Existence of frames with prescribed norms and frame operator

Marcin Bownik

University of Oregon

9th International Conference on Harmonic Analysis and Partial Differential Equations

El Escorial, Madrid (Spain) June 11-15, 2012

Definition

A sequence $\{f_i\}_{i\in I}$ in a Hilbert space $\mathcal H$ is called a frame if there exist constants $0 < A \le B < \infty$ such that

$$A||f||^2 \le \sum_{i \in I} |\langle f, f_i \rangle|^2 \le B||f||^2 \quad \forall f \in \mathcal{H}.$$

A frame operator $Sf = \sum_{i \in I} \langle f, f_i \rangle f_i$.

Definition

A sequence $\{f_i\}_{i\in I}$ in a Hilbert space $\mathcal H$ is called a frame if there exist constants $0 < A \le B < \infty$ such that

$$A||f||^2 \le \sum_{i \in I} |\langle f, f_i \rangle|^2 \le B||f||^2 \quad \forall f \in \mathcal{H}.$$

A frame operator $Sf = \sum_{i \in I} \langle f, f_i \rangle f_i$.

• S self-adjoint operator on \mathcal{H} and $A\mathbf{I} \leq S \leq B\mathbf{I}$,

Definition

A sequence $\{f_i\}_{i \in I}$ in a Hilbert space \mathcal{H} is called a frame if there exist constants $0 < A \le B < \infty$ such that

$$A||f||^2 \le \sum_{i \in I} |\langle f, f_i \rangle|^2 \le B||f||^2 \quad \forall f \in \mathcal{H}.$$

A frame operator $Sf = \sum_{i \in I} \langle f, f_i \rangle f_i$.

- S self-adjoint operator on \mathcal{H} and $A\mathbf{I} \leq S \leq B\mathbf{I}$,
- $A = B = 1 \iff S = I \iff \{f_i\}$ is a Parseval frame.

Definition

A sequence $\{f_i\}_{i \in I}$ in a Hilbert space $\mathcal H$ is called a frame if there exist constants $0 < A \le B < \infty$ such that

$$A||f||^2 \le \sum_{i \in I} |\langle f, f_i \rangle|^2 \le B||f||^2 \qquad \forall f \in \mathcal{H}.$$

A frame operator $Sf = \sum_{i \in I} \langle f, f_i \rangle f_i$.

- S self-adjoint operator on \mathcal{H} and $A\mathbf{I} \leq S \leq B\mathbf{I}$,
- $A = B = 1 \iff S = I \iff \{f_i\}$ is a Parseval frame.

Problem. Characterize all possible sequences of frame norms $\{||f_i||\}_{i\in I}$ with prescribed frame operator S.

Definition

A sequence $\{f_i\}_{i \in I}$ in a Hilbert space $\mathcal H$ is called a frame if there exist constants $0 < A \le B < \infty$ such that

$$A||f||^2 \le \sum_{i \in I} |\langle f, f_i \rangle|^2 \le B||f||^2 \quad \forall f \in \mathcal{H}.$$

A frame operator $Sf = \sum_{i \in I} \langle f, f_i \rangle f_i$.

- S self-adjoint operator on \mathcal{H} and $A\mathbf{I} \leq S \leq B\mathbf{I}$,
- $A = B = 1 \iff S = I \iff \{f_i\}$ is a Parseval frame.

Problem. Characterize all possible sequences of frame norms $\{||f_i||\}_{i\in I}$ with prescribed frame operator S. Trivial necessary condition:

$$0 \leq ||f_i||^2 \leq B.$$

• Schur (1923), Horn (1954) - diagonals of Hermitian matrices

- Schur (1923), Horn (1954) diagonals of Hermitian matrices
- Casazza, Leon (2002 published in 2010) finite frames with a given frame operator

- Schur (1923), Horn (1954) diagonals of Hermitian matrices
- Casazza, Leon (2002 published in 2010) finite frames with a given frame operator
- Kornelson, Larson (2004) infinite frames with a given frame operator

- Schur (1923), Horn (1954) diagonals of Hermitian matrices
- Casazza, Leon (2002 published in 2010) finite frames with a given frame operator
- Kornelson, Larson (2004) infinite frames with a given frame operator
- Antezana, Massey, Ruiz, Stojanoff (2007) Schur-Horn theorem and frames with prescribed norms and frame operator

- Schur (1923), Horn (1954) diagonals of Hermitian matrices
- Casazza, Leon (2002 published in 2010) finite frames with a given frame operator
- Kornelson, Larson (2004) infinite frames with a given frame operator
- Antezana, Massey, Ruiz, Stojanoff (2007) Schur-Horn theorem and frames with prescribed norms and frame operator
- Kadison (2002) complete answer for Parseval frames

- Schur (1923), Horn (1954) diagonals of Hermitian matrices
- Casazza, Leon (2002 published in 2010) finite frames with a given frame operator
- Kornelson, Larson (2004) infinite frames with a given frame operator
- Antezana, Massey, Ruiz, Stojanoff (2007) Schur-Horn theorem and frames with prescribed norms and frame operator
- Kadison (2002) complete answer for Parseval frames
- Casazza, Fickus, Kovačević, Leon, Tremain (2006) fundamental inequality for finite Parseval frames

- Schur (1923), Horn (1954) diagonals of Hermitian matrices
- Casazza, Leon (2002 published in 2010) finite frames with a given frame operator
- Kornelson, Larson (2004) infinite frames with a given frame operator
- Antezana, Massey, Ruiz, Stojanoff (2007) Schur-Horn theorem and frames with prescribed norms and frame operator
- Kadison (2002) complete answer for Parseval frames
- Casazza, Fickus, Kovačević, Leon, Tremain (2006) fundamental inequality for finite Parseval frames
- Arveson, Kadison (2006) Schur-Horn for trace class operators

- Schur (1923), Horn (1954) diagonals of Hermitian matrices
- Casazza, Leon (2002 published in 2010) finite frames with a given frame operator
- Kornelson, Larson (2004) infinite frames with a given frame operator
- Antezana, Massey, Ruiz, Stojanoff (2007) Schur-Horn theorem and frames with prescribed norms and frame operator
- Kadison (2002) complete answer for Parseval frames
- Casazza, Fickus, Kovačević, Leon, Tremain (2006) fundamental inequality for finite Parseval frames
- Arveson, Kadison (2006) Schur-Horn for trace class operators
- Kaftal, Weiss (2010) Schur-Horn for compact operators

