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The cone multiplier in R3

•The cone multiplier of order α

Ĉαf (ξ, τ) =
(

1− |ξ|
2

τ 2

)α
+
φ(τ) f̂ (ξ, τ), (ξ, τ) ∈ R2 × R,

where φ ∈ C∞c [1/2, 2].

•Cone multiplier conjecture (Stein, 1978): For 1 ≤ p ≤ ∞

‖Cαf ‖Lp(R3) ≤ C‖f ‖Lp(R3),

if and only if

α > α(p) = max
(∣∣∣1− 2

p

∣∣∣− 1

2
, 0
)
.

•By de Leeuw’s restriction theorem this implies the sharp Lp boundedness of

Bochner-Riesz operator.

•When α > 1
2
, the kernel is in L1. By Plancherel’s theorem Cα is bounded on

L2 for any α > 0.

•Especially, when 4
3
≤ p ≤ 4, α > 0 is necessary.



•By finite decomposition and rotation (in the previous definition) we may

assume that f̂ is supported in a small neighborhood of (1, 0, 1). By a linear

change of variables (ξ2, ξ1 − τ, ξ1 + τ)→ (η, τ, ρ)

Ĉαf (η, τ, ρ) = (τ − η2/ρ)α+φ(η, τ, ρ)f̂ (η, τ, ρ), η, τ, ρ ∈ R,

and φ is a smooth function supported in a small neighborhood of

2e3 = (0, 0, 2).

• Let 0 < δ � 1 and let ψ ∈ C∞c [1/2, 4] and define an operator Cδ by

Ĉδf (η, τ, ρ) = ψ
(τ − η2/ρ

δ

)
f̂ (η, τ, ρ).

•Sharp bound for Cδ: For ε > 0,

‖Cδf ‖p ≤ Cδ−α(p)−ε‖f ‖p

for f̂ supported in the set {(η, τ, ρ) : ρ ∈ [2−2, 22], |η/ρ| ≤ 22}.
• (τ − η2/ρ)α+ =

∑
δ:dyadic δ

αψ
( τ−η2/ρ

δ

)
by a proper choice of ψ.



Mockenhaupt’s square function and Wolff’s mixed norm estimates

Let φ ∈ C∞c [−1, 1] satisfying
∑

k∈Z φ(k − ·) = 1. For ν ∈
√
δZ ∩ [−1, 1],

define a projection operator by

Ŝν f = φ
(ν − η/ρ√

δ

)
f̂ .

• Sharp square function estimate:

‖
∑
ν

CδS
ν f ‖p ≤ Cδ−α(p)/2−ε‖(

∑
ν

|CδSν f |2)
1
2 ‖p.

• 2 ≤ p ≤ ∞. It was mostly studied with p = 4. We will show the sharp bound

for p = 3. Square function can be controlled by Kakeya maximal bounds due to

Cordoba:

‖(
∑
ν

|CδSν f |2)
1
2 ‖p . δ−α(p)/2−ε‖f ‖p.

•Mixed norm estimate: (only possible for p ≥ 6)

‖
∑
ν

CδS
ν f ‖p ≤ Cδ−α(p)−ε‖(

∑
ν

|CδSν f |p)
1
p ‖p.



Progresses

• L4 boundedness

I (Mockenhaupt, 1993) α > 1
8

Square function and orthogonality in spirit of Fefferman’s proof of

Bochner-Riesz and Kakeya maximal estimates

I (Bourgain, 1995) α > 1
8
− ε

I (Tao-Vargas, 2000) α > 1
8
− 1

476

Systematic bilinear approach

I (Wolff, 2001) α > 1
8
− 1

88

• Sharp Lp boundedness

I (Wolff, 2000) p > 74

Mixed norm inequality associated with plate decomposition along with conical

sector

I (Garrigós-Seeger, 2009) p > 63 + 1/3

I (Garrigós-Schlag-Seeger) p > 20 & L4 bound, α > 1
9



Theorem (L-Vargas)

Suppose that f̂ is supported in B(2e3, 1). Then, for ε > 0,

‖
∑
ν

CδS
ν f ‖3 ≤ Cεδ

−ε‖(
∑
ν

|CδSν f |2)
1
2 ‖3.

