Pointwise convergence of vector-valued Fourier series

Tuomas Hytönen¹

University of Helsinki, Finland

El Escorial, 14.6.2012

¹Supported by the ERC Starting Grant "Analytic–probabilistic methods for borderline singular integrals", and the Academy of Finland.

Work being reported

 T. H. & M. Lacey: "Pointwise convergence of vector-valued Fourier series" (arXiv, May 2012)

Work being reported

 T. H. & M. Lacey: "Pointwise convergence of vector-valued Fourier series" (arXiv, May 2012)

Related work:

- T. H. & M. Lacey: "Pointwise convergence of Walsh–Fourier series of vector-valued functions" (arXiv, February 2012)
- T. H. & M. Lacey & I. Parissis: "The vector-valued quartile operator" (arXiv, March 2012)

Work being reported

 T. H. & M. Lacey: "Pointwise convergence of vector-valued Fourier series" (arXiv, May 2012)

Related work:

- T. H. & M. Lacey: "Pointwise convergence of Walsh–Fourier series of vector-valued functions" (arXiv, February 2012)
- T. H. & M. Lacey & I. Parissis: "The vector-valued quartile operator" (arXiv, March 2012)

 $quartile\ operator = a\ discrete\ model\ of\ Bilinear\ Hilbert\ Transform$

X = Banach space

X = Banach spaceUMD = unconditional martingale differences

X = Banach spaceUMD = unconditional martingale differences

Definition

 $d_0,d_1,\ldots,d_k,\ldots:\Omega o X$ is a martingale difference sequence if

$$\int_{\Omega} \varphi(d_0,\ldots,d_{k-1})d_k \,\mathrm{d}\mu = 0 \qquad \forall \varphi: X^k \to \mathbb{R}$$

X = Banach space

UMD = unconditional martingale differences

Definition

 $d_0,d_1,\ldots,d_k,\ldots:\Omega o X$ is a martingale difference sequence if

$$\int_{\Omega} \varphi(d_0,\ldots,d_{k-1})d_k d\mu = 0 \qquad \forall \varphi: X^k \to \mathbb{R}$$

Definition

X is a UMD space if:

X = Banach space

UMD = unconditional martingale differences

Definition

 $d_0,d_1,\ldots,d_k,\ldots:\Omega o X$ is a martingale difference sequence if

$$\int_{\Omega} \varphi(d_0,\ldots,d_{k-1}) d_k \,\mathrm{d}\mu = 0 \qquad \forall \varphi: X^k \to \mathbb{R}$$

Definition

X is a UMD space if:

 \exists (\forall) $p \in (1, \infty)$,

X = Banach spaceUMD = unconditional martingale differences

Definition

 $d_0,d_1,\ldots,d_k,\ldots:\Omega o X$ is a martingale difference sequence if

$$\int_{\Omega} \varphi(d_0,\ldots,d_{k-1}) d_k \,\mathrm{d}\mu = 0 \qquad \forall \varphi: X^k \to \mathbb{R}$$

Definition

X is a UMD space if:

 \exists (\forall) $p \in (1, \infty)$, \forall X-valued m.d.s. d_k ,

X = Banach space

UMD = unconditional martingale differences

Definition

 $d_0,d_1,\ldots,d_k,\ldots:\Omega o X$ is a martingale difference sequence if

$$\int_{\Omega} \varphi(d_0,\ldots,d_{k-1}) d_k d\mu = 0 \qquad \forall \varphi: X^k \to \mathbb{R}$$

Definition

X is a UMD space if:

 \exists (\forall) $p \in (1, \infty)$, \forall X-valued m.d.s. d_k , \forall $\varepsilon_k = \pm 1$,

X = Banach spaceUMD = unconditional martingale differences

Definition

 $d_0,d_1,\ldots,d_k,\ldots:\Omega o X$ is a martingale difference sequence if

$$\int_{\Omega} \varphi(d_0,\ldots,d_{k-1}) d_k d\mu = 0 \qquad \forall \varphi: X^k \to \mathbb{R}$$

Definition

X is a UMD space if:

 \exists (\forall) $p \in (1, \infty)$, \forall X-valued m.d.s. d_k , $\forall \varepsilon_k = \pm 1$,

$$\left\| \sum_{k=0}^{n} \varepsilon_{k} d_{k} \right\|_{L^{p}(\Omega;X)} \leq C \left\| \sum_{k=0}^{n} d_{k} \right\|_{L^{p}(\Omega;X)}$$

Theorem (Burkholder, Bourgain, Figiel; 1980's)

X is a UMD space, 1

•
$$\Leftrightarrow f \mapsto Hf(x) = \text{p.v.} \int_{-\infty}^{\infty} \frac{f(y)}{x - y} \, dy \text{ is bounded on } L^p(\mathbb{R}; X)$$

Theorem (Burkholder, Bourgain, Figiel; 1980's)

X is a UMD space, 1

- $\Leftrightarrow f \mapsto Hf(x) = \text{p.v.} \int_{-\infty}^{\infty} \frac{f(y)}{x y} \, \mathrm{d}y$ is bounded on $L^p(\mathbb{R}; X)$
- \Leftrightarrow all Calderón–Zygmund operators bounded on $L^p(\mathbb{R}^n;X)$

Theorem (Burkholder, Bourgain, Figiel; 1980's)

X is a UMD space, 1

- $\Leftrightarrow f \mapsto Hf(x) = \text{p.v.} \int_{-\infty}^{\infty} \frac{f(y)}{x y} \, \mathrm{d}y$ is bounded on $L^p(\mathbb{R}; X)$
- \Leftrightarrow all Calderón–Zygmund operators bounded on $L^p(\mathbb{R}^n;X)$
- \Leftrightarrow many more X-valued analogues of classical L^p estimates.

Theorem (Burkholder, Bourgain, Figiel; 1980's)

X is a UMD space, 1

- $\Leftrightarrow f \mapsto Hf(x) = \text{p.v.} \int_{-\infty}^{\infty} \frac{f(y)}{x y} \, \mathrm{d}y$ is bounded on $L^p(\mathbb{R}; X)$
- \Leftrightarrow all Calderón–Zygmund operators bounded on $L^p(\mathbb{R}^n;X)$
- ullet \Leftrightarrow many more X-valued analogues of classical L^p estimates.

Research went on in the 1990's, 2000's, but one central classical theorem remained unextended...

For
$$f \in L^2(\mathbb{T}) \approx L^2(0,1)$$
, let

$$\hat{f}(k) := \int_0^1 f(x)e^{-i2\pi kx} dx, \qquad S_N f(x) := \sum_{k=-N}^N \hat{f}(k)e^{i2\pi kx}.$$

For $f \in L^2(\mathbb{T}) \approx L^2(0,1)$, let

$$\hat{f}(k) := \int_0^1 f(x)e^{-i2\pi kx} dx, \qquad S_N f(x) := \sum_{k=-N}^N \hat{f}(k)e^{i2\pi kx}.$$

Easy:
$$\forall f \in L^2(\mathbb{T})$$
: $||S_N f - f||_{L^2} \to 0$ as $N \to \infty$

For $f \in L^2(\mathbb{T}) \approx L^2(0,1)$, let

$$\hat{f}(k) := \int_0^1 f(x)e^{-i2\pi kx} dx, \qquad S_N f(x) := \sum_{k=-N}^N \hat{f}(k)e^{i2\pi kx}.$$

Easy: $\forall f \in L^2(\mathbb{T})$: $||S_N f - f||_{L^2} \to 0$ as $N \to \infty$, but hard:

Theorem (Carleson 1966)

 $\forall f \in L^2(\mathbb{T})$, a.e. $x \in (0,1)$: $|S_N f(x) - f(x)| \to 0$ as $N \to \infty$.