- Schur (1923), Horn (1954) diagonals of Hermitian matrices
- Casazza, Leon (2002 published in 2010) finite frames with a given frame operator
- Kornelson, Larson (2004) infinite frames with a given frame operator
- Antezana, Massey, Ruiz, Stojanoff (2007) Schur-Horn theorem and frames with prescribed norms and frame operator
- Kadison (2002) complete answer for Parseval frames
- Casazza, Fickus, Kovačević, Leon, Tremain (2006) fundamental inequality for finite Parseval frames
- Arveson, Kadison (2006) Schur-Horn for trace class operators
- Kaftal, Weiss (2010) Schur-Horn for compact operators
- Bownik, Jasper (2010) frames with prescribed lower and upper bounds

- Schur (1923), Horn (1954) diagonals of Hermitian matrices
- Casazza, Leon (2002 published in 2010) finite frames with a given frame operator
- Kornelson, Larson (2004) infinite frames with a given frame operator
- Antezana, Massey, Ruiz, Stojanoff (2007) Schur-Horn theorem and frames with prescribed norms and frame operator
- Kadison (2002) complete answer for Parseval frames
- Casazza, Fickus, Kovačević, Leon, Tremain (2006) fundamental inequality for finite Parseval frames
- Arveson, Kadison (2006) Schur-Horn for trace class operators
- Kaftal, Weiss (2010) Schur-Horn for compact operators
- Bownik, Jasper (2010) frames with prescribed lower and upper bounds
- Jasper (2011) frames with 2 point spectrum frame operator

Orthonormal dilation of Parseval frames

Theorem (Han, Larson (2000))

Let K be a Hilbert space with orthonormal basis $\{e_i\}_{i\in I}$. Let P be an orthogonal projection of K onto $\mathcal{H}\subset K$. Then, $\{Pe_i\}$ is a Parseval frame for $\mathcal{H}=P(K)$.

Orthonormal dilation of Parseval frames

Theorem (Han, Larson (2000))

Let $\mathcal K$ be a Hilbert space with orthonormal basis $\{e_i\}_{i\in I}$. Let P be an orthogonal projection of $\mathcal K$ onto $\mathcal H\subset\mathcal K$. Then, $\{Pe_i\}$ is a Parseval frame for $\mathcal H=P(\mathcal K)$.

Conversely, let $\{f_i\}_{i\in I}$ be a Parseval frame for \mathcal{H} . Then, there exists a larger Hilbert space $\mathcal{K}\supset\mathcal{H}$ with orthonormal basis $\{e_i\}_{i\in I}$ such that $P(e_i)=f_i$, where P is an orthogonal projection of \mathcal{K} onto \mathcal{H} .

Orthonormal dilation of Parseval frames

Theorem (Han, Larson (2000))

Let $\mathcal K$ be a Hilbert space with orthonormal basis $\{e_i\}_{i\in I}$. Let P be an orthogonal projection of $\mathcal K$ onto $\mathcal H\subset\mathcal K$. Then, $\{Pe_i\}$ is a Parseval frame for $\mathcal H=P(\mathcal K)$.

Conversely, let $\{f_i\}_{i\in I}$ be a Parseval frame for \mathcal{H} . Then, there exists a larger Hilbert space $\mathcal{K}\supset\mathcal{H}$ with orthonormal basis $\{e_i\}_{i\in I}$ such that $P(e_i)=f_i$, where P is an orthogonal projection of \mathcal{K} onto \mathcal{H} .

• $\mathcal K$ can be identified with $\ell^2(I)$.

Proposition

Let $\mathcal K$ be a Hilbert space with orthonormal basis $\{e_i\}_{i\in I}$ and $0 < A \le B < \infty$. If E is a positive operator on $\mathcal K$ with

$$\{A,B\} \subseteq \sigma(E) \subseteq \{0\} \cup [A,B],\tag{1}$$

then $\{Ee_i\}$ is a frame for $\mathcal{H}=E(\mathcal{K})$ with optimal bounds A^2 and B^2 .

Proposition

Let $\mathcal K$ be a Hilbert space with orthonormal basis $\{e_i\}_{i\in I}$ and $0 < A \le B < \infty$. If E is a positive operator on $\mathcal K$ with

$$\{A,B\} \subseteq \sigma(E) \subseteq \{0\} \cup [A,B],\tag{1}$$

then $\{Ee_i\}$ is a frame for $\mathcal{H}=E(\mathcal{K})$ with optimal bounds A^2 and B^2 .

Conversely, let $\{f_i\}_{i\in I}$ be a frame for \mathcal{H} with optimal bounds A^2 and B^2 . Then, there exists a larger Hilbert space $\mathcal{K}\supset\mathcal{H}$ with orthonormal basis $\{e_i\}_{i\in I}$ and positive operator E on \mathcal{K} satisfying (1) such that $E(e_i)=f_i$.

Proposition

Let $\mathcal K$ be a Hilbert space with orthonormal basis $\{e_i\}_{i\in I}$ and $0 < A \le B < \infty$. If E is a positive operator on $\mathcal K$ with

$$\{A,B\} \subseteq \sigma(E) \subseteq \{0\} \cup [A,B],\tag{1}$$

then $\{Ee_i\}$ is a frame for $\mathcal{H}=E(\mathcal{K})$ with optimal bounds A^2 and B^2 .

Conversely, let $\{f_i\}_{i\in I}$ be a frame for \mathcal{H} with optimal bounds A^2 and B^2 . Then, there exists a larger Hilbert space $\mathcal{K}\supset\mathcal{H}$ with orthonormal basis $\{e_i\}_{i\in I}$ and positive operator E on \mathcal{K} satisfying (1) such that $E(e_i)=f_i$.

• \mathcal{K} can be identified with $\ell^2(I)$.

Proposition

Let $\mathcal K$ be a Hilbert space with orthonormal basis $\{e_i\}_{i\in I}$ and $0 < A \le B < \infty$. If E is a positive operator on $\mathcal K$ with

$$\{A,B\} \subseteq \sigma(E) \subseteq \{0\} \cup [A,B],\tag{1}$$

then $\{Ee_i\}$ is a frame for $\mathcal{H}=E(\mathcal{K})$ with optimal bounds A^2 and B^2 .

Conversely, let $\{f_i\}_{i\in I}$ be a frame for \mathcal{H} with optimal bounds A^2 and B^2 . Then, there exists a larger Hilbert space $\mathcal{K}\supset\mathcal{H}$ with orthonormal basis $\{e_i\}_{i\in I}$ and positive operator E on \mathcal{K} satisfying (1) such that $E(e_i)=f_i$.

- \mathcal{K} can be identified with $\ell^2(I)$.
- E is unitarily equivalent with $S^{1/2} \oplus \mathbf{0}$, S frame operator on \mathcal{H} , $\mathbf{0}$ acts on $\mathcal{H}^{\perp} \subset \mathcal{K}$.

