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Introduction

In this talk we consider the smoothing properties of certain dispersive
PDE with periodic boundary conditions:

ur+ L(u)+ N(u) =0, xeT=R/(2rZ), teR,
{u(x,O) = g(x) € H(T).
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Introduction

In this talk we consider the smoothing properties of certain dispersive
PDE with periodic boundary conditions:

ur+ L(u)+ N(u) =0, xeT=R/(2rZ), teR,
{U(X,O) = g(x) € H(T).

Duhamel’s formula:

t
u(t) = etig - / e~ L-ON(u(t))dt.
0
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Introduction

In this talk we consider the smoothing properties of certain dispersive
PDE with periodic boundary conditions:

ur+ L(u)+ N(u) =0, xeT=R/(2rZ), teR,
{u(x, 0) = g(x) € H3(T).

Duhamel’s formula:

t
u(t) = etig - / e~ L-ON(u(t))dt.
0

Question: Is the nonlinear Duhamel term smoother than the initial data
(is it in H5*2@ for some a > 0)?
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Introduction

The answer is affirmative for the Korteweg—de Vries (KdV) equation
(with a smooth space-time potential V),

Ut + Uxxx + UUx + (WU)x =0, xe€T, teR,
u(x,0) = g(x) € H%(T),
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Introduction

The answer is affirmative for the Korteweg—de Vries (KdV) equation
(with a smooth space-time potential V),

Ut + Uxxx + UUx + (WU)x =0, xe€T, teR,
u(x,0) = g(x) € H%(T),

for modified KdV:

ut+UXXX_u2uX207 XET, tGR,
u(x,0) = g(x) € H3(T),
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Introduction

and for the Zakharov system which consists of a complex field u
(Schrédinger part) and a real field n (wave part):

iU+ auxyy =nu, xeT, tekR,

/B_2ntt — Nyxx = (|U|2)xx,

u(x,0) = up(x) € Ho(T),

n(x,0) = no(x) € H(T), m(x,0) = ny(x) € H>~'(T),
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Introduction

and for the Zakharov system which consists of a complex field u
(Schrédinger part) and a real field n (wave part):

iU+ auxyy =nu, xeT, tekR,

/8_2nt1‘ — Nyxx = (|u|2)XX7

u(x,0) = up(x) € H%(T),

n(x,0) = no(x) € H(T), m(x,0) = ny(x) € H>~'(T),

B. E., N. Tzirakis, Global smoothing for the periodic KdV evolution,
arXiv:1103.4190

B. E., N. Tzirakis, Long time dynamics for forced and weakly damped
KdV on the torus, arXiv:1108.3358

B. E., N. Tzirakis, Smoothing and global attractors for the Zakharov
system on the torus, arXiv:1202.5268
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The KdV equation,

Ut -+ Uxxx + UUX = 0
u(x,0)=g(x), xeRorT, teR, u(x,t)eR,

describes surface water waves in the small amplitude limit of long
waves in shallow water. It is completely integrable and has soliton
solutions ¢(x — vt), bothon R and on T.
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The KdV equation,

Ut + Uxxx + UUX - O
u(x,0)=g(x), xecRorT, teR, u(x,t)eR,

describes surface water waves in the small amplitude limit of long
waves in shallow water. It is completely integrable and has soliton
solutions ¢(x — vt), bothon R and on T.

e Infinitely many conserved quantities:

/u(x,O)dx: /u(x, t)dx, momentum cons.,

/u2(x, O)dx:/uz(x, t)dx, energy cons.
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The KdV equation,

Ut + Uxxx + UUX - O
u(x,0)=g(x), xecRorT, teR, u(x,t)eR,

describes surface water waves in the small amplitude limit of long
waves in shallow water. It is completely integrable and has soliton
solutions ¢(x — vt), bothon R and on T.

e Infinitely many conserved quantities:

