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A. Decay of the Fourier transform of the surface measure µ:

Outline of some main ideas

Recall that µ̂(ξ) as an oscillatory integral

µ̂(ξ) =: J(ξ) =

∫

Ω
e−i(ξ3φ(x1,x2)+ξ1x1+ξ2x2)η(x) dx , ξ ∈ R

3,

η ∈ C∞
0

(Ω), where φ is smooth, finite type, and φ(0, 0) = 0,∇φ(0, 0) = 0.

Theorem (Ikromov, M.)

Let S = graph(φ), φ smooth and finite type. Then there exists a

neighborhood U ⊂ S of x0 = 0 such that for every ρ ∈ C∞
0

(U) the

following estimate holds true for every ξ ∈ R
3 :

|d̂µ(ξ)| ≤ C ‖ρ‖C3(S) (log(2 + |ξ|))ν(φ)(1 + |ξ|)−1/h(φ) (1.1)
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Remarks:
1 The case h(φ) < 2 is covered by Duistermaat’s work.
2 It can also be handled by means of certain normal forms for φ which

will be discussed later.

We shall therefore subsequently assume that h := h(φ) ≥ 2.
Often, estimates can be reduced to one-dimensional ones and an
application of van der Corput’s lemma, respectively

Lemma (Björk; Arhipov)

Let f ∈ C∞(I,R) be of polynomial type n ≥ 2 (n ∈ N), i.e.,

0 < c1 ≤
n∑

j=2

|f (j)(s)| ≤ c2 for every s ∈ I.

Then ∣∣∣
∫

I
eiλf (s)g(s) ds

∣∣∣ ≤ C‖g‖C1(I)(1 + |λ|)−1/n,

where the constant C depends only on the constants c1 and c2.
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The case where the coordinates are adapted to φ

Here
d = d(φ) = h = h(φ).

Assume that the principal face π(φ) is a compact edge.
We may assume that the integration in J(ξ) takes place over the
half-space R

2
+ where x1 > 0.

Recall: If κ is the principal weight, then φpr = φκ is δr -homogeneous of
degree 1, where δr (x1, x2) = (rκ1x1, r

κ2x2).
Choose χ ∈ C∞

0
(R2) supported in an annulus A on which |x | ∼ 1, such

that the functions χk := χ ◦ δ2k form a dyadic partition of unity, and
decompose

J(ξ) =
∞∑

k=k0

Jk(ξ),

where k0 is sufficiently large, with

Jk(ξ) :=

∫

R
2
+

e−i(ξ3φ(x)+ξ1x1+ξ2x2)η(x)χk(x) dx .
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Scaling by δ2−k yields

Jk(ξ) = 2−k|κ|
∫

R
2
+

e
−i

(
2−kξ3φ

k(x)+2
−kκ1ξ1x1+2

−kκ2ξ2x2

)

η(δ2−k (x))χ(x) dx ,

(1.2)
with φk(x) := 2kφ(δ2−k x). Notice that

φk(x) = φκ(x) + error term.

Claim: For every x0 ∈ A, there exist a unit vector e ∈ R
2 and j ∈ N with

2 ≤ j ≤ h such that ∂j
eφκ(x

0) 6= 0.

Proof:

if ∇φκ(x
0) 6= 0, then the homogeneity of φκ and Euler’s homogeneity

relation imply that rank (D2φκ(x
0)) ≥ 1, so we may choose j = 2, for

a suitable vector e.

if ∇φκ(x
0) = 0, then by Euler’s homogeneity relation φκ(x

0) = 0 as
well. Thus the function φκ vanishes in x0 of order j ≥ 2. This implies
that j ≤ m(φpr ) ≤ d = h, in view of our characterization of
adaptedness. The claim follows.
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Apply van der Corput’s lemma to the integration along lines parallel to the
direction e in the integral defining Jk(ξ) near the point x0. Fubini’s
theorem and a partition of unity argument then yields

|Jk(ξ)| ≤ C 2−k|κ|(1 + 2−k |ξ3|)
−1/j

≤ C 2−k|κ|(1 + 2−k |ξ|)−1/M , (1.3)

where M denotes the maximal j arising in this context.
Summation in k :

|J(ξ)| ≤ C






(1 + |ξ|)−1/M , if M|κ| > 1 ,

(1 + |ξ|)−1/M log(2 + |ξ|), if M|κ| = 1 ,

(1 + |ξ|)−|κ|, if M|κ| < 1 .

