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B. Fourier restriction: Adapted coordinates

Assume that
S = {(x1, x2, φ(x1, x2)) : (x1, x2) ∈ Ω},

where (0, 0) ∈ Ω and φ(0, 0) = 0, ∇φ(0, 0) = 0.

Theorem (Ikromov, M.)

Assume that there is a linear coordinate system adapted to φ, where φ is
smooth of finite type. If the support of ρ ≥ 0 is contained in a sufficiently
small neighborhood of 0, then

( ∫

S
|f̂ |2 ρdσ

)1/2
≤ Cp‖f ‖Lp(R3), f ∈ S(R3), (1.1)

for 1 ≤ p ≤ pc , where p′c := 2h(φ) + 2.

Remarks:

1 Knapp type examples show that our result is sharp.
2 A. Magyar had obtained partial results in the analytic case before.
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On the proof

Let h = h(φ), ν = ν(φ), and recall from Part A that dµ = ρdσ satisfies
the estimate

|d̂µ(ξ)| ≤ C ‖ρ‖C3(S) (log(2 + |ξ|))ν(1 + |ξ|)−1/h (1.2)

1 If ν = 0, the theorem follows directly from (1.2) and

Theorem (Greenleaf)

Assume that µ̂(ξ) . |ξ|−1/h. Then the restriction estimate

( ∫

S
|f̂ |2 dµ

)1/2
≤ Cp‖f ‖Lp

holds for every p ≥ 1 such that p′ ≥ 2h + 2.

2 The endpoint p′ = 2h(φ) + 2 can be obtained by Littlewood-Paley
theory.
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A useful variant of the Stein-Tomas argument

Let me sketch a variant of the classical proof of Greenleaf’s theorem (for
R

n), which closely ties with dyadic frequency decompositions and whose
method turned out to be particularly useful when the coordinates are not
adapted to φ.

For λ≫ 1, define µλ by

µ̂λ(ξ) = χ1

( ξ
λ

)
µ̂(ξ),

where χ is again supported in an annulus A so that (ignoring small
frequencies) µ =

∑
j≥0 µ

2j
. Writing x = (x ′, xn), then

µλ(x) = λn

∫
χ̌1(λ(x ′ − y), λ(xn − φ(y ′))η(y ′) dy ′

= λ

∫
χ̌1

(
z , λ(xn − φ(x ′ −

z

λ
))
)
η(x ′ −

z

λ
) dz
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From µ̂(ξ) . |ξ|−1/h and this formula we derive that

‖µ̂λ‖∞ . λ−1/h, ‖µλ‖∞ . λ.

Let
Tf := f ∗ µ̂, Tλf := f ∗ µ̂λ,

hence
T =

∑

j≥0

T 2
j

Since ∫

S
|f̂ |2 dµ ≤ ‖T‖p→p′‖f ‖

2

p,

we need to estimate ‖T‖p→p′ .
Interpolating the estimates above we get

‖Tλ‖p→p′ . λ−
1−θ(h+1)

h , if θ =
2

p′
(1.3)
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Note: If p′ = p′c := 2h + 2, where θ = 1/(h + 1), then

‖Tλ‖pc→p′c
. 1.

Define analytic family of operators Tz f := f ∗ µ̂z , 0 ≤ Re z ≤ 1, where

µz := −(1− 2(1−z)(1+1/h))
∞∑

j=0

2
1−z(h+1)

h
jµ2j

Note that T1/(h+1) = T . By (1.3) and disjointness of Fourier supports, we
get

‖µ̂it‖∞ . 1, t ∈ R.

By Stein’s interpolation theorem, we are left to prove that

‖µ1+it‖∞ . 1, t ∈ R. (1.4)
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Put νλ := λ−1µλ, and νj := ν2
j
. Then

νλ(x) =

∫
F (λ, x , z) dz , (1.5)

where
F (λ, x , z) := χ̌1

(
z , λ(xn − φ(x ′ −

z

λ
))
)
η(x ′ −

z

λ
),

and

µ1+it = −(1− 2−it h+1

h )
∞∑

j=0

2−it h+1

h
jνj

And: Suppose χ̌1 had compact support. Then |z | . 1, and

λ(xn − φ(x ′ −
z

λ
)) = λ(xn − φ(x ′)) + r(λ, x ′, z),

where

|r(λ, x ′, z)| . |z |, (1.6)

|λ∂λr(λ, x
′, z)| .

|z |2

λ
.
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This shows that necessarily |λ(xn − φ(x ′)| . 1. By summation by parts in

µ1+it = −
1

2
(1− 2−it h+1

h )
∞∑

j=0

2−it h+1

h
jνj ,

we may ess. estimate

|µ1+it(x)| .
∞∑

j=0

|νj(x)− νj+1(x)|,

where

νj(x) − νj+1(x) =

∫
2

1

∫
(λ∂λF )(sλ, x , z) dz ds.