Reformulation of problem

Theorem (Antezana, Massey, Ruiz, Stojanoff (2007))

Let $0 < A \le B < \infty$ and S be a positive operator on a Hilbert space \mathcal{H} with $\sigma(S) \subset [A, B]$. The following sets are equal:

$$\left\{\left\{\|f_i\|^2\right\}_{i\in I} \mid \begin{cases} \{f_i\}_{i\in I} \text{ is a frame for } \mathcal{H} \text{ with } \\ \text{frame operator } S \end{cases}\right\}$$

$$\left\{\left\{\left\langle Ee_{i},e_{i}\right
angle
ight\}_{i\in I} \middle| \begin{array}{c} E \text{ is self-adjoint on }\ell^{2}(I) \text{ and} \\ unitarily equivalent with }S\oplus\mathbf{0} \end{array}\right\}$$

Reformulation of problem

Theorem (Antezana, Massey, Ruiz, Stojanoff (2007))

Let $0 < A \le B < \infty$ and S be a positive operator on a Hilbert space \mathcal{H} with $\sigma(S) \subset [A, B]$. The following sets are equal:

$$\left\{\left\{\|f_i\|^2\right\}_{i\in I} \mid \begin{cases} \{f_i\}_{i\in I} \text{ is a frame for } \mathcal{H} \text{ with } \\ \text{frame operator } S \end{cases}\right\}$$

$$\left\{\left\{\left\langle Ee_{i},e_{i}\right
angle
ight\}_{i\in I} \middle| \begin{array}{c} E \text{ is self-adjoint on }\ell^{2}(I) \text{ and} \\ unitarily equivalent with }S\oplus\mathbf{0} \end{array}\right\}$$

Reformulated (Schur-Horn) Problem. Characterize diagonals $\{\langle Ee_i, e_i \rangle\}_{i \in I}$ of a self-adjoint operator E, where $\{e_i\}_{i \in I}$ is any orthonormal basis of \mathcal{H} .

Parseval Frames

Definition

A sequence $\{f_i\}_{i\in I}$ in a Hilbert space $\mathcal H$ is a tight frame (Parseval frame if B=1) if

$$\sum_{i\in I} |\langle f, f_i \rangle|^2 = B \|f\|^2 \qquad \forall f \in \mathcal{H}.$$

Problem. Characterize sequences of norms of Parseval frames.

Parseval Frames

Definition

A sequence $\{f_i\}_{i\in I}$ in a Hilbert space $\mathcal H$ is a tight frame (Parseval frame if B=1) if

$$\sum_{i\in I} |\langle f, f_i \rangle|^2 = B \|f\|^2 \qquad \forall f \in \mathcal{H}.$$

Problem. Characterize sequences of norms of Parseval frames. **Reformulated Problem.** Characterize diagonals of orthogonal projections.

Parseval Frames

Definition

A sequence $\{f_i\}_{i\in I}$ in a Hilbert space $\mathcal H$ is a tight frame (Parseval frame if B=1) if

$$\sum_{i\in I} |\langle f, f_i \rangle|^2 = B \|f\|^2 \qquad \forall f \in \mathcal{H}.$$

Problem. Characterize sequences of norms of Parseval frames. **Reformulated Problem.** Characterize diagonals of orthogonal projections.

This problem was solved by Kadison (2002) and independently in \mathbb{R}^N and \mathbb{C}^N case by Casazza, Fickus, Kovačevíc, Leon, and Tremain (2006) using frame potentials.

$$\max_{i=1,...,M} ||f_i||^2 \le \frac{1}{N} \sum_{i=1}^{M} ||f_i||^2 = B.$$

Theorem (Kadison (2002))

Let $\{d_i\}_{i\in I}$ be a sequence in [0,1] and $\alpha\in(0,1)$. Define

$$C(\alpha) = \sum_{d_i < \alpha} d_i, \qquad D(\alpha) = \sum_{d_i \ge \alpha} (1 - d_i).$$

Theorem (Kadison (2002))

Let $\{d_i\}_{i\in I}$ be a sequence in [0,1] and $\alpha\in(0,1)$. Define

$$C(\alpha) = \sum_{d_i < \alpha} d_i, \qquad D(\alpha) = \sum_{d_i \ge \alpha} (1 - d_i).$$

•
$$C(\alpha) = \infty$$
 or $D(\alpha) = \infty$, or

Theorem (Kadison (2002))

Let $\{d_i\}_{i\in I}$ be a sequence in [0,1] and $\alpha\in(0,1)$. Define

$$C(\alpha) = \sum_{d_i < \alpha} d_i, \qquad D(\alpha) = \sum_{d_i \ge \alpha} (1 - d_i).$$

- $C(\alpha), D(\alpha) < \infty$, and $C(\alpha) D(\alpha) \in \mathbb{Z}$.

Theorem (Kadison (2002))

Let $\{d_i\}_{i\in I}$ be a sequence in [0,1] and $\alpha\in(0,1)$. Define

$$C(\alpha) = \sum_{d_i < \alpha} d_i, \qquad D(\alpha) = \sum_{d_i \ge \alpha} (1 - d_i).$$

- $C(\alpha), D(\alpha) < \infty, \text{ and } C(\alpha) D(\alpha) \in \mathbb{Z}.$
 - The same condition characterizes sequences of norms of Parseval frames.

Theorem (Kadison (2002))

Let $\{d_i\}_{i\in I}$ be a sequence in [0,1] and $\alpha\in(0,1)$. Define

$$C(\alpha) = \sum_{d_i < \alpha} d_i, \qquad D(\alpha) = \sum_{d_i \ge \alpha} (1 - d_i).$$

- $C(\alpha), D(\alpha) < \infty$, and $C(\alpha) D(\alpha) \in \mathbb{Z}$.
 - The same condition characterizes sequences of norms of Parseval frames.
 - The finite case is a consequence of the Schur-Horn theorem—the necessary and sufficient condition is $\sum d_i \in \mathbb{N}$.

Schur-Horn Theorem

Theorem (Schur (1923), Horn (1954))

Suppose S is an N × N Hermitian matrix with eigenvalues $\{\lambda_i\}_{i=1}^N$ and diagonal $\{d_i\}_{i=1}^N$ listed in nonincreasing order. Then,

$$\sum_{i=1}^{n} d_i \leq \sum_{i=1}^{n} \lambda_i \quad \forall \, n = 1, \dots, N$$
 (2)

with equality when n = N.