For $f \in L^2(\mathbb{T}) \approx L^2(0,1)$, let

$$\hat{f}(k) := \int_0^1 f(x)e^{-i2\pi kx} dx, \qquad S_N f(x) := \sum_{k=-N}^N \hat{f}(k)e^{i2\pi kx}.$$

Easy: $\forall f \in L^2(\mathbb{T})$: $||S_N f - f||_{L^2} \to 0$ as $N \to \infty$, but hard:

Theorem (Carleson 1966)

$$\forall f \in L^2(\mathbb{T})$$
, a.e. $x \in (0,1)$: $|S_N f(x) - f(x)| \to 0$ as $N \to \infty$.

Hunt: $\forall f \in L^p(\mathbb{T}), p > 1$.

For $f \in L^2(\mathbb{T}) \approx L^2(0,1)$, let

$$\hat{f}(k) := \int_0^1 f(x)e^{-i2\pi kx} dx, \qquad S_N f(x) := \sum_{k=-N}^N \hat{f}(k)e^{i2\pi kx}.$$

Easy: $\forall f \in L^2(\mathbb{T})$: $||S_N f - f||_{L^2} \to 0$ as $N \to \infty$, but hard:

Theorem (Carleson 1966)

$$\forall f \in L^2(\mathbb{T})$$
, a.e. $x \in (0,1)$: $|S_N f(x) - f(x)| \to 0$ as $N \to \infty$.

Hunt: $\forall f \in L^p(\mathbb{T}), p > 1$.

Other proofs: Fefferman (1973), Lacey & Thiele (2000).

• Rubio de Francia (1986): Carleson for UMD function lattices.

- Rubio de Francia (1986): Carleson for UMD function lattices.
 - ▶ $X \subseteq L^0(M)$; $\forall f, g \in L^0(M)$, $|f| \le |g|$ (pointwise) & $g \in X \Rightarrow f \in X \& ||f||_X \le ||g||_X$.

- Rubio de Francia (1986): Carleson for UMD function lattices.
 - ▶ $X \subseteq L^0(M)$; $\forall f, g \in L^0(M)$, $|f| \le |g|$ (pointwise) & $g \in X \Rightarrow f \in X \& ||f||_X \le ||g||_X$.
 - ▶ $F \in L^p(\mathbb{T}; X) \approx$ a function on $\mathbb{T} \times M$.

- Rubio de Francia (1986): Carleson for UMD function lattices.
 - ▶ $X \subseteq L^0(M)$; $\forall f, g \in L^0(M)$, $|f| \le |g|$ (pointwise) & $g \in X \Rightarrow f \in X \& ||f||_X \le ||g||_X$.
 - ▶ $F \in L^p(\mathbb{T}; X) = \text{a function on } \mathbb{T} \times M$.
 - ► Carleson's theorem on $L^p(\mathbb{T}; X)$ obtained by pointwise (on M) black-box application of Carleson's theorem on $L^p(\mathbb{T})$.

- Rubio de Francia (1986): Carleson for UMD function lattices.
 - ▶ $X \subseteq L^0(M)$; $\forall f, g \in L^0(M)$, $|f| \le |g|$ (pointwise) & $g \in X \Rightarrow f \in X \& ||f||_X \le ||g||_X$.
 - ▶ $F \in L^p(\mathbb{T}; X) = \text{a function on } \mathbb{T} \times M$.
 - ► Carleson's theorem on $L^p(\mathbb{T}; X)$ obtained by pointwise (on M) black-box application of Carleson's theorem on $L^p(\mathbb{T})$.
- Rubio de Francia's question: What about Schatten spaces C^p ?

- Rubio de Francia (1986): Carleson for UMD function lattices.
 - ▶ $X \subseteq L^0(M)$; $\forall f, g \in L^0(M)$, $|f| \le |g|$ (pointwise) & $g \in X \Rightarrow f \in X \& ||f||_X \le ||g||_X$.
 - ▶ $F \in L^p(\mathbb{T}; X) = \text{a function on } \mathbb{T} \times M$.
 - ► Carleson's theorem on $L^p(\mathbb{T}; X)$ obtained by pointwise (on M) black-box application of Carleson's theorem on $L^p(\mathbb{T})$.
- Rubio de Francia's question: What about Schatten spaces C^p ?
 - ▶ $\{u \in K(H) : ||u||_p^p := \sum_j \sigma_j^p < \infty, \sigma_j \text{ singular values of } u\}.$

- Rubio de Francia (1986): Carleson for UMD function lattices.
 - ▶ $X \subseteq L^0(M)$; $\forall f, g \in L^0(M)$, $|f| \le |g|$ (pointwise) & $g \in X \Rightarrow f \in X \& ||f||_X \le ||g||_X$.
 - ▶ $F \in L^p(\mathbb{T}; X) = \text{a function on } \mathbb{T} \times M$.
 - ► Carleson's theorem on $L^p(\mathbb{T}; X)$ obtained by pointwise (on M) black-box application of Carleson's theorem on $L^p(\mathbb{T})$.
- Rubio de Francia's question: What about Schatten spaces C^p ?
 - ▶ $\{u \in K(H) : ||u||_p^p := \sum_j \sigma_j^p < \infty, \sigma_j \text{ singular values of } u\}.$
 - ▶ $C^p \in UMD$ for $p \in (1, \infty)$, lattice only for p = 2 (Hilbert space)

- Rubio de Francia (1986): Carleson for UMD function lattices.
 - ▶ $X \subseteq L^0(M)$; $\forall f, g \in L^0(M)$, $|f| \le |g|$ (pointwise) & $g \in X \Rightarrow f \in X \& ||f||_X \le ||g||_X$.
 - ▶ $F \in L^p(\mathbb{T}; X) = \text{a function on } \mathbb{T} \times M$.
 - ► Carleson's theorem on $L^p(\mathbb{T}; X)$ obtained by pointwise (on M) black-box application of Carleson's theorem on $L^p(\mathbb{T})$.
- Rubio de Francia's question: What about Schatten spaces C^p ?
 - $\{u \in K(H) : ||u||_p^p := \sum_i \sigma_i^p < \infty, \sigma_j \text{ singular values of } u\}.$
 - $C^p \in UMD$ for $p \in (1, \infty)$, lattice only for p = 2 (Hilbert space)
- Parcet–Soria–Xu (2011): "Little Carleson" for general UMD.

