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quartile operator = a discrete model of Bilinear Hilbert Transform



UMD spaces



UMD spaces

X = Banach space



UMD spaces

X = Banach space
UMD = unconditional martingale differences



UMD spaces

X = Banach space
UMD = unconditional martingale differences
Definition

do, dy,...,dx,...: Q — X is a martingale difference sequence if

/gp(do,...,dk_l)dkduzo Vo : XK SR
Q




UMD spaces

X = Banach space

UMD = unconditional martingale differences
Definition

do, di, . .

., di,...:Q — X is a martingale difference sequence if

/gp(do,...,dk_l)dkduzo Vo : XK SR
Q

Definition
X is a UMD space if:




UMD spaces

X = Banach space
UMD = unconditional martingale differences

Definition

do, d1,...,dk,...: Q — X is a martingale difference sequence if

/gp(do,...,dk_l)dkduzo Vo : XK SR
Q

Definition
X is a UMD space if:




UMD spaces

X = Banach space
UMD = unconditional martingale differences

Definition

do, d1,...,dk,...: Q — X is a martingale difference sequence if

/gp(do,...,dk_l)dkduzo Vo : XK SR
Q

Definition
X is a UMD space if:
3 (V) p € (1,00), ¥V X-valued m.d.s. dj,




UMD spaces

X = Banach space
UMD = unconditional martingale differences

Definition

do, d1,...,dk,...: Q — X is a martingale difference sequence if

/gp(do,...,dk_l)dkduzo Vo : XK SR
Q

Definition
X is a UMD space if:
3 (V) pe(1,00), ¥V X-valued m.d.s. di, V e = £1,




UMD spaces

X = Banach space
UMD = unconditional martingale differences

Definition

do, d1,...,dk,...: Q — X is a martingale difference sequence if

/gp(do,...,dk_l)dkduzo Vo : XK SR
Q

Definition
X is a UMD space if:
3 (V) pe(1,00), ¥V X-valued m.d.s. di, V e = £1,

d < CH d
k=0 k=0

LP($2;X)




UMD and Harmonic Analysis



UMD and Harmonic Analysis

Theorem (Burkholder, Bourgain, Figiel; 1980's)
X is a UMD space, 1 < p < o0

o & f— Hf(x) = p.v./ %dy is bounded on LP(RR; X)




UMD and Harmonic Analysis

Theorem (Burkholder, Bourgain, Figiel; 1980's)
X is a UMD space, 1 < p < o0

o & f— Hf(x) = p.v./ %dy is bounded on LP(RR; X)

e < all Calderén—Zygmund operators bounded on LP(R"; X)




UMD and Harmonic Analysis

Theorem (Burkholder, Bourgain, Figiel; 1980's)
X is a UMD space, 1 < p < o0

o & f— Hf(x) = p.v./ %dy is bounded on LP(RR; X)

e < all Calderén—Zygmund operators bounded on LP(R"; X)

@ < many more X-valued analogues of classical LP estimates.




UMD and Harmonic Analysis

Theorem (Burkholder, Bourgain, Figiel; 1980's)
X is a UMD space, 1 < p < o0
o & f— Hf(x) = p.v./ %dy is bounded on LP(RR; X)

e < all Calderén—Zygmund operators bounded on LP(R"; X)
@ < many more X-valued analogues of classical LP estimates.

Research went on in the 1990's, 2000’s, but one central classical
theorem remained unextended. . .
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Carleson's theorem on Fourier series

For f € L?(T) = L?(0,1), let

1 N
f‘(k) ::/ f(X)e—izwkde, Snf(x) = Z f(k)eiZﬂ’kx.
0

k=—N

Easy: Vf € L?(T): ||Syf — f|;2 — 0 as N — oo, but hard:

Theorem (Carleson 1966)
Vf € L3(T), a.e. x € (0,1): |Syf(x) — f(x)] = 0 as N — cc. }