/u(x,O)dx: /u(x, t)dx, momentum cons.,

/u2(x, 0)dx = /uz(x, t)dx, energy cons.
¢ On T, one can work with mean-zero solutions by Galilean invariance:
u(x,t) <> u(x —ct, t) —c.
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e Duhamel’s formula:
—t03 ! —(t—1)53 /
ux,t)y=e'%g(x)— [ e *[uuy]dt’,
0
2

e Pg(x) = 3 M eRiGK),  GK) =, [ g(x)eax.
KeZ 0
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e Duhamel’s formula:
—t03 ! —(t—1)53 /
ux,t)y=e'%g(x)— [ e *[uuy]dt’,
0
2

e Pg(x) = 3 M eRiGK),  GK) =, [ g(x)eax.
KeZ 0

o lle" gl = gline = /Cker [GR)R(1 + K2)s.
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e Duhamel’s formula:
—t03 ! —(t—1)53 /
ux,t)y=e'%g(x)— [ e *[uuy]dt’,
0
1 2

e %g(x) = Y e egk), gk =5 | g(x)edx,
KeZ 0

o lle" gl = gline = /Cker [GR)R(1 + K2)s.

o g(x) = ¥ — e tig(x) = e eV’ = g(x + J2t).
Frequency J moves with velocity —J2.
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I VA COCl  imear Part and Dispersion
e Duhamel’s formula:
—t93 ‘ —(t—1)53 ’
ux,t)y=e'%g(x)— [ e *[uuy]dt’,
0
1 2m

e %g(x) =Y e lGk), gk =5 | gle o,
KeZ 0

o lle"Pg|ls = llgllue = \/Syer [G(R) (T + K2)S.

o g(x) = ¥ — e tig(x) = e eV’ = g(x + J2t).
Frequency J moves with velocity —J2.

e Dispersion: different frequency components of the initial data (wave)
propagate with different velocities.
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I VA COCl  imear Part and Dispersion
e Duhamel’s formula:
—t93 ‘ —(t—1)53 ’
ux,t)y=e'%g(x)— [ e *[uuy]dt’,
0
1 2m

e %g(x) =Y e lGk), gk =5 | gle o,
KeZ 0

o lle"Pg|ls = llgllue = \/Syer [G(R) (T + K2)S.

o g(x) = ¥ — e tig(x) = e eV’ = g(x + J2t).
Frequency J moves with velocity —J2.

e Dispersion: different frequency components of the initial data (wave)
propagate with different velocities.

e Problem: Integration in t should be converted to derivative gain in x
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KdV equation Linear Part and Dispersion

e On R, high frequency components escape to —oco very fast. This
causes smoothing:

HHaxe_ta’s(gHquLf" < Cllgllzr) (Kato smoothing),

Erdogan (UIUC) Smoothing for KdV 06/11/12 7134



KdV equation Linear Part and Dispersion

e On R, high frequency components escape to —oco very fast. This
causes smoothing:

|H|8xe_t639||L$HL;>° < Cllgllzr) (Kato smoothing),

and decay:
_t53 _
le™%g]| . < CItI~"/2llgll 1 ry-
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KdV equation Linear Part and Dispersion

e On R, high frequency components escape to —oco very fast. This
causes smoothing:

|H|8xe_t639||L$HL;>o < Cllgllzr) (Kato smoothing),
and decay:

He_taggHLgo < C\t’_”BHQHU(R)'

¢ On T, there is no decay or derivative gain since the solution cannot
escape to co.
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KdV equation Linear Part and Dispersion

e On R, high frequency components escape to —oco very fast. This
causes smoothing:

_t53 .
1oxe~" gl 2|« < Cllglliew)  (Kato smoothing),

and decay:
_t53 _
He tanHLgo < Clt| 1/3”gHL1(R)'

¢ On T, there is no decay or derivative gain since the solution cannot

escape to co. A smoothing effect due to averaging:

le”%gllys < Cligllzemy  (Zygmund).
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KdV equation Linear Part and Dispersion

e On R, high frequency components escape to —oco very fast. This
causes smoothing:

_t53 .
1oxe~" gl 2|« < Cllglliew)  (Kato smoothing),

and decay:
t

le gl e < CltIT2)1 g5z

¢ On T, there is no decay or derivative gain since the solution cannot
escape to co. A smoothing effect due to averaging:

le”%gllys < Cligllzemy  (Zygmund).

