Analysis on non-smooth domains

Tatiana Toro

University of Washington

9th International Conference in Harmonic Analysis & PDE

El Escorial, Madrid

Outline

- Lecture I: The Dirichlet Problem
 - Divergence form elliptic operators (Laplacian)
 - Domains (NTA & CAD)
 - Boundary regularity for harmonic functions
- Lecture II: Harmonic Analysis on CAD
 - Perturbation operators
 - $(D)_p$ problem: a PDE question becomes a Harmonic Analysis problem
 - Tent spaces on chord arc domains
- Lecture III: Boundary regularity results for perturbation operators
 - \triangleright $(D)_p$ problem
 - Asymptotically optimal perturbation operators.

Divergence form elliptic operators

We consider operators of the form

$$Lu = \operatorname{div}\left(A(X)\nabla u\right)$$

where $A(X) = (a_{ij}(X))$ is symmetric measurable matrix and satisfies

$$\lambda |\xi|^2 \leq \sum_{i,i=1}^n a_{ij}(X)\xi_i\xi_j \leq \Lambda |\xi|^2$$
 for all $X \in \Omega$ and $\xi \in \mathbb{R}^n$.

- If A = Id, $L = \Delta$ the Laplacian.
- L is a variable coefficient version of the Laplacian.

3 / 1

Classical Dirichlet problem

Let $\Omega\subset\mathbb{R}^n$ be a bounded domain, $f\in\mathcal{C}(\partial\Omega)$ does there exist u satisfying

$$\begin{cases}
Lu = \operatorname{div}(A(X)\nabla u) = 0 \text{ in } \Omega \\
u = f \text{ on } \partial\Omega
\end{cases} \tag{1}$$

• If such u exists, how regular is it?

What is known about this question?

- The interior regularity is a classical result: u is Hölder continuous in Ω (De Giorgi-Nash-Moser).
- Additional regularity of A implies higher interior regularity of the solution.
- It is a question about boundary regularity.

5 / 1

Elliptic measure

- Ω is regular for L, if for all $f \in C(\partial\Omega)$, $u_f = u \in C(\overline{\Omega})$.
- If Ω is regular the maximum principle and the Riesz Representation Theorem guarantee that there is a family probability measures $\{\omega_L^X\}_{X\in\Omega}$

$$u(X) = \int_{\partial\Omega} f(Q) d\omega_L^X(Q).$$

- ω_L is called the L-elliptic measure of Ω . If L is the Laplacian $\omega_L=\omega$ is the harmonic measure.
- The boundary regularity of u is determined by the regularity of ω_L .

 $\omega^X(E)$ denotes the probability that a Brownian motion starting at X will first hit the boundary at a point of $E \subset \partial \Omega$.

7 / 1

Examples of regular domains: non-tangentially accessible (NTA) domains

NTA domains - Jerison-Kenig

A domain Ω is non-tangentially accessible (NTA) if there exist M>2 and R>0 such that $\forall~Q\in\partial\Omega,~\forall~r\in(0,R)$

 \bullet \bullet satisfies the corkscrew condition:

$$\exists A \in \Omega$$
 s.t. $\frac{r}{M} \leq |A - Q|, \ d(A, \partial \Omega) \leq r$

- ③ Ω satisfies the Harnack Chain Condition; if $\epsilon>0$, $X_1,X_2\in B(Q,r)\cap\Omega$ with $|X_1-X_2|\leq 2^k\epsilon$ and $d(X_i,\partial\Omega)\geq\epsilon$ for i=1,2, there exists a chain of Mk balls B_1,\ldots,B_{Mk} in Ω connecting $X_1\in B_1$ to $X_2\in B_{Mk}$ so that $diam\,B_j\sim d(B_j,\partial\Omega)$ and

diam $B_i > C^{-1} \min\{d(X_1, B_i), d(X_2, B_i)\}\$ for C > 1.