The passage to the differences νj(x)− νj+1(x) thus ess. allows to replace
F in the definition of νλ by λ∂λF ! This produces extra factors (compared
to F ) of the form

λ(xn − φ(x ′)), λ∂λr(λ, x
′, z) = O(|z |2/λ), ...,

which then allow to sum over all dyadic λ = 2j , with a bound independent
of x , since |λ(xn − φ(x ′))| . 1.
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The case where ν(φ) = 1

To capture the endpoint p = pc when ν = 1, we cannot apply Greenleaf’s
result directly. But, in the last lecture, we had effectively decomposed

µ =
∞∑

k=k0

µk , where µk = (χk ⊗ 1)µ,

and shown that

|µ̂k(ξ)| = |Jk(ξ)| ≤ C2−k|κ|(1 + 2−k |ξ3|)
−1/h

(no logarithmic factor yet!) Greenleaf’s result can then be used to show
(by re-scaling) that

∫
|f̂ (x)|2 dµk(x) ≤ C2‖f ‖2pc

∀k ≥ k0 (1.7)
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Choose again χ̃ ∈ C∞
0

(R2) supported in an annulus A so that χ̃ = 1 on
the support of χ, and define dyadic frequency decomposition operators ∆′k
by

∆̂′k f (x) := χ̃(δ2k x ′) f̂ (x ′, x3)

Then
∫
|f̂ (x)|2dµk(x) =

∫
|∆̂′k f (x)|2dµk(x), so that (1.7) implies

∫
|f̂ (x)|2dµk(x) ≤ C2 ‖∆̂′k f ‖2pc

,

for any k ≥ k0. In combination with Minkowski’s inequality, this implies
∫
|f̂ (x)|2dµ(x) =

∑

k≥k0

∫
|f̂ (x)|2dµk(x) ≤ C2

∑

k≥k0

‖∆′k f ‖2pc

≤ C2

∥∥∥∥∥∥∥


∑

k≥k0

|∆′k f (x)|2




1/2
∥∥∥∥∥∥∥

2

pc

,

since pc < 2. We conclude by means of Littlewood-Paley theory.
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B. Fourier restriction: Non-adapted coordinates

Assume next that there is no linear coordinate system which is adapted to
φ.
We may then assume that there are adapted coordinates y of the form
y1 = x1, y2 = x2 − ψ(x1), where

ψ(x1) = xm
1 ω(x1), with ω(0) 6= 0 and m ≥ 2. (2.1)

φa will again denote φ when expressed in these adapted coordinates. We
use the notions introduced for the study of the Newton polyhedron N (φa)
of φa from the previous lecture.
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r-height

Let
∆(m) := {(t, t + m + 1) : t ∈ R}.

For any edge γl ⊂ Ll := {(t1, t2) ∈ R
2 : κl

1
t1 + κl

2
t2 = 1} of N (φa) define

hl by
∆(m) ∩ Ll = {(hl −m, hl + 1)},

i.e.,

hl =
1 + mκl

1
− κl

2

κl
1
+ κl

2

, (2.2)

Define the restriction height, or short, r -height, of φ by

hr (φ) := max(d , max
{l=1,...,n+1:al>m}

hl).

Remarks:

1 For L in place of Ll and κ in place of κl , one has m = κ2/κ1 and
d = 1/(κ1 + κ2), so that one gets d in place of hl in (2.2).

2 Since m < al , we have hl < 1/(κl
1

+ κl
2
), hence hr (φ) < h(φ).
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h
r(φ) + 1

d + 1

∆(m)

π(φ)

m + 1

1/κ2

1/κ1

N (φa)

L

Figure: r-height
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Theorem (Ikromov, M.)

