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Introduction

In this talk we consider the smoothing properties of certain dispersive
PDE with periodic boundary conditions:{

ut + L(u) + N(u) = 0, x ∈ T = R/(2πZ), t ∈ R,
u(x ,0) = g(x) ∈ Hs(T).

Duhamel’s formula:

u(t) = e−Ltg −
∫ t

0
e−L(t−t ′)N(u(t ′))dt ′.

Question: Is the nonlinear Duhamel term smoother than the initial data
(is it in Hs+a for some a > 0)?
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Introduction

The answer is affirmative for the Korteweg–de Vries (KdV) equation
(with a smooth space-time potential V ),{

ut + uxxx + uux + (Vu)x = 0, x ∈ T, t ∈ R,
u(x ,0) = g(x) ∈ Hs(T),

for modified KdV:{
ut + uxxx − u2ux = 0, x ∈ T, t ∈ R,

u(x ,0) = g(x) ∈ Hs(T),
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Introduction

and for the Zakharov system which consists of a complex field u
(Schrödinger part) and a real field n (wave part):

iut + αuxx = nu, x ∈ T, t ∈ R,
β−2ntt − nxx = (|u|2)xx ,
u(x ,0) = u0(x) ∈ Hs0(T),
n(x ,0) = n0(x) ∈ Hs1(T), nt (x ,0) = n1(x) ∈ Hs1−1(T),

B. E., N. Tzirakis, Global smoothing for the periodic KdV evolution,
arXiv:1103.4190

B. E., N. Tzirakis, Long time dynamics for forced and weakly damped
KdV on the torus, arXiv:1108.3358

B. E., N. Tzirakis, Smoothing and global attractors for the Zakharov
system on the torus, arXiv:1202.5268
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KdV equation Generalities

The KdV equation,

ut + uxxx + uux = 0
u(x ,0) = g(x), x ∈ R or T, t ∈ R, u(x , t) ∈ R,

describes surface water waves in the small amplitude limit of long
waves in shallow water. It is completely integrable and has soliton
solutions φ(x − vt), both on R and on T.

• Infinitely many conserved quantities:∫
u(x ,0)dx =

∫
u(x , t)dx , momentum cons.,∫

u2(x ,0)dx =

∫
u2(x , t)dx , energy cons.

• On T, one can work with mean-zero solutions by Galilean invariance:

u(x , t)↔ u(x − ct , t)− c.
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KdV equation Linear Part and Dispersion

• Duhamel’s formula:

u(x , t) = e−t∂3
x g(x)−

∫ t

0
e−(t−t ′)∂3

x [uux ]dt ′,

e−t∂3
x g(x) =

∑
k∈Z

eikxeik3t ĝ(k), ĝ(k) =
1

2π

∫ 2π

0
g(x)e−ikxdx ,

• ‖e−t∂3
x g‖Hs = ‖g‖Hs =

√∑
k∈Z |ĝ(k)|2(1 + k2)s.

• g(x) = eiJx =⇒ e−t∂3
x g(x) = eiJxeiJ3t = g(x + J2t).

Frequency J moves with velocity −J2.

• Dispersion: different frequency components of the initial data (wave)
propagate with different velocities.

• Problem: Integration in t should be converted to derivative gain in x
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KdV equation Linear Part and Dispersion

• On R, high frequency components escape to −∞ very fast. This
causes smoothing:∥∥‖∂xe−t∂3

x g‖L2
t

∥∥
L∞x
≤ C‖g‖L2(R) (Kato smoothing),

and decay: ∥∥e−t∂3
x g
∥∥

L∞x
≤ C|t |−1/3‖g‖L1(R).

• On T, there is no decay or derivative gain since the solution cannot
escape to∞. A smoothing effect due to averaging:∥∥e−t∂3

x g
∥∥

L4
x,t∈T
≤ C‖g‖L2(T) (Zygmund).