Hunt: Vf € LP(T), p > 1.
Other proofs: Fefferman (1973), Lacey & Thiele (2000).
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@ Rubio de Francia (1986): Carleson for UMD function lattices.
» X C LO(M); Vf,g € LO%(M), |f] < |g| (pointwise) & g € X =
Fexa|flx < glx.
» F e LP(T; X) =~ a function on T x M.
» Carleson's theorem on LP(T; X) obtained by pointwise (on M)
black-box application of Carleson’s theorem on LP(T).
@ Rubio de Francia’s question: What about Schatten spaces CP ?
> {ue K(H) : |lullp := 32; 07 < o0, o) singular values of u}.
» CP € UMD for p € (1,00), lattice only for p = 2 (Hilbert space)
@ Parcet—Soria—Xu (2011): “Little Carleson” for general UMD.
» Snf(x) = O(loglog N) a.e.
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Fourier transform

We do the hard work on R (transference to T “standard”):

/f —127ry§ d§
Partial sums:

0= NN (G l -/ ;N)?(f)e"z”ﬁx de.

Carleson—Hunt theorem:

Snf(x) — f(x) Vf € LP(T),p € (1,0), a.e. x € R.

Not hard for f € .#(R) (dense in LP(R)).



Carleson’s maximal operator

From dense subset to all functions, need to control:



Carleson’s maximal operator

From dense subset to all functions, need to control:

S*f(x) = sup‘/ f ’2”5ng‘

NeR



Carleson’s maximal operator

From dense subset to all functions, need to control:

S*f(x) = sup‘/ f ’2”5ng‘

NeR

or the linearized version (pick “worst” N = N(x) for every x)



Carleson’s maximal operator

From dense subset to all functions, need to control:

[" Hoeag|

or the linearized version (pick “worst” N = N(x) for every x)

S*f(x) = sup
NeR

N(x) ]
CF(x) = /_ F(6)el?ex e

[e.9]

uniformly over all measurable N(-).



Carleson’s maximal operator

From dense subset to all functions, need to control:

[" Hoeag|

or the linearized version (pick “worst” N = N(x) for every x)

= sup
NeR

N(x) ]
CF(x) = /_ F(6)el?ex e

[e.9]

uniformly over all measurable N(-).

To prove: C : LP(R; X) — LP>°(R; X).
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Set-up for time-frequency analysis (Lacey—Thiele)

Phase plane R? = R x R (time x frequency).
Tile: P =1 X w = Ip X wp = dyadic rectangle of area 1.
P = P4U P, — down- and up-tiles, dyadic rectangles of area %

Wavepacket ¢p:

supp dp C wp,, supp ¢p C Ip (rapid decay outside).



Time-frequency analysis of Carleson’s operator



Time-frequency analysis of Carleson’s operator

Carleson operator
N(x) ]
Cf(x) = / f(&)e”™E d¢

= average (over translated, dilated dyadic systems) of model
operators



Time-frequency analysis of Carleson’s operator

Carleson operator

N(x) .
Cf(x) = / f(&)e”™E d¢
= average (over translated, dilated dyadic systems) of model
operators

AF() = > (F, 0p)dp(x).

PcP
wp, IN(x)



Time-frequency analysis of Carleson’s operator

Carleson operator

N(x) ]
Cf(x) = / f(&)e?™ d¢

o

= average (over translated, dilated dyadic systems) of model
operators
AF() = > (F, 0p)dp(x).

PcP
wp, IN(x)

P = all tiles, or an arbitrary finite subset.
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Carleson operator
N(x) ]
Cf(x) = / f(&)e”™E d¢

= average (over translated, dilated dyadic systems) of model
operators

Af(x)= Y (F,ép)dp(x).
PeP
wp, IN(x)

P = all tiles, or an arbitrary finite subset.