Schur-Horn Theorem

Theorem (Schur (1923), Horn (1954))

Suppose S is an N × N Hermitian matrix with eigenvalues $\{\lambda_i\}_{i=1}^N$ and diagonal $\{d_i\}_{i=1}^N$ listed in nonincreasing order. Then,

$$\sum_{i=1}^{n} d_i \leq \sum_{i=1}^{n} \lambda_i \quad \forall \, n = 1, \dots, N$$
 (2)

with equality when n = N.

Conversely, if (2) holds, then there is a **real** $N \times N$ Hermitian matrix with eigenvalues $\{\lambda_i\}$ and diagonal $\{d_i\}$.

Schur-Horn Theorem

Theorem (Schur (1923), Horn (1954))

Suppose S is an N × N Hermitian matrix with eigenvalues $\{\lambda_i\}_{i=1}^N$ and diagonal $\{d_i\}_{i=1}^N$ listed in nonincreasing order. Then,

$$\sum_{i=1}^{n} d_i \leq \sum_{i=1}^{n} \lambda_i \quad \forall \, n = 1, \dots, N$$
 (2)

with equality when n = N.

Conversely, if (2) holds, then there is a **real** $N \times N$ Hermitian matrix with eigenvalues $\{\lambda_i\}$ and diagonal $\{d_i\}$.

• (2) is equivalent to the convexity condition $(d_1, \ldots, d_N) \in \text{conv}\{(\lambda_{\sigma(1)}, \ldots, \lambda_{\sigma(N)}) : \sigma \in S_N\} \subset \mathbb{R}^N.$

Schur-Horn Theorem

Theorem (Schur (1923), Horn (1954))

Suppose S is an N × N Hermitian matrix with eigenvalues $\{\lambda_i\}_{i=1}^N$ and diagonal $\{d_i\}_{i=1}^N$ listed in nonincreasing order. Then,

$$\sum_{i=1}^{n} d_i \leq \sum_{i=1}^{n} \lambda_i \quad \forall \, n = 1, \dots, N$$
 (2)

with equality when n = N.

Conversely, if (2) holds, then there is a **real** $N \times N$ Hermitian matrix with eigenvalues $\{\lambda_i\}$ and diagonal $\{d_i\}$.

- (2) is equivalent to the convexity condition $(d_1, \ldots, d_N) \in \text{conv}\{(\lambda_{\sigma(1)}, \ldots, \lambda_{\sigma(N)}) : \sigma \in S_N\} \subset \mathbb{R}^N.$
- This is a special case of the Kostant convexity theorem for connected semi-simple groups G when G = SU(N).

Theorem (Bownik, Jasper (2011))

Let $0 < A < B < \infty$ and $\{d_i\}$ be a nonsummable sequence in [0,B]. Define the numbers

$$C = \sum_{d_i < A} d_i$$
 and $D = \sum_{d_i \ge A} (B - d_i)$.

Theorem (Bownik, Jasper (2011))

Let $0 < A < B < \infty$ and $\{d_i\}$ be a nonsummable sequence in [0,B]. Define the numbers

$$C = \sum_{d_i < A} d_i$$
 and $D = \sum_{d_i \ge A} (B - d_i)$.

Theorem (Bownik, Jasper (2011))

Let $0 < A < B < \infty$ and $\{d_i\}$ be a nonsummable sequence in [0,B]. Define the numbers

$$C = \sum_{d_i < A} d_i$$
 and $D = \sum_{d_i \ge A} (B - d_i)$.

- $2 C, D < \infty \text{ and } \exists N \in \mathbb{N} \cup \{0\},$

$$NA \leq C \leq A + B(N-1) + D.$$

Theorem (Bownik, Jasper (2011))

Let $0 < A < B < \infty$ and $\{d_i\}$ be a nonsummable sequence in [0,B]. Define the numbers

$$C = \sum_{d_i < A} d_i$$
 and $D = \sum_{d_i \ge A} (B - d_i)$.

There is a positive operator E with $\{A, B\} \subseteq \sigma(E) \subseteq \{0\} \cup [A, B]$ and diagonal $\{d_i\} \iff$ either:

$$NA \leq C \leq A + B(N-1) + D.$$

• The nonsummability $\sum d_i = \infty$ is not a true limitation.

Theorem (Bownik, Jasper (2011))

Let $0 < A < B < \infty$ and $\{d_i\}$ be a nonsummable sequence in [0,B]. Define the numbers

$$C = \sum_{d_i < A} d_i$$
 and $D = \sum_{d_i \ge A} (B - d_i)$.

- $2 C, D < \infty \text{ and } \exists N \in \mathbb{N} \cup \{0\},$

$$NA \leq C \leq A + B(N-1) + D.$$

- The nonsummability $\sum d_i = \infty$ is not a true limitation.
- However, the assumption A < B is essential since the tight case A = B corresponds to Kadison's theorem.

Frames with prescribed lower and upper bounds

Corollary (Bownik, Jasper (2011))

Let $0 < A < B < \infty$ and $\{d_i\}$ be a nonsummable sequence in [0,B]. Define the numbers

$$C = \sum_{d_i < A} d_i$$
 and $D = \sum_{d_i \ge A} (B - d_i)$.

There is a frame with optimal bounds A and B and $d_i = ||f_i||^2 \iff$ either:

- $2 C, D < \infty \text{ and } \exists N \in \mathbb{N} \cup \{0\},$

$$NA \leq C \leq A + B(N-1) + D$$
.

Lemma (Moving toward 0-1)

$$0 \leq \eta_0 \leq \min \bigg\{ \sum_{i \in I_0} d_i, \sum_{i \in I_1} (B - d_i) \bigg\}.$$

Lemma (Moving toward 0-1)

Let $\{d_i\}_{i\in I}$ be a sequence in [0,B]. Let $I_0,I_1\subset I$ be two disjoint finite subsets such that $\max\{d_i:i\in I_0\}\leq \min\{d_i:i\in I_1\}$. Let

$$0 \leq \eta_0 \leq \min \bigg\{ \sum_{i \in I_0} d_i, \sum_{i \in I_1} (B - d_i) \bigg\}.$$

(i) There exists a sequence $\{\tilde{d}_i\}_{i\in I}$ in [0,B] satisfying:

Lemma (Moving toward 0-1)

$$0 \leq \eta_0 \leq \min \bigg\{ \sum_{i \in I_0} d_i, \sum_{i \in I_1} (B - d_i) \bigg\}.$$

- (i) There exists a sequence $\{\tilde{d}_i\}_{i\in I}$ in [0, B] satisfying:
 - $\bullet \ \tilde{d}_i = d_i \text{ for } i \in I \setminus (I_0 \cup I_1),$