- Rubio de Francia (1986): Carleson for UMD function lattices.
 - ▶ $X \subseteq L^0(M)$; $\forall f, g \in L^0(M)$, $|f| \le |g|$ (pointwise) & $g \in X \Rightarrow f \in X \& ||f||_X \le ||g||_X$.
 - ▶ $F \in L^p(\mathbb{T}; X) = \text{a function on } \mathbb{T} \times M$.
 - ▶ Carleson's theorem on $L^p(\mathbb{T}; X)$ obtained by pointwise (on M) black-box application of Carleson's theorem on $L^p(\mathbb{T})$.
- Rubio de Francia's question: What about Schatten spaces C^p ?
 - $\{u \in K(H) : ||u||_p^p := \sum_i \sigma_i^p < \infty, \sigma_j \text{ singular values of } u\}.$
 - $C^p \in UMD$ for $p \in (1, \infty)$, lattice only for p = 2 (Hilbert space)
- Parcet–Soria–Xu (2011): "Little Carleson" for general UMD.
 - $S_N f(x) = O(\log \log N)$ a.e.

New result

New result

Theorem (H. & Lacey 2012)

Let $X = [Y, H]_{\theta}$, $Y \in UMD$, H = Hilbert. Then

 $S_N f(x) \to f(x) \qquad \forall f \in L^p(\mathbb{T}; X), \text{ a.e. } x \in \mathbb{T}.$

Theorem (H. & Lacey 2012)

Let
$$X = [Y, H]_{\theta}$$
, $Y \in UMD$, $H = Hilbert$. Then

$$S_N f(x) \to f(x)$$
 $\forall f \in L^p(\mathbb{T}; X)$, a.e. $x \in \mathbb{T}$.

Rubio de Francia: UMD lattices have this form.

Let
$$X = [Y, H]_{\theta}$$
, $Y \in UMD$, $H = Hilbert$. Then

$$S_N f(x) \to f(x)$$
 $\forall f \in L^p(\mathbb{T}; X)$, a.e. $x \in \mathbb{T}$.

- Rubio de Francia: UMD lattices have this form.
 - We recover his lattice-Carleson theorem.

Let
$$X = [Y, H]_{\theta}$$
, $Y \in UMD$, $H = Hilbert$. Then

$$S_N f(x) \to f(x)$$
 $\forall f \in L^p(\mathbb{T}; X)$, a.e. $x \in \mathbb{T}$.

- Rubio de Francia: UMD lattices have this form.
 - We recover his lattice-Carleson theorem.
- Schatten spaces have this form: $C^p = [C^q, C^2]_{\theta}$.

Let
$$X = [Y, H]_{\theta}$$
, $Y \in UMD$, $H = Hilbert$. Then

$$S_N f(x) \to f(x)$$
 $\forall f \in L^p(\mathbb{T}; X)$, a.e. $x \in \mathbb{T}$.

- Rubio de Francia: UMD lattices have this form.
 - We recover his lattice-Carleson theorem.
- Schatten spaces have this form: $C^p = [C^q, C^2]_{\theta}$.
 - We answer Rubio de Francia's question positively.

Let
$$X = [Y, H]_{\theta}$$
, $Y \in UMD$, $H = Hilbert$. Then

$$S_N f(x) \to f(x)$$
 $\forall f \in L^p(\mathbb{T}; X)$, a.e. $x \in \mathbb{T}$.

- Rubio de Francia: UMD lattices have this form.
 - We recover his lattice-Carleson theorem.
- Schatten spaces have this form: $C^p = [C^q, C^2]_{\theta}$.
 - We answer Rubio de Francia's question positively.
- Maybe all UMD spaces have this form?

Let
$$X = [Y, H]_{\theta}$$
, $Y \in UMD$, $H = Hilbert$. Then

$$S_N f(x) \to f(x)$$
 $\forall f \in L^p(\mathbb{T}; X)$, a.e. $x \in \mathbb{T}$.

- Rubio de Francia: UMD lattices have this form.
 - We recover his lattice-Carleson theorem.
- Schatten spaces have this form: $C^p = [C^q, C^2]_{\theta}$.
 - We answer Rubio de Francia's question positively.
- Maybe all UMD spaces have this form?
 - Another question of Rubio de Francia still open!!

Let
$$X = [Y, H]_{\theta}$$
, $Y \in UMD$, $H = Hilbert$. Then

$$S_N f(x) \to f(x)$$
 $\forall f \in L^p(\mathbb{T}; X)$, a.e. $x \in \mathbb{T}$.

- Rubio de Francia: UMD lattices have this form.
 - We recover his lattice-Carleson theorem.
- Schatten spaces have this form: $C^p = [C^q, C^2]_{\theta}$.
 - We answer Rubio de Francia's question positively.
- Maybe all UMD spaces have this form?
 - Another question of Rubio de Francia still open!!

We do the hard work on ${\mathbb R}$

We do the hard work on \mathbb{R} (transference to \mathbb{T} "standard"):

We do the hard work on \mathbb{R} (transference to \mathbb{T} "standard"):

$$\hat{f}(\xi) := \int_{\mathbb{R}} f(y) e^{-i2\pi y \xi} \,\mathrm{d}\xi.$$

Partial sums:

$$S_N f(x) = \int_{-N}^N \hat{f}(\xi) e^{i2\pi\xi x} d\xi = \left(\int_{-\infty}^N - \int_{-\infty}^{-N} \right) \hat{f}(\xi) e^{i2\pi\xi x} d\xi.$$

We do the hard work on \mathbb{R} (transference to \mathbb{T} "standard"):

$$\hat{f}(\xi) := \int_{\mathbb{R}} f(y) e^{-i2\pi y \xi} \,\mathrm{d}\xi.$$

Partial sums:

$$S_N f(x) = \int_{-N}^N \hat{f}(\xi) e^{i2\pi\xi x} d\xi = \Big(\int_{-\infty}^N - \int_{-\infty}^{-N} \Big) \hat{f}(\xi) e^{i2\pi\xi x} d\xi.$$

Carleson-Hunt theorem:

$$S_N f(x) \to f(x)$$
 $\forall f \in L^p(\mathbb{T}), p \in (1, \infty), \text{ a.e. } x \in \mathbb{R}.$

We do the hard work on \mathbb{R} (transference to \mathbb{T} "standard"):

$$\hat{f}(\xi) := \int_{\mathbb{R}} f(y) e^{-i2\pi y \xi} \,\mathrm{d}\xi.$$

Partial sums:

$$S_N f(x) = \int_{-N}^N \hat{f}(\xi) e^{i2\pi\xi x} d\xi = \Big(\int_{-\infty}^N - \int_{-\infty}^{-N} \Big) \hat{f}(\xi) e^{i2\pi\xi x} d\xi.$$

Carleson-Hunt theorem:

$$S_N f(x) \to f(x)$$
 $\forall f \in L^p(\mathbb{T}), p \in (1, \infty), \text{ a.e. } x \in \mathbb{R}.$

Not hard for $f \in \mathscr{S}(\mathbb{R})$ (dense in $L^p(\mathbb{R})$).