Let φ 6= 0 be real analytic, and assume that there is no linear coordinate
system adapted to φ. If the support of ρ ≥ 0 is contained in a sufficiently
small neighborhood of 0, then the Fourier restriction estimate (1.1), i.e.,

( ∫

S
|f̂ |2 dµ

)1/2
≤ Cp‖f ‖Lp ,

holds true for every p ≥ 1 such that p′ ≥ p′c := 2hr (φ) + 2.

Remarks:

An application of Greenleaf’s result would imply, at best, that the
condition p′ ≥ 2h(φ) + 2 is sufficient for (1.1) to hold, which is a
strictly stronger condition than p′ ≥ p′c .

It can be shown that the number m is well-defined, i.e., it does not
depend on the chosen linearly adapted coordinate system x .
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Example 2

φ(x1, x2) := (x2 − xm
1 )n, n,m ≥ 2.

The coordinates (x1, x2) are not adapted. Adapted coordinates are
y1 := x1, y2 := x2 − xm

1
, in which φ is given by

φa(y1, y2) = yn
2 .

Here

κ1 =
1

mn
, κ2 =

1

n
,

d := d(φ) =
1

κ1 + κ2

=
nm

m + 1
< n,

and

p′c =

{
2d + 2, if n ≤ m + 1,

2n, if n > m + 1 .

On the other hand, h := h(φ) = n, so that 2h + 2 = 2n + 2 > p′c .
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Remarks:

An analogous theorem holds true even for smooth, finite type
functions φ, under an additional Condition (R) which, roughly
speaking, requires that whenever the Newton diagram suggests that a
root with leading term given by the principal root jet ψ(x1) should
have multiplicity B, then indeed such a root of multiplicity B does
exist (this is a condition on the behavior of flat terms). Condition (R)
is always satisfied when φ is real-analytic.

Examples: Condition (R) holds true for

φg(x1, x2) = (x2 − x2

1 − f (x1))
2,

for every flat smooth function f (x1) (i.e., f (j)(0) = 0 for every j ∈ N),
but fails for

φb(x1, x2) := (x2 − x2

1 )2 + f (x1),

unless f vanishes identically.

There is a more invariant description of the notion of r -height,
somewhat in the spirit of Varchenko’s definition of height
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Necessity of the condition p′ ≥ 2hr (φ) + 2

Let γl be any edge of N (φa) with al > m, and choose the weight κl such
that γl lies on the line Ll given by κl

1
t1 + κl

2
t2 = 1. Consider the region

Da
ε := {y ∈ R

2 : |y1| ≤ ε
κl

1, |y2| ≤ ε
κl

2}, ε > 0,

in adapted coordinates y . In the original coordinates x , it corresponds to

Dε := {x ∈ R
2 : |x1| ≤ ε

κl
1 , |x2 − ψ(x1)| ≤ ε

κl
2}.

Assume that ε is sufficiently small. Since

φa(εκ
l
1y1, ε

κl
2y2) = ε

(
φa
κl (y1, y2) + O(εδ)

)

for some δ > 0, we have that |φa(y)| ≤ Cε for every y ∈ Da
ε , i.e.,

|φ(x)| ≤ Cε for every x ∈ Dε. (2.3)

Moreover, for x ∈ Dε,

|x2| ≤ ε
κl

2 + |ψ(x1)| . εκ
l
2 + εmκl

1 .
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Since m ≤ al = κl
2
/κl

1
, we find that

|x2| . εmκl
1 ,

so that we may assume that Dε is contained in the box where
|x1| ≤ ε

κl
1 , |x2| ≤ ε

mκl
1 . Choose fε such that

f̂ε(x1, x2, x3) = χ0

( x1

εκ
l
1

)
χ0

( x2

εmκl
1

)
χ0

(x3

ε

)
.

Then by (2.3) we see that f̂ε(x1, x2, φ(x1, x2)) ≥ 1 on Dε, hence, if
ρ(0) 6= 0, then

( ∫

S
|f̂ε|

2 ρdσ
)1/2
≥ |Dε|

1/2 = ε(κ
l
1
+κl

2
)/2.

