Analysis on non-smooth domains

Tatiana Toro

University of Washington

9th International Conference in Harmonic Analysis & PDE

El Escorial, Madrid

Perturbation operators - Main tool

• Let L_1 , L_0 be divergence form elliptic operators, the deviation function of L_1 from L_0 is

$$a(X) = \sup\{|A_1(Y) - A_0(Y)| : Y \in B(X, \delta(X)/2)\}$$

• Let Ω be a CAD, there is $\varepsilon_0 > 0$ so that if

$$\sup_{\Delta} \left(\frac{1}{\omega_0(\Delta)} \int_{\mathcal{T}(\Delta)} a^2(X) \frac{G_0(X)}{\delta^2(X)} dX \right)^{1/2} < \varepsilon_0$$

then $\omega_1 \in B_2(\omega_0)$.

2 / 20

Why is this the main tool?

• Let Ω be a CAD and that assume $\omega_0 \in B_p(\sigma)$ for some p > 1. Given $\epsilon > 0$ there exists $\delta > 0$ such that if

$$\sup_{\Delta\subseteq\partial\Omega}\left\{\frac{1}{\sigma(\Delta)}\int_{\mathcal{T}(\Delta)}\frac{a^2(X)}{\delta(X)}dX\right\}^{1/2}\leq\delta,$$

then

$$\sup_{\Delta\subseteq\partial\Omega}\left\{\frac{1}{\omega_0(\Delta)}\int_{\mathcal{T}(\Delta)}a^2(X)\frac{G_0(X)}{\delta^2(X)}dX\right\}^{1/2}\leq\epsilon.$$

Thus $\omega_1 \in B_2(\omega_0)$ and $\omega_1 \in A_{\infty}(\sigma)$.

The main tool implies the perturbation result

- Assume $\sup_{\Delta \subseteq \partial \Omega} \left\{ \frac{1}{\sigma(\Delta)} \int_{T(\Delta)} \frac{a^2(X)}{\delta(X)} dX \right\}^{1/2} \le C_0$
- Consider $L_t = (1-t)A_0 + tA_1$ for $0 \le t \le 0$ and a partition of [0,1] $\{t_i\}_{i=0}^m$ such that $0 < t_{i+1} t_i < \delta_0/C_0$. Let a_i be the deviation function of $L_{t_{i+1}}$ from L_{t_i} , $a_i(X) = (t_{i+1} t_i)a(X)$.
- Then if δ_0 corresponds to ε_0 in the main tool we have

$$\sup_{\Delta\subseteq\partial\Omega}\left\{\frac{1}{\sigma(\Delta)}\int_{T(\Delta)}\frac{a_i^2(X)}{\delta(X)}dX\right\}^{1/2}\leq\delta_0\quad\&\quad\omega_{i+1}\in B_2(\omega_i)$$

- Iteration ensures that for $i \in \{0, \dots, m\}$
 - \bullet $\omega_i \in A_{\infty}(\sigma)$ and $\omega_{i+1} \in B_2(\omega_i)$.
- Hence $\omega_1 \in A_{\infty}(\sigma)$.

Sketch of the proof of the main tool

• Given $f \in C(\partial\Omega)$ consider for i = 0, 1

$$\begin{cases} L_i u_i = \operatorname{div} (A_i(X) \nabla u_i) = 0 \text{ in } \Omega \\ u_i = f \text{ on } \partial \Omega \end{cases}$$

• To show that $\omega_1 \in B_2(\omega_0)$ we need to show that

$$\|N(u_1)\|_{L^2(\omega_0)} \le C\|f\|_{L^2(\omega_0)}$$
 where $N(u_1) = \sup_{X \in \Gamma(Q)} |u_1(X)|$

and

$$\Gamma(Q) = \{X \in \Omega : |X - Q| \le 2\delta(X)\} \text{ and } \delta(X) = \operatorname{dist}(X, \partial\Omega)$$

• Strategy: Since L_1 is a perturbation of L_0 we view u_1 as a perturbation of u_0 .

- 4 ロ ト 4 個 ト 4 種 ト 4 種 ト - 種 - り Q (C)

u_1 as a perturbation of u_0

Note that

$$u_1(X) = u_0(X) + \int_{\Omega} G_0(X, Y) L_0 u_1(Y) dY = u_0(X) + F(X),$$

where $G_0(X, \cdot)$ is the Green function of L_0 in Ω .