e Bourgain: H*(T) — L5(T?).
Conjecture: HE(T) — L8(T?).
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Well-posedness Results

e Bona, Smith (75): LWP in H3(T), s > 3/2. GWP for s > 2.
¢ Bourgain (93): GWP in H%(T), s > 0.
e Kenig, Ponce, Vega (96): LWP in H5(T), s > —3.

e Colliander, Keel, Staffilani, Takaoka, Tao (02): GWP in H3(T),
s> 3.

e Kappeler, Topalov (04): GWP in H*(T), s > —1.
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Well-posedness Results

¢ In 2010, Babin, llyin and Titi reproved Bourgain’s result using
“differentiation by parts”:
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Well-posedness Results

¢ In 2010, Babin, llyin and Titi reproved Bourgain’s result using
“differentiation by parts”:

% = ef(x), Qisreal and large.
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Well-posedness Results

¢ In 2010, Babin, llyin and Titi reproved Bourgain’s result using
“differentiation by parts”:

% = ef(x), Qisreal and large.
We have
dx d/ef(x)\ e,
at F( i ) i« Flx )
d ethf X eQ/Qt
9 (x- Q( )) =-Z f’(x)f(x).
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Well-posedness Results

¢ In 2010, Babin, llyin and Titi reproved Bourgain’s result using
“differentiation by parts”:

% = ef(x), Qisreal and large.
We have
dx d /eff(x) et
at E( iQ ) o )
d eiQtf(X) e2/Qt ,
a - T ) =T fro.

If f and f’ are bounded, we get

x(1) —x(0) = O(1/9Q).
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Well-posedness Results

Bourgain’s X5? spaces

Ut + Uxxx = 0 = U(k, 7)[iT — ik’] =0 = supp () C {7 = K3}.
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Well-posedness Results

Bourgain’s X5° spaces

Ut + Uxxx = 0 = U(k,7)[iT — ik’] =0 = supp (U) C {7 = k3}.

Idea: space-time Fourier support of the nonlinear solution is
concentrated around this set.

ullxs6 = ||(K)S(T — k3)PT(k, T HZZLZ = | e xu||HsHb
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Well-posedness Results

Bourgain’s X5° spaces

Ut + Uxxx = 0 = U(k,7)[iT — ik’] =0 = supp (U) C {7 = k3}.

Idea: space-time Fourier support of the nonlinear solution is
concentrated around this set.

ullxs6 = ||(K)S(T — k3)PT(k, T HZZLZ = | e xu||HsHb

For |t| < 1

t
u(t) = x(tye % g — x(1) / e (=% uy,)dt .
0

Erdogan (UIUC) Smoothing for KdV 06/11/12

10/34



Well-posedness Results

Bourgain’s X5° spaces

Ut + Uxxx = 0 = U(k,7)[iT — ik’] =0 = supp (U) C {7 = k3}.

Idea: space-time Fourier support of the nonlinear solution is
concentrated around this set.

ullxs6 = ||(K)S(T — k3)PT(k, T ||£2L2 = | e xu||HsHb

For |t| < 1
t
u(t) = x(t)e Pg — x(1 / e~ (=% [yt
0

(e gl oo = |6 x(1)g| oo = XTI sre S 1111
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Well-posedness Results

For the local theory of KdV, one needs to work with b = 1/2.

S Nutslixs -1z S llul&sae-

t
({193
NG /0 e %Ry at|| <
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Well-posedness Results

For the local theory of KdV, one needs to work with b = 1/2.

S Nutslixs -1z S llul&sae-

t
—(t—t")03 ’
NG /O e uuda| <

For s = 0, the multiplier is

Kol

(1 — K2 V2(ry — K3) 127 —k3y12" T~ fre k=hitle
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Well-posedness Results

For the local theory of KdV, one needs to work with b = 1/2.

2
Xs.1/2 S [ xs 172 < ||u||Xs,1/2-

t
heo [ e unir
0

For s = 0, the multiplier is

Kol

(1 — K2 V2(ry — K3) 127 —k3y12" T~ fre k=hitle

(11 — k3) + (12 — K3) — (7 — k3) = 3kki ko.

