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Equation

1 xe'(t)

pt+u-Vp=0, p
PP, x e Q3(t)= R?\ Q'(t)

V.uzo, p(X'leZat):{



Equation

x € Q'(t)

pt—l-U‘Vp:O, _ P17
V.u=0, P(X“X?’”—{ 2, x e Q2(t) = R2\ Q'(f)

1. Muskat:
Ry= —Vp —(0,gp) Darcy’s law (Hele Shaw cell).
K

2. Water wave:
p(ut+ (u-V)u) = —Vp—(0,gp), Euler.

with V x u=0, p' =0 and p? # 0.



Scenario

We consider:
1. open curves vanishing at infinity

lim (Z(a7 t) - (a7 0)) = 07
2. periodic curves in the space variable
Z(a+ 2km, t) = z(«a, t) + 2km(1,0).

3. closed contours

Z(a+ 2km, t) = z(a, t).



Equations

Muskat
Zi(a, t) = BR(z,w)(a,t) + c(a, 1)0az(a, t),
w(a, t) = —gk(p® — p')0az2(r, 1).

Water Wave

zi(a, t) = BR(z,w)(a t) + c(a, )9az(a, 1),

wi(a,t) = —20tBR(z,w) - 02 — O

+2C0.BR(z,w) - daz(a, ) — 2g0azs,

where BR(z,w) = PV [, %w(a t)da



Rayleigh-Taylor condition

A linearization around a flat contour («, ef(«, t)), allows us to
find

f— %H(w)
The equations
w = 00, f, (linear Muskat)
wi = 00,1, (linear water waves)

show the parabolicity of the Muskat problem and the dispersive
character of water waves.

¢ Rayleigh-Taylor condition:
U((X, t) = _(vpz(z(av t)7 t) - vp1 (Z(Ck? t)v t)) : ajc_z(aa t) > 07



Local existence

« Local existence for initial data satisfying zo(a) € HX and
wo(a) S Hk_1,

F(z9)(a, B) < o0, and o(«a,0) > 0.

1. Muskat: k > 3 joint work with F. Gancedo (2007),.....

2. Water Wave: k > 4 S. Wu (1997), Lannes,
Christodoulou-Lindblad, Lindblad, Ambrose-Masmoudi,
Coutand-Shkoller, Shatah- Zeng, Zhang-Zhang,
Cordoba-Cordoba-Gancedo, Alazard-Burg-Zuily,....

where
_ 18|
f(Z)(CK’ﬁ, t)* ‘Z(CY, t)—Z(a—ﬂ, t)| Va,ﬂe (_71-777-)7
and

F(z)(a,0,t) = Baz(a. D



Muskat

Then, by choosing an appropriate term ¢ the dynamics of the
interface satisfies

Equation

zi(a, t) = 0! PV/( 722(1575;”)2)( Doz, t) = Daz(B,1))dp.

Rayleigh-Taylor:

o(a,t) = g(p? — p")ouzi(a, b).
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A wise parametrization:  J,z1(c, t) = 1.



Muskat

Then, by choosing an appropriate term ¢ the dynamics of the
interface satisfies

Equation

zi(a, t) = 0! PV/( 722(1575;”)2)( Doz, t) = Daz(B,1))dp.

Rayleigh-Taylor:
(o t) = g(p® — p')0az1(0 1),
A wise parametrization:  9,z1(a, t) = 1.
We have z(a, t) = (a, f(a, t)) which implies
F(z)(a,B) <1



Contour equation

e p? > p' denser fluid below (stable)
e p? < p' denser fluid above (unstable)

(Daf(a, t) — Ouf(a — 3, 1))

(Hant) — fa — .02

(v, t)—g 5 0! PV/
f(a,0) = fo(a), a€R.