From dense subset to all functions, need to control:

From dense subset to all functions, need to control:

$$S^*f(x) = \sup_{N \in \mathbb{R}} \Big| \int_{-\infty}^N \hat{f}(\xi) e^{i2\pi\xi x} \,\mathrm{d}\xi \Big|.$$

From dense subset to all functions, need to control:

$$S^*f(x) = \sup_{N \in \mathbb{R}} \Big| \int_{-\infty}^N \hat{f}(\xi) e^{i2\pi\xi x} d\xi \Big|.$$

or the linearized version (pick "worst" N = N(x) for every x)

From dense subset to all functions, need to control:

$$S^*f(x) = \sup_{N \in \mathbb{R}} \Big| \int_{-\infty}^N \hat{f}(\xi) e^{i2\pi\xi x} d\xi \Big|.$$

or the linearized version (pick "worst" N = N(x) for every x)

$$Cf(x) = \int_{-\infty}^{N(x)} \hat{f}(\xi) e^{i2\pi\xi x} d\xi$$

uniformly over all measurable $N(\cdot)$.

From dense subset to all functions, need to control:

$$S^*f(x) = \sup_{N \in \mathbb{R}} \Big| \int_{-\infty}^N \hat{f}(\xi) e^{i2\pi\xi x} d\xi \Big|.$$

or the linearized version (pick "worst" N = N(x) for every x)

$$Cf(x) = \int_{-\infty}^{N(x)} \hat{f}(\xi) e^{i2\pi\xi x} d\xi$$

uniformly over all measurable $N(\cdot)$.

To prove: $C: L^p(\mathbb{R}; X) \to L^{p,\infty}(\mathbb{R}; X)$.

Phase plane $\mathbb{R}^2 = \mathbb{R} \times \mathbb{R}$ (time \times frequency).

Phase plane $\mathbb{R}^2 = \mathbb{R} \times \mathbb{R}$ (time \times frequency).

Tile: $P = I \times \omega = I_P \times \omega_P = \text{dyadic rectangle of area } 1.$

Phase plane $\mathbb{R}^2 = \mathbb{R} \times \mathbb{R}$ (time \times frequency).

Tile: $P = I \times \omega = I_P \times \omega_P = \text{dyadic rectangle of area } 1.$

 $P = P_d \cup P_u$ — down- and up-tiles, dyadic rectangles of area $\frac{1}{2}$.

Phase plane $\mathbb{R}^2 = \mathbb{R} \times \mathbb{R}$ (time \times frequency).

Tile: $P = I \times \omega = I_P \times \omega_P = \text{dyadic rectangle of area } 1.$

 $P = P_d \cup P_u$ — down- and up-tiles, dyadic rectangles of area $\frac{1}{2}$.

Wavepacket ϕ_P :

$$\operatorname{supp} \hat{\phi}_P \subseteq \omega_{P_d}, \qquad \operatorname{supp} \phi_P \underset{\approx}{\subset} I_P \qquad \text{(rapid decay outside)}.$$

Carleson operator

$$Cf(x) = \int_{-\infty}^{N(x)} \hat{f}(\xi) e^{i2\pi x \xi} d\xi$$

= average (over translated, dilated dyadic systems) of model operators

Carleson operator

$$Cf(x) = \int_{-\infty}^{N(x)} \hat{f}(\xi) e^{i2\pi x \xi} d\xi$$

= average (over translated, dilated dyadic systems) of model operators

$$Af(x) = \sum_{\substack{P \in \mathbb{P} \\ \omega_{P_{u}} \ni N(x)}} \langle f, \phi_{P} \rangle \phi_{P}(x).$$

Carleson operator

$$Cf(x) = \int_{-\infty}^{N(x)} \hat{f}(\xi) e^{i2\pi x \xi} d\xi$$

= average (over translated, dilated dyadic systems) of model operators

$$Af(x) = \sum_{\substack{P \in \mathbb{P} \\ \omega_{P_{u}} \ni N(x)}} \langle f, \phi_{P} \rangle \phi_{P}(x).$$

 \mathbb{P} = all tiles, or an arbitrary finite subset.

Carleson operator

$$Cf(x) = \int_{-\infty}^{N(x)} \hat{f}(\xi) e^{i2\pi x \xi} d\xi$$

= average (over translated, dilated dyadic systems) of model operators

$$Af(x) = \sum_{\substack{P \in \mathbb{P} \\ \omega_{P_{u}} \ni N(x)}} \langle f, \phi_{P} \rangle \phi_{P}(x).$$

 \mathbb{P} = all tiles, or an arbitrary finite subset.

To prove: $A: L^p(\mathbb{R}; X) \to L^{p,\infty}(\mathbb{R}; X)$.

"Iterated Calderón–Zygmund / atomic decomposition":

 Split P into a good part (controlled 'size') and a bad part (controlled 'support' + 'cancellation').
 P = B₀ ∪ G₀.

- Split $\mathbb P$ into a good part (controlled 'size') and a bad part (controlled 'support' + 'cancellation'). $\mathbb P = \mathbb B_0 \cup \mathbb G_0$.
- Then split the good part again, and iterate.

$$\mathbb{P} = \mathbb{B}_0 \cup \mathbb{B}_1 \cup \mathbb{G}_1$$

- Split $\mathbb P$ into a good part (controlled 'size') and a bad part (controlled 'support' + 'cancellation'). $\mathbb P = \mathbb B_0 \cup \mathbb G_0$.
- Then split the good part again, and iterate. $\mathbb{P} = \mathbb{B}_0 \cup \mathbb{B}_1 \cup \mathbb{G}_1 = \mathbb{B}_0 \cup \mathbb{B}_1 \cup \mathbb{B}_2 \cup \mathbb{G}_2$

- Split $\mathbb P$ into a good part (controlled 'size') and a bad part (controlled 'support' + 'cancellation'). $\mathbb P = \mathbb B_0 \cup \mathbb G_0$.
- Then split the good part again, and iterate. $\mathbb{P} = \mathbb{B}_0 \cup \mathbb{B}_1 \cup \mathbb{G}_1 = \mathbb{B}_0 \cup \mathbb{B}_1 \cup \mathbb{B}_2 \cup \mathbb{G}_2 = \mathbb{B}_0 \cup \mathbb{B}_1 \cup \mathbb{B}_2 \cup \mathbb{B}_3 \cup \mathbb{G}_3$

- Split $\mathbb P$ into a good part (controlled 'size') and a bad part (controlled 'support' + 'cancellation'). $\mathbb P = \mathbb B_0 \cup \mathbb G_0$.
- Then split the good part again, and iterate. $\mathbb{P} = \mathbb{B}_0 \cup \mathbb{B}_1 \cup \mathbb{G}_1 = \mathbb{B}_0 \cup \mathbb{B}_1 \cup \mathbb{B}_2 \cup \mathbb{G}_2 = \mathbb{B}_0 \cup \mathbb{B}_1 \cup \mathbb{B}_2 \cup \mathbb{B}_3 \cup \mathbb{G}_3$
- Eventually get a series of 'atoms' (controlled 'size' + 'support' + 'cancellation')

Key concepts

Key concepts

Definition (Trees – support & cancellation)

