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Intro Newton Decay 2-3 Problems History

1. Introduction: Two (to three) interrelated problems

S = smooth, finite type hypersurface in R
3,

dµ := ρdσ, dσ := surface measure on S, 0 ≤ ρ ∈ C∞
0

(S)

A

Sharp uniform decay estimates for d̂µ(ξ) :=
∫

S e−iξxdµ(x), ξ ∈ R
3 ?

B

For which p’s do we have a Fourier restriction estimate

( ∫

S
|f̂ (x)|2 dµ(x)

)1/2
≤ C‖f ‖Lp(R3), f ∈ S(R3) ?

C

Lp(R3) - boundedness of the maximal operatorMf (x) := supt>0 |At f (x)|,
where At f (x) :=

∫
S f (x − ty)dµ(y).
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Intro Newton Decay 2-3 Problems History

Short History of these problems

(A) Estimation of oscillatory integrals:

B. Riemann (1854): appear implicitly in his work
Best understood: Convex hypersurfaces of finite line type:

B. Randol (1969)
I. Svensson(1971) H. Schulz (1991)
J. Bruna, A. Nagel, S. Wainger (1988)

Non-convex case:

A.N. Varchenko (1976) :
∫

eiλφ(x1,x2)a(x1, x2) dx , φ analytic

V.N. Karpushkin (1984):
∫

eiλ(φ(x1,x2)+r(x1,x2))a(x1, x2) dx , φ analytic

(B) The Fourier-restriction problem: E.M. Stein (1967).
E.M. Stein and P.A. Tomas (1975) :

( ∫

Sn−1

|f̂ (x)|2 dµ(x)
)1/2
≤ C‖f ‖Lp(Rn)

iff p′ ≥ 2( 2

n−1
+ 1).
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Intro Newton Decay Notions Adaptedness Construction

Representation of S as a graph of φ

S ⊂ R
3 smooth, finite type hypersurface; x0 ∈ S :

By localization near x0 and application of Euclidean motion of R
3 we may

assume: x0 = (0, 0, 0), and

S = {(x1, x2, φ(x1, x2)) : (x1, x2) ∈ Ω},

where φ ∈ C∞(Ω) s.t. φ(0, 0) = 0, ∇φ(0, 0) = 0. If

φ(x1, x2) ∼
∞∑

j,k=0

cjkx j
1
xk

2

is the Taylor series of φ, define the Taylor support of φ at (0, 0) by

T (φ) := {(j , k) ∈ N
2 : cjk 6= 0}.

NOTICE: T (φ) 6= ∅, since φ is of finite type at the origin!
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Intro Newton Decay Notions Adaptedness Construction

2. Newton polyhedra, and adapted coordinates

1 Newton polyhedron:

N (φ) := conv
⋃

(j,k)∈T (φ)

(j , k) + R
2

+

Newton diagram Nd(φ) : Union of all compact faces of N (φ)

2 Newton distance : d = d(φ) is given by the coordinate d of the point
(d , d) at which the bisectrix t1 = t2 intersects the boundary of the
Newton polyhedron.

3 Principal face π(φ) : The face of minimal dimension containing the
point (d , d).

4 Principal part of φ :

φpr (x1, x2) :=
∑

(j,k)∈π(φ)

cjkx j
1
xk

2
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Intro Newton Decay Notions Adaptedness Construction

Figure 1

Nd(φ)

1/κ1

1/κ2

N (φ)

d(φ)

d(φ)

π(φ)

Figure: Newton polyhedron
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Intro Newton Decay Notions Adaptedness Construction

Adapted coordinates

Height of φ :
h(φ) := sup{dy},

where the supremum is taken over all local analytic (resp. smooth)
coordinate systems y = (y1, y2) at the origin, and where dy is the Newton
distance of φ when expressed in the coordinates x .

NOTICE: The height is invariant under local smooth changes of
coordinates at the origin!

A coordinate system x is said to be adapted to φ if h(φ) = dx .

Example 1. Let
φ(x1, x2) := (x2 − xm

1 )n + x ℓ1 .

If ℓ > mn, the coordinates are not adapted. Adapted coordinates are then
y1 := x1, y2 := x2 − xm

1
, in which φ is given by

φa(y) = yn
2 + y ℓ1 .
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Example 1

N (φa)

N (φ)

d(φ)

h(φ)

N (φ)

mn l

m

Figure: φ(x1, x2) := (x2 − xm
1

)n + x ℓ
1

(ℓ > mn)
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Intro Newton Decay Notions Adaptedness Construction

Supporting lines and homogeneities

Let κ = (κ1, κ2) with, say, κ2 ≥ κ1 > 0, be a given weight, with
corresponding dilations

δr (x1, x2) := (rκ1x1, r
κ2x2), r > 0.

F on R
2 is κ-homogeneous of degree a, (short: mixed homogeneous ) if

F (δr x) = raF (x) ∀r > 0, x ∈ R
2.

