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The cone multiplier in R3

e The cone multiplier of order «

_ 2 0
Gren = (1- ) s fen, enerxr,

where ¢ € C°[1/2,2].
e Cone multiplier conjecture (Stein, 1978): For 1 < p < oo

”CafHLP(]R3) < C||fHLP(R3)a

if and only if
2 1
a > ap) = max (‘1 - E' - 570).

e By de Leeuw’s restriction theorem this implies the sharp L” boundedness of
Bochner-Riesz operator.

e When a > % the kernel is in L!. By Plancherel's theorem C® is bounded on
L? for any a > 0.

e Especially, when % < p <4, a > 0 is necessary.



e By finite decomposition and rotation (in the previous definition) we may
assume that 7 is supported in a small neighborhood of (1,0,1). By a linear
change of variables (&,&1 — 7,614+ 7) = (0,7, p)

Caf(n,1,p) = (r—0*/p)d(n.7,p)E(n,7,p), m.7,p ER,

and ¢ is a smooth function supported in a small neighborhood of
2e3 =(0,0,2).
elet 0 < d <« 1andlety € C°[1/2,4] and define an operator Cs by
2
— T— ~
Csf(n, 7, p) = ¢(+/f))f(n77—7 p)-
e Sharp bound for Cs: For e > 0,

[Csfllp < COP ||,

for f supported in the set {(n,7,p) : p € [272,2%], |n/p| < 2%}
2
o (T —1*/p)% = D 5:dyadic 5"‘1[;(%/”) by a proper choice of 1.



Mockenhaupt’s square function and Wolff's mixed norm estimates
Let ¢ € C°[—1,1] satisfying 3°, ., ¢(k — ) = 1. For v € V6Z N [-1,1],

define a projection operator by

SoF =g :/761/”)?.

e Sharp square function estimate:
152 Cos"fll < Como0e GH(ZICaS”f\ .

02 < p < oo. It was mostly studied with p = 4. We will show the sharp bound
for p = 3. Square function can be controlled by Kakeya maximal bounds due to
Cordoba:

I 1CsS F2)2 15 < 6~ @I F]],.

© Mixed norm estimate: (only possible for p > 6)

v —Q —€ v l
1Y CsS¥Fllp < C67 P 1CS FIP)7 .



Progresses

e [* boundedness

» (Mockenhaupt, 1993) a> 1
Square function and orthogonality in spirit of Fefferman’s proof of

Bochner-Riesz and Kakeya maximal estimates

» (Bourgain, 1995) a>i-
> (Tao-Vargas, 2000) a>1i- =
Systematic bilinear approach
> (Wolff, 2001) a>i— %
e Sharp L? boundedness
» (Wolff, 2000) p>T74
Mixed norm inequality associated with plate decomposition along with conical
sector
» (Garrigés-Seeger, 2009) p>63+1/3

» (Garrigbs-Schlag-Seeger) p>20& L*bound, a > é



Theorem (L-Vargas)
Suppose that f is supported in B(2e3,1). Then, fore > 0,

157 5" Flls < Co (S IS F ) .

e Multilinear restriction estimate (Bennett-Carbery-Tao)
+ Adaptation of Bourgain-Guth argument

Theorem
For 3 <p<3,

Cf|lp < CJ|f||p provided that o > 0.
e Local smoothing conjecture for the wave equation: For p > 2, if 8 > a(p),

itvV—A
Het f”LQt([1,2]xR2) < CHfHL‘[;-

e Combining square function estimate and a stronger version of Kakeya
maximal bound due to Mokenhaupt- Seeger-Sogge,

Corollary
Let d =2 and 2 < p < 3. Then the above holds for all 5 > 0.



Bourgain-Guth argument: mild scale analysis

elet AN) = {(n,7.p):p€ [1/2,7/2], In/p| <A}
eFor 0 < § < 1, define &(4) to be the best constant for which

v v 1
1D CoS*Flls < SEIQ_ 1CS %) I3

whenever supp f C A(2). Trivially &(8) < C5~%. We aim to show
S(8) < Cs ¢, e>0.

e Bourgain-Guth argument for square function estimate

» Multilinear (trilinear) version of square function estimate

» Smaller Fourier support — improvement (by rescaling and stability)

» Decomposition: bound the operator with trilinear terms with transversality
while remaining parts has relatively small Fourier supports. The decomposition

here is much simpler because there are one parameter directional sets.



Transversality of conic sectors

e lLet [ be a subset of the cone given by
F={(n.7.p):7=n"/p, p€[3/2,5/2],In/p| <3}.