Definition (Trees – support & cancellation)

A set \mathbb{T} of tiles is a tree (up-tree) if:

Definition (Trees – support & cancellation)

A set \mathbb{T} of tiles is a tree (up-tree) if: \exists a top tile T s.t. $\forall P \in \mathbb{T}$:

$$I_P \subseteq I_T$$
 & $\omega_P \supseteq \omega_T$ $(\omega_{P_u} \supseteq \omega_{T_u}).$

Definition (Trees – support & cancellation)

A set \mathbb{T} of tiles is a tree (up-tree) if: \exists a top tile T s.t. $\forall P \in \mathbb{T}$:

$$I_P \subseteq I_T$$
 & $\omega_P \supseteq \omega_T$ $(\omega_{P_u} \supseteq \omega_{T_u}).$

• 'support': ϕ_P decays off I_T

Definition (Trees – support & cancellation)

A set \mathbb{T} of tiles is a tree (up-tree) if: \exists a top tile T s.t. $\forall P \in \mathbb{T}$:

$$I_P \subseteq I_T$$
 & $\omega_P \supseteq \omega_T$ $(\omega_{P_u} \supseteq \omega_{T_u}).$

- 'support': ϕ_P decays off I_T
- 'cancellation': ϕ_P 's almost orthogonal for $P \in \mathbb{T}$, an up-tree

Definition (Trees – support & cancellation)

A set \mathbb{T} of tiles is a tree (up-tree) if: \exists a top tile T s.t. $\forall P \in \mathbb{T}$:

$$I_P \subseteq I_T$$
 & $\omega_P \supseteq \omega_T$ $(\omega_{P_u} \supseteq \omega_{T_u}).$

- 'support': ϕ_P decays off I_T
- 'cancellation': ϕ_P 's almost orthogonal for $P \in \mathbb{T}$, an up-tree

Definition (Energy – size)

Definition (Trees – support & cancellation)

A set \mathbb{T} of tiles is a tree (up-tree) if: \exists a top tile T s.t. $\forall P \in \mathbb{T}$:

$$I_P \subseteq I_T$$
 & $\omega_P \supseteq \omega_T$ $(\omega_{P_u} \supseteq \omega_{T_u}).$

- 'support': ϕ_P decays off I_T
- 'cancellation': ϕ_P 's almost orthogonal for $P \in \mathbb{T}$, an up-tree

Definition (Energy - size)

$$\mathsf{energy}(\mathbb{P}) := \mathsf{sup}\{\Delta(\mathbb{T}) : \mathbb{T} \subseteq \mathbb{P} \; \mathsf{up\text{-}tree}\}$$

Definition (Trees – support & cancellation)

A set \mathbb{T} of tiles is a tree (up-tree) if: \exists a top tile T s.t. $\forall P \in \mathbb{T}$:

$$I_P \subseteq I_T$$
 & $\omega_P \supseteq \omega_T$ $(\omega_{P_u} \supseteq \omega_{T_u}).$

- 'support': ϕ_P decays off I_T
- 'cancellation': ϕ_P 's almost orthogonal for $P \in \mathbb{T}$, an up-tree

Definition (Energy – size)

$$\mathsf{energy}(\mathbb{P}) := \mathsf{sup}\{\Delta(\mathbb{T}) : \mathbb{T} \subseteq \mathbb{P} \ \mathsf{up\text{-}tree}\} \qquad \mathsf{where}$$

$$\Delta(\mathbb{T}) := \left(\frac{1}{|I_T|} \sum_{P \in \mathbb{T}} |\langle f, \phi_P \rangle|^2\right)^{1/2} \approx \frac{1}{|I_T|^{1/2}} \left\| \sum_{P \in \mathbb{T}} \langle f, \phi_P \rangle \phi_P \right\|_{L^2}$$

Any \mathbb{P} with $\mathscr{E} := \mathsf{energy}(\mathbb{P})$ splits as $\mathbb{P} = \mathbb{P}_{\mathsf{good}} \cup \mathbb{P}_{\mathsf{bad}}$,

Any \mathbb{P} with $\mathscr{E} := \text{energy}(\mathbb{P})$ splits as $\mathbb{P} = \mathbb{P}_{good} \cup \mathbb{P}_{bad}$, where

$$\mathsf{energy}(\mathbb{P}_{\mathsf{good}}) := \mathsf{sup}\{\Delta(\mathbb{T}) : \mathbb{T} \subseteq \mathbb{P}_{\mathsf{good}}\} \leq \tfrac{1}{2}\mathscr{E},$$

Any \mathbb{P} with $\mathscr{E} := \mathsf{energy}(\mathbb{P})$ splits as $\mathbb{P} = \mathbb{P}_{\mathsf{good}} \cup \mathbb{P}_{\mathsf{bad}}$, where

$$\mathsf{energy}(\mathbb{P}_{\mathsf{good}}) := \mathsf{sup}\{\Delta(\mathbb{T}) : \mathbb{T} \subseteq \mathbb{P}_{\mathsf{good}}\} \leq \tfrac{1}{2}\mathscr{E},$$

and
$$\mathbb{P}_{\mathsf{bad}} = \bigcup_{j} \mathbb{T}_{j}, \qquad \sum_{j} |I_{\mathcal{T}_{j}}| \lesssim \mathscr{E}^{-2} \|f\|_{L^{2}}^{2}.$$

Any \mathbb{P} with $\mathscr{E} := \mathsf{energy}(\mathbb{P})$ splits as $\mathbb{P} = \mathbb{P}_{\mathsf{good}} \cup \mathbb{P}_{\mathsf{bad}}$, where

$$\mathsf{energy}(\mathbb{P}_\mathsf{good}) := \mathsf{sup}\{\Delta(\mathbb{T}) : \mathbb{T} \subseteq \mathbb{P}_\mathsf{good}\} \leq \tfrac{1}{2}\mathscr{E},$$

and
$$\mathbb{P}_{\mathsf{bad}} = \bigcup_{j} \mathbb{T}_{j}, \qquad \sum_{j} |I_{\mathcal{T}_{j}}| \lesssim \mathscr{E}^{-2} \|f\|_{L^{2}}^{2}.$$

Idea: Pick the maximal $\mathbb{T}_j \subseteq \mathbb{P}$ with $\Delta(\mathbb{T}_j) > \frac{1}{2}\mathscr{E}$;

Any \mathbb{P} with $\mathscr{E} := \text{energy}(\mathbb{P})$ splits as $\mathbb{P} = \mathbb{P}_{good} \cup \mathbb{P}_{bad}$, where

$$\mathsf{energy}(\mathbb{P}_{\mathsf{good}}) := \mathsf{sup}\{\Delta(\mathbb{T}) : \mathbb{T} \subseteq \mathbb{P}_{\mathsf{good}}\} \leq \tfrac{1}{2}\mathscr{E},$$

and
$$\mathbb{P}_{\mathsf{bad}} = \bigcup_{i} \mathbb{T}_{j}, \qquad \sum_{i} |I_{\mathcal{T}_{j}}| \lesssim \mathscr{E}^{-2} \|f\|_{L^{2}}^{2}.$$