Ignoring zero modes:

max((r — k7). (r2 — K3), (7 — k%)) = |kkike| 2 |kol?.
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Our Results

e Question: is the nonlinear Duhamel term smoother than the initial
data?
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Our Results

e Question: is the nonlinear Duhamel term smoother than the initial
data?
e There is no smoothing in X51/2:

t
Hx(t) / e~ (=% yudt’
0

2
e S %oz
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Our Results

e Question: is the nonlinear Duhamel term smoother than the initial
data?
e There is no smoothing in X51/2:

t
Hx(t) / e~ (=% yudt’
0

2
e S %oz

e Smoothing in the first Picard iteration:

ot [ [e-tigo, (e Rg)]at
0
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Our Results

e Question: is the nonlinear Duhamel term smoother than the initial
data?
e There is no smoothing in X51/2:

t
Hx(t) / e~ (=% yy, ot
0

2
cone SNz

e Smoothing in the first Picard iteration:

e 1% /tet'as[ ~1%goy (e '%g)]dt’
0

On the Fourier side (ignoring zero modes):

t
~Biki kot Je / 9(k o~ 3ikikokt _
/ e 29(k1 k2 at' = Z —3Ikk1

Ky +ko=k 70 Ky +ho=

Therefore, if g € L?, then the correction term is in H'.
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Theorem 1. (E., Tzirakis, 2011)

Lets > —1/2 and a < min(2s+ 1,1). Then, given g € HS, we have
u—et%ge COHS™, and

u(t) — e %g|| era < Cllglls) (D,

for some a(s) < oc.
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Theorem 1. (E., Tzirakis, 2011)

Lets > —1/2 and a < min(2s+ 1,1). Then, given g € HS, we have
u—et%ge COHS™, and

|u(t) — e g

|psea < CUlIGlHe) (B,

for some a(s) < oc.

v

e On R" setting: Bourgain (98), 2d cubic NLS (c.f. Keraani-Vargas (09))
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Theorem 1. (E., Tzirakis, 2011)

Lets > —1/2 and a < min(2s+ 1,1). Then, given g € HS, we have
u—et%ge COHS™2, and

|u(t) — e g

|psea < CUlIGlHe) (B,

for some a(s) < oc.

v

e On R setting: Bourgain (98), 2d cubic NLS (c.f. Keraani-Vargas (09))

There are many other results in unbounded domains. Linear/bilinear
smoothing effect of the linear group is crucial.
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Theorem 1. (E., Tzirakis, 2011)

Lets > —1/2 and a < min(2s + 1,1). Then, given g € H®, we have
u—et%ge COHS™2, and

u(t) — e %g|| era < Cllglls) (D,

for some a(s) < oc.

v

e On R setting: Bourgain (98), 2d cubic NLS (c.f. Keraani-Vargas (09))

There are many other results in unbounded domains. Linear/bilinear
smoothing effect of the linear group is crucial.

e Colliander, Staffilani, Takaoka (99): KdV on R (after removing
frequencies around zero).
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Theorem 1. (E., Tzirakis, 2011)

Lets > —1/2 and a < min(2s + 1,1). Then, given g € H®, we have
u—et%ge COHS™2, and

u(t) — e %g|| era < Cllglls) (D,

for some a(s) < oc.

v

e On R setting: Bourgain (98), 2d cubic NLS (c.f. Keraani-Vargas (09))

There are many other results in unbounded domains. Linear/bilinear
smoothing effect of the linear group is crucial.

e Colliander, Staffilani, Takaoka (99): KdV on R (after removing
frequencies around zero).

e Christ (04): FLP — FL9 type smoothing for cubic NLS on T.
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Theorem 2 (E., Tzirakis, 2011).

Let V € C=(T x R), and (V) = 0 for each t. Consider the KdV
equation with potential V :

Ut+ uXXX+ (VU)X T UUX = O
u(x,0)=g(x), xeT,teR

Lets >0 anda < 1. Then, given g € H®, we have

3
u—ege COHSTA.

