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Perturbation operators - Main tool

Let L1, L0 be divergence form elliptic operators, the deviation
function of L1 from L0 is

a(X ) = sup{|A1(Y )− A0(Y )| : Y ∈ B(X , δ(X )/2)}

Let Ω be a CAD, there is ε0 > 0 so that if

sup
∆

(
1

ω0(∆)

ˆ
T (∆)

a2(X )
G0(X )

δ2(X )
dX

)1/2

< ε0

then ω1 ∈ B2(ω0).
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Why is this the main tool?

Let Ω be a CAD and that assume ω0 ∈ Bp(σ) for some p > 1. Given
ε > 0 there exists δ > 0 such that if

sup
∆⊆∂Ω

{
1

σ(∆)

ˆ
T (∆)

a2(X )

δ(X )
dX

}1/2

≤ δ,

then

sup
∆⊆∂Ω

{
1

ω0(∆)

ˆ
T (∆)

a2(X )
G0(X )

δ2(X )
dX

}1/2

≤ ε.

Thus ω1 ∈ B2(ω0) and ω1 ∈ A∞(σ).
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The main tool implies the perturbation result

Assume sup
∆⊆∂Ω

{
1

σ(∆)

ˆ
T (∆)

a2(X )

δ(X )
dX

}1/2

≤ C0

Consider Lt = (1− t)A0 + tA1 for 0 ≤ t ≤ 0 and a partition of [0, 1]
{ti}mi=0 such that 0 < ti+1 − ti < δ0/C0. Let ai be the deviation
function of Lti+1 from Lti , ai (X ) = (ti+1 − ti )a(X ).

Then if δ0 corresponds to ε0 in the main tool we have

sup
∆⊆∂Ω

{
1

σ(∆)

ˆ
T (∆)

a2
i (X )

δ(X )
dX

}1/2

≤ δ0 & ωi+1 ∈ B2(ωi )

Iteration ensures that for i ∈ {0, . . . ,m}
I ωi ∈ A∞(σ) and ωi+1 ∈ B2(ωi ).

Hence ω1 ∈ A∞(σ).
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Sketch of the proof of the main tool

Given f ∈ C (∂Ω) consider for i = 0, 1{
Liui = div (Ai (X )∇ui ) = 0 in Ω

ui = f on ∂Ω

To show that ω1 ∈ B2(ω0) we need to show that

‖N(u1)‖L2(ω0) ≤ C‖f ‖L2(ω0) where N(u1) = sup
X∈Γ(Q)

|u1(X )|

and

Γ(Q) = {X ∈ Ω : |X − Q| ≤ 2δ(X )} and δ(X ) = dist (X, ∂Ω)

Strategy: Since L1 is a perturbation of L0 we view u1 as a
perturbation of u0.
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u1 as a perturbation of u0

Note that

u1(X ) = u0(X ) +

ˆ
Ω
G0(X ,Y )L0u1(Y )dY = u0(X ) + F (X ),

where G0(X , ·) is the Green function of L0 in Ω.

Integration by parts shows that

F (X ) =

ˆ
Ω
G0(X ,Y )(L0−L1)u1(Y )dY =

ˆ
Ω
∇YG0(X ,Y )ε(Y )∇u1(Y )dY

where ε(Y ) = A1(Y )− A0(Y ).
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Lemma 1. Let Ω be a CAD and assume

sup
∆

(
1

ω0(∆)

ˆ
T (∆)

a2(X )
G0(X )

δ2(X )
dX

)1/2

< ε0

then

‖NF‖2
L2(ω0) + ‖N(δ|∇F |)‖2

L2(ω0) . ε2
0 ‖S(u1)‖2

L2(ω0)

where S(u) denotes the square function of u given by

S2(u)(Q) =

ˆ
Γ(Q)
|∇u(X )|2 δ(X )2−ndX .
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Lemma 2. Let Ω be a CAD and assume

sup
∆

(
1

ω0(∆)

ˆ
T (∆)

a2(X )
G0(X )

δ2(X )
dX

)1/2

< ε0

then

‖SF‖2
L2(ω0) .