Lemma (Moving toward 0-1)

$$0 \leq \eta_0 \leq \min \bigg\{ \sum_{i \in I_0} d_i, \sum_{i \in I_1} (B - d_i) \bigg\}.$$

- (i) There exists a sequence $\{\tilde{d}_i\}_{i\in I}$ in [0,B] satisfying:
 - $\bullet \ \tilde{d}_i = d_i \text{ for } i \in I \setminus (I_0 \cup I_1),$
 - $2 \tilde{d}_i \leq d_i \quad i \in I_0 \text{ and } \tilde{d}_i \geq d_i, \quad i \in I_1,$

Lemma (Moving toward 0-1)

$$0 \leq \eta_0 \leq \min \bigg\{ \sum_{i \in I_0} d_i, \sum_{i \in I_1} (B - d_i) \bigg\}.$$

- (i) There exists a sequence $\{\tilde{d}_i\}_{i\in I}$ in [0,B] satisfying:
 - $\bullet \quad \tilde{d}_i = d_i \text{ for } i \in I \setminus (I_0 \cup I_1),$
 - $\tilde{d}_i \leq d_i \quad i \in I_0 \text{ and } \tilde{d}_i \geq d_i, \quad i \in I_1,$
 - **3** $\eta_0 + \sum_{i \in I_0} \tilde{d}_i = \sum_{i \in I_0} d_i$, and $\eta_0 + \sum_{i \in I_1} (B \tilde{d}_i) = \sum_{i \in I_1} (B d_i)$.

Lemma (Moving toward 0-1)

$$0 \leq \eta_0 \leq \min \bigg\{ \sum_{i \in I_0} d_i, \sum_{i \in I_1} (B - d_i) \bigg\}.$$

- (i) There exists a sequence $\{\tilde{d}_i\}_{i\in I}$ in [0,B] satisfying:
 - $\bullet \ \tilde{d}_i = d_i \text{ for } i \in I \setminus (I_0 \cup I_1),$
 - $2 \ \tilde{d}_i \leq d_i \quad i \in I_0 \ \text{and} \ \tilde{d}_i \geq d_i, \quad i \in I_1,$
 - **1** $\eta_0 + \sum_{i \in I_0} \tilde{d}_i = \sum_{i \in I_0} d_i$, and $\eta_0 + \sum_{i \in I_1} (B \tilde{d}_i) = \sum_{i \in I_1} (B d_i)$.
- (ii) \tilde{E} self-adjoint operator with diagonal $\{\tilde{d}_i\}_{i\in I} \implies$ there exists an operator E unitarily equivalent to \tilde{E} with diagonal $\{d_i\}_{i\in I}$.

Theorem (Jasper (2011))

Let $0 < A < B < \infty$ and $\{d_i\}_{i \in I}$ be a sequence in [0, B] with $\sum d_i = \sum (B - d_i) = \infty$. Define

$$C = \sum_{d_i < A} d_i$$
 and $D = \sum_{d_i \ge A} (B - d_i)$.

There is a self-adjoint operator E with diagonal $\{d_i\}_{i\in I}$ and $\sigma(E) = \{0, A, B\} \iff \text{either:}$

Theorem (Jasper (2011))

Let $0 < A < B < \infty$ and $\{d_i\}_{i \in I}$ be a sequence in [0, B] with $\sum d_i = \sum (B - d_i) = \infty$. Define

$$C = \sum_{d_i < A} d_i$$
 and $D = \sum_{d_i \ge A} (B - d_i)$.

There is a self-adjoint operator E with diagonal $\{d_i\}_{i\in I}$ and $\sigma(E) = \{0, A, B\} \iff \text{either:}$

Theorem (Jasper (2011))

Let $0 < A < B < \infty$ and $\{d_i\}_{i \in I}$ be a sequence in [0, B] with $\sum d_i = \sum (B - d_i) = \infty$. Define

$$C = \sum_{d_i < A} d_i$$
 and $D = \sum_{d_i \ge A} (B - d_i)$.

There is a self-adjoint operator E with diagonal $\{d_i\}_{i\in I}$ and $\sigma(E) = \{0, A, B\} \iff \text{either:}$

- **2** $C, D < \infty$ and $\exists N \in \mathbb{N}, k \in \mathbb{Z}$

$$C - D = NA + kB$$
 and $C \ge (N + k)A$.

Theorem (Jasper (2011))

Let $0 < A < B < \infty$ and $\{d_i\}_{i \in I}$ be a sequence in [0, B] with $\sum d_i = \sum (B - d_i) = \infty$. Define

$$C = \sum_{d_i < A} d_i$$
 and $D = \sum_{d_i \ge A} (B - d_i)$.

There is a self-adjoint operator E with diagonal $\{d_i\}_{i\in I}$ and $\sigma(E) = \{0, A, B\} \iff \text{either:}$

- **2** $C, D < \infty$ and $\exists N \in \mathbb{N}, k \in \mathbb{Z}$

$$C - D = NA + kB$$
 and $C \ge (N + k)A$.

 $\sum d_i = \sum (B - d_i) = \infty$ is not a true limitation.

Frames with prescribed norms and 2 point spectrum

Corollary (Jasper (2011))

Let $0 < A < B < \infty$ and $\{d_i\}_{i \in I}$ be a sequence in [0, B] with $\sum d_i = \sum (B - d_i) = \infty$. Define

$$C = \sum_{d_i < A} d_i$$
 and $D = \sum_{d_i \ge A} (B - d_i)$.

There is a frame such that $\sigma(S) = \{A, B\}$ and $d_i = ||f_i||^2 \iff$ either:

- ② $C, D < \infty$ and $\exists N \in \mathbb{N}, k \in \mathbb{Z}$

$$C - D = NA + kB$$
 and $C \ge (N + k)A$.

3 point spectrum and prescribed multiplicites

Definition

Let $0 < A < B < \infty$ and $\{d_i\}_{i \in I}$ in [0, B]. Define the sets

$$I_1 = \{i \in I : d_i < A\}, \ I_2 = \{i \in I : d_i \ge A\},\$$

$$J_2 = \{i \in I_2 : d_i < (A+B)/2\}, \ J_3 = I_2 \setminus J_2$$

and the constants (each possibly infinite)

$$C = \sum_{i \in I_1} d_i \qquad D = \sum_{i \in I_2} (B - d_i)$$

$$C_1 = \sum_{i \in I_1} (A - d_i), \ C_2 = \sum_{i \in J_2} (d_i - A), \ C_3 = \sum_{i \in J_3} (B - d_i).$$

Let E be a bounded operator on a Hilbert space.