Moreover, we have some growth bounds for ||u(t) — e~ g Lysia-
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Applications Growth bounds for Sobolev norms

e The growth rates in Theorem 1 and Theorem 2 depend on a priori
growth bounds for the H® norm. This implies growth bounds for H5*4@
norm as follows.

geH" —

lullmsra < |u = €% g s + €7 gl ra < CIg]l1e) () + | gllssa.
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Applications Growth bounds for Sobolev norms

e The growth rates in Theorem 1 and Theorem 2 depend on a priori
growth bounds for the HS norm. This implies growth bounds for H5+2
norm as follows.

ge H" —

lullmsra < |u = €% g s + €7 gl ra < CIg]l1e) () + | gllssa.

o Staffilani (97): Polynomial growth bounds assuming that L? and H'
norms remain bounded.
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Applications Continuity of solutions

Theorem (Oskolkov).

If g is of bounded variation, then e~'% g is a bounded function for each
t. Moreover,

t/or ¢ Q = e~ %g is continuous in X,
ift/j2r e Q = e 1% g has at most countably many discontinuities.
If g is also continuous, then e~'% g is a continuous function of x and t.

v
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Applications Continuity of solutions

Theorem (Oskolkov).

If g is of bounded variation, then e~'% g is a bounded function for each
t. Moreover,

t/or ¢ Q = e~ %g is continuous in X,

ift/j2r e Q = e 1% g has at most countably many discontinuities.

If g is also continuous, then e~'% g is a continuous function of x and t.

v

e Theorems 1, 2 above imply that, for g € BV c L?,
u—ege COHY~ c COC.

Corollary. Same for KdV (with a smooth space-time potential).
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Applications

Theorem (Hu & Li, 2011).

Fors > 3/14,

le gl __ S gl
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Applications Almost everywhere convergence to initial data

Theorem (Hu & Li, 2011).

Fors > 3/14,

le gl __ S gl

This (together with an argument by Moyua-Vega (08)) implies:

Corollary. Ifg € H®, s > 3/7, then e 1% g converges to g almost
everywhere as t — 0.
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Applications Almost everywhere convergence to initial data

Theorem (Hu & Li, 2011).

Fors > 3/14,

le gl __ S gl

This (together with an argument by Moyua-Vega (08)) implies:

Corollary. Ifg € H®, s > 3/7, then e 1% g converges to g almost
everywhere as t — 0.

Corollary. Same for KdV (with a smooth space-time potential).
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Applications Almost everywhere convergence to initial data

Theorem (Hu & Li, 2011).

Fors > 3/14,

le gl __ S gl

This (together with an argument by Moyua-Vega (08)) implies:
Corollary. Ifg € H®, s > 3/7, then e 1% g converges to g almost
everywhere ast — 0.

Corollary. Same for KdV (with a smooth space-time potential).

e There are further applications to smoothing for modified KdV and to
the existence of global attractors for forced and weakly damped KdV.
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Proof of Theorem 1

Write the equation on the Fourier side using

u(x,t) =Y ux(t)e™
k€EZyg
with

U = Ti(K) = 217 / ult, x) e~k dx

—Tr
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Proof of Theorem 1

Write the equation on the Fourier side using

u(x,t) =Y ux(t)e™
k€EZyg
with
2m
Produces an infinite system of ordinary differential equations:

U = T(K) = - / u(t, x)e~®dx

—Tr

ik . ~
Ot = ) Z Uk, Uk, + ik3 uy, ux(0) = g(k).
k1+k2=k

Since the solution is real valued, Uy = u_k.
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Proof of Theorem 1

Changing the variable vk(t) = ux(t)e~*’t, and using the identity

(ky + k2)® — k3 — K3 = 3(ky + ko)ki ko,

we obtain

ik i ~
Ovk = =% Y ekl v, w(0) = g(k).
ki +ko=k
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Proof of Theorem 1

Changing the variable vk(t) = ux(t)e~*’t, and using the identity

(ky + k2)® — k3 — K3 = 3(ky + ko)ki ko,

we obtain

ik i .
D=~ S ety v v (0) = G(K)
ki +ko=k

Differentiation by parts and the equation yields
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Proof of Theorem 1