(
‖N(δ|∇F |)‖2

L2(ω0) + ‖NF‖2
L2(ω0) + ‖f ‖2

L2(ω0)

)
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Proof of the theorem

Since S(u1) ≤ S(F ) + S(u0)

‖NF‖2
L2(ω0) + ‖N(δ|∇F |)‖2

L2(ω0) . ε2
0 ‖S(u1)‖2

L2(ω0)

. ε2
0 ‖SF‖2

L2(ω0) + ε2
0 ‖S(u0)‖2

L2(ω0)

. ε2
0

[
‖NF‖2

L2(ω0) + ‖N(δ|∇F |)‖2
L2(ω0)

]
+ε2

0 ‖f ‖2
L2(ω0),

because
‖S(u0)‖2

L2(ω0) . ‖f ‖
2
L2(ω0).

Thus for ε0 small enough

‖NF‖2
L2(ω0) . ε2

0 ‖f ‖2
L2(ω0).
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Recall our goal is to show

‖N(u1)‖2
L2(ω0) . ‖f ‖

2
L2(ω0)

Since N(u1) ≤ N(F ) + N(u0),

‖N(u0)‖2
L2(ω0) . ‖f ‖

2
L2(ω0)

and

‖NF‖2
L2(ω0) . ε2

0 ‖f ‖2
L2(ω0)

then we have

‖N(u1)‖2
L2(ω0) ≤ 2

[
‖NF‖2

L2(ω0) + ‖N(u0)‖2
L2(ω0)

]
. ‖f ‖2

L2(ω0)

which implies that ω1 ∈ B2(ω0).
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Escauriaza’s result

Let Ω be a Lipschitz domain assume that

lim
r→0

sup
Q∈∂Ω

h(Q, r) = 0.

where

h(Q, r) =

(
1

σ(∆(Q, r))

ˆ
T (∆(Q,r))

a2(X )

δ(X )
dX

)1/2

.

If log k0 ∈ VMO(σ) then log k1 ∈ VMO(σ) where kj =
dωj

dσ .

Let Ω be a C 1 domain, L0 = ∆ and assume that

lim
r→0

sup
Q∈∂Ω

h(Q, r) = 0.

then log k1 ∈ VMO(σ).
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Motivating question

Let Ω be a CAD with vanishing constant, L0 = ∆ and assume that

lim
r→0

sup
Q∈∂Ω

h(Q, r) = 0.

does log k1 ∈ VMO(σ) ?

How does this relate to the previous results?
I log k ∈ VMO(σ) if and only if ω ∈ Bq(σ) for q > 1 and

lim
r→0

sup
Q∈∂Ω

( 
B(Q,r)

kq dσ

) 1
q
( 

B(Q,r)

k dσ

)−1

= 1
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Lipschitz vs chord arc domains

On a Lipschitz domain if log k0 ∈ VMO(σ) and
limr→0 supQ∈∂Ω h(Q, r) = 0 then Dahlberg’s result ensure that
ω1 ∈ B2(σ). Escauriaza showed that and optimal B2 inequality holds.

What did we know?

On a CAD if log k0 ∈ VMO(σ) and limr→0 supQ∈∂Ω h(Q, r) = 0 then
ω1 ∈ A∞(σ), i.e. ∃q > 1 such that ω1 ∈ Bq(σ) (Milakis-Toro).

Was this enough? NO
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Lipschitz vs chord arc domains

On a Lipschitz domain if log k0 ∈ VMO(σ) and
limr→0 supQ∈∂Ω h(Q, r) = 0 then Dahlberg’s result ensure that
ω1 ∈ B2(σ). Escauriaza showed that and optimal B2 inequality holds.

On a CAD if log k0 ∈ VMO(σ) and limr→0 supQ∈∂Ω h(Q, r) = 0 then
ω1 ∈ A∞(σ), i.e. ∃q > 1 such that ω1 ∈ Bq(σ) (Milakis-Toro).

