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Proof of an easy case.

Discussion of proof in general and the role of Kakeya-type inequalities.

Part 3: Transversal multilinear harmonic analysis – a bigger picture.
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The classical Fourier restriction conjecture

Let S be a smooth compact (d − 1)-dimensional submanifold of Rd , such as the unit sphere Sd−1,
section of paraboloid

{x = (x ′, xd ) : xd = |x ′|2}
or hyperplane.

For a suitable function f : Rd → C let
RS f = f̂

∣∣∣
S

wherêdenotes the Fourier transform on Rd . We refer toRS as the Fourier restriction operator
associated with S.
Of course, this operator has a trivial bound,

‖RS f‖L∞(dσ) ≤ ‖̂f‖L∞(Rd ) ≤ ‖f‖L1(Rd ).

[Here dσ is surface measure on S.]

Fundamental observation of Stein (1960s): If S has nonvanishing gaussian curvature then there exist
further (i.e. nontrivial) Lp(Rd )− Lq(dσ) bounds forRS .

In order to understand better the role of curvature it is helpful to instead consider bounds on the adjoint
restriction operator (or extension operator)R∗S given by

R∗Sg = ĝdσ,

where

ĝdσ(ξ) =

∫
S

eix·ξg(x)dσ(x); ξ ∈ Rd .
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wherêdenotes the Fourier transform on Rd . We refer toRS as the Fourier restriction operator
associated with S.
Of course, this operator has a trivial bound,

‖RS f‖L∞(dσ) ≤ ‖̂f‖L∞(Rd ) ≤ ‖f‖L1(Rd ).

[Here dσ is surface measure on S.]

Fundamental observation of Stein (1960s): If S has nonvanishing gaussian curvature then there exist
further (i.e. nontrivial) Lp(Rd )− Lq(dσ) bounds forRS .

In order to understand better the role of curvature it is helpful to instead consider bounds on the adjoint
restriction operator (or extension operator)R∗S given by

R∗Sg = ĝdσ,
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Example. If S is a hyperplane, for example S = {x ∈ Rd : xd = 0}, then

ĝdσ(ξ) =

∫
Rd−1

ei(x′,0)·ξg(x ′)dx ′

= ĝ(ξ′),

and so (if g 6≡ 0) then ĝdσ 6∈ Lq(Rd ) for any q <∞.

Thus, when S is a hyperplane, the only possible Lp(Rd )− Lq(dσ) bound forR∗S is the trivial bound

‖ĝdσ‖L∞(Rd ) ≤ ‖g‖L1(dσ).

[We note that more generally, if S = {x ∈ Rd : xj = 0} for some 1 ≤ j ≤ d , then ĝdσ = ĝ ◦ πj where
πj (ξ) = (ξ1, . . . , ξj−1, ξj+1, . . . , ξd ).]

Restriction Conjecture (Stein 1960s)

If S has nonvanishing gaussian curvature, 1
q <

d−1
2d and 1

q ≤
d−1
d+1

1
p′ , then there exists a constant

C <∞ such that
‖ĝdσ‖Lq (Rd ) ≤ C‖g‖Lp(dσ).
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‖ĝdσ‖Lq (Rd ) ≤ C‖g‖Lp(dσ).

Jonathan Bennett (Birmingham) Transversal Multilinear Harmonic Analysis El Escorial 2012 5 / 62



Example. If S is a hyperplane, for example S = {x ∈ Rd : xd = 0}, then
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πj (ξ) = (ξ1, . . . , ξj−1, ξj+1, . . . , ξd ).]

Restriction Conjecture (Stein 1960s)

If S has nonvanishing gaussian curvature, 1
q <

d−1
2d and 1

q ≤
d−1
d+1

1
p′ , then there exists a constant

C <∞ such that
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Why these particular exponents?

The conjecture is generated by testing the inequality

‖ĝdσ‖Lq (Rd ) . ‖g‖Lp(S)

on bump functions or characteristic functions of “caps".

Necessity of 1
q ≤

d−1
d+1

1
p′ .

Let 0 < δ � 1. If g = χc , where c is a δ-cap, centred at xc , then

|ĝdσ(ξ)| =
∣∣∣∫

c
eix·ξdσ(x)

∣∣∣ =
∣∣∣∫

c
ei(x−xc )·ξdσ(x)

∣∣∣ & ∣∣∣∫
c

cos((x − xc) · ξ)dσ(x)
∣∣∣ & δd−1χT (ξ),

where
T = {ξ ∈ Rd : |(x − xc) · ξ| ≤ 1 for all x ∈ c}.

Thus, necessarily
δd−1|T |1/q . |c|1/p.

Since S has nonvanishing curvature
|T | ∼ δ−(d+1),

and so
δd−1δ−(d+1)/q . δ(d−1)/p

uniformly in δ.
Letting δ → 0 forces 1

q ≤
d−1
d+1

1
p′ .

Necessity of q > 2d
d−1 .

This will become apparent in a moment.
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‖ĝdσ‖Lq (Rd ) . ‖g‖Lp(S)

on bump functions or characteristic functions of “caps".

Necessity of 1
q ≤

d−1
d+1

1
p′ .

Let 0 < δ � 1. If g = χc , where c is a δ-cap, centred at xc , then
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Progress on the restriction conjecture

d = 2: Stein, Fefferman–Stein, Zygmund (settled 1974).

p = 2 (and thus q ≥ 2(d+1)
d−1 ): Stein, Tomas (settled 1975).

p, q > 2(d+1)
d−1 − εd : Bourgain 1991.