For $\lambda \in \mathbb{C}$ define $m_E(\lambda) = \dim \ker(E - \lambda)$.

3 point spectrum and prescribed multiplicites

Theorem (Jasper (2011))

E has diagonal $\{d_i\}$ and $\sigma(E) = \{0, A, B\} \iff$

3 point spectrum and prescribed multiplicites

Theorem (Jasper (2011))

E has diagonal $\{d_i\}$ and $\sigma(E) = \{0, A, B\} \iff$

	$m_E(0)$	$m_E(A)$	$m_E(B)$	Condition
(a)	Z	N	К	$ I = Z + N + K$ $\sum_{i \in I} d_i = NA + KB, C \ge (N + K - I_2)A$
(b)	∞	N	К	$ I_1 = \infty,$ $\sum_{i \in I} d_i = NA + KB, C \ge (N + K - I_2)A$
(c)	∞	N	∞	$C + D = \infty$ or $C, D < \infty, I_1 = I_2 = \infty,$ $\exists k \in \mathbb{Z} C - D = NA + kB, C \ge A(N + k)$
(d)	Z	∞	К	$ I = \infty, C_1 \le AZ$ $\sum_{i \in I} (d_i - A) = K(B - A) - ZA$
(e)	Z	∞	∞	$C_1 \le AZ, \ C_2 + C_3 = \infty$ or $ I_1 \cup J_2 = J_3 = \infty, \ C_1 \le AZ, \ C_2, C_3 < \infty$ $\exists \ k \in \mathbb{Z}, \ C_1 - C_2 + C_3 = (Z - k)A + kB$
(f)	∞	∞	∞	$C+D=\infty$

n point spectrum - Riemann majorization

Definition

Let $0 = A_0 < A_1 < \ldots < A_{n+1} = B$, $n \in \mathbb{N}$.

Let $\{\lambda_i\}_{i\in\mathbb{Z}}$ be a **nondecreasing** sequence which takes values in $\{A_0, A_1, \ldots, A_{n+1}\}$, each at least once.

n point spectrum - Riemann majorization

Definition

Let $0 = A_0 < A_1 < \ldots < A_{n+1} = B$, $n \in \mathbb{N}$.

Let $\{\lambda_i\}_{i\in\mathbb{Z}}$ be a **nondecreasing** sequence which takes values in $\{A_0, A_1, \dots, A_{n+1}\}$, each at least once.

Let $\{d_i\}_{i\in\mathbb{Z}}$ be a nondecreasing sequence in [0,B] such that $\sum_{i=-\infty}^{0} d_i < \infty$.

n point spectrum - Riemann majorization

Definition

Let $0 = A_0 < A_1 < \ldots < A_{n+1} = B$, $n \in \mathbb{N}$.

Let $\{\lambda_i\}_{i\in\mathbb{Z}}$ be a **nondecreasing** sequence which takes values in $\{A_0, A_1, \ldots, A_{n+1}\}$, each at least once.

Let $\{d_i\}_{i\in\mathbb{Z}}$ be a **nondecreasing** sequence in [0,B] such that $\sum_{i=-\infty}^{0} d_i < \infty$.

We say that $\{d_i\}$ satisfies Riemann majorization by $\{A_j\}_{j=0}^{n+1}$ if there exists such a sequence $\{\lambda_i\}_{i\in\mathbb{Z}}$ as above, so that the following two hold:

$$\delta_m := \sum_{i=-\infty}^m (d_i - \lambda_i) \ge 0$$
 for all $m \in \mathbb{Z}$,
$$\lim_{m \to \infty} \delta_m = 0.$$

Definition

Let
$$0 = A_0 < A_1 < \ldots < A_{n+1} = B$$
, $n \in \mathbb{N}$.

Definition

Let
$$0 = A_0 < A_1 < \ldots < A_{n+1} = B$$
, $n \in \mathbb{N}$.
Let $\{d_i\}_{i \in \mathbb{Z}}$ be any sequence in $[0, B]$. For $\alpha \in (0, B)$ define $C(\alpha) = \sum_{d_i < \alpha} d_i$ and $D(\alpha) = \sum_{d_i > \alpha} (B - d_i)$.

Definition

Let $0 = A_0 < A_1 < \ldots < A_{n+1} = B$, $n \in \mathbb{N}$. Let $\{d_i\}_{i \in \mathbb{Z}}$ be **any** sequence in [0,B]. For $\alpha \in (0,B)$ define $C(\alpha) = \sum_{d_i < \alpha} d_i$ and $D(\alpha) = \sum_{d_i \geq \alpha} (B - d_i)$. We say that $\{d_i\}$ satisfies Lebesgue majorization by $\{A_j\}_{j=0}^{n+1}$ if $C(B/2), D(B/2) < \infty$, and $\exists N_1, \ldots, N_n \in \mathbb{N}$ and $\exists k \in \mathbb{Z}$

Definition

Let $0 = A_0 < A_1 < \ldots < A_{n+1} = B$, $n \in \mathbb{N}$. Let $\{d_i\}_{i \in \mathbb{Z}}$ be **any** sequence in [0,B]. For $\alpha \in (0,B)$ define $C(\alpha) = \sum_{d_i < \alpha} d_i$ and $D(\alpha) = \sum_{d_i \geq \alpha} (B - d_i)$. We say that $\{d_i\}$ satisfies Lebesgue majorization by $\{A_j\}_{j=0}^{n+1}$ if $C(B/2), D(B/2) < \infty$, and $\exists N_1, \ldots, N_n \in \mathbb{N}$ and $\exists k \in \mathbb{Z}$

$$C(B/2) - D(B/2) = \sum_{j=1}^{n} A_j N_j + kB,$$

Definition

Let $0 = A_0 < A_1 < \ldots < A_{n+1} = B$, $n \in \mathbb{N}$. Let $\{d_i\}_{i \in \mathbb{Z}}$ be **any** sequence in [0,B]. For $\alpha \in (0,B)$ define $C(\alpha) = \sum_{d_i < \alpha} d_i$ and $D(\alpha) = \sum_{d_i \geq \alpha} (B-d_i)$. We say that $\{d_i\}$ satisfies Lebesgue majorization by $\{A_j\}_{j=0}^{n+1}$ if $C(B/2), D(B/2) < \infty$, and $\exists N_1, \ldots, N_n \in \mathbb{N}$ and $\exists k \in \mathbb{Z}$

$$C(B/2) - D(B/2) = \sum_{j=1}^{n} A_j N_j + kB,$$

$$(B-A_r)C(A_r) + A_rD(A_r) \ge (B-A_r)\sum_{j=1}^r A_jN_j + A_r\sum_{j=r+1}^n (B-A_j)N_j$$
for all $r = 1, ..., n$.