Results in [MPT] ensure that on a CAD if log k0 ∈ VMO(σ) and
limr→0 supQ∈∂Ω h(Q, r) = 0 then ω1 ∈ B2(σ).
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Regularity results for small perturbation operators - MPT

Let Ω be a CAD if lim
r→0

sup
Q∈∂Ω

h(Q, r) = 0 and log k0 ∈ VMO(σ) then

( 
B(Q,r)

k2
1 dσ

) 1
2
( 

B(Q,r)
k1 dσ

)−1

≤ Crγ + Ch(Q, r)

+

( 
B(Q,r)

k2
0 dσ

) 1
2
( 

B(Q,r)
k0 dσ

)−1

In particular lim
r→0

sup
Q∈∂Ω

h(Q, r) = 0 and log k0 ∈ VMO(σ) then

log k1 ∈ VMO(σ).
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Sketch of the proof: Dahlberg’s idea

For t ∈ [0, 1] consider the operators

Ltu = div(At∇u)

At(X ) = (1− t)A0(X ) + tA1(X ).

Let ωt be the elliptic measure of Lt and kt = dωt
dσ . For Q ∈ ∂Ω and r > 0

let ∆r = B(Q, r) ∪ ∂Ω. For f ∈ L2(σ) let

Ψ(t) =
1

ωt(∆r )

ˆ
∆r

f kt dσ.

Then Ψ(t) is Lipschitz and

Ψ̇(t) =
1

ωt(∆r )

ˆ
∆r

k̇t

(
f −

 
∆r

fdωt

)
dσ

where k̇t is the weak L2 limit of (kt+h − kt)/h as h tends to zero.
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Idea behind the proof

For t ∈ [0, 1] consider

Ltut = div(At∇ut) in Ω

ut = f in ∂Ω

For t, s ∈ [0, 1] and ε(Y ) = A1(Y )− A0(Y )

us(X )− ut(X ) = (s − t)

ˆ
Ω
ε(Y )∇Gt(X ,Y )∇us(Y )dY .

ˆ
Ω
|ε(Y )||∇Gt(X ,Y )||∇us(Y )|dY . ||f ||L2(σ)

and

|us(X )− ut(X )| . ||f ||L2(σ)|s − t|.
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Technical lemma

There exist γ, β ∈ (0, 1) such that if f ∈ L2(σ), f ≥ 0

and ‖f ‖L2(dσ/σ(∆r )) ≤ 1 for t ∈ [0, 1]

|Ψ̇(t)| ≤ C

[
rγ + sup

s≤rβ
sup

Q∈∂Ω
h(Q, s)

]
Integration guarantees that

Ψ(1) ≤ Ψ(0) + C

[
rγ + sup

s≤rβ
sup

Q∈∂Ω
h(Q, s)

]
By duality

σ(∆r )

ω1(∆r )

( 
∆r

k2
1 dσ

) 1
2

≤ σ(∆r )

ω0(∆r )

( 
∆r

k2
0 dσ

) 1
2

+C

[
rγ + sup

s≤rβ
sup

Q∈∂Ω
h(Q, s)

]
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Open problems I

Can a chord arc domain Ω be approximated by smooth interior chord
arc domains Ωm ⊂ Ω in such a way that χΩm → χΩ in BVloc?

I A Lipschitz domain Ω can be approximated by smooth interior domains
whose Lipschitz character is controlled by that Ω . Moreover the unit
normal vector and the surface measure of the approximating domain
converge to those of Ω.
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Open problems II

Hofmann-Mitrea-Taylor have studied the Neumann problem on chord
arc domains with small and vanishing constant. Study the Neumann
problem on general CADs.

I [HMT] study the Neumann problem via layer potentials, using Semmes
decomposition. This formulation of the Neumann problem is
unavailable for general CADs.

Study the regularity problem on CADs.
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