(1.4)

Since π(φ) is a compact edge, 1/|κ| = d = h, and moreover M ≤ d . This
implies |κ|M ≤ 1. Recall also that ν(φ) = 1 if and only if
M = m(φpr ) = h, i.e., if and only if M|κ| = 1, we obtain estimate (1.1).
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The case where the coordinates are not adapted to φ

Step 1: Reduction to a narrow neighborhood of the principal root.
Away from the principal root of φpr , we can argue in the same way as
before, since the multiplicity of any real root of φpr different from the
principal root is bounded by d ≤ h. I.e., we can reduce to a narrow
κ-homogeneous neighborhood of the curve x2 = b1xm

1
, of the form

|x2 − b1xm
1 | ≤ εx

m
1 , (1.5)

by means of a function ρ1(x) := χ0((x2 − b1xm
1

)/(εxm
1

)), where χ0 is a
suitable smooth bump function supported in the interval [−1, 1] and ε > 0
is sufficiently small. I.e., in place of J(ξ), it suffices to estimate Jρ1(ξ),
where we write

Jχ(ξ) :=

∫

R
2

+

e−i(ξ3φ(x1,x2)+ξ1x1+ξ2x2)η(x)χ(x) dx

if χ is any integrable function.
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Step 2: Domain decompositions into “homogeneous” domains Dl and
transition domains El .
Change to the adapted coordinates y :

Jρ1(ξ) =

∫

R
2
+

e−i(ξ3φ
a(y1,y2)+ξ1y1+ξ2ψ(y1)+ξ2y2)η̃(y) χ̃0

( y2

εym
1

)
dy . (1.6)

Edges and weights associated to N (φa) :

vertices (Al ,Bl), l = 0, . . . , n, where Al−1 < Al , l = 1, . . . , n,
edges γl := [(Al−1,Bl−1), (Al ,Bl)], l = 1, . . . , n. The unbounded
horizontal edge with left endpoint (An,Bn) will be denoted by γn+1.
weight associated to γl : κl = (κl

1
, κl

2
) is so that

γl ⊂ Ll := {(t1, t2) ∈ R
2 : κl

1t1 + κl
2t2 = 1}.

exponents al :=
κl

2

κl
1

, l = 1, . . . , n; an+1 :=∞.

If l ≤ n, the κl -principal part φa
κl of φa corresponding to the supporting

line Ll is of the form

φa
κl (y) = cl y

Al−1

1
y

Bl

2

∏

α

(
y2 − cαl y

al

1

)Nα
(1.7)
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γn γn+1

(A0,B0)

(A1,B1)

(A2,B2)
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(An,Bn)

γ2

1/κ2

2

1/κ2

1

Figure: 3. Edges and weights
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Relation with Puiseux series expansions of roots

Assume φ is analytic. Then

φa(y1, y2) = U(y1, y2)y
ν1

1
y
ν2

2

∏

r

(y2 − r(y1)),

where the r denote the non-trivial roots r = r(y1) of φa and U(0, 0) 6= 0.
These roots locally admit Puiseux series expansions

r(y1) = c
α1

l1
y

al1

1
+ c

α1α2

l1l2
y

a
α1

l1l2

1
+ · · ·+ c

α1···αp

l1···lp
y

a
α

1
···αp−1

l
1
···lp

1
+ · · · ,

where
c
α1···αp−1β
l1···lp

6= c
α1···αp−1γ
l1···lp

for β 6= γ,

a
α1···αp−1

l1···lp
> a

α1···αp−2

l1···lp−1
,

with strictly positive exponents a
α1···αp−1

l1···lp
> 0 and non-zero complex

coefficients c
α1···αp

l1···lp
6= 0. . The leading exponents in these series are the

numbers
a1 < a2 < · · · < an.
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Clusters of roots

Group the roots into the clusters [l ], l = 1, . . . , n, where the l ’th cluster [l ]
consistes of all roots with leading exponent al .