Assume that Lκ := {(t1, t2) ∈ R
2 : κ1t1 + κ2t2 = a} is a supporting line to

the Newton polyhedron N (φ) of φ. The κ-principal part of φ

φκ(x1, x2) :=
∑

(j,k)∈Lκ

cjkx j
1
xk

2

is κ-homogeneous of degree a.

φ(x1, x2) = φκ(x1, x2) + terms of higher κ-degree.
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Intro Newton Decay Notions Adaptedness Construction

Principal weight

Assume π(φ) is a compact edge; then it lies on a unique principal line

L := {(t1, t2) ∈ R
2 : κ1t1 + κ2t2 = 1},

with κ1, κ2 > 0. We may assume that κ1 ≤ κ2 (possibly after permutation
of coordinates). The weight κ = (κ1, κ2) will be called the principal
weight associated to φ. Then φpr = φκ, and

d =
1

κ1 + κ2

=
1

|κ|
, (3.1)

φκ(x1, x2) = cxν1
1

xν2
2

M∏

l=1

(xq
2
− λlx

p
1
)nl , (3.2)

with M ≥ 1, distinct non-trivial “roots” λl ∈ C \ {0} of multiplicities
nl ∈ N \ {0}, and trivial roots of multiplicities ν1, ν2 ∈ N at the coordinate
axes. Here, p and q have no common divisor, and κ2/κ1 = p/q.
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Conditions for Adaptedness

Let P ∈ R[x1, x2] be a κ- homogeneous polynomial with ∇P(0, 0) = 0, let

m(P) := ord S1P

be the maximal order of vanishing of P along the unit circle S1 centered
at the origin.
The homogeneous distance of a κ-homogeneous polynomial P (such as
P = φpr ) is given by

dh(P) := 1/(κ1 + κ2) = 1/|κ|.

Notice that (dh(P), dh(P)) is just the point of intersection of the line
given by κ1t1 + κ2t2 = 1 with the bi-sectrix t1 = t2. The height of P can
then be computed by means of the formula

h(P) = max{m(P), dh(P)}. (3.3)
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Theorem

The coordinates x are adapted to φ if and only if one of the following
conditions is satisfied:

(a) The principal face π(φ) of the Newton polyhedron is a compact edge,
and m(φpr ) ≤ d(φ).

(b) π(φ) is a vertex.

(c) π(φ) is an unbounded edge.

It can be shown that (a) applies whenever π(φ) is a compact edge and
κ2/κ1 /∈ N; in this case we even have m(φpr ) < d(φ)

Theorem (Varchenko; Phong, J. Sturm, Stein (analytic φ); I.,M.)

There always exist adapted smooth coordinates y , of the form
y1 = x1, y2 = x2 − ψ(x1).
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Construction of adapted coordinates

Assume the coordinates (x1, x2) are not adapted to φ. =⇒
π(φ) is compact edge, m := κ2/κ1 ∈ N, p = m, q = 1 in (3.2), and
m(φpr ) > d(φ).
=⇒ there is at least one, non-trivial real root x2 = λlx1 of φpr of
multiplicity nl = m(φpr ) > d(φ). This root is unique. Putting b1 := λl , we
shall denote the corresponding root x2 = b1x1 of φpr as its principal root.
Changing coordinates

y1 := x1, y2 := x2 − b1xm
1 ,

we arrive at a “better” coordinate system y = (y1, y2). Indeed, this change
of coordinates will transform φpr into a function φ̃pr , where the principal

face of φ̃pr will be a horizontal half-line at level t2 = m(φpr ), so that

d(φ̃pr ) > d(φ), and correspondingly one finds that d(φ̃) > d(φ), if φ̃
expresses φ is the coordinates y .

Essentially by iterating this procedure, we arrive at Varchenko’s algorithm
for the construction of an adapted coordinate system.
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In conclusion: there exists a smooth real-valued function ψ (which we may
choose as the so-called principal root jet of φ) of the form

ψ(x1) = xm
1 ω(x1) (3.4)

with ω(0) 6= 0, defined on a neighborhood of the origin such that an
adapted coordinate system (y1, y2) for φ is given locally near the origin by
means of the (in general non-linear) shear

y1 := x1, y2 := x2 − ψ(x1). (3.5)

In these adapted coordinates, φ is given by

φa(y) := φ(y1, y2 + ψ(y1)). (3.6)

Example 1. φ(x1, x2) := (x2 − xm
1

)n + x ℓ
1
, ℓ > mn. The coordinates x

are not adapted. Indeed, φpr (x1, x2) = (x2 − xm
1

)n,
d(φ) = 1/(1/n + 1/(mn)) = mn/(m + 1) and m(φpr ) = n > d(φ).
Adapted coordinates are given by y1 := x1, y2 := x2 − xm

1
, in which φ is

expressed by φa(y) = yn
2

+ y ℓ
1
.
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Intro Newton Decay Notions Adaptedness Construction

Linearly adapted coordinates

If m = κ2/κ1 = 1 in the first step of Varchenko’s algorithm, then a linear
change of coordinates of the form y1 = x1, y2 = x2 − b1x1 will transform φ
into a function φ̃. Since all of our problems A - C are invariant under such
linear changes of coordinates, by replacing our original coordinates (x1, x2)
by (y1, y2) and φ by φ̃, we may in the sequel always assume the following

