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B

For which p's do we have a Fourier restriction estimate
n 5 1/2 3
(L IFCORau() " < Clifly, £ € SE) 7

C

LP(IR3) - boundedness of the maximal operator Mf(x) := sup,q |A:f(x)],
where A;f(x) := [ f(x — ty)du(y).
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Short History of these problems

(A) Estimation of oscillatory integrals:

B. Riemann (1854): appear implicitly in his work
Best understood: Convex hypersurfaces of finite line type:
B. Randol (1969)
. Svensson(1971)  H. Schulz (1991)
J. Bruna, A. Nagel, S. Wainger (1988)
Non-convex case:
A.N. Varchenko (1976) : [ e*?0(a2)5(x, xp) dx, ¢ analytic
V.N. Karpushkin (1984): [ e (@(x1)4r(a22)) 5(x; | x3) dx, ¢ analytic

(B) The Fourier-restriction problem: E.M. Stein (1967).
E.M. Stein and P.A. Tomas (1975) :

s o 1/2
([ R dut0) " < Cliflusgan
Snfl
iff p > 2(=%; +1).




Adaptedness Construction

Representation of S as a graph of ¢
S C R3 smooth, finite type hypersurface; x° € S :
By localization near x° and application of Euclidean motion of R3 we may
assume: x° = (0,0,0), and
S ={(x1, x2, d(x1,%2)) : (x1,%2) € Q},
where ¢ € C®(Q) s.t. $(0,0) =0, V¢(0,0) =0. If

o0

P(x1,x2) ~ Z Cij{XQk

Jj,k=0
is the Taylor series of ¢, define the Taylor support of ¢ at (0,0) by
T(¢) := {(j- k) € N*: i # 0}

NOTICE: 7 (¢) # 0, since ¢ is of finite type at the origin!

hypersurfaces
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© Newton polyhedron:

N(¢) := conv U U, k) + R%
U,k)eT(¢)
Newton diagram Ny(¢) : Union of all compact faces of N ()

@ Newton distance : d = d(¢) is given by the coordinate d of the point
(d, d) at which the bisectrix t; = t, intersects the boundary of the
Newton polyhedron.

© Principal face m(¢) : The face of minimal dimension containing the
point (d, d).
© Principal part of ¢ :

P (x1,30) == Y ik
(,k)en(o)



Figure 1

Figure: Newton polyhedron



Adapted coordinates
Height of ¢ :
h(¢) := sup{d,},
where the supremum is taken over all local analytic (resp. smooth)

coordinate systems y = (y1, y») at the origin, and where d, is the Newton
distance of ¢ when expressed in the coordinates x.

NOTICE: The height is invariant under local smooth changes of
coordinates at the origin!

A coordinate system x is said to be adapted to ¢ if h(¢) = dx.
Example 1. Let
¢0xa,x2) == (2 —{")" + .

If £ > mn, the coordinates are not adapted. Adapted coordinates are then
Y1 :=X1,¥2 := Xo — x{", in which ¢ is given by

*(y) = y5 + yi.
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Example 1

h(6)

mn /

Figure: ¢(x1,x) := (x2 — x{")" +x{ (£ > mn)



Supporting lines and homogeneities

Let k = (K1, k2) with, say, ko > k1 > 0, be a given weight, with
corresponding dilations

Or(x1,x2) := (r"xq, rxp), r>0.
F on R? is k-homogeneous of degree a, (short: mixed homogeneous ) if
F(6,x) = r*F(x) Vr>0,x € R%

Assume that L, := {(t1,t) € R? : K1ty + Kpto = a} is a supporting line to
the Newton polyhedron N (¢) of ¢. The r-principal part of ¢

¢K(X17X2) = Z Cjkx{sz

(,k)eLx

is k-homogeneous of degree a.

o(x1,x2) = ¢x(x1,x2) + terms of higher x-degree. J



Principal weight

Assume 7(¢) is a compact edge; then it lies on a unique principal line
L:={(t;,t) €R?: K1ty + Koty = 1},

with k1, k2 > 0. We may assume that k1 < Ky (possibly after permutation
of coordinates). The weight x = (k1, k2) will be called the principal
weight associated to ¢. Then ¢, = ¢, and

1 1

e 3.1
K1+ Ko |/~€| ( )

Dr(x1,%2) = X7 %52 H = AxP)™, (3.2)

with M > 1, distinct non-trivial “roots” A; € C\ {0} of multiplicities
n; € N\ {0}, and trivial roots of multiplicities 1,7, € N at the coordinate
axes. Here, p and g have no common divisor, and k/k1 = p/q.