• Bourgain: Hε(T)→ L6(T2).
Conjecture: Hε(T)→ L8(T2).
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Well-posedness Results

• Bona, Smith (75): LWP in Hs(T), s > 3/2. GWP for s ≥ 2.

• Bourgain (93): GWP in Hs(T), s ≥ 0.

• Kenig, Ponce, Vega (96): LWP in Hs(T), s ≥ −1
2 .

• Colliander, Keel, Staffilani, Takaoka, Tao (02): GWP in Hs(T),
s ≥ −1

2 .

• Kappeler, Topalov (04): GWP in Hs(T), s ≥ −1.
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Well-posedness Results

• In 2010, Babin, Ilyin and Titi reproved Bourgain’s result using
“differentiation by parts”:

dx
dt

= eiΩt f (x), Ω is real and large.

We have

dx
dt

=
d
dt

(eiΩt f (x)

iΩ

)
− eiΩt

iΩ
f ′(x)

dx
dt

d
dt

(
x − eiΩt f (x)

iΩ

)
= −e2iΩt

iΩ
f ′(x)f (x).

If f and f ′ are bounded, we get

x(1)− x(0) = O(1/Ω).
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Erdoğan (UIUC) Smoothing for KdV 06/11/12 9 / 34



Well-posedness Results

• In 2010, Babin, Ilyin and Titi reproved Bourgain’s result using
“differentiation by parts”:

dx
dt

= eiΩt f (x), Ω is real and large.

We have

dx
dt

=
d
dt

(eiΩt f (x)

iΩ

)
− eiΩt

iΩ
f ′(x)

dx
dt

d
dt

(
x − eiΩt f (x)

iΩ

)
= −e2iΩt

iΩ
f ′(x)f (x).

If f and f ′ are bounded, we get

x(1)− x(0) = O(1/Ω).
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Well-posedness Results

Bourgain’s X s,b spaces

ut + uxxx = 0 =⇒ û(k , τ)[iτ − ik3] = 0 =⇒ supp (û) ⊂ {τ = k3}.

Idea: space-time Fourier support of the nonlinear solution is
concentrated around this set.

‖u‖X s,b =
∥∥〈k〉s〈τ − k3〉bû(k , τ)

∥∥
`2k L2

τ
= ‖et∂3

x u‖Hs
x Hb

t
.

For |t | ≤ 1

u(t) = χ(t)e−t∂3
x g − χ(t)

∫ t

0
e−(t−t ′)∂3

x [uux ]dt ′.

∥∥χ(t)e−t∂3
x g
∥∥

X s,b =
∥∥e−t∂3

xχ(t)g
∥∥

X s,b = ‖χg‖Hs
x Hb

t
. ‖g‖Hs .
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Erdoğan (UIUC) Smoothing for KdV 06/11/12 10 / 34



Well-posedness Results

Bourgain’s X s,b spaces
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Well-posedness Results

For the local theory of KdV, one needs to work with b = 1/2.∥∥∥χ(t)
∫ t

0
e−(t−t ′)∂3

x [uux ]dt ′
∥∥∥

X s,1/2
. ‖uux‖X s,−1/2 . ‖u‖2X s,1/2 .

For s = 0, the multiplier is

|k2|
〈τ1 − k3

1 〉1/2〈τ2 − k3
2 〉1/2〈τ − k3〉1/2

, τ = τ1 + τ2, k = k1 + k2

(τ1 − k3
1 ) + (τ2 − k3

2 )− (τ − k3) = 3kk1k2.

Ignoring zero modes:

max(〈τ1 − k3
1 〉, 〈τ2 − k3

2 〉, 〈τ − k3〉) ≥ |kk1k2| & |k2|2.
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For s = 0, the multiplier is

|k2|
〈τ1 − k3

1 〉1/2〈τ2 − k3
2 〉1/2〈τ − k3〉1/2

, τ = τ1 + τ2, k = k1 + k2

(τ1 − k3
1 ) + (τ2 − k3

2 )− (τ − k3) = 3kk1k2.