Since ‖fε‖p ≃ ε
((1+m)κl

1
+1)/p′ , we find that the restriction estimate can

hold true only if

p′ ≥ 2
(1 + m)κl

1
+ 1

κl
1
+ κl

2

= 2hl + 2,

where we recall that hl =
1+mκl

1
−κl

2

κl
1
+κl

2

.
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Notice that the argument still works if we replace the previous line Ll by
the line L associated to the weight κ, and φa

κl by φa
κ. Since here mκ1 = κ2,

this leads to the condition p′ ≥ 2d + 2, so that altogether necessarily

p′ ≥ 2 max(d , max
l :al>m

hl) + 2 = 2hr (φ) + 2.

Q.E.D.
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Sufficiency of the condition p′ ≥ 2hr (φ) + 2: I. Key steps in the proof

when d > 5/2

In problem A, it had been natural to distinguish between the cases
where h < 2 and where h ≥ 2, since in the latter case, in many
situations a reduction to a one-dimensional situation had been
possible by means of the van der Corput lemma.

Problem B turns out to be of different nature, and we shall
distinguish between the cases where d > 5/2 and where d < 5/2.
The latter case turns out to be the most difficult one.

So, assume first that d > 5/2. Write hr := hr (φ).
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Step 1: Reduction to a narrow neighborhood of the principal root

As in Problem A, localize to the narrow κ-homogeneous subdomain

|x2 − b1xm
1 | ≤ εx

m
1 , (2.4)

Indeed, the technique of proof that we used in the case of adapted
coordinates can essentially be carried over to the domain complementary
to (2.12) without major new ideas, since one can show that the Fourier
transforms of the corresponding dyadic pieces µk of the measure µ satisfy
estimates of the form

|µ̂k(ξ)| ≤ C2−k|κ|(1 + 2−k |ξ3|)
−1/d .

Recall that hr ≥ d .
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Step 2: Domain decomposition into “homogeneous” domains Dl and

transition domains El .

Assume again that the principal face of the Newton polyhedron of φa is a
compact edge.

Following the scheme from the previous lecture, we narrow down the
domain (2.12) to the neighborhood Dpr := Dλ of the principal root jet
given by (2.5), where

|x2 − ψ(x1)| ≤ Nλx
aλ
1

(2.5)

by decomposing the difference set of the domains (2.12) and (2.5) (up to
some remainder El0−1) into the domains (l = l0, . . . , λ− 1)

Dl := {(x1, x2) : εlx
al

1
< |x2 − ψ(x1)| ≤ Nlx

al

1
},

El := {(x1, x2) : Nl+1x
al+1

1
< |x2 − ψ(x1)| ≤ εlx

al

1
}
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Contribution by the domains El .

Denote by µEl
the contribution of the transition domains El to the measure

µ. Decompose µEl
bi-dyadically w.r. to the adapted coordinates y as

µEl
=
∑

j,k

µj,k ,

so that µj,k is supported where y1 = x1 ∼ 2−j and y2 = x2 − ψ(x1) ∼ 2−k .
Observe that this a curved rectangle in the original coordinates x .
Goal: Try again to use Littlewood-Paley theory in order to reduce to
uniform restriction estimates for the family of measure µj,k , i.e.,

∫

S
|f̂ |2 dµj,k ≤ C‖f ‖2Lp , ∀j , k, (2.6)

for p ≤ pc .

Problem: Because of the non-linearity ψ(x1), this is not possible by
Littlewood-Paley techniques in the variables x1 and x2!

Good news: We can use the variables x1 and x3!.
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Indeed
φa(y) = cl yAl

1
yBl

2

(
1 + small error

)
on E a

l ,

=⇒ On E a
l respectively El (E a

l represents El in the adapted
coordinates y !) the conditions y1 ∼ 2−j , y2 ∼ 2−k are equivalent to
the conditions

x1 ∼ 2−j and φ(x) ∼ 2−(Al j+Bl k)

Re-scale the measures µj,k to get normalized measures νj,k supported
on a surface Sj,k where y1 ∼ 1 ∼ y2. One finds that Sj,k is a small
perturbation of the limiting surface

S∞ := {(y1, ym
1 ω(0), cyAl

1
yBl

2
) : y1 ∼ 1 ∼ y2},

But |∂(cyAl

1
yBl

2
)/∂y2| ∼ 1, since Bl ≥ 1, which shows that S∞, and hence

also Sj,k , is a smooth hypersurface with one non-vanishing principal
curvature (with respect to y1) of size ∼ 1.
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=⇒ |ν̂j,k(ξ)| ≤ C(1 + |ξ|)−1/2,

uniformly in j and k. Applying Greenleaf’s restriction theorem to these
measures, and scaling these estimates back, we eventually arrive (in a not
completely trivial way) at (2.6). It is important to observe here that
Greenleaf’s result implies restriction estimates for

p′ ≥ 2(1 + 2) = 6,

which is sufficient for our purposes, since p′c ≥ 2d + 2 > 2(5/2) + 2 > 6.
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Contribution by the domains Dl .