Subsequent progress for d > 2:
Wolff 1995,
Moyua–Vargas–Vega 1996,
Tao–Vargas–Vega 1998,
Tao–Vargas 2000,

q > 2(d+2)
d : Tao 2003 (following Wolff 2001 in setting of cone).

Latest progress: Bourgain–Guth 2010, Temur 2011.
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An early example of Stein (an analytical exploitation of curvature)

Defining f̃ by f̃ (x) = f (−x) we have

‖RS f‖2
L2(dσ)

= ‖̂f
∣∣
S‖

2
L2(dσ)

=

∫
S

f̂ f̂ dσ =

∫
Rd

f̃ f ∗ d̂σ ≤ ‖̃f‖p‖f ∗ d̂σ‖p′ ≤ ‖f‖2
p‖d̂σ‖p′/2.

Now, as is well-known, since S has nonvanishing gaussian curvature then

|d̂σ(ξ)| . (1 + |ξ|)−
d−1

2 ,

and so d̂σ ∈ Lr (Rd ) provided r > 2d
d−1 .

Combining these observations gives

‖RS f‖L2(dσ) . ‖f‖Lp(Rd )

provided p < 4d
3d+1 , or equivalently,

‖ĝdσ‖Lq (Rd ) . ‖g‖L2(dσ)

whenever q > 4d
d−1 .

The exponent 4d
d−1 may be improved to 2(d+1)

d−1 (the Stein–Tomas exponent).

In the 1990s a new perspective was introduced which aimed to exploit curvature in a more geometric
way: this is the so-called bilinear approach...
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‖ĝdσ‖Lq (Rd ) . ‖g‖L2(dσ)

whenever q > 4d
d−1 .

The exponent 4d
d−1 may be improved to 2(d+1)

d−1 (the Stein–Tomas exponent).

In the 1990s a new perspective was introduced which aimed to exploit curvature in a more geometric
way: this is the so-called bilinear approach...

Jonathan Bennett (Birmingham) Transversal Multilinear Harmonic Analysis El Escorial 2012 8 / 62



An early example of Stein (an analytical exploitation of curvature)

Defining f̃ by f̃ (x) = f (−x) we have

‖RS f‖2
L2(dσ)

= ‖̂f
∣∣
S‖

2
L2(dσ)

=

∫
S

f̂ f̂ dσ =

∫
Rd

f̃ f ∗ d̂σ ≤ ‖̃f‖p‖f ∗ d̂σ‖p′ ≤ ‖f‖2
p‖d̂σ‖p′/2.

Now, as is well-known, since S has nonvanishing gaussian curvature then

|d̂σ(ξ)| . (1 + |ξ|)−
d−1

2 ,

and so d̂σ ∈ Lr (Rd ) provided r > 2d
d−1 .

Combining these observations gives

‖RS f‖L2(dσ) . ‖f‖Lp(Rd )

provided p < 4d
3d+1 , or equivalently,
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A more geometric approach to exploiting curvature: the emergence of
transversality considerations

Let {Sα} be a partition of S by “caps" (or “patches") and write

g =
∑
α

gα, where gα = gχSα .

By linearity
ĝdσ =

∑
α

ĝαdσ.

Clearly,

|ĝdσ|2 =
∣∣∣ ∑
α1,α2

ĝα1 dσĝα2 dσ
∣∣∣

≤
∑
α1,α2

|ĝα1 dσĝα2 dσ|.

Now, since S is curved, a generic pair Sα1 ,Sα2 will be transversal in the sense that if vα1 , vα2 are unit
normal vectors to Sα1 ,Sα2 respectively, then |vα1 ∧ vα2 | is bounded below.

In order to understand ‖ĝdσ‖q it would thus seem appropriate to study ‖ĝ1dσ1ĝ2dσ2‖q/2 where dσ1,
dσ2 are smooth densities on transversal submanifolds S1, S2 respectively.
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ĝdσ =

∑
α
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The bilinear restriction conjecture

Bilinear restriction Conjecture (Tao–Vargas–Vega 1998)

If S1,S2 are transversal and have nonvanishing gaussian curvature, 1
q <

d−1
2d , 1

q ≤
d

d+2
1
p′ and

1
q ≤

d−2
d+2

1
p′ + 1

d+2 , then there exists a constant C <∞ such that

‖ĝ1dσ1ĝ2dσ2‖Lq/2(Rd ) ≤ C‖g1‖Lp(S1)‖g2‖Lp(S2).

Progress:

d = 2 is elementary, as we’ll see in a moment...

d > 2: Bourgain, Tao–Vargas–Vega (1998), Tao (2003).

This progress should not be viewed in isolation - interlaced with progress in closely related
settings, such as that of the cone: Wolff (2001), Tao (2001).
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A simple yet revealing example: the bilinear problem for d = 2

Proposition

If S1 and S2 are transversal curves in R2 then

‖ĝ1dσ1ĝ2dσ2‖L2(R2) . ‖g1‖L2(dσ1)‖g2‖L2(dσ2).

By Plancherel’s theorem the proposition is equivalent to

‖(g1dσ1) ∗ (g2dσ2)‖L2(R2) . ‖g1‖L2(dσ1)‖g2‖L2(dσ2).

By interpolation with the trivial ‖(g1dσ1) ∗ (g2dσ2)‖L1(R2) . ‖g1‖L1(dσ1)‖g2‖L1(dσ2), it suffices to prove
that

‖(g1dσ1) ∗ (g2dσ2)‖L∞(R2) . ‖g1‖L∞(dσ1)‖g2‖L∞(dσ2).