Ignoring zero modes:

max(〈τ1 − k3
1 〉, 〈τ2 − k3

2 〉, 〈τ − k3〉) ≥ |kk1k2| & |k2|2.
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Our Results

• Question: is the nonlinear Duhamel term smoother than the initial
data?

• There is no smoothing in X s,1/2:∥∥∥χ(t)
∫ t

0
e−(t−t ′)∂3

x uuxdt ′
∥∥∥

X s,1/2
. ‖u‖2X s,1/2 .

• Smoothing in the first Picard iteration:

e−t∂3
x

∫ t

0
et ′∂3

x
[
e−t ′∂3

x g∂x
(
e−t ′∂3

x g
)]

dt ′

On the Fourier side (ignoring zero modes):

∑
k1+k2=k

∫ t

0
e−3ik1k2kt ′k2ĝ(k1)ĝ(k2)dt ′ =

∑
k1+k2=k

ĝ(k1)ĝ(k2)

−3ikk1
(e−3ik1k2kt−1).

Therefore, if g ∈ L2, then the correction term is in H1.
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Our Results Global smoothing

Theorem 1. (E., Tzirakis, 2011)
Let s > −1/2 and a < min(2s + 1,1). Then, given g ∈ Hs, we have
u − e−t∂3

x g ∈ C0
t Hs+a

x , and∥∥u(t)− e−t∂3
x g
∥∥

Hs+a ≤ C(‖g‖Hs )〈t〉α(s),

for some α(s) <∞.

• On Rn setting: Bourgain (98), 2d cubic NLS (c.f. Keraani-Vargas (09))

There are many other results in unbounded domains. Linear/bilinear
smoothing effect of the linear group is crucial.

• Colliander, Staffilani, Takaoka (99): KdV on R (after removing
frequencies around zero).

• Christ (04): FLp → FLq type smoothing for cubic NLS on T.
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Our Results Global smoothing

Theorem 2 (E., Tzirakis, 2011).
Let V ∈ C∞(T× R), and 〈V 〉 = 0 for each t. Consider the KdV
equation with potential V :

ut + uxxx + (Vu)x + uux = 0
u(x ,0) = g(x), x ∈ T, t ∈ R

Let s ≥ 0 and a < 1. Then, given g ∈ Hs, we have

u − e−t∂3
x g ∈ C0

t Hs+a
x .

Moreover, we have some growth bounds for
∥∥u(t)− e−t∂3

x g
∥∥

Hs+a .
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Applications Growth bounds for Sobolev norms

• The growth rates in Theorem 1 and Theorem 2 depend on a priori
growth bounds for the Hs norm. This implies growth bounds for Hs+a

norm as follows.
g ∈ Hs+a =⇒

‖u‖Hs+a ≤
∥∥u − et∂3

x g
∥∥

Hs+a + ‖et∂3
x g‖Hs+a ≤ C

(
‖g‖Hs

)
〈t〉α(s) + ‖g‖Hs+a .

• Staffilani (97): Polynomial growth bounds assuming that L2 and H1

norms remain bounded.
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Applications Continuity of solutions

Theorem (Oskolkov).

If g is of bounded variation, then e−t∂3
x g is a bounded function for each

t. Moreover,
t/2π 6∈ Q =⇒ e−t∂3

x g is continuous in x,
if t/2π ∈ Q =⇒ e−t∂3

x g has at most countably many discontinuities.
If g is also continuous, then e−t∂3

x g is a continuous function of x and t.

• Theorems 1, 2 above imply that, for g ∈ BV ⊂ L2,
u − e−t∂3

x g ∈ C0
t H1−

x ⊂ C0
t C0

x .

Corollary. Same for KdV (with a smooth space-time potential).
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Applications Almost everywhere convergence to initial data

Theorem (Hu & Li, 2011).
For s > 3/14, ∥∥e−t∂3

x g
∥∥

L14
x,t∈T

. ‖g‖Hs .