Dyadic decomposition of Dl in adapted coordinates y by means of the
κl -dilations + re-scaling leads to re-scaled measure νk corresponding
to the measures µk :

〈νk , f 〉 :=
∫

f (y1, 2(mκl
1
−κl

2
)ky2 + ym

1 ω(2−κ
l
1
ky1), φ

k(y)) η̃(y) dy

Finite partition of unity allows to assume that η̃ is supported in a thin
set U(c0), on which

y1 ∼ 1 and |y2 − c0yal

1
| ≤ εyal

1
.

Then νk is supported in a variety Sk which in the limit as k →∞
tends to the variety

S∞ := {g∞(y1, y2) := (y1, ω(0)ym
1 , φa

κl (y)) : (y1, y2) ∈ U(c0)},

since mκl
1
− κl

2
< alκ

l
1
− κl

2
= 0 and since φk tends to φa

κl . Here, c0

is fixed with |c0| ≤ Nl .
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We need uniform restriction estimates for the family of measures νk !
Depending on c0, different cases may arise. Recall

S∞ := {g∞(y1, y2) := (y1, ω(0)ym
1 , φa

κl (y)) : (y1, y2) ∈ U(c0)},

1. Case. ∂2φ
a
κl (1, c0) 6= 0. Use z2 := φa

κl (y1, y2) in place of y2 as a new
coordinate for S∞ (which thus is a hypersurface). =⇒ Since y1 ∼ 1 on
U(c0), we find that S∞, hence also Sk , is a hypersurface with one
non-vanishing principal curvature. Argue then as for the domains El .

2. Case. ∂2φ
a
κl (1, c0) = 0, but ∂1φ

a
κl (1, c0) 6= 0.

Since φa
κl is a κl -homogenous polynomial, Euler’s homogeneity

relation implies that φa
κl (1, c0) 6= 0.

Fibre the variety S∞ into the family of curves

γc(y1) := g∞(y1, cyal

1
) = (y1, ω(0)ym

1 , φ
a
κl (y1, cyal

1
)),

for c sufficiently close to c0.

γc0
(y1) = (y1, ω(0)ym

1
, b0y

1/κl
1

1
), where b0 6= 0, has non-vanishing

torsion. The same applies then to the curves γc , and for k sufficiently
large, we do obtain the analogous results for the varieties Sk .
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This allows to decompose the measure dνk as a direct integral of measures
dΓc supported on curves γl

c with non-vanishing torsion. We may thus
apply Drury’s Fourier restriction theorem for curves with non-vanishing
torsion to the measures dΓc :

( ∫
|f̂ |q dΓc

) 1

q
≤ Cp,q‖f ‖Lp(R3), p′ > 7, q ≥ p′/6.

Since we assume

p′c ≥ 2(d + 1) > 2(5/2 + 1) = 7,

these estimates, after re-scaling to the measures µk , yield the desired
restriction estimates for the contributions by the domains Dl .

Notice: it is here that we need the condition d = h lin > 5/2
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3. Case. ∂2φ
a
κl (1, c0) = 0 and ∂1φ

a
κl (1, c0) = 0. Then φa

κl (1, c0) = 0
(Euler), hence φa

κl has a real root of multiplicity B ≥ 2 at (1, c0), thus

φa
κl (y1, y2) = yBl

2
(y2 − c0yal

1
)BQ(y1, y2), (2.7)

where Q is a κl -homogenous, Q(1, c0) 6= 0 and Q(1, 0) 6= 0. One can also
prove that B < d/2.

Follow the Stein-Tomas method outlined earlier. Localize to frequencies of
size Λ > 1 :

ν̂Λ
k (ξ) := χ1

( ξ
Λ

)
ν̂k(ξ).