However, ‖(g1dσ1) ∗ (g2dσ2)‖L∞(R2) ≤ ‖g1‖∞‖g2‖∞‖dσ1 ∗ dσ2‖L∞(R2).

Exercise: dσ1 ∗ dσ2 ∈ L∞(R2) if and only if S1 and S2 are transversal.

Observations:

The corresponding linear estimate ‖ĝdσ‖L4(R2) . ‖g‖L2(dσ) is false.

This bilinear estimate is the endpoint in the d = 2 bilinear restriction problem; there is a missing
endpoint for d > 2.

For this estimate (and hence the whole d = 2 bilinear restriction problem), the curvature
hypothesis is redundant!
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This bilinear estimate is the endpoint in the d = 2 bilinear restriction problem; there is a missing
endpoint for d > 2.

For this estimate (and hence the whole d = 2 bilinear restriction problem), the curvature
hypothesis is redundant!

Jonathan Bennett (Birmingham) Transversal Multilinear Harmonic Analysis El Escorial 2012 11 / 62



A simple yet revealing example: the bilinear problem for d = 2

Proposition

If S1 and S2 are transversal curves in R2 then
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‖ĝ1dσ1ĝ2dσ2‖L2(R2) . ‖g1‖L2(dσ1)‖g2‖L2(dσ2).

By Plancherel’s theorem the proposition is equivalent to

‖(g1dσ1) ∗ (g2dσ2)‖L2(R2) . ‖g1‖L2(dσ1)‖g2‖L2(dσ2).

By interpolation with the trivial ‖(g1dσ1) ∗ (g2dσ2)‖L1(R2) . ‖g1‖L1(dσ1)‖g2‖L1(dσ2), it suffices to prove
that

‖(g1dσ1) ∗ (g2dσ2)‖L∞(R2) . ‖g1‖L∞(dσ1)‖g2‖L∞(dσ2).

However, ‖(g1dσ1) ∗ (g2dσ2)‖L∞(R2) ≤ ‖g1‖∞‖g2‖∞‖dσ1 ∗ dσ2‖L∞(R2).

Exercise: dσ1 ∗ dσ2 ∈ L∞(R2) if and only if S1 and S2 are transversal.

Observations:

The corresponding linear estimate ‖ĝdσ‖L4(R2) . ‖g‖L2(dσ) is false.
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Why care about such bilinear estimates?

Theorem (Tao–Vargas–Vega 1998)
The bilinear restriction conjecture impliesa the linear restriction conjecture. More specifically, if
1
q <

d−1
2d , 1

q ≤
d−1
d+1

1
p′ and the conjectured bilinear inequality

‖ĝ1dσ1ĝ2dσ2‖Lq̃/2(Rd )
≤ C‖g1‖Lp̃(S1)‖g2‖Lp̃(S2).

holds for all (p̃, q̃) in a neighbourhood of (p, q) then the conjectured linear inequality

‖ĝdσ‖Lq (Rd ) ≤ C‖g‖Lp(dσ).

holds for (p, q).

aStrictly speaking this implication requires a certain uniform version of the bilinear restriction conjecture which interacts
well with scaling.

Indeed the best restriction estimates prior to the work of Bourgain–Guth (2010) relied on this bilinear
passage.

Despite this great advantage, the bilinear formulation has one main drawback: for d > 2 the roles of
curvature and transversality are mixed up and difficult to distinguish...
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‖ĝdσ‖Lq (Rd ) ≤ C‖g‖Lp(dσ).

holds for (p, q).

aStrictly speaking this implication requires a certain uniform version of the bilinear restriction conjecture which interacts
well with scaling.

Indeed the best restriction estimates prior to the work of Bourgain–Guth (2010) relied on this bilinear
passage.

Despite this great advantage, the bilinear formulation has one main drawback: for d > 2 the roles of
curvature and transversality are mixed up and difficult to distinguish...

Jonathan Bennett (Birmingham) Transversal Multilinear Harmonic Analysis El Escorial 2012 12 / 62



Why care about such bilinear estimates?

Theorem (Tao–Vargas–Vega 1998)
The bilinear restriction conjecture impliesa the linear restriction conjecture. More specifically, if
1
q <

d−1
2d , 1

q ≤
d−1
d+1

1
p′ and the conjectured bilinear inequality
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Beyond bilinear estimates

Let’s reflect further on our partition of S into “caps" (or “patches") {Sα}.

We have already observed that since S is curved, a generic pair Sα1 ,Sα2 will be transversal.

Of course more is true: If k ≤ d , and S is curved then a generic k-tuple Sα1 , . . . ,Sαk will be
transversal in the sense that if vα1 , . . . , vαk are unit normal vectors to Sα1 , . . . ,Sαk respectively, then
|vα1 ∧ · · · ∧ vαk | is bounded below.

Definition (Multilinear transversality)
Let 2 ≤ k ≤ d . A k -tuple S1, . . . ,Sk is transversal if there is a constant c > 0 such that

|v1 ∧ · · · ∧ vk | ≥ c

for all choices v1, . . . , vk of unit normal vectors to S1, . . . ,Sk respectively.

As may be expected, the case k = d is rather special...
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The d-linear restriction conjecture

d-linear Restriction Conjecture

If S1, . . . ,Sd are transversal, 1
q ≤

d−1
2d and 1

q ≤
d−1

d
1
p′ , then there exists a constant C <∞ such that

‖ĝ1dσ1 · · · ĝd dσd‖Lq/d (Rd ) ≤ C‖g1‖Lp(S1) · · · ‖gd‖Lp(Sd ).