This (together with an argument by Moyua-Vega (08)) implies:

Corollary. If g ∈ Hs, s > 3/7, then e−t∂3
x g converges to g almost

everywhere as t → 0.

Corollary. Same for KdV (with a smooth space-time potential).

• There are further applications to smoothing for modified KdV and to
the existence of global attractors for forced and weakly damped KdV.
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Proof of Theorem 1

Write the equation on the Fourier side using

u(x , t) =
∑
k∈Z0

uk (t)eikx

with
uk := û(k) =

1
2π

∫ π

−π
u(t , x)e−ikxdx

Produces an infinite system of ordinary differential equations:

∂tuk = − ik
2

∑
k1+k2=k

uk1uk2 + ik3uk , uk (0) = ĝ(k).

Since the solution is real valued, ūk = u−k .
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Proof of Theorem 1

Changing the variable vk (t) = uk (t)e−ik3t , and using the identity

(k1 + k2)3 − k3
1 − k3

2 = 3(k1 + k2)k1k2,

we obtain

∂tvk = − ik
2

∑
k1+k2=k

e−i3kk1k2tvk1vk2 , vk (0) = ĝ(k).

Differentiation by parts and the equation yields
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Proof of Theorem 1

∂t
(
vk + B2(v)k

)
= R3(v)k

where

B2(v)k =
1
6

∑
k1+k2=k

e−3ikk1k2tvk1vk2

k1k2
,

R3(v)k = − i
6

∑
k1+k2+k3=k
k2+k3 6=0

e−3it(k1+k2)(k2+k3)(k3+k1)

k1
vk1vk2vk3 .

Resonant terms:

(k1 + k2)(k2 + k3)(k3 + k1) = 0, k2 + k3 6= 0.

Write
R3(v)k = R3r (v)k + R3nr (v)k
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Proof of Theorem 1

∂t (vk + B2(v)k ) = R3r (v)k + R3nr (v)k .

R3r (v)k =
ivk |vk |2

6k
,

R3nr (v)k = − i
6

nr∑
k1+k2+k3=k

e−3it(k1+k2)(k2+k3)(k3+k1)

k1
vk1vk2vk3 .

• The range for a when s ≤ 0 in Theorem 1 seems to be optimal up to
the endpoint, since for general Hs data

|R3r (v)k | = (|vk ||k |s)3|k |−3s−1

can not be in Hs+a if a > 2s + 1. This also implies that for s = −1/2
there is no smoothing within the tools that we use.
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Proof of Theorem 1

Now use the X s,b spaces of Bourgain:
Let

R(u)(t , x) =
∑
k 6=0

R3nr (u)k (t)eikx .

Show
‖R(u)‖

X s+a,−1/2
δ

. ‖u‖3
X s,1/2
δ

.

This requires Bourgain’s periodic Strichartz: For any ε > 0 and
b > 1/2, we have

‖χ[−δ,δ](t)u‖L6
t,x (R×T) ≤ Cε,b‖u‖X ε,bδ
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Proof of Theorem 1

Obtain the following energy inequality

‖u(t)− e−t∂3
x g‖Hs+a . ‖u(t)‖2Hs + ‖g‖2Hs +

∫ t

0
‖u(t ′)‖3Hsdt ′ + ‖u‖3

X s,1/2
δ

.

Iterating this using the available Hs growth bounds yields the
statement.
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Forced and weakly damped KdV

Forced and weakly damped KdV on the torus:

ut + uxxx + γu + uux = f , t ∈ R, x ∈ T,

u(x ,0) = g(x) ∈ L̇2(T) :=
{

h ∈ L2(T) :

∫
T

h(x)dx = 0
}
,

γ > 0 and f ∈ L̇2.

‖u(t)‖ ≤ e−γt‖g‖+
‖f‖
γ

(1− e−γt ).

For t > T = T (γ, ‖g‖, ‖f‖), we have ‖u(t)‖ < 2‖f‖/γ.