Claim:

‖ν̂Λ
k ‖∞ ≤ CΛ−1/B ; (2.8)

‖νΛ
k ‖∞ ≤ CΛ2−1/B . (2.9)
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Indeed, the first estimate follows easily by applications of van der Corput’s
lemma.
As for the second, in the limit as k →∞, νΛ

k is given by

νΛ
∞(x1, x2, x3)

= Λ3

∫
(F−1χ1)(Λ(x1 − y1),Λ(x2 − ω(0)ym

1 ),Λ(x3 − φ
a
κl (y1, y2)) η̃(y) dy1dy

= Λ2

∫
(F−1χ1)(z1,Λ(x2 − ω(0)(x1 −

z1

Λ
)m),Λ(x3 − φ

a
κl (x1 −

z1

Λ
, y2))

η1(x1 −
z1

Λ
, y2) dz1dy2,

where η1 localizes again to U(c0). Since |∂B
2
φa
κl (y1, y2))| ≃ 1 on the

domain of integration, sublevel estimates of van der Corput type imply
that the integral with respect to y2 can be estimated by O(Λ−1/B).
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Interpolating the estimates (2.8) and (2.9), and applying the Stein-Tomas
argument, one finds that one can even sum the corresponding estimates
over all dyadic Λ≫ 1 and obtains

( ∫
|f̂ |2 dνk

)1/2
≤ Cp‖f ‖Lp if p′ > 4B.

But, p′c ≥ 2d + 2 > 4B, since B < d/2. Scaling back to the measures µk ,
we find ( ∫

|f̂ |2 dµk

)1/2
≤ Cp‖f ‖Lp , k ≥ k0,

provided p′ ≥ 2hl + 2. This applies to pc , since hr (φ) ≥ hl .

Observe: the dyadic decomposition into the measures µk can be achieved
by dyadic decomposition in the variable x1, so that these uniform
estimates allow to sum over all k by means of Littlewood-Paley theory
applied to variable x1!
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Step 3: Contribution by the domain Dpr = Dλ containing the

principal root jet

What remains to be understood is the contribution by the domain
Dpr = Dλ given by

|x2 − ψ(x1)| ≤ Nλx
aλ
1
.

Here, the condition B < d/2 will in general no longer be true, not
even the weaker condition B < hr/2, as examples shows!

Only in Case 3 where ∇φa
pr (1, c0) = 0, we used B < d/2; in all other

cases we can essentially argue as before.
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Stopping time argument to produce further domain decomposition:

Put φ(1) := φa. If Case 3 does not appear for any choice of c0, then
we stop our algorithm with φ(1), and are done.

If Case 3 applies to c0, so that c0yaλ
1

is a root of φa
κλ
, say of

multiplicity M1 ≥ 2, then we define new coordinates z in place of y
by putting

z1 := x1 and z2 := x2 − ψ(x1)− c0xaλ
1
, (2.10)

and express φ by φ(2) in the coordinates z . Again, if Case 3 does not
appear (for φ(2) in place of φ(1)) in the corresponding z-domain, we
stop our algorithm.

Otherwise, we iterate this step.

This algorithm eventually leads to a further domain decomposition of Dpr

into “homogeneous” domains D(l) and transition domains E(l), which can
eventually be treated by methods similar to those applied for the domains
El and Dl .
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Sufficiency of the condition p′ ≥ 2hr (φ) + 2: II. Some ideas of the

proof when d ≤ 5/2

Fact: Here hr (φ) = d , so that p′c = 2d + 2. Assume even d = h lin < 2.

Theorem (Normalforms (Arnol’d, Duistermaat, Sirsma, Ikromov/M.))

If d < 2, then locally φ is of the form

φ(x1, x2) = b(x1, x2)(x2 − ψ(x1))
2 + b0(x1). (2.11)

Here b, b0 and ψ are smooth, and ψ is again the principal root jet, and
either

(a) b(0, 0) 6= 0, and either b0 is flat (singularity of type A∞), or of finite
type n, i.e., b0(x1) = xn

1
β(x1), where β(0) 6= 0 (singularity of type

An−1);

or

(b) b(0, 0) = 0 and b(x1, x2) = x1b1(x1, x2) + x2

2
b2(x2), with b1(0, 0) 6= 0

(singularity of type D).
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Assume type An−1.