Integration by parts shows that

$$F(X) = \int_{\Omega} G_0(X,Y)(L_0 - L_1)u_1(Y)dY = \int_{\Omega} \nabla_Y G_0(X,Y)\varepsilon(Y)\nabla u_1(Y)dY$$

where $\varepsilon(Y) = A_1(Y) - A_0(Y)$.

4□ > 4□ > 4 = > 4 = > = 9 < 0</p>

Tatiana Toro (University of Washington) Boundary regularity for perturbation operators

6 / 20

Lemma 1. Let Ω be a CAD and assume

$$\sup_{\Delta} \left(\frac{1}{\omega_0(\Delta)} \int_{\mathcal{T}(\Delta)} a^2(X) \frac{G_0(X)}{\delta^2(X)} dX \right)^{1/2} < \varepsilon_0$$

then

$$\|NF\|_{L^{2}(\omega_{0})}^{2} + \|N(\delta|\nabla F|)\|_{L^{2}(\omega_{0})}^{2} \lesssim \varepsilon_{0}^{2} \|S(u_{1})\|_{L^{2}(\omega_{0})}^{2}$$

where S(u) denotes the square function of u given by

$$S^{2}(u)(Q) = \int_{\Gamma(Q)} |\nabla u(X)|^{2} \, \delta(X)^{2-n} dX.$$

Tatiana Toro (University of Washington) Boundary regularity for perturbation operators

Lemma 2. Let Ω be a CAD and assume

$$\sup_{\Delta} \left(\frac{1}{\omega_0(\Delta)} \int_{\mathcal{T}(\Delta)} a^2(X) \frac{G_0(X)}{\delta^2(X)} dX \right)^{1/2} < \varepsilon_0$$

then

$$\|\mathit{SF}\|_{L^2(\omega_0)}^2 \lesssim \left(\|\mathit{N}(\delta|\nabla \mathit{F}|)\|_{L^2(\omega_0)}^2 + \|\mathit{NF}\|_{L^2(\omega_0)}^2 + \|\mathit{f}\|_{L^2(\omega_0)}^2 \right)$$

Proof of the theorem

Since
$$S(u_1) \leq S(F) + S(u_0)$$

$$\begin{split} \|NF\|_{L^{2}(\omega_{0})}^{2} + \|N(\delta|\nabla F|)\|_{L^{2}(\omega_{0})}^{2} & \lesssim \quad \varepsilon_{0}^{2} \|S(u_{1})\|_{L^{2}(\omega_{0})}^{2} \\ & \lesssim \quad \varepsilon_{0}^{2} \|SF\|_{L^{2}(\omega_{0})}^{2} + \varepsilon_{0}^{2} \|S(u_{0})\|_{L^{2}(\omega_{0})}^{2} \\ & \lesssim \quad \varepsilon_{0}^{2} \left[\|NF\|_{L^{2}(\omega_{0})}^{2} + \|N(\delta|\nabla F|)\|_{L^{2}(\omega_{0})}^{2} \right] \\ & + \varepsilon_{0}^{2} \|f\|_{L^{2}(\omega_{0})}^{2}, \end{split}$$

because

$$||S(u_0)||_{L^2(\omega_0)}^2 \lesssim ||f||_{L^2(\omega_0)}^2.$$

Thus for ε_0 small enough

$$||NF||_{L^{2}(\omega_{0})}^{2} \lesssim \varepsilon_{0}^{2} ||f||_{L^{2}(\omega_{0})}^{2}.$$

ㅁㅏ ◀♬ㅏ ◀불ㅏ ◀불ㅏ _ 불 _ 쒸٩♡.

Recall our goal is to show

$$||N(u_1)||_{L^2(\omega_0)}^2 \lesssim ||f||_{L^2(\omega_0)}^2$$

Since $N(u_1) \leq N(F) + N(u_0)$,

$$||N(u_0)||_{L^2(\omega_0)}^2 \lesssim ||f||_{L^2(\omega_0)}^2$$

and

$$\|\mathit{NF}\|_{L^2(\omega_0)}^2 \lesssim \varepsilon_0^2 \, \|f\|_{L^2(\omega_0)}^2$$

then we have

$$\|N(u_1)\|_{L^2(\omega_0)}^2 \le 2 \left[\|NF\|_{L^2(\omega_0)}^2 + \|N(u_0)\|_{L^2(\omega_0)}^2 \right] \lesssim \|f\|_{L^2(\omega_0)}^2$$

which implies that $\omega_1 \in B_2(\omega_0)$.