•Multilinear restriction estimate (Bennett-Carbery-Tao)

+ Adaptation of Bourgain-Guth argument

Theorem

For 3
2
≤ p ≤ 3, ‖Cαf ‖p ≤ C‖f ‖p provided that α > 0.

• Local smoothing conjecture for the wave equation: For p ≥ 2, if β > α(p),

‖e it
√
−∆f ‖Lpx,t ([1,2]×R2) ≤ C‖f ‖Lp

β
.

•Combining square function estimate and a stronger version of Kakeya

maximal bound due to Mokenhaupt- Seeger-Sogge,

Corollary

Let d = 2 and 2 ≤ p ≤ 3. Then the above holds for all β > 0.



Bourgain-Guth argument: mild scale analysis

• Let A(λ) =
{

(η, τ, ρ) : ρ ∈
[
1/2, 7/2

]
, |η/ρ| ≤ λ

}
.

•For 0 < δ � 1, define S(δ) to be the best constant for which

‖
∑
ν

CδS
ν f ‖3 ≤ S(δ)‖(

∑
ν

|CδSν f |2)
1
2 ‖3

whenever supp f̂ ⊂ A(2). Trivially S(δ) ≤ Cδ−
1
4 . We aim to show

S(δ) ≤ Cδ−ε, ε > 0.

•Bourgain-Guth argument for square function estimate

I Multilinear (trilinear) version of square function estimate

I Smaller Fourier support → improvement (by rescaling and stability)

I Decomposition: bound the operator with trilinear terms with transversality

while remaining parts has relatively small Fourier supports. The decomposition

here is much simpler because there are one parameter directional sets.



Transversality of conic sectors

• Let Γ be a subset of the cone given by

Γ = {(η, τ, ρ) : τ = η2/ρ, ρ ∈ [3/2, 5/2], |η/ρ| ≤ 3}.

Define θ : R× R× R+ → R by θ(η, τ, ρ) = η/ρ. Identifying θ = η/ρ as an

angular variable of (η, τ, ρ),

Γ = {ρ(θ, θ2, 1) : ρ ∈ [3/2, 5/2], |θ| ≤ 3}.

•The normal vector to Γ at (η, τ, ρ) = ρ(θ, θ2, 1) is parallel to

(2η/ρ,−1,−η2/ρ2) = (2θ,−1,−θ2).

Given three points (ηi , τi , ρi ) ∈ Γ,i = 1, 2, 3, with angular variables θi = ηi/ρi ,

det

2θ1 −1 −θ2
1

2θ2 −1 −θ2
2

2θ3 −1 −θ2
3

 = 2(θ1 − θ3)(θ1 − θ2)(θ2 − θ3).



•Three conical sectors are mutually transversal as long as they are are

angularly separated. Hence it is possible to make use of the multilinear

(trilinear) restriction estimate of Bennett-Cabery-Tao. Denote by dσ the

induced Lebesgue measure in Γ.

Proposition

Let Γ1, Γ2, and Γ3 be subsets of Γ and ε◦ > 0. Suppose that θ(Γ1), θ(Γ2) and

θ(Γ3) are mutually separated by a distance & ε◦ > 0. Let R � ε−1
◦ . Then, for

ε > 0, there is a constant Cε = Cε(ε◦) such that

‖
3∏

i=1

ĝidσ‖L1(BR ) ≤ CεR
ε

3∏
i=1

‖gi‖2

whenever gi is supported in Γi , i = 1, 2, 3.

Suppose that F̂i is supported in Γi + O(R−1), i = 1, 2, 3. Then, for ε > 0 there

is a constant Cε = Cε(ε◦) such that

‖
3∏

i=1

Fi‖L1(BR ) ≤ CεR
− 3

2 Rε
3∏

i=1

‖Fi‖2.