B(0,2‖f‖/γ) ⊂ L2(T) is called an absorbing set.
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B(0,2‖f‖/γ) ⊂ L2(T) is called an absorbing set.
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Forced and weakly damped KdV

Theorem 3. (E., Tzirakis, 2011)
Fix s ∈ (0,1). Consider the forced and weakly damped KdV equation
on T× R with u(x ,0) = g(x) ∈ L̇2. Then∥∥u(t)− e−γte−t∂3

x g
∥∥

Hs ≤ C(s, γ, ‖g‖, ‖f‖).

Corollary
Fix s ∈ (0,1). Consider the forced and weakly damped KdV equation
on T× R with u(x ,0) = g(x) ∈ L̇2. Then there exists
T = T (γ, ‖g‖, ‖f‖) such that for t ≥ T ,∥∥u(t)− e−γ(t−T )e−(t−T )∂3

x u(T )
∥∥

Hs ≤ C(s, γ, ‖f‖).
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Forced and weakly damped KdV

• For any s ∈ (0,1), all L̇2 solutions are attracted by a ball in Hs

centered at zero of radius depending only on s, γ, ‖f‖.

• The description of the dynamics is explicit. After time T the evolution
can be written as a sum of the linear evolution which decays to zero
exponentially and a nonlinear evolution contained by the attracting ball.
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Forced and weakly damped KdV

Definition
A Global Attractor for a semigroup {U(t)}t≥0 on a Hilbert space H is a
compact set A ⊂ H which is invariant under the flow and which attracts
all solutions:

For all g ∈ H,d(U(t)g,A)→ 0, as t →∞.

Existence and regularity of the global attractor for forced damped KdV:

J. M. Ball, J. M. Ghidaglia, O. Goubet, R. Rosa, K. Tsugawa.

Theorem 4. (E., Tzirakis, 2011)
Consider the forced and weakly damped KdV equation on T×R. Then
the equation possesses a global attractor in L̇2. Moreover, for any
s ∈ (0,1), the global attractor is a compact subset of Hs bounded by a
constant that depends only on s, γ, and ‖f‖.
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Forced and weakly damped KdV

• New information: Explicit bound of the attractor set in Hs depending
on s, γ, and ‖f‖.

• Proof is simpler than the previous known proofs on the existence of
the attractor.

• All higher order Sobolev norms for the forced and weakly damped
KdV remain bounded for positive times.

• In the case γ = 0, all Sobolev norms grow at most polynomially.

Erdoğan (UIUC) Smoothing for KdV 06/11/12 28 / 34



Zakharov system on the torus


iut + αuxx = nu, x ∈ T, t ∈ R,
ntt − nxx = (|u|2)xx ,
u(x ,0) = u0(x) ∈ Hs0(T),
n(x ,0) = n0(x) ∈ Hs1(T), nt (x ,0) = n1(x) ∈ Hs1−1(T),

Zakharov system describes the propagation of Langmuir waves in an
ionized plasma.
Langmuir waves: rapid oscillations of the electron density in a
conducting media.

u(x , t): slowly varying envelope of the electric field with a prescribed
frequency
n(x , t): the deviation of the ion density from the equilibrium.

Energy space: s0 = 1, s1 = 0.
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Erdoğan (UIUC) Smoothing for KdV 06/11/12 29 / 34



Zakharov system on the torus


iut + αuxx = nu, x ∈ T, t ∈ R,
ntt − nxx = (|u|2)xx ,
u(x ,0) = u0(x) ∈ Hs0(T),
n(x ,0) = n0(x) ∈ Hs1(T), nt (x ,0) = n1(x) ∈ Hs1−1(T),

Zakharov system describes the propagation of Langmuir waves in an
ionized plasma.
Langmuir waves: rapid oscillations of the electron density in a
conducting media.

u(x , t): slowly varying envelope of the electric field with a prescribed
frequency
n(x , t): the deviation of the ion density from the equilibrium.