Key features:

The d-linear conjecture includes (and is equivalent to) the endpoint estimate

‖ĝ1dσ1 · · · ĝd dσd‖
L

2
d−1 (Rd )

≤ C‖g1‖L2(S1) · · · ‖gd‖L2(Sd ).

(An estimate on L2.)

Curvature plays no role!

Theorem (B–Carbery–Tao 2006)
Under the above conditions, given any ε > 0 there exists a constant Cε <∞ such that

‖ĝ1dσ1 · · · ĝd dσd‖Lq/d (B(0,R)) ≤ CεRε‖g1‖Lp(S1) · · · ‖gd‖Lp(Sd )

for all R.
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2
d−1 (Rd )

≤ C‖g1‖L2(S1) · · · ‖gd‖L2(Sd ).

(An estimate on L2.)

Curvature plays no role!

Theorem (B–Carbery–Tao 2006)
Under the above conditions, given any ε > 0 there exists a constant Cε <∞ such that

‖ĝ1dσ1 · · · ĝd dσd‖Lq/d (B(0,R)) ≤ CεRε‖g1‖Lp(S1) · · · ‖gd‖Lp(Sd )

for all R.
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Main questions about the d-linear conjecture/theorem

To what extent, if any, does the d-linear conjecture/theorem imply the linear conjecture?

– We’ll address this in a moment;

Why do the d-linear estimates appear to be more tractable?

–We’ll address this in Part 2 (see the next lecture).
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From multilinear to linear: the Bourgain–Guth method

Let us begin by trying to deduce a linear restriction estimate from a bilinear one in as naive a way as
possible...
Let S be a smooth compact codimension-1 submanifold of Rd (think of Sd−1) and K be a large
parameter.
Let {Sα} be a partition of S by “caps" of diameter approximately 1/K and write

g =
∑
α

gα, where gα = gχSα .

By linearity
ĝdσ =

∑
α

ĝαdσ.

Now,

|ĝdσ|2 =
∣∣∣ ∑
α1,α2

ĝα1 dσĝα2 dσ
∣∣∣

≤
∑
α1,α2

|ĝα1 dσĝα2 dσ|

≤
∑

dist(Sα1 ,Sα2 )&1/K

|ĝα1 dσĝα2 dσ|+
∑

dist(Sα1 ,Sα2 ).1/K

|ĝα1 dσĝα2 dσ|.
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ĝdσ =

∑
α
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By Hölder’s inequality,

|ĝdσ|2 ≤
∑

dist(Sα1 ,Sα2 )&1/K

|ĝα1 dσĝα2 dσ|+
∑

dist(Sα1 ,Sα2 ).1/K

|ĝα1 dσĝα2 dσ|

. K 2(d−1)(1− 2
q )
( ∑

dist(Sα1 ,Sα2 )&1/K

|ĝα1 dσĝα2 dσ|
q
2

) 2
q

+ K (d−1)(1− 2
q )
(∑
α

|ĝαdσ|q
) 2

q
.

Thus for every ξ ∈ Rd ,

|ĝdσ(ξ)|q . K 2(d−1)( q
2−1)

∑
dist(Sα1 ,Sα2 )&1/K

|ĝα1 dσ(ξ)ĝα2 dσ(ξ)|
q
2 + K (d−1)( q

2−1)
∑
α

|ĝαdσ(ξ)|q ,

and so on integrating in ξ ∈ Rd we have

‖ĝdσ‖q
q . K 2(d−1)( q

2−1)
∑

dist(Sα1 ,Sα2 )&1/K

‖ĝα1 dσĝα2 dσ‖
q
2
q
2

+ K (d−1)( q
2−1)

∑
α

‖ĝαdσ‖q
q .

This suggests a bootstrapping argument....
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‖ĝdσ‖q
q . K 2(d−1)( q

2−1)
∑

dist(Sα1 ,Sα2 )&1/K
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Setting up the bootstrapping

Fix R � 1. Let C = C(R) denote the best constant in the inequality

‖ĝdσ‖Lq (B(0,R)) ≤ C‖g‖Lp(dσ)

over all surfaces S which are of diameter at most 1 and the graph of an elliptic phase function (that is,
“close to the base of the paraboloid").
(Here we truncate the integral with a ball of large radius R to ensure that C <∞.)

Our goal here is to use the conjectured bilinear estimates to show that C(R) = O(1) for some
admissible p, q.

We need to know how this inequality scales...

Lemma (Linear scaling)

‖ĝαdσ‖Lq (B(0,R)) . CK
d+1

q −
d−1

p′ ‖gα‖Lp(dσ).

Similarly, we appear to need to know how the conjectured bilinear inequality scales...

Lemma (Bilinear scaling)
Suppose that the conjectured bilinear restriction inequality holds with exponents p, q. If
dist(Sα1 ,Sα2 ) & 1

K then

‖ĝα1 dσĝα2 dσ‖ q
2
. K ···‖gα1‖Lp(dσ)‖gα2‖Lp(dσ).
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‖ĝdσ‖Lq (B(0,R)) ≤ C‖g‖Lp(dσ)

over all surfaces S which are of diameter at most 1

and the graph of an elliptic phase function (that is,
“close to the base of the paraboloid").
(Here we truncate the integral with a ball of large radius R to ensure that C <∞.)

Our goal here is to use the conjectured bilinear estimates to show that C(R) = O(1) for some
admissible p, q.