Note: If δl
s(x1, x2) = (sκ

l
1x1, s

κl
2x1), s > 0, denote the κl -dilations, and if

r ∈ [l1], then for y = (y1, y2) in a bounded set

δl
sy2 = sκ

l
2y2, r(δl

sy1) = sal1
κl

1c
α1

l1
y

al1

1
(1 + O(sε))

as s → 0, for some ε > 0. Consequently, since κl
2
/κl

1
= al ,

δl
sy2 − r(δl

sy1) = (1 + O(sε))






−sal1
κl

1 c
α1

l1
y

al1

1
, if l1 < l ,

sκ
l
2 (y2 − c

αl

l y
al

1
), if l1 = l ,

sκ
l
2y2, if l1 > l ,

φa
κl = Cly

ν1+
∑

l1<l
|[l1]|al1

1
y
ν2+
∑

l1>l
|[l1]|

2

∏

α1

(y2 − c
α1

l y
al

1
)Nl,α

1 , (1.8)

where Nl ,α1
denotes the number of roots in the cluster [l ] with leading

term c
α1

l y
al

1
.
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Note that
∏
α1

(y2 − c
α1

l y
al

1
)Nl,α1 = (φ[l ])κl . Moreover,

ν1 +
∑

l1<l

|[l1]|al1 = Al−1, ν2 +
∑

l1>l

|[l1]| = Bl .

Comparing this with (1.7), the close relation between the Newton
polyhedron of φa and the Pusieux series expansion of roots becomes
evident, and accordingly we say that the edge γl := [(Al−1,Bl−1), (Al ,Bl)]
is associated to the cluster of roots [l ].

Choose integer l0 ≥ 1 such that

a1 < · · · < al0−1 ≤ m < al0 < · · · < al < al+1 < · · · < an.

Since the original coordinates x were assumed to be non-adapted, the
vertex (Al0−1,Bl0−1) will lie strictly above the bisectrix, i.e., Al0−1 < Bl0−1,
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Assume that the principal face π(φa) is a compact edge. Assume also that
that

m(φa
pr

) < d(φa), hence ν(φ) = 0,

since otherwise, we may run Varchenko’s algorithm one more step so that
π(φa) becomes a vertex.

Choose λ > l0 so that the edge γλ = [(Aλ−1,Bλ−1), (Aλ,Bλ)] is the
principal face π(φa) (cf. Figure 3, where λ = 3.)
We shall narrow down the domain (1.5), |x2 − b1xm

1
| ≤ εxm

1
, to a

neighborhood Dλ of the principal root jet of the form

|x2 − ψ(x1)| ≤ Nλx
aλ
1
, (1.9)

where Nλ is a constant to be chosen later. This domain is
κλ-homogeneous in the adapted coordinates y .

D. Müller hypersurfaces



Decay adapted non-adapted

Subdomains

Decompose the difference set of the domains (1.5) and (1.9) (up to some
remainder El0−1) into the domains (l = l0, . . . , λ− 1)

Dl := {(x1, x2) : εlx
al

1
< |x2 − ψ(x1)| ≤ Nlx

al

1
},

El := {(x1, x2) : Nl+1x
al+1

1
< |x2 − ψ(x1)| ≤ εlx

al

1
}

The εl > 0 are small and the Nl > 0 are large parameters to be chosen
later. Notice: the domain

Da
l := {(y1, y2) : εly

al

1
< |y2| ≤ Nly

al

1
}

corresponding to Dl in the adapted coordinates y is κl -homogeneous and
contains the cluster of roots [l ], while the domain E a

l corresponding to El

can be viewed as a domain of transition between two different
homogeneities.
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Clusters of roots

Dl

El

principal root jet

Figure: Clusters of roots
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Contribution by Dl to J(ξ)

This can be treated somewhat similarly as the case of adapted
coordinates: by using dyadic decompositions and subsequent re-scalings by
means of the dilations δl

r associated to the weight κl , we may decompose
into dyadic pieces Jk(ξ), given by

2−k|κl |
∫

R
2

+

e
−i

(
2
−kξ3φ

k(y)+ξ2ψ(2
−kκl

1 y1)+2
−kκl

1ξ1y1+2
−kκl

2ξ2y2

)

η(δl
2−k y)χ(y) dy ,

where φk(y) = φa
κl (y) + error term.