June 12, 2012

Results on NTA domains - Jerison-Kenig

- NTA domains are regular
- ω_L is doubling, i.e. there exists a constant C>0 such that for all $Q\in\partial\Omega$ and $0< r<\operatorname{diam}\Omega$

$$\omega_L(B(Q,2r)) \leq C\omega_L(B(Q,r)).$$

- The non-tangential limit of the solution of (??) at the boundary exists and coincides with f ω_L -a.e (i.e u=f on $\partial\Omega$ ω_L -a.e.).
- If f is Lipschitz, u is Hölder continuous in $\overline{\Omega}$.

Chord Arc Domains (CAD)

A chord arc domain (CAD) is an NTA domain whose surface measure at the boundary σ is Ahlfors regular, i.e. there exists C>1 such that for all $Q\in\partial\Omega$ and $r\in(0,\dim\Omega)$

$$C^{-1}r^{n-1} \le \sigma(B(Q,r)) \le Cr^{n-1}.$$

Here $\sigma = \mathcal{H}^{n-1} \sqcup \partial \Omega$, where \mathcal{H}^{n-1} denotes the (n-1)-dimensional Hausdorff measure.

Examples:

- Lipschitz domains.
- Domains which locally can be seen as the area above the graph of a function with gradient in BMO.

CAD

Remarks:

- Locally the boundary of a CAD is not necessarily the graph of a function.
- CADs may appear as Hausdorff limits of smooth domains.
- CADs are sets of locally finite perimeter.

Boundary regularity result:

• Semmes & David-Jerison: If $L = \Delta$, $\omega \in A_{\infty}(\sigma)$ i.e. $\omega \ll \sigma$ in a quantitative way.

Chord arc domains with small constant

• A bounded domain $\Omega \subset \mathbb{R}^n$ is a δ -CAD, if Ω is a CAD, Ω is δ -Reifenberg flat and there exists R > 0 such that

$$\|\nu\|_*(R) = \sup_{0 < r < R} \sup_{Q \in \partial\Omega} \left(\frac{1}{\sigma(B(Q,r))} \int_{B(Q,r)} |\nu - \nu_{Q,r}|^2 \, d\sigma \right)^{1/2} < \delta$$

where

$$\nu_{Q,r} = \frac{1}{\sigma(B(Q,r))} \int_{B(Q,r)} \nu \, d\sigma$$

• Examples: Domains which locally can be seen as the area above the graph of a Lipschitz function with constant comparable to δ or a function whose gradient has BMO norm comparable to δ .

(4日) (個) (注) (注) (注) (200)

Chord arc domains with vanishing constant

• A bounded domain $\Omega \subset \mathbb{R}^n$ is a CAD with vanishing constant if Ω is a δ -CAD for some δ small and $\nu \in VMO(\sigma)$, i.e.

$$\limsup_{s\to 0}\|\nu\|_*(s)=0.$$

- Examples:
 - C¹ domains
 - ▶ Domains which locally can be seen as the area above the graph of a function whose gradient is in VMO

Harmonic measure on Lipschitz domains vs CAD

Recall $A_{\infty}(\sigma) = \bigcup_{q>1} B_q(\sigma)$ and $\omega \in B_q(\sigma)$ for q>1 if the Poisson kernel $k=\frac{d\omega}{d\sigma}$ satisfies a reverse Hölder inequality, i.e.

$$\left(\frac{1}{\sigma(\Delta)}\int_{\Delta}k^{q}\,d\sigma\right)^{\frac{1}{q}}\leq C\frac{1}{\sigma(\Delta)}\int_{\Delta}k\,d\sigma$$

for all $\Delta = B(Q, r) \cap \partial \Omega$ with $Q \in \partial \Omega$ and $r \in (0, diam\Omega)$.