Energy space: s0 = 1, s1 = 0.
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Zakharov system on the torus

• Bourgain (94): LWP in the energy space, α = 1.

• Takaoka (99): LWP for s1 ≥ 0 and max(s1,
s1
2 + 1

2) ≤ s0 ≤ s1 + 1
when 1

α ∈ N,
LWP for s1 ≥ −1

2 , max(s1,
s1
2 + 1

4) ≤ s0 ≤ s1 + 1 when 1
α 6∈ N.
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Zakharov system on the torus

Dissipative Zakharov system in the energy space.
iut + αuxx + iγu = nu + f , x ∈ T, t ∈ [−T ,T ],
ntt − nxx + δnt = (|u|2)xx + g,
u(x ,0) = u0(x), n(x ,0) = n0(x), nt (x ,0) = n1(x).

(1)

where f ∈ H1(T), g ∈ L2(T) are time-independent,
∫
T g(x)dx = 0, and

the damping coefficients δ, γ > 0.
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Zakharov system on the torus

Theorem 5. (E., Tzirakis, 2012)

Suppose 1
α 6∈ N. Consider the solution of the Zakharov system with

(u0,n0,n1) ∈ Hs0 ×Hs1 ×Hs1−1. Assume that we have a growth bound

‖u‖Hs0 + ‖n‖Hs1 + ‖nt‖Hs1−1 . (1 + |t |)γ(s0,s1). (2)

Then, for any a0 ≤ min(1,2s0,1 + 2s1) (the inequality has to be strict if
s0 − s1 = 1) and for any a1 ≤ min(1,2s0,2s0 − s1), we have

u(t)− eiαt∂2
x u0 ∈ C0

t Hs0+a0
x , (3)

(n,nt )− Φt (n0,n1) ∈ C0
t (Hs1+a1

x × Hs1−1+a1
x ), (4)

where Φt is the propagator of linear wave equation. Moreover, for
β > 1 + 15γ(s0, s1), we have

‖u(t)− eiαt∂2
x u0‖Hs0+a0 + ‖(n,nt )− Φt (n0,n1)‖Hs1+a1×Hs1−1+a1

. (1 + |t |)β. (5)
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Zakharov system on the torus

Theorem 6. (E., Tzirakis, 2012)

Suppose 1
α ∈ N, and (2) hold. Then, for any a0 ≤ min(1, s1) (the

inequality has to be strict if s0 − s1 = 1 and s1 ≥ 1) and for any
a1 ≤ min(1,2s0 − s1 − 1), we have (3), (4) and (5).

Corollary
For any s0 ≥ 1, s1 ≥ 0, the global solution of the Zakharov system with
Hs0 × Hs1 × Hs1−1 data satisfies the growth bound

‖u‖Hs0 + ‖n‖Hs1 + ‖nt‖Hs1−1 ≤ C1(1 + |t |)C2 ,

where C1 depends on s0, s1, and ‖u0‖Hs0 + ‖n0‖Hs1 , ‖n1‖Hs1−1 , and C2
depends on s0, s1.
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Zakharov system on the torus

Without loss of generality in the dissipative Zakharov we set γ = δ and
g = 0. 

iut + αuxx + iγu = nu + f , x ∈ T, t ∈ (0,∞),
ntt − nxx + γnt = (|u|2)xx ,
u(x ,0) = u0(x), n(x ,0) = n0(x), nt (x ,0) = n1(x).

(6)

Theorem 7. (E., Tzirakis, 2012)

Consider the dissipative Zakharov system on T× [0,∞) with u0 ∈ H1

and with mean-zero n0 ∈ L2, n1 ∈ H−1. Then the equation possesses
a global attractor in H1 × L̇2 × Ḣ−1. Moreover, for any a ∈ (0,1), the
global attractor is a compact subset of H1+a × Ha × H−1+a, and it is
bounded in H1+a × Ha × H−1+a by a constant depending only on
a, α, γ, and ‖f‖H1 .
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