Ot(vk + Ba(v)k) = Ra(v)«
Bo(V)k = Z TMa
ki +ka=k 172

: —3it(ky+ko) (ko+k3)(ka+ki)
i e
Ra(V)k = —5 > ke Vi Vie Vks:

Ky +ho-+hg=k
ko+k3#0
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Proof of Theorem 1

Ot(vk + Ba(v)k) = Ra(v)«
Bo(V)k = % Z Tw’
ki +ka=k 172

: —3it(ky+ko) (ko+k3)(ka+ki)
i e
Ra(V)k = —5 > ke Vi Vie Vks:

ki +ko+kg=k
ko+k3#0

Resonant terms:
(ki + ko) (ko + k3)(ks + K1) =0, ko + k3 # 0.
Write
R3(V)k = R3(V)k + Ranr(V)k
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Proof of Theorem 1

Ot (Vk + B2(V)k) = Rar(V)k + Ranr(V)k-

v v [?
RSF( )k - 6k 9
i nr e~ 3it(K1+kz)(ko+k3)(ka+ki)
Ao (Vk =g D P Vi Vi V-
Ki+ke+ha=k 1
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Proof of Theorem 1

Ot (Vk + B2(V)k) = Rar(V)k + Ranr(V)k-

; 2
Vi Vi|
i nr e~ 3it(ki+kz)(ko+ks)(ks+ki)
Ao (Vk =g D P Vi Vi V-
Ky +kotka—k 1

e The range for awhen s < 0 in Theorem 1 seems to be optimal up to
the endpoint, since for general H® data

|Rar(V)kl = (il [K[*)° k|72~

can not be in H5"2if a > 2s + 1. This also implies that for s = —1/2
there is no smoothing within the tools that we use.
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Proof of Theorem 1

Now use the XS spaces of Bourgain:

Let
u)(t.X) = > Ranr(u)i(t)e™.
k0
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Proof of Theorem 1

Now use the XS spaces of Bourgain:

Let
(t X) Z RSnr IkX.
k0

Show
3
IIR(U)I\X§+a,—1/z S ||U||X§,1/2.

This requires Bourgain’s periodic Strichartz: For any e > 0 and
b>1/2, we have

HX[—&,&](")UHLgX(RxT) = Ce,bHUngvb
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Proof of Theorem 1

Obtain the following energy inequality

t
—_t53
lu(t) — e~ gllpssa S u(OFs + Nl +/0 lu(t)[[Fsat’ + IIUIIf(g,ua-
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Proof of Theorem 1

Obtain the following energy inequality

t
_ 93
lu(t) — e~ gllpssa S u(OFs + Nl +/0 lu(t)[[Fsat’ + ”U”i;J/z-

Iterating this using the available H* growth bounds yields the
statement.
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Forced and weakly damped KdV

Forced and weakly damped KdV on the torus:
Ut + Uxxx +yU+uux=1F, teR, xeT,

u(x.0) = g(x) € 13(T) := {h e 13T / h(x)dx = 0}
T

v>0andfe 2
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Forced and weakly damped KdV

Forced and weakly damped KdV on the torus:

Ut + Uxxx +yU+uux=1F, teR, xeT,

u(x.0) = g(x) € 13(T) := {h e 13T / h(x)dx = 0}
T

v>0andfe 2

lu(t)ll < eigll + = ( —e™).