•Putting δ = R−1,

Lemma

Let 1� ε◦ � δ > 0. Suppose that f̂1, f̂2, and f̂3 are supported in A(3). If

θ(supp f̂1), θ(supp f̂2), and θ(supp f̂3) are mutually separated by a distance

& ε◦, then for ε > 0 there is a constant Cε = Cε(ε◦) such that

‖
3∏

i=1

Cδfi‖L1 ≤ Cεδ
3
2
−ε

3∏
i=1

‖fi‖2.

Proposition

Under the same assumption as above, for ε > 0 there is a constant Cε = Cε(ε◦)

such that ∥∥∥ 3∏
i=1

(
∑
ν

CδS
ν fi )
∥∥∥
L1
≤ Cεδ

−ε
3∏

i=1

∥∥∥(
∑
ν

|CδSν fi |2)
1
2

∥∥∥
L3
.



• Let ψ be a Schwartz function such that ψ ≥ 1 on B(0, 1) with its Fourier

transform supported in B(0, 1). Let R = δ−1 and set

ψz = ψ
( · − z√

R

)
.

Let z0 ∈ R3. F(ψ2
z0

(
∑
ν CδS

ν fi )) is supported in Γi + O(R−1/2)

∥∥∥ 3∏
i=1

ψ2
z0

(
∑
ν

CδS
ν fi )
∥∥∥
L1
≤ CεR

− 3
4

+ε
3∏

i=1

∥∥∥ψ2
z0

(
∑
ν

CδS
ν fi )
∥∥∥

2
.

•Note that the supports of F(ψ2
z0
CδS

ν fi ) are essentially disjoint. Hence by

Hölder’s inequality∥∥∥ 3∏
i=1

ψ2
z0

(
∑
ν

CδS
ν fi )
∥∥∥
L1
≤ CεR

− 3
4

+ε
3∏

i=1

∥∥∥|ψ2
z0
|(
∑
ν

|CδSν fi |2)
1
2

∥∥∥
L2

≤ CεR
− 3

4
+εR

9
2

( 1
2
− 1

3
)

3∏
i=1

∥∥∥|ψz0 |(
∑
ν

|CδSν fi |2)
1
2

∥∥∥
L3
.



Rescaling and translation

By rescaling, smallness of support at Fourier side gives better bound. It is also

true for the square function. Precisely,

Lemma

Let 0 < δ ≤ γ2 ≤ 1. Suppose that f̂ is supported in A(2) and the diameter of

θ(supp f̂ ) ≤ γ, then

‖
∑
ν

CδS
ν f ‖3 ≤ S(δ/γ2)‖(

∑
ν

|CδSν f |2)
1
2 ‖3.

For θ ∈ R and ν ∈
√
δZ, let us set

F(Sν,θf ) = φ
(ν + θ − η/ρ√

δ

)
f̂ (η, τ, ρ).

•For any θ ∈ R whenever f̂ is supported in A(1)∥∥∑
ν

CδS
ν,θf

∥∥
3
≤ S(δ)

∥∥(∑
ν

|CδSν,θf |2
) 1

2
∥∥

3
.



• Suppose f̂ is supported in A(2) and θ(supp f̂ ) ⊂ [θ◦ − γ/2, θ◦ + γ/2]. Set

Tθ◦,γ =

 γ 0 θ◦

2γθ◦ γ2 θ2
◦

0 0 1

 .

•By the change of variables (η, τ, ρ)→ Tθ◦,γ(η, τ, ρ)

Ĉδf (Tθ◦,γ(η, τ, ρ)) = ψ
( (τ − η2)/ρ

δγ−2

)
f̂ (Tθ◦,γ(η, τ, ρ)).

and supp (f̂ ◦ Tθ◦,γ) ⊂ A(1).

•Denoting by T ∗θ◦,γ the adjoint of Tθ◦,γ ,

Cδf (x) = Cδ/γ2 (f ◦ T ∗ −1
θ◦,γ )(T ∗θ◦,γx).

•Changing variables,

‖
∑
ν

CδS
ν f ‖3 = | detTθ◦,γ |

1
3 ‖

∑
k∈
√
δ/γ2 Z

Cδ/γ2 [Sk,−γ−1θ◦ ](f ◦ T ∗ −1
θ◦,γ )‖3

≤ S(δ/γ2)| detTθ◦,γ |
1
3 ‖(

∑
k∈
√
δ/γ2Z

|Cδ/γ2 [Sk,−γ−1θ](f ◦ T ∗ −1
θ◦,γ )|2)

1
2 ‖3

= S(δ/γ2)‖(
∑
ν

|CδSν f |2)
1
2 ‖3.