Obstacle: since 1−mκl
1
> κl

2
−mκl

1
> 0, the contribution of the

non-linearity ψ to the complete phase of the corresponding oscillatory
integrals may be large, compared to the term containing φk , so that we
are only allowed to apply van der Corput’s estimate to the integration with
respect to the variable y2 if we want to reduce to one-dimensional
oscillatory integrals! This requires a good control on the multiplicities of
roots of ∂2

2
φa
κl at points y0 in the corresponding annulus A not lying on the

y1 axis (which corresponds to the principal root jet in the coordinates y).
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Good news: these multiplicities are bounded by dh(φ
a
κl )− 2, where dh(φ

a
κl )

denotes the homogeneous distance of φa
κl , and it is evident from the

geometry of the Newton polyhedron of φa that dh(φ
a
κl ) < d(φa) = h, so

that for every point y0 in A ∩Dl there is some j ∈ {2, . . . , h} such that

∂j
2
φa
κl (y

0) 6= 0.

D. Müller hypersurfaces



Decay adapted non-adapted

Contribution by El to J(ξ)

In El , we perform a separate dyadic decomposition in both variables y1 and
y2, so that we geometrically decompose El into dyadic rectangles of size
2−j × 2−k , and then re-scale in both variables so that these rectangles
become the standard cube, say, [1, 2] × [1, 2].

The phase functions φa
j,k that one obtains after these re-scalings satisfy

the estimate

∂2

2φ
a
j,k(y0) 6= 0 for every y0 ∈ [1, 2] × [1, 2].

Since h ≥ 2, this clearly suffices to obtain the necessary order of decay of
the Fourier transform of these dyadic pieces. Moreover, scaling back to the
original dyadic rectangles, a careful analysis of the dependency of the
corresponding estimates on the parameters j , k shows that it is indeed
possible to sum theses estimates and obtain the same type of estimate for
the contributions by the domains El as for the domains Dl , even without
logarithmic factor.
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Step 3: Contribution by the domain Dλ containing the principal root jet

Note: So far, we have been able to reduce our estimations to van der
Corput type lemmata, i.e., to one-dimensional oscillatory integrals!

In contrast, the study of the domain Dλ will require the estimation of
genuinely 2-dimensional oscillatory integrals.

In the adapted coordinates y , the domain Dλ is given by |y2| ≤ Nλy
aλ
1
.

Cover it by a finite number of κλ-homogeneous subdomains of the form
|y2 − cy

aλ
1
| ≤ ε0y

aλ
1
, where c ∈ [−Nλ,Nλ], and where, for a given c, we

may choose ε0 > 0 suitably small.
Recalling that ψ(x1) = xm

1
ω(x1), with ω(0) 6= 0, we can thus reduce to

estimating oscillatory integrals

Jc(ξ) =

∫

R
2
+

eiF (y ,ξ)ρ
(y2 − cy

aλ
1

ε0x
aλ
1

)
η(y) dy , (1.10)

with a phase function

F (y , ξ) := ξ3φ
a(y) + ξ1y1 + ξ2ym

1 ω(y1) + ξ2y2.
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Arguing in a similar way as in the case of adapted coordinates, and
recalling that φa

pr
= φa

κλ , we may again perform a dyadic decomposition

and re-scale by means of the dilations δλr , in order to write

Jc(ξ) =
∞∑

k=k0

Jk(ξ),

where

Jk(ξ) = 2−|κ
λ|k
∫

ei2−kξ3Fk(y ,s)ρ
(y2 − cy

aλ
1

ε0y
aλ
1

)
η(δλ

2−k y)χ(y) dy , (1.11)

with

Fk(y , s) := φa
pr

((y1, y2)) + s1y1 + S2ym
1 ω(2−κ

λ
1

ky1) + s2y2 + error,

where s := (s1, s2,S2) is given by

s1 := 2(1−κλ
1
)k ξ1

ξ3

, s2 := 2(1−κλ
2
)k ξ2

ξ3

, S2 := 2(κλ
2
−mκλ

1
)ks2.
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Note that 2 ≤ m < aλ = κλ
2
/κλ

1
and k ≫ 1, so that |S2| ≫ |s2|, and that

here
y1 ∼ 1 and |y2 − cy

aλ
1
| . ε0

Recall also that we are assuming that |ξ| ∼ |ξ3|.
One is thus led to the estimation of oscillatory integrals depending on
certain parameters (here s1, s2,S2) which may have various relative sizes.

If |S2| ≥ M for some M ≫ 1, apply van der Corput’s lemma to the
y1- integration, with n = 2.