Conditions for Adaptedness
Let P € R[x1, x2] be a k- homogeneous polynomial with VP(0,0) = 0, let
m(P) :=ord 1P

be the maximal order of vanishing of P along the unit circle S* centered

at the origin.
The homogeneous distance of a k-homogeneous polynomial P (such as

P = ¢, ) is given by
dh(P) = 1/(/‘11 s Fd2) = 1/‘I<L|.

Notice that (dx(P), dn(P)) is just the point of intersection of the line
given by k1t; + koto = 1 with the bi-sectrix t; = t». The height of P can
then be computed by means of the formula

h(P) = max{m(P), dy(P)}. (3.3)
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Theorem

The coordinates x are adapted to ¢ if and only if one of the following
conditions is satisfied:

(a) The principal face w(¢) of the Newton polyhedron is a compact edge,
and m(¢p: ) < d(9).

(b) (o) is a vertex.

(c) m(¢) is an unbounded edge.

It can be shown that (a) applies whenever 7(¢) is a compact edge and
k2/k1 ¢ N; in this case we even have m(¢p, ) < d(¢)

Theorem (Varchenko; Phong, J. Sturm, Stein (analytic ¢); 1.,M.)

There always exist adapted smooth coordinates y, of the form
yi=x1, y2=x —¥(x).




Construction of adapted coordinates

Assume the coordinates (xi, x2) are not adapted to ¢. =

7(¢) is compact edge, m := kp/k1 € N, p=m,q=1in (3.2), and
m(¢pr ) > d(9)-

= there is at least one, non-trivial real root xo = A\;x; of ¢, of
multiplicity nj = m(¢p, ) > d(¢). This root is unique. Putting b; := A/, we
shall denote the corresponding root xo = byx; of ¢, as its principal root.
Changing coordinates

o P m
Y1i=X1, y2i=Xxp— bixy,

we arrive at a “better” coordinate system y = (y1,y»). Indeed, this change
of coordinates will transform ¢, into a function ¢, , where the principal
face of ¢p, will be a horizontal half-line at level t, = m(¢p, ), so that

d(qgg) > d(¢), and correspondingly one finds that d(¢) > d(¢), if ¢
expresses ¢ is the coordinates y.

Essentially by iterating this procedure, we arrive at Varchenko's algorithm
for the construction of an adapted coordinate system.



In conclusion: there exists a smooth real-valued function ¢ (which we may
choose as the so-called principal root jet of ¢) of the form

P(x1) = x{"w(x1) (3.4)

with w(0) # 0, defined on a neighborhood of the origin such that an
adapted coordinate system (y1,y2) for ¢ is given locally near the origin by
means of the (in general non-linear) shear

y1i=x1, Yo i=x0 — Y(x1). (3.5)

In these adapted coordinates, ¢ is given by

®7(y) = o(y1,y2 + ¥ (1)) (3.6)

Example 1. ¢(xi,%) = (x2 — x{")" + x{, £ > mn. The coordinates x
are not adapted. Indeed, ¢y (x1,X2) = (X2 — x{")",

d(8) = 1/(1/n+1/(mn)) = mn/(m + 1) and m(épe) = n > d(6).
Adapted coordinates are given by y; := x1,y» := xo — x{", in which ¢ is
expressed by ¢?(y) = y3 + yf.



Linearly adapted coordinates

If m= kp/Kk1 =1 in the first step of Varchenko's algorithm, then a linear
change of coordinates of the form y; = xq, y» = xo — by xy will transform ¢
into a function ¢. Since all of our problems A - C are invariant under such
linear changes of coordinates, by replacing our original coordinates (x, x2)
by (y1,y2) and ¢ by &, we may in the sequel always assume the following

CONVENTION:
— either our coordinates (xi, x2) are adapted, or
— they are not adapted and

m = Ky /K1 is an integer > 2. (3.7)

A linear, non-adapted coordinate system for which (3.7) holds true will be
called linearly adapted to ¢.