Decomposition

• Let f̂ be supported in A(2). Recall
∑
ν∈
√
δZ S

ν f = f .

• (Tow different scales) Let K1, K2 be dyadic numbers such that

1� K1 � K2 � δ−ε,

{J1} =
{ k

K1
∈ [−1, 1] : k ∈ Z

}
,

{J2} =
{ k

K2
∈ [−1, 1] : k ∈ Z

}
.

•Group Sν f into functions fJ2 by setting

fJ2 =
∑

ν∈(J2−(2K2)−1,J2+(2K2)−1]

Sν f , f =
∑
J2

fJ2 .

•Group fJ2 into functions fJ1 by setting

fJ1 =
∑

J2∈(J1−(2K1)−1,J1+(2K1)−1]

fJ2 , f =
∑
J1

fJ1 .



Preliminary decomposition

•Note

Cδf =
∑
J1

1

CδfJ1
1
.

•Consider two cases

|Cδf (x)| ≤ 16 max
J1
|CδfJ1 (x)|, |Cδf (x)| ≥ 16 max

J1
|CδfJ1 (x)|.

•First stage decomposition

|Cδf (x)| ≤ C max
J1
|CδfJ1 (x)|+ CK1 max

J1
1,J

1
2: |J1

1−J1
2|≥

4
K1

|CδfJ1
1
(x)CδfJ1

2
(x)|

1
2 .

•One can apply bilinear estimate if there is one available. This will give linear

estimate away from the endpoint case.



Control of CδfJ1
1
(x)CδfJ1

2
(x)

•Write

CδfJ1
i

=
∑

J2
i ∈(J1−(2K1)−1,J1+(2K1)−1]

CδfJ2
i
, i = 1, 2.

•Considering the cases

|CδfJ1
1
(x)CδfJ1

2
(x)| ≤ 25 max

J2
1,J

2
2

|CδfJ2
1
(x)CδfJ2

2
(x)|,

|CδfJ1
1
(x)CδfJ1

2
(x)| ≥ 25 max

J2
1,J

2
2

|CδfJ2
1
(x)CδfJ2

2
(x)|,

•We may assume

|CδfJ2
1
(x)| > K−100

2 max
J2

2

|CδfJ2
2
(x)|, and |CδfJ2

2
(x)| > K−100

2 max
J2

1

|CδfJ2
1
(x)|.

• Second stage decomposition

|CδfJ1
1
(x)CδfJ1

2
(x)| ≤ 2K−50

2 max
J2∈{J2

1}∪{J
2
2}
|CδfJ2 (x)|2 + 25 max

J2
1,J

2
2

|CδfJ2
1
(x)CδfJ2

2
(x)|

+ K 50
2 max

J2
1,J

2
2,J

2
3∈{J

2
1}∪{J

2
2}

mini 6=j |J2
i −J2

j |≥
2
K2

|CδfJ2
1
(x)CδfJ2

2
(x)CδfJ2

3
(x)|

2
3 .



Trilinear Control

•Combining the previous bounds,

|Cδf (x)| ≤ C max
J1
|CδfJ1 (x)|+ CK1 max

J2
|CδfJ2 (x)|

+ K 50
2 max

J2
1,J

2
2,J

2
3

mini 6=j |J2
i −J2

j |≥
2
K2

|CδfJ2
1
(x)CδfJ2

2
(x)CδfJ2

3
(x)|

1
3 .

•Raising 3rd power and integrating,

‖Cδf ‖3
3 ≤ C

∑
J1

‖CδfJ1‖3
3 + CK 3

1

∑
J2

‖CδfJ2‖3
3

+ CK 150
2

∑
J2

1,J
2
2,J

2
3

mini 6=j |J2
i −J2

j |≥
2
K2

‖CδfJ2
1
CδfJ2

2
CδfJ2

3
‖1.