Define 0 : R x R x Ry — R by 0(n, 7, p) = n/p. ldentifying 6 = n/p as an
angular variable of (n, 7, p),

F = {p(0.6%,1) : p € [3/2,5/2], 6] <3}.
o The normal vector to I at (n, 7, p) = p(6,6%,1) is parallel to
(2n/p,—1,—1*/p") = (20, -1, -67).
Given three points (n;, 7i, pi) € I',i = 1, 2,3, with angular variables 0; = n;/pi,

20, -1 —6%
det | 26, -1 —9% = 2(91 — 03)(91 — 92)(92 — 93)
20 —1 —63



e Three conical sectors are mutually transversal as long as they are are
angularly separated. Hence it is possible to make use of the multilinear
(trilinear) restriction estimate of Bennett-Cabery-Tao. Denote by do the
induced Lebesgue measure in I'.

Proposition

Let T'1, T2, and '3 be subsets of ' and €, > 0. Suppose that 6(T'1), 8(I'2) and
0(T3) are mutually separated by a distance > ¢ > 0. Let R > ;. Then, for
€ > 0, there is a constant C. = Cc(e,) such that

3 3
I T]gdoll, < R ligilz

i=1 i=1
whenever g; is supported in [';, i = 1,2, 3.

Suppose that Fiis supported in I'; + O(R™'), i = 1,2,3. Then, for € > 0 there
is a constant C. = C¢(€o) such that

3 3
3 .
||HFi||L1(BR) <CR 2R HHFI‘H2-
i=1 i=1



o Putting § = R 1,

Lemma

Let 1> eo > 6 > 0. Suppose that f, f, and  are supported in A(3). If
6(supp E), 6(supp E), and 6(supp ?3) are mutually separated by a distance
2 €, then for € > 0 there is a constant C. = Cc(e.) such that

3 3
£
ITT Gl < €62~ [T lflle
i=1 i=1

Proposition

Under the same assumption as above, for € > 0 there is a constant C. = C(€o)
such that

H [ Gs'h)|, < o I] [ e apy?
i=1 v ey ~

3



e Let 1) be a Schwartz function such that ¢ > 1 on B(0,1) with its Fourier
transform supported in B(0,1). Let R = §~! and set

wzzw(%).

Let z0 € R®. F(y2 (3, CsS¥f)) is supported in [ + O(R™/?)

[T s, < crteT]

e Note that the supports of ]-'(1/150 CsS"f;) are essentially disjoint. Hence by
Holder's inequality

T2 as ), < cr b TS e )
i=1 v i=1 v

(> Gsth)

12

3
34, 9¢1_1 N 1
< CRRIGITT |l (X 168 6P | |
i=1 v




Rescaling and translation
By rescaling, smallness of support at Fourier side gives better bound. It is also
true for the square function. Precisely,

Lemma
Let 0 < 6 < ~* < 1. Suppose that f is supported in A(2) and the diameter of
9(supp?) < «, then

v v 1
1D CsS"flls < S(6/4°)(Q_ 1S )2 s

For € R and v € V/3Z, let us set

F(s") = 0“7 ).

e For any 6 € R whenever fis supported in A(1)

IS Cosofl, < 8@ (3 1G5 )2 |-



e Suppose f is supported in A(2) and 8(supp f ) C [0 — /2,00 +~/2]. Set

¥ 0 6
Toory = | 290 7 03
0 0 1

e By the change of variables (1,7, p) = To,.~(n,7,p)

E(-S\f( Teo,’Y(nv T, p)) = w(%)?(TQOvW(TL T, P))

and supp (f o Ty, ) C A(1).
e Denoting by Ty, . the adjoint of Ty, ,

Cof(x) = Coyoa(F 0 T3, 5)(Th, ).
e Changing variables,
v 1 —~1 o * —
1Y CsS¥Flls=|det To, 413 D> Csp2[S° 77 %1(Fo Ty s
v ke\/5/¥22

1 41 * — 1
< S(3/7°)|det To, o 31 D 1G5y 77 “1(F o Tg, )2 s
kEN/8 /7L

=60/ 1CS ) s



Decomposition
e Let  be supported in A(2). Recall Yoevs S =1.
o (Tow different scales) Let K1, K> be dyadic numbers such that

1< Ki<K Koo €,

k
@ ={gel-11: kez},
Ki
2y _ [k :
3 }—{K2 el-1,1): kez}.
o Group S$”f into functions fy2 by setting

fro = > SUf,  f=> fp

VE(P2—(2K) 1, 32+(2K) 1] 3
o Group fy2 into functions f;1 by setting

fn = > fo,  F=) fu.