Fort> T = T(v[gll, Ifll), we have [[u(t)]| < 2|f]|/~.
B(0,2||f||/v) c L3(T) is called an absorbing set.
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Forced and weakly damped KdV

Theorem 3. (E., Tzirakis, 2011)

Fix s € (0,1). Consider the forced and weakly damped KdV equation
onT x R with u(x,0) = g(x) € L2. Then

|u(t) — e e % g||,,s < C(s,7. gl I7])-
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Forced and weakly damped KdV

Theorem 3. (E., Tzirakis, 2011)

Fix s € (0,1). Consider the forced and weakly damped KdV equation
onT x R with u(x,0) = g(x) € L2. Then

lu(t) — e te~g||,. < C(s,7, llgll, Ifl])-

Corollary

Fix s € (0, 1). Consider the forced and weakly damped KdV equation
on T x R with u(x,0) = g(x) € L. Then there exists
T =T(~,]gll,||f]|) such that for t > T,

Ju(t) — e 1=De =D& Y(T)||,,, < C(s,7, |If])-

Erdogan (UIUC) Smoothing for KdV 06/11/12 25/34




Forced and weakly damped KdV

e Forany s € (0,1), all L2 solutions are attracted by a ball in H®
centered at zero of radius depending only on s, ~, || f]|.
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Forced and weakly damped KdV

e Forany s e (0, 1), all L2 solutions are attracted by a ball in H*
centered at zero of radius depending only on s, ~, || f]|.

e The description of the dynamics is explicit. After time T the evolution
can be written as a sum of the linear evolution which decays to zero
exponentially and a nonlinear evolution contained by the attracting ball.
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Forced and weakly damped KdV

Definition

A Global Attractor for a semigroup {U(t)}+>0 on a Hilbert space H is a
compact set A C H which is invariant under the flow and which attracts
all solutions:

Forallg € H,d(U(t)g,A) — 0, as t — oc.
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Forced and weakly damped KdV

Definition

A Global Attractor for a semigroup {U(t)}+>0 on a Hilbert space H is a
compact set A C H which is invariant under the flow and which attracts
all solutions:

Forallg € H,d(U(t)g,A) — 0, as t — oc.

Existence and regularity of the global attractor for forced damped KdV:

J. M. Ball, J. M. Ghidaglia, O. Goubet, R. Rosa, K. Tsugawa.
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Definition
A Global Attractor for a semigroup {U(t)}+>0 on a Hilbert space H is a

compact set A C H which is invariant under the flow and which attracts
all solutions:

Forallg € H,d(U(t)g,A) — 0, as t — oc.

Existence and regularity of the global attractor for forced damped KdV:

J. M. Ball, J. M. Ghidaglia, O. Goubet, R. Rosa, K. Tsugawa.

Theorem 4. (E., Tzirakis, 2011)

Consider the forced and weakly damped KdV equation on T x R. Then
the equation possesses a global attractor in L2. Moreover, for any

s € (0, 1), the global attractor is a compact subset of H® bounded by a
constant that depends only on s, v, and ||f|.
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Forced and weakly damped KdV

e New information: Explicit bound of the attractor set in HS depending
on s,, and ||f||.

e Proof is simpler than the previous known proofs on the existence of
the attractor.

e All higher order Sobolev norms for the forced and weakly damped
KdV remain bounded for positive times.

e In the case v = 0, all Sobolev norms grow at most polynomially.
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Zakharov system on the torus

iU+ auxyy =nu, xeT, tekR,

Nt — Mo = (JU[%) xx,

u(x,0) = up(x) € Ho(T),

n(x,0) = no(x) € H%(T), m(x,0) = ny(x) € HS~(T),

Zakharov system describes the propagation of Langmuir waves in an
ionized plasma.

Langmuir waves: rapid oscillations of the electron density in a
conducting media.
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Zakharov system on the torus

iU+ auxyy =nu, xeT, tekR,

Nyt — Nyx = (|U|2)XX7

u(x,0) = up(x) € Ho(T),

n(x,0) = no(x) € HS(T), m(x,0) = ny(x) € H>~'(T),

Zakharov system describes the propagation of Langmuir waves in an
ionized plasma.

Langmuir waves: rapid oscillations of the electron density in a
conducting media.

u(x, t): slowly varying envelope of the electric field with a prescribed

frequency
n(x, t): the deviation of the ion density from the equilibrium.
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Zakharov system on the torus

iU+ auxyy =nu, xeT, tekR,

Nyt — Nyx = (|U|2)XX7

u(x,0) = up(x) € Ho(T),

n(x,0) = no(x) € HS(T), m(x,0) = ny(x) € H>~'(T),

Zakharov system describes the propagation of Langmuir waves in an
ionized plasma.