We need to know how this inequality scales...

Lemma (Linear scaling)
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‖ĝα1 dσĝα2 dσ‖ q
2
. K ···‖gα1‖Lp(dσ)‖gα2‖Lp(dσ).

Jonathan Bennett (Birmingham) Transversal Multilinear Harmonic Analysis El Escorial 2012 18 / 62



Setting up the bootstrapping

Fix R � 1. Let C = C(R) denote the best constant in the inequality
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Returning to

‖ĝdσ‖q
q . K 2(d−1)( q

2−1)
∑

dist(Sα1 ,Sα2 )&1/K

‖ĝα1 dσĝα2 dσ‖
q
2
q
2

+ K (d−1)( q
2−1)

∑
α

‖ĝαdσ‖q
q ,

using the bilinear restriction conjecture and the scaling estimates we obtain

‖ĝdσ‖q
q . K ···

∑
α1,α2

‖gα1‖
q
2
p ‖gα2‖

q
2
p + K

(d−1)( q
2−1)+d+1−(d−1) q

p′
∑
α

Cq‖gα‖q
p

. K qγ2(p,q)‖g‖q
p + CqK qγ1(p,q)‖g‖q

p ≤ (K qγ2(p,q) + CqK qγ1(p,q))‖g‖q
p ,

where

γ1(p, q) =

{
d+1

q −
d−1

2 if p ≥ q

(d − 1)( 1
2 −

1
q ) + d+1

q −
d−1

p′ if p < q

and
γ2(p, q) = · · ·

Thus we have
C ≤ c2Kγ2(p,q) + c1CKγ1(p,q)

for some constants c1, c2.
If p, q are such that γ1(p, q) < 0 then by taking K sufficiently large, we obtain C(R) <∞ uniformly in
R � 1.
In particular, if p ≥ q and q > 2(d+1)

d−1 (the Stein–Tomas exponent) we obtain the desired linear
restriction estimate.
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‖ĝdσ‖q
q . K 2(d−1)( q

2−1)
∑

dist(Sα1 ,Sα2 )&1/K
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‖ĝαdσ‖q
q ,

using the bilinear restriction conjecture and the scaling estimates we obtain
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Bilinear to linear: improving the passage

Simple (yet key) observations:

The range of exponents p, q for which a linear estimate followed was that for which γ1(p, q) < 0.

The power of K arising in the transversal term (i.e. γ2(p, q)) was inconsequential.

Returning to the elementary pointwise bound

|ĝdσ(ξ)|q . K 2(d−1)( q
2−1)

∑
dist(Sα1 ,Sα2 )&1/K

|ĝα1 dσ(ξ)ĝα2 dσ(ξ)|
q
2 + K (d−1)( q

2−1)
∑
α

|ĝαdσ(ξ)|q ,

the natural question is:
Can we reduce the power of K in the second term at the expense of raising the power in the first
term?

Proposition (“Bourgain–Guth" 2010)

|ĝdσ(ξ)|q . K 2(d−1)q
∑

dist(Sα1 ,Sα2 )&1/K

|ĝα1 dσ(ξ)ĝα2 dσ(ξ)|
q
2 +

∑
α

|ĝαdσ(ξ)|q .

Observation: Integrating this in ξ ∈ Rd gives

C ≤ c2K power + c1CK
2d
q −(d−1)

whenever p ≥ q, yielding C <∞ uniformly in R � 1 when q > 2d
d−1 .

This generates (the interior of) the full conjectured range of exponents for the linear conjecture.
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|ĝdσ(ξ)|q . K 2(d−1)( q
2−1)

∑
dist(Sα1 ,Sα2 )&1/K
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|ĝαdσ(ξ)|,

or

(II) there exists α0 such that whenever dist(Sα0 ,Sα) & 1
K ,
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|ĝα1 dσ(ξ)|, |ĝα2 dσ(ξ)| ≥ K−(d−1) max
α
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|ĝαdσ(ξ)|.

If (I) then
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|ĝαdσ(ξ)|

≤ K 2(d−1)| ̂gα1(ξ)dσ(ξ)|
1
2 | ̂gα2(ξ)dσ(ξ)|

1
2

≤ K 2(d−1)
( ∑

dist(Sα1 ,Sα2 )&1/K
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|ĝαdσ(ξ)| . K d−1 max
α
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Recall: (II) There exists α0 such that whenever dist(Sα0 ,Sα) & 1
K ,

|ĝαdσ(ξ)| < K−(d−1) max
α
|ĝαdσ(ξ)|.

If (II) then

|ĝdσ(ξ)| ≤
∑
α

|ĝαdσ(ξ)|

≤
∑

α:dist(Sα,Sα0 ). 1
K

|ĝαdσ(ξ)|+
∑

α:dist(Sα,Sα0 )& 1
K

|ĝαdσ(ξ)|

. max
α
|ĝαdσ(ξ)|+ K d−1K−(d−1) max

α
|ĝαdσ(ξ)|

.
(∑
α

|ĝαdσ(ξ)|q
) 1

q
.

Remark. The above proposition is an abstract statement about finite sequences, namely

‖a‖`1(ZN ) . N
(∑

j 6=k

|aj ak |
q
2

) 1
q

+ ‖a‖`q (ZN ).

Next time: Linear estimates from multilinear estimates...
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|ĝαdσ(ξ)|+ K d−1K−(d−1) max

α
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|ĝαdσ(ξ)|+ K d−1K−(d−1) max

α
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Last time

In the last lecture we used an easy version of the Bourgain–Guth method to show that the bilinear
conjecture implied the linear conjecture (up to the sharp line).