J2E(I1—(2K1) 1,31 +(2K1) 1] Jt



Preliminary decomposition

o Note

Gf = Gifyr.
3

o Consider two cases
|Csf(x)] <16 m«‘.ilX|C§f:~J1(X)|7 |Csf(x)] > 16 melxx|C5f31(X)|.
J J

o First stage decomposition

m\»—-

|Csf(x)] < Crré?x|C5f31(x)| + CKy max |C5f31( )C5f71( x)|2.

15131 —31> 2
321131 =312 e

e One can apply bilinear estimate if there is one available. This will give linear
estimate away from the endpoint case.



Control of Cs fﬁ{ (X) Cs ffjé (X)

o Write
Csfy = > Csfyo, i =1,2.
32e(31—(2K1) 1,3+ (2K1) 7Y
e Considering the cases
‘Cafy(X)Cafjl(xﬂ < 2% max|C5sz(x)C5f32(x)\
‘1 2
| Cofy1 (x) Co g ()| = 2° max | Cs iz (x) Cafya (%)),
32,32

e \We may assume

|Csfyz(x)| > K, 100 m»‘ez)x|C5fJ§(x)|, and |Gsfpz(x)| > K, 100 n}azxx|C5f},§(x)\.
35 1

e Second stage decomposition

Csfr1(x)Csta(x §2K75 ma
|Cofay (%) Cofay (x)] 2 peiond 343

|C(5f§2(X)| + 25 max |C(5f32(X)C5f32 (X)|

+ K3° max | Csfya(x) Cofya(x) Cofya (x)|3.

37,35, 33 {31 u{33)
min,-#j \3%-:\%2 %2



Trilinear Control

e Combining the previous bounds,
|Csf(x)| < Cmax|Csfy(x)| + CKi max|Csfy(x)|
3t 32

1
+ K3° max [ Gofp(x) Cofyz(x) Cofya (x)]3-
31,395,393
min; IS?—(TJ?lZK%

e Raising 3rd power and integrating,

IGFI3 < CD IICshulli + CKE D IICsfell
31 32
+ CKQISO Z HC(st% C(;fJ%CéfE]%Hl-

32,3233
) 20 A2 2
min;; |37 — 35 |Z;Tz



3 / |Cofip(x) Cofig (x) Cafg ()l dx
32,393,393
mini; 137 —3 12 %

3
1\ . . bl
< c5<?>5 HH(Z\CM BE
2 i=1 v
e Write fjn = 3, 51 S”fso that

F=> > Sf

RENRZSKE
e Since the diameter of 0(f3,) < W and set ¢ = 50%/51%. Hence
chafﬂng = ZH Y GSUfl3 < [S(cord))’ ZH DG )R
vl vrgl
< [S(coK?)] ||(Z > 1GS )23

31 V~31

< [S(cokDPI 1CS” )23



o Similarly,
voonl
DGl < [S(cSKDPIO ICS” 1725
3 v
Now combining all these estimates, we get

1 _
1) CsS¥flls < C(G(chf)+K16(c5K22) + K25°c5(72)5 )

v 1
< | 1CS"F17)2 Is.
o Therefore

&(6) < C(G(aSKf) + K& (coKZ) + K C. (Ki) 5*6).
2
o Define

S5(8) = sup (8)76(d").

5<6/<1

Proof completes if G5(5) < C for any 8 > 0.



elet 3 >0and §d <, < 1. Then,
1 —e
56(8.) < c(afe(asoKf) + K162 & (oo KE) + K3°C. <?>5§50 )
2
< C(wa(céo K2)?&(co.KZ) + KiKy 2? (c8.K2)P &(cdo K2)
50 i B—e
+ K CE(K2)5O )
Since 1 < cK?, cK? and § < &, taking € = 3,
_ — 1
§76G(8,) < C(KfZBGﬁ(é) + KK 28 4(8) + KO C. (7))
2
e Taking sup along o > 6,
—2p= ~%g 1
85(5) < c( Gs(0) + KK, °85(5) + K°C. — )
Ks
Finally, choose Ki, K> such that CKl_Qﬁ < % and CKle_w < % to get
1

Ss(0) < CK5’°C€(72).



Remarks

e As it is known, square function estimate can be used to improve sharp Wolff's
inequality and improvement on Wolff's inequality also gives better square
function. So, by the L* square function the range of L* estimate and sharp

Wolff's inequality actually extends further.

e The argument here also works with the square function associated with
spherical Bochner-Riesz operators. With additional work it is possible to give a
different proof of result due Bourgain-Guth for Bochner-Riesz without relying

on oscillatory integral estimate.

e For the higher dimensional cone multiplier the argument is more involved
since we need to use lower dimensional restriction estimate when transversality
fails. We don't know yet how to use multilinear restriction for the cone to get

linear estimate. It is not clear even for restriction case.
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