Equivalence of Riemann and Lebesgue majorizations

Theorem

Let $\{d_i\}_{i\in\mathbb{Z}}$ be a nondecreasing sequence in [0,B]. Then, $\{d_i\}$ satisfies Riemann majorization by $\{A_j\}_{j=0}^{n+1} \iff \{d_i\}$ satisfies Lebesgue majorization by $\{A_j\}_{j=0}^{n+1}$.

Theorem (Bownik, Jasper (2012))

Let
$$0 = A_0 < A_1 < ... < A_{n+1} = B$$
, $n \in \mathbb{N}$. Let $\{d_i\}_{i \in I} \subset [0, B]$. Assume $\sum d_i = \sum (B - d_i) = \infty$.

There exists a self-adjoint operator E with diagonal $\{d_i\}_{i\in I}$ and $\sigma(E) = \{A_0, A_1, \dots, A_{n+1}\} \iff$ either:

Theorem (Bownik, Jasper (2012))

Let
$$0 = A_0 < A_1 < ... < A_{n+1} = B$$
, $n \in \mathbb{N}$. Let $\{d_i\}_{i \in I} \subset [0, B]$. Assume $\sum d_i = \sum (B - d_i) = \infty$.

There is a frame such that $\sigma(S) = \{A_1, \dots, A_{n+1}\}$ and $d_i = ||f_i||^2 \iff \text{either:}$

Theorem (Bownik, Jasper (2012))

Let $0 = A_0 < A_1 < ... < A_{n+1} = B$, $n \in \mathbb{N}$. Let $\{d_i\}_{i \in I} \subset [0, B]$. Assume $\sum d_i = \sum (B - d_i) = \infty$.

There is a frame such that $\sigma(S) = \{A_1, \dots, A_{n+1}\}$ and $d_i = ||f_i||^2 \iff$ either:

1
$$C(B/2) = \infty \text{ or } D(B/2) = \infty, \text{ or }$$

Theorem (Bownik, Jasper (2012))

Let $0 = A_0 < A_1 < ... < A_{n+1} = B$, $n \in \mathbb{N}$. Let $\{d_i\}_{i \in I} \subset [0, B]$. Assume $\sum d_i = \sum (B - d_i) = \infty$.

There is a frame such that $\sigma(S) = \{A_1, \dots, A_{n+1}\}$ and $d_i = ||f_i||^2 \iff \text{either:}$

- ② $C(B/2), D(B/2) < \infty$, and $\exists N_1, \dots, N_n \in \mathbb{N}$ and $\exists k \in \mathbb{Z}$

$$C(B/2) - D(B/2) = \sum_{i=1}^{n} A_i N_i + kB,$$

Theorem (Bownik, Jasper (2012))

Let
$$0 = A_0 < A_1 < ... < A_{n+1} = B$$
, $n \in \mathbb{N}$. Let $\{d_i\}_{i \in I} \subset [0, B]$. Assume $\sum d_i = \sum (B - d_i) = \infty$.

There is a frame such that $\sigma(S) = \{A_1, \dots, A_{n+1}\}$ and $d_i = ||f_i||^2 \iff$ either:

- ② $C(B/2), D(B/2) < \infty$, and $\exists N_1, \dots, N_n \in \mathbb{N}$ and $\exists k \in \mathbb{Z}$

$$C(B/2) - D(B/2) = \sum_{j=1}^{n} A_j N_j + kB,$$

$$(B-A_r)C(A_r)+A_rD(A_r) \ge (B-A_r)\sum_{j=1}^r A_jN_j+A_r\sum_{j=r+1}^n (B-A_j)N_j$$

for all $r = 1, \ldots, n$.

Applications

Question: Given a fixed sequence $\{d_i\} \subset [0,1]$, for what numbers 0 < A < 1 does there exist a frame $\{f_i\}$ such that $d_i = ||f_i||^2$ and the spectrum of frame operator $\sigma(S) = \{A,1\}$?

Applications

Question: Given a fixed sequence $\{d_i\} \subset [0,1]$, for what numbers 0 < A < 1 does there exist a frame $\{f_i\}$ such that $d_i = ||f_i||^2$ and the spectrum of frame operator $\sigma(S) = \{A,1\}$?

Theorem (Jasper (2011))

Let $\{d_i\}_{i\in\mathbb{N}}$ be a sequence in [0,1] and set

$$\mathcal{A} = \{A \in (0,1) : \exists E \text{ with } \sigma(E) = \{0,A,1\} \text{ and diagonal } \{d_i\}\}.$$

Either A = (0,1) or A is a finite (possibly empty) set.

Applications

Question: Given a fixed sequence $\{d_i\} \subset [0,1]$, for what numbers 0 < A < 1 does there exist a frame $\{f_i\}$ such that $d_i = ||f_i||^2$ and the spectrum of frame operator $\sigma(S) = \{A,1\}$?

Theorem (Jasper (2011))

Let $\{d_i\}_{i\in\mathbb{N}}$ be a sequence in [0,1] and set

$$A = \{A \in (0,1) : \exists E \text{ with } \sigma(E) = \{0,A,1\} \text{ and diagonal } \{d_i\}\}.$$

Either A = (0,1) or A is a finite (possibly empty) set. Moreover, if $A = \emptyset$, then $\{d_i\}$ is a diagonal of a projection.

Example

Let $\beta \in (0,1)$ and define the sequence $\{d_i\}_{i \in \mathbb{Z} \setminus \{0\}}$ by

$$d_i = \begin{cases} 1 - \beta^i, & i > 0 \\ \beta^{|i|} & i < 0. \end{cases}$$

$$\mathcal{A} = \left\{
ight.$$

Example

Let $\beta \in (0,1)$ and define the sequence $\{d_i\}_{i \in \mathbb{Z} \setminus \{0\}}$ by

$$d_i = \begin{cases} 1 - \beta^i, & i > 0 \\ \beta^{|i|} & i < 0. \end{cases}$$

$$\mathcal{A} = \left\{ egin{array}{ll} arnothing & 0 < eta < 1/3, \ \end{array}
ight.$$

Example

Let $\beta \in (0,1)$ and define the sequence $\{d_i\}_{i \in \mathbb{Z} \setminus \{0\}}$ by

$$d_i = \begin{cases} 1 - \beta^i, & i > 0 \\ \beta^{|i|} & i < 0. \end{cases}$$

$$\mathcal{A} = \begin{cases} \varnothing & 0 < \beta < 1/3, \\ \{\frac{1}{2}\} & 1/3 \le \beta < \frac{-1+\sqrt{13}}{6} \approx 0.434, \end{cases}$$