∑
J2

1,J
2
2,J

2
3

mini 6=j |J2
i −J2

j |≥
2
K2

∫
|CδfJ2

1
(x)CδfJ2

2
(x)CδfJ2

3
(x)|dx

≤ Cε

(
1

K2

)
δ−ε

3∏
i=1

∥∥∥(
∑
ν

|Cδf ν |2)
1
2

∥∥∥
3
.

•Write fJ1 =
∑
ν∼J1 S

ν f so that

f =
∑
J1

∑
ν∼J1

Sν f .

• Since the diameter of θ(fJ1 ) ≤ 51
50K1

and set c = 502/512. Hence∑
J1

‖CδfJ1‖3
3 =

∑
J1

‖
∑
ν∼J1

CδS
ν f ‖3

3 ≤ [S(cδK 2
1 )]3

∑
J1

‖(
∑
ν∼J1

|CδSν f |2)
1
2 ‖3

3

≤ [S(cδK 2
1 )]3‖(

∑
J1

∑
ν∼J1

|CδSν f |2)
1
2 ‖3

3

≤ [S(cδK 2
1 )]3‖(

∑
ν

|CδSν f |2)
1
2 ‖3

3.



• Similarly, ∑
J2

‖CδfJ2‖3
3 ≤ [S(cδK 2

2 )]3‖(
∑
ν

|CδSν f |2)
1
2 ‖3

3.

Now combining all these estimates, we get

‖
∑
ν

CδS
ν f ‖3 ≤ C

(
S(cδK 2

1 )+K1S(cδK 2
2 ) + K 50

2 Cε

(
1

K2

)
δ−ε
)

× ‖(
∑
ν

|CδSν f |2)
1
2 ‖3.

•Therefore

S(δ) ≤ C
(
S(cδK 2

1 ) + K1S(cδK 2
2 ) + K 50

2 Cε

(
1

K2

)
δ−ε
)
.

•Define

Sβ(δ) = sup
δ≤δ′≤1

(δ′)βS(δ′).

Proof completes if Sβ(δ) ≤ C for any β > 0.



• Let β > 0 and δ ≤ δ◦ � 1. Then,

δβ◦S(δ◦) ≤ C
(
δβ◦S(cδ◦K

2
1 ) + K1δ

β
◦S(cδ◦K

2
2 ) + K 50

2 Cε

(
1

K2

)
δβ◦ δ
−ε
◦

)
≤ C

(
K−2β

1 (cδ◦K
2
1 )βS(cδ◦K

2
1 ) + K1K

−2β
2 (cδ◦K

2
2 )βS(cδ◦K

2
2 )

+ K 50
2 Cε

(
1

K2

)
δβ−ε◦

)
Since 1 ≤ cK 2

2 , cK
2
1 and δ ≤ δ◦, taking ε = β,

δβ◦S(δ◦) ≤ C
(
K−2β

1 Sβ(δ) + K1K
−2β
2 Sβ(δ) + K 50

2 Cε

(
1

K2

))
.

•Taking sup along δ◦ ≥ δ,

Sβ(δ) ≤ C
(
K−2β

1 Sβ(δ) + K1K
−2β
2 Sβ(δ) + K 50

2 Cε

(
1

K2

))
.

Finally, choose K1, K2 such that CK−2β
1 < 1

4
and CK1K

−2β
2 < 1

4
to get

Sβ(δ) ≤ CK 50
2 Cε

( 1

K2

)
.



Remarks

•As it is known, square function estimate can be used to improve sharp Wolff’s

inequality and improvement on Wolff’s inequality also gives better square

function. So, by the L3 square function the range of L4 estimate and sharp

Wolff’s inequality actually extends further.

•The argument here also works with the square function associated with

spherical Bochner-Riesz operators. With additional work it is possible to give a

different proof of result due Bourgain-Guth for Bochner-Riesz without relying

on oscillatory integral estimate.

•For the higher dimensional cone multiplier the argument is more involved

since we need to use lower dimensional restriction estimate when transversality

fails. We don’t know yet how to use multilinear restriction for the cone to get

linear estimate. It is not clear even for restriction case.
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