Idea: Pick the maximal $\mathbb{T}_j \subseteq \mathbb{P}$ with $\Delta(\mathbb{T}_j) > \frac{1}{2}\mathscr{E}$; then

$$(\frac{1}{2}\mathscr{E})^{2} \sum_{j} |I_{\mathcal{T}_{j}}| \leq \sum_{j} |I_{\mathcal{T}_{j}}| \Delta(\mathbb{T}_{j})^{2} = \sum_{j} \left\| \sum_{P \in \mathbb{T}_{j}} \langle f, \phi_{P} \rangle \phi_{P} \right\|_{L^{2}}^{2}$$

$$\lesssim \|f\|_{L^{2}}^{2} + \left(\sup_{P \in \mathbb{P}} \frac{|\langle f, \phi_{P} \rangle|}{|I_{P}|^{1/2}} \sqrt{\sum_{j} |I_{\mathcal{T}_{j}}|} \right)^{2/3} \|f\|_{L^{2}}^{4/3}$$

$$\lesssim \|f\|_{L^{2}}^{2} + \left(\mathscr{E}^{2} \sum_{j} |I_{\mathcal{T}_{j}}| \right)^{1/3} \|f\|_{L^{2}}^{4/3}$$

 $L^2(\mathbb{R};X)$ has no special role among $L^p(\mathbb{R};X)$.

 $L^2(\mathbb{R};X)$ has no special role among $L^p(\mathbb{R};X)$. Any L^q -energy

$$\mathsf{energy}(\mathbb{P}) = \sup_{\mathbb{T} \subseteq \mathbb{P}} \Delta(\mathbb{T}), \quad \Delta(\mathbb{T}) := |I_T|^{-1/q} \Big\| \sum_{P \in \mathbb{T}} \langle f, \phi_P \rangle \phi_P \Big\|_{L^q(\mathbb{R};X)}$$

would do,

 $L^2(\mathbb{R};X)$ has no special role among $L^p(\mathbb{R};X)$. Any L^q -energy

$$\mathsf{energy}(\mathbb{P}) = \sup_{\mathbb{T} \subseteq \mathbb{P}} \Delta(\mathbb{T}), \quad \Delta(\mathbb{T}) := |I_{\mathcal{T}}|^{-1/q} \bigg\| \sum_{P \in \mathbb{T}} \langle f, \phi_P \rangle \phi_P \bigg\|_{L^q(\mathbb{R}; X)}$$

would do, as long as

$$\sum_{j} \Big\| \sum_{P \in \mathbb{T}_{j}} \langle f, \phi_{P} \rangle \phi_{P} \Big\|_{L^{q}(\mathbb{R}; X)}^{q} \lesssim \|f\|_{L^{q}(\mathbb{R}; X)}^{q} + \text{``absorbable'' correction}$$

 $L^2(\mathbb{R};X)$ has no special role among $L^p(\mathbb{R};X)$. Any L^q -energy

$$\mathsf{energy}(\mathbb{P}) = \sup_{\mathbb{T} \subseteq \mathbb{P}} \Delta(\mathbb{T}), \quad \Delta(\mathbb{T}) := |I_T|^{-1/q} \Big\| \sum_{P \in \mathbb{T}} \langle f, \phi_P \rangle \phi_P \Big\|_{L^q(\mathbb{R}; X)}$$

would do, as long as

$$\sum_{j} \left\| \sum_{P \in \mathbb{T}_{j}} \langle f, \phi_{P} \rangle \phi_{P} \right\|_{L^{q}(\mathbb{R}; X)}^{q} \lesssim \|f\|_{L^{q}(\mathbb{R}; X)}^{q} + \text{"absorbable" correction}$$

Ok if $\#\{\text{trees }\mathbb{T}_j\}=1$,

 $L^2(\mathbb{R};X)$ has no special role among $L^p(\mathbb{R};X)$. Any L^q -energy

$$\mathsf{energy}(\mathbb{P}) = \sup_{\mathbb{T} \subseteq \mathbb{P}} \Delta(\mathbb{T}), \quad \Delta(\mathbb{T}) := |I_{\mathcal{T}}|^{-1/q} \Big\| \sum_{P \in \mathbb{T}} \langle f, \phi_P \rangle \phi_P \Big\|_{L^q(\mathbb{R}; X)}$$

would do, as long as

$$\sum_{j} \left\| \sum_{P \in \mathbb{T}_{j}} \langle f, \phi_{P} \rangle \phi_{P} \right\|_{L^{q}(\mathbb{R}; X)}^{q} \lesssim \|f\|_{L^{q}(\mathbb{R}; X)}^{q} + \text{``absorbable'' correction'}$$

Ok if $\#\{\text{trees }\mathbb{T}_j\}=1$, since $f\mapsto \sum_{P\in\mathbb{T}}\langle f,\phi_P\rangle\phi_P$ is a Calderón–Zygmund operator \Rightarrow bounded on $L^q(\mathbb{R};X)$ $(X\in\mathsf{UMD})$

$$\mathscr{T}f:=\Big\{A_{\mathbb{T}_j}f\Big\}_j,\qquad A_{\mathbb{T}}f:=\sum_{P\in\mathbb{T}}\langle f,\phi_P\rangle\phi_P$$

$$\mathscr{T}f := \left\{A_{\mathbb{T}_j}f\right\}_j, \qquad A_{\mathbb{T}}f := \sum_{P \in \mathbb{T}} \langle f, \phi_P \rangle \phi_P$$

$$A_{\mathbb{T}} \in CZO \Rightarrow A_{\mathbb{T}} : L^{\infty}(\mathbb{R}; X) \to BMO(\mathbb{R}; X), \quad X \in UMD$$

 $\Rightarrow \mathcal{T} : L^{\infty}(\mathbb{R}; X) \to \ell^{\infty}(BMO(\mathbb{R}; X))$

$$\mathscr{T}f := \left\{A_{\mathbb{T}_j}f\right\}_j, \qquad A_{\mathbb{T}}f := \sum_{P \in \mathbb{T}} \langle f, \phi_P \rangle \phi_P$$

$$A_{\mathbb{T}} \in CZO \Rightarrow A_{\mathbb{T}} : L^{\infty}(\mathbb{R}; X) \to BMO(\mathbb{R}; X), \quad X \in UMD$$

 $\Rightarrow \mathcal{T} : L^{\infty}(\mathbb{R}; X) \to \ell^{\infty}(BMO(\mathbb{R}; X))$

If we had

$$\mathscr{T}: L^2(\mathbb{R}; H) \to \ell^2(L^2(\mathbb{R}; H)), \quad H \in \mathsf{Hilbert},$$

(but we don't, except in the Walsh model)

$$\mathscr{T}f := \left\{A_{\mathbb{T}_j}f\right\}_j, \qquad A_{\mathbb{T}}f := \sum_{P \in \mathbb{T}} \langle f, \phi_P \rangle \phi_P$$

$$A_{\mathbb{T}} \in CZO \Rightarrow A_{\mathbb{T}} : L^{\infty}(\mathbb{R}; X) \to BMO(\mathbb{R}; X), \quad X \in UMD$$