Example

Let $\beta \in (0,1)$ and define the sequence $\{d_i\}_{i \in \mathbb{Z} \setminus \{0\}}$ by

$$d_i = \begin{cases} 1 - \beta^i, & i > 0 \\ \beta^{|i|} & i < 0. \end{cases}$$

$$\mathcal{A} = \begin{cases} \varnothing & 0 < \beta < 1/3, \\ \{\frac{1}{2}\} & 1/3 \le \beta < \frac{-1+\sqrt{13}}{6} \approx 0.434, \\ \{\frac{1}{3}, \frac{1}{2}, \frac{2}{3}\} & \frac{-1+\sqrt{13}}{6} \le \beta < 1/2, \end{cases}$$

Example

Let $\beta \in (0,1)$ and define the sequence $\{d_i\}_{i \in \mathbb{Z} \setminus \{0\}}$ by

$$d_i = \begin{cases} 1 - \beta^i, & i > 0 \\ \beta^{|i|} & i < 0. \end{cases}$$

$$\mathcal{A} = \begin{cases} \varnothing & 0 < \beta < 1/3, \\ \{\frac{1}{2}\}\} & 1/3 \le \beta < \frac{-1+\sqrt{13}}{6} \approx 0.434, \\ \{\frac{1}{3}, \frac{1}{2}, \frac{2}{3}\}\} & \frac{-1+\sqrt{13}}{6} \le \beta < 1/2, \\ \{\frac{1}{4}, \frac{1}{3}, \frac{1}{2}, \frac{2}{3}, \frac{3}{4}\} & 1/2 \le \beta < x \approx 0.56, \end{cases}$$

Example

Let $\beta \in (0,1)$ and define the sequence $\{d_i\}_{i \in \mathbb{Z} \setminus \{0\}}$ by

$$d_i = \begin{cases} 1 - \beta^i, & i > 0 \\ \beta^{|i|} & i < 0. \end{cases}$$

$$\mathcal{A} = \begin{cases} \varnothing & 0 < \beta < 1/3, \\ \{\frac{1}{2}\} & 1/3 \le \beta < \frac{-1+\sqrt{13}}{6} \approx 0.434, \\ \{\frac{1}{3}, \frac{1}{2}, \frac{2}{3}\} & \frac{-1+\sqrt{13}}{6} \le \beta < 1/2, \\ \{\frac{1}{4}, \frac{1}{3}, \frac{1}{2}, \frac{2}{3}, \frac{3}{4}\} & 1/2 \le \beta < x \approx 0.56, \\ \{\frac{1}{5}, \frac{1}{4}, \frac{1}{3}, \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}\} & x \le \beta < \dots \end{cases}$$

Extended example

Example

Let $\beta \in (0,1)$ and define the sequence $\{d_i\}_{i \in \mathbb{Z} \setminus \{0\}}$ by

$$d_i = \begin{cases} 1 - \beta^i, & i > 0 \\ \beta^{|i|} & i < 0. \end{cases}$$

Determine the possible pairs of numbers (A_1, A_2) such that there exists a frame $\{f_i\}$ with $d_i = ||f_i||^2$ and the spectrum of frame operator $\sigma(S) = \{A_1, A_2, 1\}$?

Extended example

Example

Let $\beta \in (0,1)$ and define the sequence $\{d_i\}_{i \in \mathbb{Z} \setminus \{0\}}$ by

$$d_i = \begin{cases} 1 - \beta^i, & i > 0 \\ \beta^{|i|} & i < 0. \end{cases}$$

Determine the possible pairs of numbers (A_1, A_2) such that there exists a frame $\{f_i\}$ with $d_i = ||f_i||^2$ and the spectrum of frame operator $\sigma(S) = \{A_1, A_2, 1\}$? In other words we are interested in the set

$$ig\{(A_1,A_2)\in (0,1)^2:\exists\, E \mbox{ with } \sigma(E)=\{0,A_1,A_2,1\}$$
 and diagonal $\{d_i\}ig\}.$

Extended example

Example

Let $\beta \in (0,1)$ and define the sequence $\{d_i\}_{i \in \mathbb{Z} \setminus \{0\}}$ by

$$d_i = \begin{cases} 1 - \beta^i, & i > 0 \\ \beta^{|i|} & i < 0. \end{cases}$$

Determine the possible pairs of numbers (A_1, A_2) such that there exists a frame $\{f_i\}$ with $d_i = ||f_i||^2$ and the spectrum of frame operator $\sigma(S) = \{A_1, A_2, 1\}$?

In other words we are interested in the set

$$\big\{(A_1,A_2)\in (0,1)^2: \exists\, E \text{ with } \sigma(E)=\{0,A_1,A_2,1\}$$
 and diagonal $\{d_i\}\big\}.$

The following picture corresponds to $\beta = 0.8$.

1.0

0.0

• Simple numerical condition characterizing sequences of norms of frames such that the spectrum of a frame operator $\sigma(S)$ is finite.

- Simple numerical condition characterizing sequences of norms of frames such that the spectrum of a frame operator $\sigma(S)$ is finite.
- The non-tight case is qualitatively different than tight case $S = B\mathbf{I}$; majorization inequalities present in addition to the trace condition.

- Simple numerical condition characterizing sequences of norms of frames such that the spectrum of a frame operator $\sigma(S)$ is finite.
- The non-tight case is qualitatively different than tight case $S = B\mathbf{I}$; majorization inequalities present in addition to the trace condition.
- Summable and non-summable conditions in the non-tight case are not the same; this is unlike Kadison's theorem.

- Simple numerical condition characterizing sequences of norms of frames such that the spectrum of a frame operator $\sigma(S)$ is finite.
- The non-tight case is qualitatively different than tight case $S = B\mathbf{I}$; majorization inequalities present in addition to the trace condition.
- Summable and non-summable conditions in the non-tight case are not the same; this is unlike Kadison's theorem.
- Characterize diagonals of operators with finite spectrum and with prescribed multiplicities.

- Simple numerical condition characterizing sequences of norms of frames such that the spectrum of a frame operator $\sigma(S)$ is finite.
- The non-tight case is qualitatively different than tight case $S = B\mathbf{I}$; majorization inequalities present in addition to the trace condition.
- Summable and non-summable conditions in the non-tight case are not the same; this is unlike Kadison's theorem.
- Characterize diagonals of operators with finite spectrum and with prescribed multiplicities.
- Ultimately extend the Schur-Horn theorem to operators with infinite spectrum beyond the results of Arveson-Kadison (2006) and Kaftal-Weiss (2010).