Contour equation

e p? > p' denser fluid below (stable)
e p? < p' denser fluid above (unstable)

0 py [ (Qufla ) = ufa— 5,0)0
N A (=) o

f(a,0) = fo(a), a€R.

o [? maximum principle'
—f(a, t)

X —«

I1FIZ(T)+

) )dxdadt

—HfoHLz-



Contour equation

e p? > p' denser fluid below (stable)
e p? < p' denser fluid above (unstable)

0 py [ (Qufla ) = ufa— 5,0)0
N A (=) o

f(a,0) = fo(a), a€R.

o [? maximum principle'
—f(a, t)

X —«

I1FIZ(T)+

) )dxdadt

—HfoHLz-
Bound

// f(” fla, )) )axda < 4xv2| |1 (1).

X—«



Global existence

e Muskat
e Maximum Principle: ||f||i(t) < |/f]|Le
* Global existence: > _ [¢[|/(¢) < 1/5
o Global existence: ||0xfyl|re < 1
in collaboration with P. Constantin, F. Gancedo & R. Strain (2011).



Global existence

e Muskat
e Maximum Principle: ||f||i(t) < |/f]|Le
* Global existence: > _ [¢[|/(¢) < 1/5
o Global existence: ||0xfyl|r~ < 1
in collaboration with P. Constantin, F. Gancedo & R. Strain (2011).
e Water waves

o Exponential in time existence in 2D for small initial data.
S. Wu (2009)
e Global existence in 3D for small initial data

P. Germain, N. Masmoudi & J. Shatah (2012)
S. Wu (2011)



Singularities?: Numerical simulations of Muskat

bt
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Numerical simulations of Maria Lépez-Fernandez:




Singularities?: Numerical simulations of Water waves

Numerical simulations of Javier Gémez-Serrano:




Singularities for Muskat: Theorems

Joint work with A.Castro, C. Fefferman, F. Gancedo and M. Lépez-Fernandez.

Theorem: Turning waves. R-T breakdown

There exists a non-empty open set of initial data H*, satisfying the R-T (strictly positive
o > 0) for which the R-T of the solution of the Muskat problem breaks down in finite
time.

Theorem: Breakdown of smoothness
There exists a non-empty open set of analytic initial data in the stable regime such that
the solution turns to the unstable regime and later it breaks down.

® Applications to water waves.



Singularities for Water waves: Theorems

Joint work with A.Castro, C. Fefferman, F. Gancedo and J. Gémez-Serrano.

Theorem: Splash singularity

There exists a non-empty open set of smooth initial data for which the
solution of water waves develops a splash singularity in finite.

Theorem: Stability from the splash

Given an approximate solution (x(«, t),v(«, t)) of water waves (up to the
splash) then near (x(«, t),y(«, t)) there exists an exact solution
(z(a, t),w(c, t)) of water waves.




Steps of the proof of R-T breakdown

e Instant analyticity if o > 0.
S(t)={a+iCeC: aeT, || <ct},

121 s)(D) = 121220y (8) + 3 /T 9k z(or + fct, )2 da,
+

d
il Zle(s)(t) = ClI 2]l e (1) + 1),



Steps of the proof of R-T breakdown

e The region of analyticity does not collapse to the real axis
as long as the o > 0.

S(t)={a+iceC:|c|<h@)}, h0)>0

&Y [1etzuta £ in0)Pda < C(lzls() + 1)*
+ T

HOU2ls(0)+1)* A0+ 7 () | Az, )(eetib(0) iz & T)do
Choosing
t
A1) = h(0) exp(~10C [ (12l +1)"(r)e)
And we obtain finally

%Z/mz(aifﬁ(t))\zda < C(l|zlls(t) + 1)*2.
T JT



Steps of the proof of R-T breakdown

e There exists a curve z(a) = (z(«), z2(a)) with the following properties:

1. z1(a) — e and zx(«) are analytic 2w — periodic functions and z(«)
satisfies the arc-chord condition,
2. z(«)is odd and

3. 0azi(a) > 0if a # 0, 9az1(0) = 0 and 9, 22(0) > 0,

such that
(0av1)(0) < 0.



Steps of the proof of R-T breakdown

e Together with Cauchy-Kovalevsky theorem and a
perturbative argument allows us to conclude that the
unstable regime is reached for a curve initially in H*.

e We construct a curve in the unstable regime which is
analytic except in a single point. We show that as we
evolve backwards in time the curve becomes analytic and
is as close as we desired to the curve that we previously
showed that it turns.