In particular, we proved:

Proposition (“Bourgain–Guth" 2010)

|ĝdσ(ξ)|q . K 2(d−1)q
∑

dist(Sα1 ,Sα2 )&1/K

|ĝα1 dσ(ξ)ĝα2 dσ(ξ)|
q
2 +

∑
α

|ĝαdσ(ξ)|q .

Defining C to be the best constant in the inequality

‖ĝdσ‖Lq (B(0,R)) ≤ C‖g‖Lp(dσ)

over all surfaces S (which are “uniformly of elliptic type") of diameter at most 1, we deduced that

C ≤ c2K power + c1CK
2d
q −(d−1)

whenever p ≥ q, yielding C <∞ uniformly in R � 1 when q > 2d
d−1 .

Let us see how this approach may be extended in order to deduce linear estimates from multilinear
ones...
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Trilinear to linear in 3 dimensions (Bourgain–Guth proper)

We mimic the bilinear approach and look for a suitable pointwise bound of the form

|ĝdσ(ξ)|q . K power
∑

Sα1 ,Sα2 ,Sα3 transversal

|ĝα1 dσ(ξ)ĝα2 dσ(ξ)ĝα3 dσ(ξ)|
q
3 + · · ·

For the sake of simplicity let us suppose that S = Sd−1, and as before {Sα} is a partition of S into
“caps" of diameter approximately 1/K .

We will say that three caps Sα1 ,Sα2 ,Sα3 are transversal if

|vα1 ∧ vα2 ∧ vα3 | &
1

K 2

uniformly in the unit normal vectors vα1 , vα2 , vα3 to Sα1 ,Sα2 ,Sα3 respectively.

Observe that if Sα1 ,Sα2 ,Sα3 are not transversal, then they all lie within a distance O(1/K ) of
some great circle.
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For a given ξ ∈ Rd either

(I) there exist α1, α2, α3 with Sα1 ,Sα2 ,Sα3 transversal, such that

|ĝα1 dσ(ξ)|, |ĝα2 dσ(ξ)|, |ĝα3 dσ(ξ)| ≥ K−(d−1) max
α
|ĝαdσ(ξ)|,

or

(II) there exists a great circle E ⊂ S such that whenever dist(Sα,E) & 1
K ,

|ĝαdσ(ξ)| < K−(d−1) max
α
|ĝαdσ(ξ)|.

(Observation: ξ 7→ E is “stable" at scale K .)

If (I) then

|ĝdσ| . K d−1 max
α
|ĝαdσ| ≤ K 2(d−1)| ̂gα1(ξ)dσ|

1
3 | ̂gα2(ξ)dσ|

1
3 | ̂gα3(ξ)dσ|

1
3

≤ K 2(d−1)
( ∑

Sα1 ,Sα2 ,Sα3 transversal

|ĝα1 dσĝα2 dσĝα3 dσ|
q
3

) 1
q
.

If (II) then we write

|ĝdσ(ξ)| ≤
∣∣∣ ∑
dist(Sα,E). 1

K

ĝαdσ(ξ)
∣∣∣+
∣∣∣ ∑
dist(Sα,E)& 1

K

ĝαdσ(ξ)
∣∣∣,

and estimate each term separately.
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α
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|ĝdσ(ξ)| ≤
∣∣∣ ∑
dist(Sα,E). 1

K
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q
3

) 1
q
.

If (II) then we write
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|ĝdσ| . K d−1 max
α
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By definition of E , the second term satisfies∣∣∣ ∑
dist(Sα,E)& 1

K

ĝαdσ(ξ)
∣∣∣ . max

α
|ĝαdσ(ξ)| ≤

(∑
α

|ĝαdσ(ξ)|q
) 1

q
,

which is an acceptable term.

In order to deal with the first term, where we sum over the caps Sα with dist(Sα,E) . 1
K , we run the

earlier bilinear argument.
More specifically, we introduce a second large parameter K ′ ≤ K and a partition {S′β} of S into larger
“caps" of diameter approximately 1/K ′ to obtain:

Proposition (Bourgain–Guth)

|ĝdσ|q . K 2(d−1)q
∑

Sα1 ,Sα2 ,Sα3 transversal

|ĝα1 dσĝα2 dσĝα3 dσ|
q
3

+ (K ′)2(d−2)q
∑

dist(S′
β1
,S′
β2

)& 1
K ′

∣∣∣( ∑
α1:Sα1⊂S′β1

dist(Sα1 ,E). 1
K

ĝα1 dσ
)( ∑

α2:Sα2⊂S′β2
dist(Sα2 ,E). 1

K

ĝα2 dσ
)∣∣∣ q

2

+
∑
β

∣∣∣ ∑
α:Sα⊂S′

β

ĝαdσ
∣∣∣q +

∑
α

|ĝαdσ|q .
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Integrating the pointwise estimate

A new difficulty arises: the great circle E = Eξ . However, uncertainty principle considerations reveal
that the map ξ 7→ E is stable at scale K .
Let {Q} be a tiling of Rd by cubes of side K , and for each Q assume that Eξ = EQ for all ξ ∈ Q.
Integrating in ξ ∈ B(0,R) gives,

‖ĝdσ‖q
q . K 2(d−1)q

∑
Sα1 ,Sα2 ,Sα3 transversal

‖ĝα1 dσĝα2 dσĝα3 dσ‖
q
3
q
3

+ (K ′)2(d−2)q
∑

Q

∑
dist(S′

β1
,S′
β2

)& 1
K ′

∥∥∥( ∑
α1:Sα1⊂S′β1

dist(Sα1 ,EQ ). 1
K

ĝα1 dσ
)( ∑

α2:Sα2⊂S′β2
dist(Sα2 ,EQ ). 1

K

ĝα2 dσ
)∥∥∥ q

2

L
q
2 (Q)

+
∑
β

∥∥∥ ∑
α:Sα⊂S′

β

ĝαdσ
∥∥∥q

q
+
∑
α

‖ĝαdσ‖q
q .