 $\Rightarrow \mathcal{T} : L^{\infty}(\mathbb{R}; X) \to \ell^{\infty}(BMO(\mathbb{R}; X))$

If we had

$$\mathscr{T}: L^2(\mathbb{R}; H) \to \ell^2(L^2(\mathbb{R}; H)), \quad H \in \mathsf{Hilbert},$$

(but we don't, except in the Walsh model) then

$$\mathscr{T}: L^q(\mathbb{R}; Y) \to \ell^q(L^q(\mathbb{R}; Y)), \quad Y = [X, H]_\theta, \quad q = 2/\theta.$$

Solution

Recall:

$$\sum_{j} \left\| \sum_{P \in \mathbb{T}_{j}} \langle f, \phi_{P} \rangle \phi_{P} \right\|_{L^{2}}^{2} \lesssim \|f\|_{L^{2}}^{2} + \left(\sup_{P \in \mathbb{P}} \frac{|\langle f, \phi_{P} \rangle|}{|I_{P}|^{1/2}} \sqrt{\sum_{j} |I_{T_{j}}|} \right)^{2/3} \|f\|_{L^{2}}^{4/3}$$
$$\lesssim \|f\|_{L^{2}}^{2} + \left(\|f\|_{L^{\infty}} \sqrt{\sum_{j} |I_{T_{j}}|} \right)^{2/3} \|f\|_{L^{2}}^{4/3}$$

Solution

Recall:

$$\sum_{j} \left\| \sum_{P \in \mathbb{T}_{j}} \langle f, \phi_{P} \rangle \phi_{P} \right\|_{L^{2}}^{2} \lesssim \|f\|_{L^{2}}^{2} + \left(\sup_{P \in \mathbb{P}} \frac{|\langle f, \phi_{P} \rangle|}{|I_{P}|^{1/2}} \sqrt{\sum_{j} |I_{T_{j}}|} \right)^{2/3} \|f\|_{L^{2}}^{4/3} \\
\lesssim \|f\|_{L^{2}}^{2} + \left(\|f\|_{L^{\infty}} \sqrt{\sum_{j} |I_{T_{j}}|} \right)^{2/3} \|f\|_{L^{2}}^{4/3}$$

Thus

$$\mathcal{T}: L^{\infty}(\mathbb{R}; X) \to \ell^{\infty}(\mathsf{BMO}(\mathbb{R}; X)),$$

$$\mathcal{T}: L^{2}(\mathbb{R}; H) \cap L^{\infty}(\mathbb{R}; H) \to \ell^{2}(L^{2}(\mathbb{R}; X))$$

Solution

Recall:

$$\sum_{j} \left\| \sum_{P \in \mathbb{T}_{j}} \langle f, \phi_{P} \rangle \phi_{P} \right\|_{L^{2}}^{2} \lesssim \|f\|_{L^{2}}^{2} + \left(\sup_{P \in \mathbb{P}} \frac{\left| \langle f, \phi_{P} \rangle \right|}{|I_{P}|^{1/2}} \sqrt{\sum_{j} |I_{T_{j}}|} \right)^{2/3} \|f\|_{L^{2}}^{4/3}$$
$$\lesssim \|f\|_{L^{2}}^{2} + \left(\|f\|_{L^{\infty}} \sqrt{\sum_{j} |I_{T_{j}}|} \right)^{2/3} \|f\|_{L^{2}}^{4/3}$$

Thus

$$\mathscr{T}: L^{\infty}(\mathbb{R}; X) \to \ell^{\infty}(\mathsf{BMO}(\mathbb{R}; X)),$$

 $\mathscr{T}: L^{2}(\mathbb{R}; H) \cap L^{\infty}(\mathbb{R}; H) \to \ell^{2}(L^{2}(\mathbb{R}; X))$

and then

$$\mathscr{T}: L^q(\mathbb{R}; Y) \cap L^\infty(\mathbb{R}; Y) \to \ell^q(L^q(\mathbb{R}; Y)), \quad Y = [X, H]_\theta.$$

$$\mathscr{E}\left(\sum_{j}|I_{\mathcal{T}_{j}}|\right)^{1/q} \lesssim \left(\sum_{j}\left\|\sum_{P\in\mathbb{T}_{j}}\langle f,\phi_{P}\rangle\phi_{P}\right\|_{L^{q}(\mathbb{R};Y)}^{q}\right)^{1/q}$$

$$\stackrel{\bigstar}{\lesssim} \|f\|_{L^{q}(\mathbb{R};Y)} + \left(\|f\|_{L^{\infty}(\mathbb{R};Y)}\left[\sum_{j}|I_{\mathcal{T}_{j}}|\right]^{1/q}\right)^{1-\alpha}\|f\|_{L^{q}(\mathbb{R};Y)}^{\alpha}, \quad \alpha = \frac{2}{3}.$$

$$\lesssim |F|^{1/q} + \left(\sum_{j}|I_{\mathcal{T}_{j}}|\right)^{(1-\alpha)/q}|F|^{\alpha/q}, \quad \|f\|_{L^{\infty}(F;Y)} \leq 1,$$

$$\mathcal{E}\left(\sum_{j}|I_{\mathcal{T}_{j}}|\right)^{1/q} \lesssim \left(\sum_{j}\left\|\sum_{P\in\mathbb{T}_{j}}\langle f,\phi_{P}\rangle\phi_{P}\right\|_{L^{q}(\mathbb{R};Y)}^{q}\right)^{1/q}
\stackrel{\star}{\lesssim} \|f\|_{L^{q}(\mathbb{R};Y)} + \left(\|f\|_{L^{\infty}(\mathbb{R};Y)}\left[\sum_{j}|I_{\mathcal{T}_{j}}|\right]^{1/q}\right)^{1-\alpha}\|f\|_{L^{q}(\mathbb{R};Y)}^{\alpha}, \quad \alpha = \frac{2}{3}.
\lesssim |F|^{1/q} + \left(\sum_{j}|I_{\mathcal{T}_{j}}|\right)^{(1-\alpha)/q}|F|^{\alpha/q}, \quad \|f\|_{L^{\infty}(F;Y)} \leq 1,
\Rightarrow \sum_{i}|I_{\mathcal{T}_{j}}| \lesssim \max\left\{\mathcal{E}^{-q},\mathcal{E}^{-q/\alpha}\right\}|F|,$$

$$\mathscr{E}\left(\sum_{j}|I_{T_{j}}|\right)^{1/q} \lesssim \left(\sum_{j}\left\|\sum_{P\in\mathbb{T}_{j}}\langle f,\phi_{P}\rangle\phi_{P}\right\|_{L^{q}(\mathbb{R};Y)}^{q}\right)^{1/q}$$

$$\stackrel{\star}{\lesssim} \|f\|_{L^{q}(\mathbb{R};Y)} + \left(\|f\|_{L^{\infty}(\mathbb{R};Y)}\left[\sum_{j}|I_{T_{j}}|\right]^{1/q}\right)^{1-\alpha}\|f\|_{L^{q}(\mathbb{R};Y)}^{\alpha}, \quad \alpha = \frac{2}{3}$$

