjunto de todos automorfismos de f lo denotaremos por Aut(G). Demostrar que Aut(G) es un grupo respecto la operación composición.
- **22.** Decidir si los siguientes anllos son isomorfos $\mathbb{Z}/6\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}$ y $\mathbb{Z}/24\mathbb{Z}$.
- **23.** Sean A_1 y A_2 dos anillos unitarios. Entonces,

$$U(A_1 \times A_2) = U(A_1) \times U(A_2).$$

24.

Demostrar que para la transformación afín

$$\begin{array}{cccc} f: & \mathbb{Z}/N\mathbb{Z} & \to & \mathbb{Z}/N\mathbb{Z} \\ & x & \mapsto & ax+b \end{array},$$

donde a,b dos elementos de $\mathbb{Z}/N\mathbb{Z}$, las siguientes afirmaciones son equivalentes

- a) a es inversible en $\mathbb{Z}/N\mathbb{Z}$;
- b) f es biyectiva;
- c) f es inyectiva.
- **25.** Sean p y q dos primos. Demostrar que si a es coprimo con pq, entonces $a^{MCM(p-1,q-1)} \equiv 1 \pmod{pq}$.