. K 2(d−1)q
∑

Sα1 ,Sα2 ,Sα3 transversal

‖ĝα1 dσĝα2 dσĝα3 dσ‖
q
3
q
3

+ (K ′)power
∑

Q

∑
dist(S′

β1
,S′
β2

)& 1
K ′

∥∥∥( ∑
α1:Sα1⊂S′β1

dist(Sα1 ,EQ ). 1
K

|ĝα1 dσ|2
) 1

2
( ∑

α2:Sα2⊂S′β2
dist(Sα2 ,EQ ). 1

K

|ĝα2 dσ|2
) 1

2
∥∥∥ q

2

L
q
2 (Q)

+
∑
β

∥∥∥ ∑
α:Sα⊂S′

β

ĝαdσ
∥∥∥q

q
+
∑
α

‖ĝαdσ‖q
q . (Use of a bilinear Córdoba estimate.)
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q
3
q
3

+ (K ′)2(d−2)q
∑

Q

∑
dist(S′

β1
,S′
β2

)& 1
K ′

∥∥∥( ∑
α1:Sα1⊂S′β1

dist(Sα1 ,EQ ). 1
K
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‖ĝdσ‖q
q . K 2(d−1)q

∑
Sα1 ,Sα2 ,Sα3 transversal
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q
3
q
3

+ (K ′)power
∑

Q

∑
dist(S′

β1
,S′
β2

)& 1
K ′

∥∥∥( ∑
α1:Sα1⊂S′β1

dist(Sα1 ,EQ ). 1
K
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‖ĝαdσ‖q
q .

. K 2(d−1)q
∑

Sα1 ,Sα2 ,Sα3 transversal
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‖ĝαdσ‖q
Lq (Q)

+
∑
β

∥∥∥ ∑
α:Sα⊂S′

β
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‖ĝαdσ‖q
Lq (Q)

+
∑
β

∥∥∥ ∑
α:Sα⊂S′

β
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Using the trilinear restriction conjecture and the scaling estimate we obtain constants c1, c2, c3 such that

C ≤ c3K power + c2(K ′)power K
1
2−

1
q K

6
q−2C + c1(K ′)

6
q−2C

whenever p ≥ q.
Taking K ′ and K sufficiently large (sequentially) gives C <∞ uniformly in R � 1 whenever p ≥ q and
q > 10

3 .

Remarks.

“Weak point" in the argument is the use of Hölder’s inequality responsible for the factor K
1
2−

1
q in

the second term above.

The only role of the curvature of S is to generate transversality.

Further improvements possible using Kakeya estimates (Bourgain–Guth).

Argument generalises to higher dimensions (Bourgain–Guth, Femur).

Progress on the sharp line follows using bilinear interpolation (Lee–Rogers–Seeger).
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‖ĝα1 dσĝα2 dσĝα3 dσ‖
q
3
q
3

+ (K ′)power K
q
2−1

∑
α
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ĝαdσ
∥∥∥q

q
.

Using the trilinear restriction conjecture and the scaling estimate we obtain constants c1, c2, c3 such that

C ≤ c3K power + c2(K ′)power K
1
2−

1
q K

6
q−2C + c1(K ′)

6
q−2C

whenever p ≥ q.
Taking K ′ and K sufficiently large (sequentially) gives C <∞ uniformly in R � 1 whenever p ≥ q and
q > 10

3 .

Remarks.

“Weak point" in the argument is the use of Hölder’s inequality responsible for the factor K
1
2−

1
q in

the second term above.

The only role of the curvature of S is to generate transversality.

Further improvements possible using Kakeya estimates (Bourgain–Guth).

Argument generalises to higher dimensions (Bourgain–Guth, Femur).

Progress on the sharp line follows using bilinear interpolation (Lee–Rogers–Seeger).

Jonathan Bennett (Birmingham) Transversal Multilinear Harmonic Analysis El Escorial 2012 29 / 62



. K 2(d−1)q
∑

Sα1 ,Sα2 ,Sα3 transversal
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Remarks.
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q in
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The only role of the curvature of S is to generate transversality.

Further improvements possible using Kakeya estimates (Bourgain–Guth).

Argument generalises to higher dimensions (Bourgain–Guth, Femur).
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ĝαdσ
∥∥∥q

q
.

Using the trilinear restriction conjecture and the scaling estimate we obtain constants c1, c2, c3 such that

C ≤ c3K power + c2(K ′)power K
1
2−

1
q K

6
q−2C + c1(K ′)

6
q−2C

whenever p ≥ q.
Taking K ′ and K sufficiently large (sequentially) gives C <∞ uniformly in R � 1 whenever p ≥ q and
q > 10

3 .

Remarks.

“Weak point" in the argument is the use of Hölder’s inequality responsible for the factor K
1
2−

1
q in

the second term above.

The only role of the curvature of S is to generate transversality.

Further improvements possible using Kakeya estimates (Bourgain–Guth).