- Dahlberg: If Ω is Lipschitz then $\omega \in A_{\infty}(\sigma)$ and $\omega \in B_2(\sigma)$
- David-Jerison & Semmes: If Ω is a CAD there exists $q \in (1, \infty)$ such that $\omega \in B_q(\sigma)$. Given q > 1 there exists a CAD, Ω , such that $\omega \notin B_q(\sigma)$.
- Kenig-Toro: Given q>1 there exists $\delta>0$ such that if Ω is a δ -CAD then $\omega\in B_q(\sigma)$. (Key tool: Semmes local decomposition of chord arc surfaces with small constant)

Poisson kernel on C^1 domains vs CAD with vanishing constant

- Jerison-Kenig: If Ω is a C^1 domain then $\log k \in VMO(\sigma)$.
- Kenig-Toro: If Ω is a chord arc domain with vanishing constant then $\log k \in VMO(\sigma)$.
- Fabes-Jodeit-Rivière: If Ω is a C^1 domain then the double layer potential is a compact operator from $L^p(\sigma)$ into $L^p(\sigma)$ for any 1 .
- Hofmann-Mitrea-Taylor: If Ω is a chord arc domain with vanishing constant then the double layer potential is a compact operator from $L^p(\sigma)$ into $L^p(\sigma)$ for any 1 .

What does the regularity of the Poisson kernel tell us about the boundary regularity of the solutions to the Dirichlet problem with data in L^p ?

• Given $f \in L^p(\sigma) \cap C(\partial\Omega)$ with p > 1 does there exist u such that

$$\left\{ \begin{array}{rcl} Lu = \mathrm{div} \left(A(X) \nabla u \right) & = & 0 \text{ in } \Omega \\ u & = & f \text{ on } \partial \Omega \end{array} \right.$$

with

$$\|N(u)\|_{L^p(\sigma)} \le C\|f\|_{L^p(\sigma)}$$
 where $N(u) = \sup_{X \in \Gamma(Q)} |u(X)|$?

$$\Gamma(Q) = \{X \in \Omega : |X - Q| \le 2\delta(X)\} \text{ and } \delta(X) = \operatorname{dist}(X, \partial\Omega)$$

- 4 ロ ト 4 昼 ト 4 夏 ト - 夏 - 夕 Q (C)

$(D)_p$ problem & Weights

- If the $(D)_p$ problem holds then for $\sigma a.e.$ $Q \in \partial \Omega$, $\lim_{X \to Q, X \in \Gamma(Q)} u(X) = f(Q)$.
- The $(D)_p$ holds for L if and only if $\omega_L \in B_q(\sigma)$ with $\frac{1}{p} + \frac{1}{q} = 1$.
- $\omega_L \in B_q(\sigma)$ if $k_L = \frac{d\omega_L}{d\sigma}$ satisfies

$$\left(\frac{1}{\sigma(\Delta)}\int_{\Delta}k_{L}^{q}\,d\sigma\right)^{\frac{1}{q}}\leq C\frac{1}{\sigma(\Delta)}\int_{\Delta}k_{L}\,d\sigma$$

for all $\Delta = B(Q, r) \cap \partial \Omega$ with $Q \in \partial \Omega$ and $r \in (0, diam\Omega)$.

• Note if $\omega_L \in B_q(\sigma)$ then $\omega_L \in B_{q'}(\sigma)$ for q' < q.

◆ロ > ◆母 > ◆き > ◆き > き のQの

Summary of results for the Laplacian

- Dahlberg: If Ω is a Lipschitz domain then $\omega \in B_2(\sigma)$, and $(D)_p$ problem for the Laplacian holds for all $p \geq 2$.
- Toro-Kenig: Given $p_0 > 1$ there exists $\delta > 0$ such that if Ω is a δ -CAD then $(D)_p$ problem for the Laplacian holds for all $p \geq p_0$.
- Toro-Kenig & Hofmann-Mitrea-Taylor : If Ω is a chord arc domain with vanishing constant then $(D)_p$ problem for the Laplacian holds for all p>1.