Steps of the proof of splash singularity

P(w) = (tan <V2V>>1/2, w e C,

e The water wave equations are invariant under time reversal. To obtain a
solution that ends in a splash, we can therefore take our initial condition
to be a splash, and show that there is a smooth solution for small times
t>0.



Steps of the proof of splash singularity

e Equations in the new domain
Z(a, t) = Q°(a, )BR(2,@)(a, t) + &(e, )Za(a, 1)
t(a, t) = —28:BR(2,&)(a, t) - Zo(a, t) — |BR(Z, )P0, QP(a, 1)

_ Q(a,t) (o, t)? Sl Z7.%) Zo(a
3a( 4 |Za(a,t)|2)+26( 1)0aBR(2,8) - Za(ax, 1)

+0a (B(a, D5, 1)) — 200 (P ' (Z(a, 1))
where

2
Q(a,t) = 'Z—Z(z(a, | .




Steps of the proof of splash singularity

Theorem: Local existence
Let 2°(a) be a splash curve such that 22(a) — a, z3(a) € H*(T). Let
() - (22)*(a) € HX(T) satisfying:

0\l 0\.L
0 (Za) 0 (za)
R )
0L
2./ w . (22) ds:/u"(a)-(zg)lda:o.
oN Iza| T

Then there exist a finite time T > 0, a curve
Z(a,t) = P(z(a, t)) € C([0, T]; H*) satisfying:

1. P '(Z(a, 1)) — a, P~'(2(a, t)) are 2x-periodic,
2. P7'(2(a, t)) satisfies the arc-chord condition for all t € (0, T],

and U(a, t) € C([0, T]; H¥(T)) which provides a solution of the water waves
equations in the new domain z°(a) = P(2°()).



Steps of the proof of splash singularity

- Q?05 ax <
E(t) =1Z|5a(t) + AP (|T2 |052[2da(t) + | F(2) 7= (1)
~ 4
2 2 |Zo‘|2 1
+ HwHHz(t) + ||<pHH3+1§ (t) + m(ogaE)(t) + — m(ql)(t)
where
.= 5.0) 4 2 50)) .3t 9 (3,4 P35 ). 5t
o3 = <BF1’,(z,w) + ‘2a|BRa(Z,w)) zy + TERE (zatJr |2a|zw> z,
~ 2
+Q‘BF?(2 o)+ ﬁza (VQ)(2) 2t — (VP ) (2)- 2+

Q¥ (a, (e, 1)

oo, t) = ERCT S C(a, V)] za(a, B)].

o+ T
2

olart) = 57 [ (BRED(5.0 220D a5

125(8, D)I?

Z5(B8, 1)
1Z5(3,1)|2

-/ " (@PBR(Z.2))s(5.1) - a3



Further Results

e Splat

A Variant of the Splash:
SPLAT!

=

Attimet,, the interface self-intersects along
anarc, but u and 3Q are otherwise smooth.

e Surface tension



Further Research

We would like to prove (in the near future) that starting from a
graph, we get to a splash




Graph to Splash: Sketch of the proof

e Compute the constant in the stability theorem, i.e. quantify
how fast solutions with near starting conditions separate.



Graph to Splash: Sketch of the proof

e Compute the constant in the stability theorem, i.e. quantify
how fast solutions with near starting conditions separate.

e From a given solution obtained by simulation, calculate

(using a computer!!) rigorous bounds in some H* norm on
how well the candidate satisfies the equation.



Graph to Splash: Sketch of the proof

e Compute the constant in the stability theorem, i.e. quantify
how fast solutions with near starting conditions separate.

e From a given solution obtained by simulation, calculate
(using a computer!!) rigorous bounds in some H* norm on
how well the candidate satisfies the equation.

¢ By the stability theorem, there should be a function which

solves the water waves equation, is a graph at time 0 and a
splash at time T which is close enough to the candidate.
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