- ◀ □ ▶ ◀ 🗗 ▶ ◀ 볼 ▶ ◆ 볼 → જ Q ©

Escauriaza's result

ullet Let Ω be a Lipschitz domain assume that

$$\lim_{r\to 0}\sup_{Q\in\partial\Omega}h(Q,r)=0.$$

where

$$h(Q,r) = \left(\frac{1}{\sigma(\Delta(Q,r))} \int_{T(\Delta(Q,r))} \frac{a^2(X)}{\delta(X)} dX\right)^{1/2}.$$

If $\log k_0 \in VMO(\sigma)$ then $\log k_1 \in VMO(\sigma)$ where $k_j = \frac{d\omega_j}{d\sigma}$.

• Let Ω be a C^1 domain, $L_0 = \Delta$ and assume that

$$\lim_{r\to 0}\sup_{Q\in\partial\Omega}h(Q,r)=0.$$

then $\log k_1 \in VMO(\sigma)$.

(ロ) (部) (注) (注) 注 り(0)

Motivating question

ullet Let Ω be a CAD with vanishing constant, $L_0=\Delta$ and assume that

$$\lim_{r\to 0}\sup_{Q\in\partial\Omega}h(Q,r)=0.$$

does $\log k_1 \in VMO(\sigma)$?

- How does this relate to the previous results?
 - ▶ $\log k \in VMO(\sigma)$ if and only if $\omega \in B_q(\sigma)$ for q > 1 and

$$\lim_{r \to 0} \sup_{Q \in \partial \Omega} \left(\int_{B(Q,r)} k^q \, d\sigma \right)^{\frac{1}{q}} \left(\int_{B(Q,r)} k \, d\sigma \right)^{-1} = 1$$

◆□▶ ◆圖▶ ◆重▶ ◆重▶ = = のQ@

Lipschitz vs chord arc domains

- On a Lipschitz domain if $\log k_0 \in VMO(\sigma)$ and $\lim_{r\to 0} \sup_{Q\in\partial\Omega} h(Q,r) = 0$ then Dahlberg's result ensure that $\omega_1\in B_2(\sigma)$. Escauriaza showed that and optimal B_2 inequality holds.
- What did we know?
- On a CAD if $\log k_0 \in VMO(\sigma)$ and $\lim_{r\to 0} \sup_{Q\in\partial\Omega} h(Q,r) = 0$ then $\omega_1 \in A_\infty(\sigma)$, i.e. $\exists q>1$ such that $\omega_1 \in B_q(\sigma)$ (Milakis-Toro).
- Was this enough? NO

Lipschitz vs chord arc domains

- On a Lipschitz domain if $\log k_0 \in VMO(\sigma)$ and $\lim_{r\to 0}\sup_{Q\in\partial\Omega}h(Q,r)=0$ then Dahlberg's result ensure that $\omega_1\in B_2(\sigma)$. Escauriaza showed that and optimal B_2 inequality holds.
- On a CAD if $\log k_0 \in VMO(\sigma)$ and $\lim_{r\to 0} \sup_{Q\in\partial\Omega} h(Q,r) = 0$ then $\omega_1 \in A_{\infty}(\sigma)$, i.e. $\exists q>1$ such that $\omega_1 \in B_q(\sigma)$ (Milakis-Toro).
- Results in [MPT] ensure that on a CAD if log $k_0 \in VMO(\sigma)$ and $\lim_{r\to 0} \sup_{Q\in\partial\Omega} h(Q,r) = 0$ then $\omega_1 \in B_2(\sigma)$.

Regularity results for small perturbation operators - MPT

• Let Ω be a CAD if $\lim_{r\to 0}\sup_{Q\in\partial\Omega}h(Q,r)=0$ and $\log k_0\in VMO(\sigma)$ then

$$\left(\int_{B(Q,r)} k_1^2 d\sigma\right)^{\frac{1}{2}} \left(\int_{B(Q,r)} k_1 d\sigma\right)^{-1} \leq Cr^{\gamma} + Ch(Q,r)$$

$$+ \left(\int_{B(Q,r)} k_0^2 d\sigma\right)^{\frac{1}{2}} \left(\int_{B(Q,r)} k_0 d\sigma\right)^{-1}$$

In particular $\lim_{r\to 0}\sup_{Q\in\partial\Omega}h(Q,r)=0$ and $\log k_0\in VMO(\sigma)$ then $\log k_1\in VMO(\sigma)$.