$$\lesssim |F|^{1/q} + \left(\sum_{j}|I_{T_{j}}|\right)^{(1-\alpha)/q}|F|^{\alpha/q}, \quad \|f\|_{L^{\infty}(F;Y)} \leq 1,$$

$$\Rightarrow \sum_{i}|I_{T_{j}}| \lesssim \max\left\{\mathscr{E}^{-q},\mathscr{E}^{-q/\alpha}\right\}|F|,$$

such f suffice by known reductions!! ("restricted weak type")

$$\mathscr{E}\left(\sum_{j}|I_{T_{j}}|\right)^{1/q} \lesssim \left(\sum_{j}\left\|\sum_{P\in\mathbb{T}_{j}}\langle f,\phi_{P}\rangle\phi_{P}\right\|_{L^{q}(\mathbb{R};Y)}^{q}\right)^{1/q}$$

$$\stackrel{\star}{\lesssim} \|f\|_{L^{q}(\mathbb{R};Y)} + \left(\|f\|_{L^{\infty}(\mathbb{R};Y)}\left[\sum_{j}|I_{T_{j}}|\right]^{1/q}\right)^{1-\alpha}\|f\|_{L^{q}(\mathbb{R};Y)}^{\alpha}, \quad \alpha = \frac{2}{3}$$

$$\lesssim |F|^{1/q} + \left(\sum_{j}|I_{T_{j}}|\right)^{(1-\alpha)/q}|F|^{\alpha/q}, \quad \|f\|_{L^{\infty}(F;Y)} \leq 1,$$

$$\Rightarrow \sum_{i}|I_{T_{j}}| \lesssim \max\left\{\mathscr{E}^{-q},\mathscr{E}^{-q/\alpha}\right\}|F|,$$

such f suffice by known reductions!! ("restricted weak type") Bit more work: $\alpha = 1 - \varepsilon$, probably important for vector-valued BHT.

$$\mathcal{E}\left(\sum_{j}|I_{T_{j}}|\right)^{1/q} \lesssim \left(\sum_{j}\left\|\sum_{P\in\mathbb{T}_{j}}\langle f,\phi_{P}\rangle\phi_{P}\right\|_{L^{q}(\mathbb{R};Y)}^{q}\right)^{1/q}
\stackrel{\star}{\lesssim} \|f\|_{L^{q}(\mathbb{R};Y)} + \left(\|f\|_{L^{\infty}(\mathbb{R};Y)}\left[\sum_{j}|I_{T_{j}}|\right]^{1/q}\right)^{1-\alpha}\|f\|_{L^{q}(\mathbb{R};Y)}^{\alpha}, \quad \alpha = \frac{2}{3}.
\lesssim |F|^{1/q} + \left(\sum_{j}|I_{T_{j}}|\right)^{(1-\alpha)/q}|F|^{\alpha/q}, \quad \|f\|_{L^{\infty}(F;Y)} \leq 1,
\Rightarrow \sum_{j}|I_{T_{j}}| \lesssim \max\left\{\mathcal{E}^{-q},\mathcal{E}^{-q/\alpha}\right\}|F|,$$

such f suffice by known reductions!! ("restricted weak type")

Bit more work: $\alpha = 1 - \varepsilon$, probably important for vector-valued BHT. If \bigstar holds $\forall \alpha < 1$, we say that X has Fourier tile-type α

If \bigstar holds $\forall \alpha < 1$, we say that X has Fourier tile-type q.

$$\sum_{j} \left\| \sum_{P \in \mathbb{T}_{j}} \langle f, \phi_{P} \rangle \phi_{P} \right\|_{q}^{q} \lesssim \|f\|_{q}^{q} + \left(\|f\|_{\infty}^{q} \sum_{j} |I_{\mathcal{T}_{j}}| \right)^{1-\alpha} \|f\|_{q}^{q\alpha}$$

 $\forall \alpha \in (0,1), \ \forall f \in L^q(\mathbb{R};X) \cap L^\infty(\mathbb{R};X)$:

$$\sum_{j} \left\| \sum_{P \in \mathbb{T}_{j}} \langle f, \phi_{P} \rangle \phi_{P} \right\|_{q}^{q} \lesssim \|f\|_{q}^{q} + \left(\|f\|_{\infty}^{q} \sum_{j} |I_{T_{j}}| \right)^{1-\alpha} \|f\|_{q}^{q\alpha}$$

 A new Banach space property resembling Rademacher/martingale/Fourier (co)type.

$$\sum_{j} \left\| \sum_{P \in \mathbb{T}_{j}} \langle f, \phi_{P} \rangle \phi_{P} \right\|_{q}^{q} \lesssim \|f\|_{q}^{q} + \left(\|f\|_{\infty}^{q} \sum_{j} |I_{T_{j}}| \right)^{1-\alpha} \|f\|_{q}^{q\alpha}$$

- A new Banach space property resembling Rademacher/martingale/Fourier (co)type.
- $X = [Y, H]_{\theta}$ (Y UMD, H Hilbert) $\Rightarrow X$ has Fourier tile-type $q = 2/\theta \in [2, \infty)$.

$$\sum_{j} \left\| \sum_{P \in \mathbb{T}_{j}} \langle f, \phi_{P} \rangle \phi_{P} \right\|_{q}^{q} \lesssim \|f\|_{q}^{q} + \left(\|f\|_{\infty}^{q} \sum_{j} |I_{T_{j}}| \right)^{1-\alpha} \|f\|_{q}^{q\alpha}$$

- A new Banach space property resembling Rademacher/martingale/Fourier (co)type.
- $X = [Y, H]_{\theta}$ (Y UMD, H Hilbert) $\Rightarrow X$ has Fourier tile-type $q = 2/\theta \in [2, \infty)$.
- X has any Fourier tile-type $q \in [2, \infty)$ \Rightarrow Carleson's theorem in $L^p(\mathbb{T}; X) \ \forall p > 1$ (bit easier if p > q)

$$\sum_{j} \left\| \sum_{P \in \mathbb{T}_{j}} \langle f, \phi_{P} \rangle \phi_{P} \right\|_{q}^{q} \lesssim \|f\|_{q}^{q} + \left(\|f\|_{\infty}^{q} \sum_{j} |I_{T_{j}}| \right)^{1-\alpha} \|f\|_{q}^{q\alpha}$$

- A new Banach space property resembling Rademacher/martingale/Fourier (co)type.
- $X = [Y, H]_{\theta}$ (Y UMD, H Hilbert) $\Rightarrow X$ has Fourier tile-type $q = 2/\theta \in [2, \infty)$.
- X has any Fourier tile-type $q \in [2, \infty)$ \Rightarrow Carleson's theorem in $L^p(\mathbb{T}; X) \ \forall p > 1$ (bit easier if p > q)
- Looks like: Tile-type exponent q
 <≈> Admissible r for an r-variation Carleson theorem à la Oberlin-Seeger-Tao-Thiele-Wright (work in progress by I. Parissis in the Walsh model).

Thank you!

(Post scriptum in another file.)