CONVENTION:
– either our coordinates (x1, x2) are adapted, or
– they are not adapted and

m = κ2/κ1 is an integer ≥ 2. (3.7)

A linear, non-adapted coordinate system for which (3.7) holds true will be
called linearly adapted to φ.
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Intro Newton Decay

A. Decay of the Fourier transform of the surface measure

Write µ̂(ξ) as an oscillatory integral

µ̂(ξ) =: J(ξ) =

∫

Ω
e−i(ξ3φ(x1,x2)+ξ1x1+ξ2x2)η(x) dx , ξ ∈ R

3,

η ∈ C∞
0

(Ω). Since ∇φ(0, 0) = 0, the complete phase in this oscillatory
integral will have no critical point on the support of η unless
|ξ1|+ |ξ2| ≪ |ξ3|, provided Ω is chosen sufficiently small. Integrations by
parts then show that µ̂(ξ) = O(|ξ|−N) as |ξ| → ∞, for every N ∈ N,
unless |ξ1|+ |ξ2| ≪ |ξ3|.
We may thus focus on the latter case. In this case, by writing λ = −ξ3

and ξj = sjλ, j = 1, 2, we are reduced to estimating two-dimensional
oscillatory integrals of the form

I(λ; s) :=

∫
eiλ(φ(x1,x2)+s1x1+s2x2)η(x1, x2) dx1 dx2,

where λ≫ 1, and that s = (s1, s2) ∈ R
2 are sufficiently small parameters,

provided that η is supported in a sufficiently small neighborhood of the
origin. The phase is a linear perturbation of φ!
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Theorem (Bernstein-Gelfand; Atiyah)

If φ is analytic (on R
n), then

∫
eiλφ(x)η(x) dx ∼

∞∑

k=0

n−1∑

j=0

aj,k(φ)λ−rk log(λ)j , (4.1)

provided the support of η is sufficiently small.

Here, the rk form an increasing sequence of rational numbers consisting of
a finite number of arithmetic progressions, which depends only on the zero
set of φ, and the aj,k are distributions with respect to the cut-off function
η. The proof is based on Hironaka’s theorem.

Varchenko’s exponent ν(φ) ∈ {0, 1} for n = 2: If there exists an adapted
local coordinate system y near the origin such that the principal face
π(φa) of φa, is a vertex, and if h(φ) ≥ 2, then we put ν(φ) := 1;
otherwise, we put ν(φ) := 0.
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Remark: the first condition is equivalent to the following one:
If y is any adapted local coordinate system at the origin, then either π(φa)
is a vertex, or a compact edge and m(φa

pr
) = d(φa).

Varchenko: the leading exponent in (4.1) is given by r0 = 1/h(φ), and
ν(φ) is the maximal j for which aj,k(φ) 6= 0. This implies in particular that

|I(λ; 0)| ≤ Cλ
− 1

h(φ) log(λ)ν(φ), λ≫ 1, (4.2)

and this estimate is sharp in the exponents.
Karpushkin: this estimate is stable under sufficiently small analytic
perturbations of φ (analogous results are known to be wrong in higher
dimensions!).
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In particular, we obtain the following uniform estimate for µ̂,

|µ̂(ξ)| ≤ C(1 + |ξ|)
− 1

h(φ) log(2 + |ξ|)ν(φ), ξ ∈ R
3, (4.3)

Theorem (Ikromov, M.)

Let S = graph(φ), φ smooth and finite type. Then there exists a
neighborhood U ⊂ S of x0 = 0 such that for every ρ ∈ C∞

0
(U) the

following estimate holds true for every ξ ∈ R
3 :

|d̂µ(ξ)| ≤ C ‖ρ‖C3(S) (log(2 + |ξ|))ν(φ)(1 + |ξ|)−1/h(φ) (4.4)

Remark: For φ smooth, M. Greenblatt had obtained such estimates for ξ
normal to S at 0.
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Sharpness

Let N be a unit normal to S at x0 = 0, and put

J(λ) := d̂µ(λN) =

∫∫
e±iλφ(x1,x2)a(x1, x2) dx1dx2, λ > 0.

Proposition

If in an adapted coordinates system the principal face π(φa) is a compact
set (i.e. a compact edge or a vertex), then the following limit

lim
λ→+∞

λ1/h(φ)

log λν(Φ)
J(λ) = C · a(0, 0),

exists, where C is a non-zero constant depending on φ only.
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Remarks:

1 This improves on a result by M. Greenblatt, who proved that this
limit exists for some sequence of λk →∞.

2 If the principal face π(φa) is unbounded, then the estimate in the
theorem may fail to be sharp, if φ is non-analytic, as the following
example by A. Iosevich and E. Sawyer shows: If

Φ(x1, x2) := x2

2 + e−1/|x1|
α

,

then

|J(λ)| ≍
1

λ1/2 log λ1/α
as λ→ +∞.

Here, ν(φ) = 0.
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