Sketch of the proof: Dahlberg's idea

For $t \in [0,1]$ consider the operators

$$L_t u = \operatorname{div}(A_t \nabla u)$$

$$A_t(X) = (1-t)A_0(X) + tA_1(X).$$

Let ω_t be the elliptic measure of L_t and $k_t = \frac{d\omega_t}{d\sigma}$. For $Q \in \partial\Omega$ and r > 0 let $\Delta_r = B(Q, r) \cup \partial\Omega$. For $f \in L^2(\sigma)$ let

$$\Psi(t) = \frac{1}{\omega_t(\Delta_r)} \int_{\Delta_r} f \, k_t \, d\sigma.$$

Then $\Psi(t)$ is Lipschitz and

$$\dot{\Psi}(t) = \frac{1}{\omega_t(\Delta_r)} \int_{\Delta_r} \dot{k}_t \left(f - \int_{\Delta_r} f d\omega_t \right) d\sigma$$

where \dot{k}_t is the weak L^2 limit of $(k_{t+h} - k_t)/h$ as h tends to zero.

←□▶ ←□▶ ←□▶ ←□▶ □ ● ●

Idea behind the proof

For $t \in [0,1]$ consider

$$L_t u_t = \operatorname{div}(A_t \nabla u_t) \text{ in } \Omega$$

 $u_t = f \text{ in } \partial \Omega$

For
$$t,s\in [0,1]$$
 and $arepsilon(Y)=A_1(Y)-A_0(Y)$

$$u_s(X) - u_t(X) = (s - t) \int_{\Omega} \varepsilon(Y) \nabla G_t(X, Y) \nabla u_s(Y) dY.$$

$$\int_{\Omega} |\varepsilon(Y)| |\nabla G_t(X,Y)| |\nabla u_s(Y)| dY \lesssim ||f||_{L^2(\sigma)}$$

and

$$|u_s(X) - u_t(X)| \lesssim ||f||_{L^2(\sigma)}|s - t|.$$

Technical lemma

• There exist $\gamma, \beta \in (0,1)$ such that if $f \in L^2(\sigma)$, $f \ge 0$ and $\|f\|_{L^2(d\sigma/\sigma(\Delta_r))} \le 1$ for $t \in [0,1]$

$$|\dot{\Psi}(t)| \leq C \left[r^{\gamma} + \sup_{s \leq r^{eta}} \sup_{Q \in \partial \Omega} h(Q, s)
ight]$$

Integration guarantees that

$$\Psi(1) \leq \Psi(0) + C \left[r^{\gamma} + \sup_{s \leq r^{\beta}} \sup_{Q \in \partial \Omega} h(Q, s) \right]$$

By duality

$$\frac{\sigma(\Delta_r)}{\omega_1(\Delta_r)} \left(\oint_{\Delta_r} k_1^2 \, d\sigma \right)^{\frac{1}{2}} \leq \frac{\sigma(\Delta_r)}{\omega_0(\Delta_r)} \left(\oint_{\Delta_r} k_0^2 \, d\sigma \right)^{\frac{1}{2}} + C \left[r^{\gamma} + \sup_{s \leq r^{\beta}} \sup_{Q \in \partial \Omega} h(Q, s) \right]$$

Open problems I

- Can a chord arc domain Ω be approximated by smooth interior chord arc domains $\Omega_m \subset \Omega$ in such a way that $\chi_{\Omega_m} \to \chi_{\Omega}$ in BV_{loc} ?
 - ▶ A Lipschitz domain Ω can be approximated by smooth interior domains whose Lipschitz character is controlled by that Ω . Moreover the unit normal vector and the surface measure of the approximating domain converge to those of Ω .

Open problems II

- Hofmann-Mitrea-Taylor have studied the Neumann problem on chord arc domains with small and vanishing constant. Study the Neumann problem on general CADs.
 - ► [HMT] study the Neumann problem via layer potentials, using Semmes decomposition. This formulation of the Neumann problem is unavailable for general CADs.
- Study the regularity problem on CADs.