A. Decay of the Fourier transform of the surface measure
Write fi(§) as an oscillatory integral

i) =: J(©&) = /Qe—f(€3¢(><1,X2)+€1X1+€2X2)77(X) dx, ¢€ R?’,

n € C5°(R2). Since V¢(0,0) = 0, the complete phase in this oscillatory
integral will have no critical point on the support of n unless

|€1] + |&2| < |&3|, provided Q is chosen sufficiently small. Integrations by
parts then show that 7i(¢) = O(|¢|~N) as |¢] — oo, for every N € N,
unless |&1| + (&2 < |&3).

We may thus focus on the latter case. In this case, by writing A = —&3
and §; = s;A\, j = 1,2, we are reduced to estimating two-dimensional
oscillatory integrals of the form

/()\, S) — /eiA(¢(X17X2)+51X1+52X2)77(X17X2) dxq dxp,

where A > 1, and that s = (s, 52) € R? are sufficiently small parameters,
provided that 7 is supported in a sufficiently small neighborhood of the
origin. The phase is a linear perturbation of ¢!
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Theorem (Bernstein-Gelfand; Atiyah)
If ¢ is analytic (on R"), then

co n—1

/ei)“z’( X)n(x) dx ~ Z Z aj k(P)A " log(NY, (4.1)

k=0 j=0
provided the support of 1) is sufficiently small.

Here, the ry form an increasing sequence of rational numbers consisting of
a finite number of arithmetic progressions, which depends only on the zero
set of ¢, and the a; , are distributions with respect to the cut-off function
7. The proof is based on Hironaka's theorem.

Varchenko's exponent v(¢) € {0,1} for n = 2: If there exists an adapted
local coordinate system y near the origin such that the principal face
m(¢?) of ¢?, is a vertex, and if h(¢) > 2, then we put v(¢) == 1;
otherwise, we put v(¢) := 0.




Remark: the first condition is equivalent to the following one:
If v is any adapted local coordinate system at the origin, then either 7(¢?)
is a vertex, or a compact edge and m(¢3, ) = d(¢?).

Varchenko: the leading exponent in (4.1) is given by rp = 1/h(¢), and
v(¢) is the maximal j for which a; x(¢) # 0. This implies in particular that

(0 0)] < A log(A)/@®), A1, (4.2)

and this estimate is sharp in the exponents.

Karpushkin: this estimate is stable under sufficiently small analytic
perturbations of ¢ (analogous results are known to be wrong in higher
dimensions!).
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In particular, we obtain the following uniform estimate for fi,

(O] < CA+ €)M log(2 + [¢))*@), ¢cR®,  (43)

Theorem (lkromov, M.)

Let S = graph(¢), ¢ smooth and finite type. Then there exists a
neighborhood U C S of x° = 0 such that for every p € C°(U) the
following estimate holds true for every £ € R3 :

|du(€)] < Cllpll sy (log(2 + [E]) D (1 + |e))HA@  (4.4)

Remark: For ¢ smooth, M. Greenblatt had obtained such estimates for £
normal to S at 0.
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Sharpness

Let N be a unit normal to S at x° = 0, and put

—

JOA) = du(AN) = / / eTM%) a3 ) dxydxa, A > 0.

Proposition

If in an adapted coordinates system the principal face 7(¢?) is a compact
set (i.e. a compact edge or a vertex), then the following limit

li 7)\1/“@ J(A C-a(0,0

exists, where C is a non-zero constant depending on ¢ only.




Remarks:
© This improves on a result by M. Greenblatt, who proved that this
limit exists for some sequence of Ay — oo.
© If the principal face 7w(¢?) is unbounded, then the estimate in the
theorem may fail to be sharp, if ¢ is non-analytic, as the following
example by A. losevich and E. Sawyer shows: If

¢(X17X2) = X22 + e_l/‘xﬂa>

then
1

XW as A—>+OO

SN

Here, v(¢) = 0.



Intro Newton Decay

SHORT BREAK (CHANGE OF FILE)!
NO
ICECREAM!



	References
	Main Talk
	Introduction
	2-3 Problems
	history

	Newton diagram
	Notions
	Newton
	Adaptedness
	Construction

	Decay rate