So, we may assume that |S2| < M, so that in particular |s2| ≪ 1, and
indeed that also |s1| < N, if N ≫ M.

We may reduce to the case where

∂j
2
φa

pr
(1, c) = ∂j

2
φa
κλ(1, c) = 0 for 1 ≤ j < h, (1.12)

for otherwise an integration by parts in y2 (if j = 1) or a simple application
of the van der Corput type lemma yields a suitable estimate as before.
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The case where c > 0 can easily be reduced to the case c = 0 by
performing another change of variables y2 7→ y2 + cy

aλ
1

in the integral
defining Jk(ξ). I
Indeed, one can show that our assumption (1.12) implies that
aλ = κλ

2
/κλ

1
∈ N , and one checks that the new coordinates are again

adapted to φ.

So, let us assume that c = 0. Then necessarily φa
pr

(1, 0) 6= 0, for otherwise
φa

pr
would have a root of multiplicity at least h at (1, 0), which would

contradict our convention.
Assuming without loss of generality that φa

pr
(1, 0) = 1, we can write

φa
pr

(y1, y2) = yB
2 Q(y1, y2) + yn

1 ,

where Q is a κλ-homogeneous polynomial such that Q(1, 0) 6= 0, and
where B ≥ h > 2.
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Recall that we are assuming that (s1,S2) is from a compact set K . Thus
it suffice to show that, given any point (s0

1
,S0

2
) ∈ K and any point y0

1
∼ 1,

there exist a neighborhood U of (s0

1
,S0

2
), a neighborhood V of (y0

1
, 0) and

some σ > 1/h so that

|Jk(ξ)| .
2−k|κ|

(1 + 2−k |ξ|)σ
(1.13)

for every (s1,S2) ∈ U, provided the function χ in the definition of Jk(ξ) is
supported in V , and ε0 and k are chosen sufficiently small, respectively
large. Summing over all k, this will clearly imply an estimate as in (1.1),
even without logarithmic factor.
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Fk(y , s) can be viewed as a small C∞- perturbation of the function

Fpr (y) := yB
2 Q(y1, y2) + s0

1 y1 + S0

2ω(0)ym
1 + yn

1 .

Thus, if ∇Fpr (y0

1
, 0) 6= 0, then we obtain (1.13), with σ = 1, simply by

integration by parts.
Assume next that (y0

1
, 0) is a critical point of Fpr . Then y0

1
is a critical

point of the polynomial function

g(y1) := s0

1y1 + S0

2ω(0)ym
1 + yn

1 ,

Note that 1 ≤ m < n, since n = 1/κλ
1
> κλ

2
/κλ

1
> m. But then g ′′ and g ′′′

cannot also vanish simultaneously at y0

1
(” van der Monde det.”), so that

there are positive constants c1, c2 > 0 and a compact neighborhood V of
y0

1
such that

c1 ≤
3∑

j=2

|g (j)(y1)| ≤ c2 for every y1 ∈ V .
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Since y0

2
= 0, we may thus apply the van der Corput type lemma (if U,V

are sufficiently small) and obtain estimate (1.13), with σ = 1/3, so that
we are done provided h > 3. Notice also that if g ′′(y0

1
) 6= 0, then by the

same type of argument we see that (1.13) holds true with σ = 1/2 > 1/h.

Assume finally that 2 < h ≤ 3, and that g ′(y0

1
) = g ′′(y0

1
) = 0. Then

1

κλ
1

+ κλ
2

= h ≤ 3 and
κλ

2

κλ
1

> m ≥ 2,

so that 1/κλ
2
< 9/2. Since B ≤ 1/κλ

2
and h ≤ B < 9/2, either B = 4 or

B = 3. Translate the critical point (y0

1
, 0) of Fpr to the origin by

considering the function

F ♯
pr

(z) := Fpr (y0

1 +z1, z2)−g(y0

1 ) = zB
2 Q(y0

1 +z1, z2)+
1

6
g (3)(y0

1 ) z3

1 + . . . .

Then h♯ := h(F ♯) = 1

1/3+1/B
< 2. We may thus apply Duistermaat’s

results to this part of Jk(ξ) and obtain estimate (1.13), with
σ = 1/h♯ > 1/h. Note that Duistermaat’s estimates are stable under small
perturbations!
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