To prove: A: LP(R; X) — LP>(R; X).
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Lacey—Thiele proof strategy

“Iterated Calderén—Zygmund / atomic decomposition™:

@ Split P into a good part (controlled ‘size’) and a bad part
(controlled ‘support’ + ‘cancellation’).
P = By U Gy.
@ Then split the good part again, and iterate.
]P - ]BoUBl U(Grl: BO UB1UB2UG2: BoLJBl UBQ UB3UG3
@ Eventually get a series of ‘atoms’ (controlled ‘size’ + ‘support’
+ ‘cancellation’)
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Definition (Trees — support & cancellation)
A set T of tiles is a tree (up-tree) if: 3 a top tile T s.t. VP € T:

IpClr & wpDuwr (wPUQWTL,)-

@ ‘support’: ¢p decays off I+
@ ‘cancellation’: ¢p's almost orthogonal for P € T, an up-tree

Definition (Energy — size)

energy(P) := sup{A(T) : T C P up-tree}  where

L2

1 1/2 1
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Any P with & := energy(P) splits as P = Pgooq U Ppag, where

energy(Pgood) := SUP{A(T) : T C Pyood} < %éaa

and  Paa =T, Sl S E2UFR
J J

Idea: Pick the maximal T; C P with A(T;) > 1&; then
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L2

¢
Sl + (sup 120 Zur) 11

SIAR+ (82 1)) e

Jj




Banach space -valued energy?



Banach space -valued energy?

L2(R; X) has no special role among LP(RR; X).



Banach space -valued energy?

L2(R; X) has no special role among LP(RR; X).
Any L9-energy

energy(F) = sup A(T),  A(T) = [Ir| "¢

Z , Op) 0P
P

L9(R; X)

would do,



Banach space -valued energy?

L2(R; X) has no special role among LP(RR; X).
Any L9-energy

energy(P) = sup A(T),  A(T) := [Iz| /7 Z ,0p) 0P
= Pe

L9(R; X)
would do, as long as

Z H Z ) ¢PHL - S [ fa@.x) + “absorbable” correction

J PeT;



Banach space -valued energy?

L2(R; X) has no special role among LP(RR; X).
Any L9-energy

energy(P) = sup A(T),  A(T) := [Iz| /7 Z ,0p) 0P
= Pe

L9(R; X)

would do, as long as

Z H Z ) ¢PHL - S [ fa@.x) + “absorbable” correction

J PeT;

Ok if #{trees T;} =1



Banach space -valued energy?

L2(R; X) has no special role among LP(RR; X).
Any L9-energy

energy(F) = sup A(T),  A(T) = [Ir| "¢

Z , Op) 0P
P

L9(R; X)

would do, as long as

Z H Z ;o) (bPHL ) < ||f||Lq(R;X) + “absorbable” correction

J PeT;

Ok if #{trees T;} =1, since f — Y, o (f,dp)Pp is a
Calderén—Zygmund operator = bounded on L9(R; X) (X € UMD)
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Enter interpolation spaces

Tf = {Aij}j, Acf =3 (F, 6p)bp

PeT

Ap € CZO = Ar: L®(R; X) — BMO(R; X), X € UMD
= 7 [®(R; X) — *°(BMO(R; X))
If we had
T [*(R; H) — #(L*(R; H)), H € Hilbert,
(but we don't, except in the Walsh model) then
T (R Y) = (I(L(R; Y)), Y =[X,Hls, q=2/6.



Recall:
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Thus

and then

T (R Y)NL®(R; Y) — ((L9(R; Y)), Y =[X,H]p.
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=3Il S max{é"_",é’_q/a}|F|,
J

such f suffice by known reductions!! (“restricted weak type")

Bit more work: & = 1 — ¢, probably important for vector-valued BHT.
If % holds Vor < 1, we say that X has Fourier tile-type g.
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Fourier tile-type g of X

Va € (0,1), Vf e LI9(R; X) N L>(R; X):

2. H > A, ¢P>¢PH: SIFNE+ <”ng°2 |/Tj\>1a||f“ga
j  PeT; ;

@ A new Banach space property resembling
Rademacher/martingale/Fourier (co)type.
o X =[Y,H]y (Y UMD, H Hilbert)
= X has Fourier tile-type g = 2/6 € [2, 00).
e X has any Fourier tile-type g € [2, 00)
= Carleson’s theorem in LP(T; X) Vp > 1 (bit easier if p > q)
@ Looks like: Tile-type exponent g
<~> Admissible r for an r-variation Carleson theorem a la
Oberlin-Seeger—Tao—Thiele-Wright (work in progress by
. Parissis in the Walsh model).



(Post scriptum in another file.)