Langmuir waves: rapid oscillations of the electron density in a
conducting media.

u(x, t): slowly varying envelope of the electric field with a prescribed
frequency
n(x, t): the deviation of the ion density from the equilibrium.

Energy space: sp =1, s =0.
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Zakharov system on the torus

e Bourgain (94): LWP in the energy space, a = 1.
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Zakharov system on the torus

e Bourgain (94): LWP in the energy space, a = 1.
o Takaoka (99): LWP for s; > 0 and max(si, § + 4) < sp < s + 1

when 1 €N,
LWP for sy > —%, max(si, 3 + 1) <so < sy +1when! ¢N,
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Zakharov system on the torus

Dissipative Zakharov system in the energy space.

Nt — Nux + 0Nt = (|U?)xx + g, (1)

{ ius + auxx + inu=nu+f, xeT, te[-T,T],
u(x,0) = to(x), n(x,0) = no(x), m(x,0)= n(x).

where f € H'(T), g € L?(T) are time-independent, |- g(x)dx = 0, and
the damping coefficients §, v > 0.
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Theorem 5. (E., Tzirakis, 2012)

Suppose & ¢ N. Consider the solution of the Zakharov system with
(Ug, N, 1) € H% x HS' x HS1—!. Assume that we have a growth bound

U0 + 17+ [l el sy 1 S (1 + [t} 2)

Then, for any ay < min(1,2sp, 1 + 2s1) (the inequality has to be strict if
So — 8y = 1) and for any a; < min(1,2sp,2sy — S1), we have

u(t) — % yy € COHO 2, (3)

(1) — Pe(ng, 1) € CR(HY T3 x H 1), (4)

where ®; is the propagator of linear wave equation. Moreover, for
B > 1+ 15v(sp, S1), we have

i 2
lu(t) — €% ol psora0 + 11(7s 1) = De(10, 1)l a1 sy 1424
SA+1te. (8)
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Zakharov system on the torus

Theorem 6. (E., Tzirakis, 2012)

Suppose 1 € N, and (2) hold. Then, for any a; < min(1, sy) (the
inequality has to be strict if s — sy = 1 and sy > 1) and for any
a; <min(1,2sy — sy — 1), we have (3), (4) and (5).
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Zakharov system on the torus

Theorem 6. (E., Tzirakis, 2012)

Suppose 1 € N, and (2) hold. Then, for any a; < min(1, sy) (the
inequality has to be strict if s — sy = 1 and sy > 1) and for any
a; <min(1,2sy — sy — 1), we have (3), (4) and (5).

Corollary

For any sy > 1, s; > 0, the global solution of the Zakharov system with
HS x HS' x HS~' data satisfies the growth bound

ull o + Al sy + el sy —+ < Co (1 + [),

where Cy depends on sy, s1, and |[Uol|yso + [[Mo[ st , 171 511, and Co
depends on sy, Sq.
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Without loss of generality in the dissipative Zakharov we set v = ¢ and
g=0.

ius + auxx + inu=nu+f, xeT, te(0,00),
Nt — Nyx +yNt = (‘U‘z)xx, (6)
U(X7O) = UO(X)’ n(X’ 0) = nO(X)7 nT(X7O) =M (X)
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Zakharov system on the torus

Without loss of generality in the dissipative Zakharov we set v = § and
g=0.

ius + auxx + inu=nu+f, xeT, te(0,00),
Nt — Nyx +yNy = (‘U‘Z)XXa (6)
U(X’O) = UO(X)) n(X7 O) = nO(X)7 ni(X70) =M (X)

Theorem 7. (E., Tzirakis, 2012)

Consider the dissipative Zakharov system on T x [0, co) with vy € H'
and with mean-zero ng € L2, n; € H='. Then the equation possesses
a global attractor in H' x 2 x H~1. Moreover, for any a € (0, 1), the
global attractor is a compact subset of H'*2 x H2 x H='+2 and it is
bounded in H'*2 x H2 x H~'+2 by a constant depending only on
a,a,y, and ||f|| 1.
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