1. Step: Employ the normal form in order to estimate certain
two-dimensional oscillatory integrals that arise in estimating the Fourier
transforms of surface carried measures, reduce again to the domain

|x2 − b1xm
1 | ≤ εx

m
1 , (2.12)

2. Step: Dyadic decomposition + re-scaling by means of the κ-dilations
(associated to π(φ)) we may reduce to a phase function

φ(x , δ) := b(δ1x1, δ2x2)
(
x2 − xm

1 ω(δ1x1)
)2

+ δ0xn
1 β(δ1x1), (2.13)

where δ = (δ0, δ1, δ2) = (2−(nκ1−1)k , 2−κ1k , 2−κ2k) are small parameters,
and b(δ1x1, δ2x2) ∼ b(0, 0) 6= 0, β(0) 6= 0.

What we then need to prove is the following
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Proposition

Given any point v = (v1, v2) such that v1 ∼ 1 and v2 = vm
1
ω(0), there

exists a neighborhood V of v in (R+)2 such that for every cut-off function
η ∈ D(V ), the measure νδ given by

〈νδ, f 〉 :=
∫

f (x , φ(x , δ)) η(x1 , x2) dx

satisfies a restriction estimate

( ∫
|f̂ |2 dνδ

)1/2
≤ Cp,η‖f ‖Lp(R3),

whenever p′ ≥ 2d + 2, provided δ is sufficiently small.

Littlewood-Paley theory in x3 allows to reduce to uniform restriction
estimates for the following family of measures
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〈νδ,j , f 〉 :=
∫

f (x , φ(x , δ))χ(22jφ(x , δ))η(x1 , x2) dx ,

namely ( ∫
|f̂ |2 dνδ,j

)1/2
≤ Cp,η‖f ‖Lp(R3). (2.14)

If 22jδ0 ≪ 1, then this localization means in fact again a localization to a
curved rectangle where |x1 − v1| < ε and |x2 − xm

1
ω(δ1x1)| ∼ 2−j , but

in other cases, it has another meaning.

Refined spectral decomposition: for every triple Λ = (λ1, λ2, λ3) of dyadic
numbers λi = 2−ki ≥ 1, define νΛ

j by

ν̂Λ
j (ξ) = χ1

( ξ1

λ1

)
χ1

( ξ2

λ2

)
χ1

( ξ3

λ3

)
ν̂δ,j(ξ), (2.15)

so that νδ,j =
∑

Λ ν
Λ
j , where summation is essentially over all these dyadic

triples Λ.
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For Λ, follow again the Stein-Tomas approach, by estimating ‖ν̂Λ
j ‖∞

and ‖νΛ
j ‖∞.

Distinguish various cases, depending on the relative sizes of λ1, λ2

and λ3.

Most difficult case: where λ1 ∼ λ2 ∼ λ3, and 22jδ0 ∼ 1.

Theorem

Let φ be of type An−1, with m = 2 and finite n ≥ 5. Then

∑

2≤λ1∼λ2∼λ3≤26j

∫

S
|f̂ |2 dνΛ

j ≤ C 2
1

7
j ‖f ‖2

L14/11(R3), (2.16)

for all j ∈ N sufficiently big, say j ≥ j0, where the constant C does neither
depend on δ, nor on j .
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Double-Airy type analysis

Proof requires yet further refinements.
Indeed, the Fourier transform of νΛ

j is an oscillatory integral with complete
phase

Φ(y ; δ, j , ξ) = ξ1y1 + ξ2y2

1ω(δ1y1) + ξ3σyn
1 β(δ1y1)

+2−jξ2y2 + ξ3b♯(y , δ, j) y2

2 .

Here
σ := 22jδ0 ∼ 1, |b♯(x , δ, j)| ∼ 1.

If |ξ1| ∼ |ξ2| ∼ |ξ2|, then φ may have degenerate critical points, with
non-vanishing third derivatives, with respect to the variable x1, as well
as x2, so that we encounter oscillatory integrals of “double Airy type”.

This case requires a further dyadic frequency decomposition with
respect to the distance to certain “Airy cones,” in combination with
subtle variants of the complex interpolation method described earlier,
in order to capture also the endpoint p = pc = 14/11.
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THANKS
FOR YOUR

ATTENTION!
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