Argument generalises to higher dimensions (Bourgain–Guth, Femur).

Progress on the sharp line follows using bilinear interpolation (Lee–Rogers–Seeger).

Jonathan Bennett (Birmingham) Transversal Multilinear Harmonic Analysis El Escorial 2012 29 / 62



Part 2: A closer look at the multilinear restriction conjecture

Proof in the flat case (when S1, . . . ,Sd are hypersurfaces).

Discussion of proof for general S1, . . . ,Sd , and the role of Kakeya-type inequalities.
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The d-linear restriction conjecture

Recall from last time:

d-linear Restriction Conjecture

If S1, . . . ,Sd are transversal, 1
q ≤

d−1
2d and 1

q ≤
d−1

d
1
p′ , then there exists a constant C <∞ such that

‖ĝ1dσ1 · · · ĝd dσd‖Lq/d (Rd ) ≤ C‖g1‖Lp(S1) · · · ‖gd‖Lp(Sd ).

Recall that

this conjecture is equivalent to the endpoint (L2) inequality

‖ĝ1dσ1 · · · ĝd dσd‖
L

2
d−1 (Rd )

≤ C‖g1‖L2(S1) · · · ‖gd‖L2(Sd );

there are no curvature hypotheses.

Theorem (B–Carbery–Tao 2006)
Under the above conditions, given any ε > 0 there exists a constant Cε <∞ such that

‖ĝ1dσ1 · · · ĝd dσd‖Lq/d (B(0,R)) ≤ CεRε‖g1‖Lp(S1) · · · ‖gd‖Lp(Sd )

for all R.
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‖ĝ1dσ1 · · · ĝd dσd‖
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A slight refinement

Our current goal is to explain why this d-linear problem appears so tractable.

We sketch a proof of the
following slight refinement of the previous d-linear restriction theorem:

Theorem (B–Carbery–Tao revisited)
If S1, . . . ,Sd are transversal, then there exists a constants C, κ <∞ such that

‖ĝ1dσ1 · · · ĝd dσd‖
L

1
d−1 (B(0,R))

≤ C(log R)κ‖g1‖L2(S1) · · · ‖gd‖L2(Sd ).

Just beneath the surface of the conjectured endpoint inequality

‖ĝ1dσ1 · · · ĝd dσd‖
L

2
d−1 (Rd )

≤ C‖g1‖L2(S1) · · · ‖gd‖L2(Sd )

lies a well-known geometric inequality. Identifying this is the key starting point...
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Proof in the flat case

Since there are no curvature hypotheses it is natural to look at the situation where Sj is the j th
coordinate subspace {x ∈ Rd : xj = 0}. In this case

ĝj dσj (ξ) =

∫
Rd−1

gj (x)eiπj (ξ)·x dx = ĝj (πj (ξ)),

where πj (ξ) = (ξ1, . . . , ξj−1, ξj+1, . . . , ξd ). Thus the endpoint inequality becomes

‖ĝ1 ◦ π1 · · · ĝd ◦ πd‖
L

2
d−1 (Rd )

≤ C‖g1‖L2(S1) · · · ‖gd‖L2(Sd ).

This, by Plancherel’s theorem, reduces to

‖g1 ◦ π1 · · · gd ◦ πd‖
L

2
d−1 (Rd )

≤ C‖g1‖L2(S1) · · · ‖gd‖L2(Sd ),

which on setting fj = |gj |2 is equivalent to the positive inequality∫
Rd

(f1 ◦ π1)
1

d−1 · · · (fd ◦ πd )
1

d−1 .
(∫

Rd−1
f1
) 1

d−1 · · ·
(∫

Rd−1
fd
) 1

d−1
.

This is the Loomis–Whitney inequality with a suboptimal constant.
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Theorem (Loomis–Whitney 1948)

For nonnegative integrable functions f1, . . . , fd : Rd−1 → R,∫
Rd

(f1 ◦ π1)
1

d−1 · · · (fd ◦ πd )
1

d−1 ≤
(∫

Rd−1
f1
) 1

d−1 · · ·
(∫

Rd−1
fd
) 1

d−1
.

(Recall: πj (x) = (x1, . . . , xj−1, xj+1, . . . , xd ).)

Remarks. This is a geometric inequality: Suppose Ω ⊂ Rd has finite measure.

Setting fj = χπj (Ω) we have that fj ◦ πj (x) = 1 whenever x ∈ Ω.

Hence by the Loomis–Whitney inequality,

|Ω| ≤ |π1(Ω)|
1

d−1 · · · |πd (Ω)|
1

d−1 .

Notice that since |πj (Ω)| ≤ |∂Ω| for each j , we may recover the classical isoperimetric inequality

|Ω| ≤ |∂Ω|
d

d−1 ,

(albeit with suboptimal constant).

Notice also that

|Ω| ≤ |π1(Ω)|
1

d−1 · · · |πd (Ω)|
1

d−1 ⇐⇒ |Ω| ≥
|Ω|
|π1(Ω)|

· · ·
|Ω|
|πd (Ω)|

.
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Notice that since |πj (Ω)| ≤ |∂Ω| for each j , we may recover the classical isoperimetric inequality

|Ω| ≤ |∂Ω|
d

d−1 ,

(albeit with suboptimal constant).
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Recall:

Theorem (Loomis–Whitney 1948)
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Rd−1
f1
) 1

d−1 · · ·
(∫

Rd−1
fd
) 1

d−1
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Proof: Induction on d . The case d = 2 is a trivial identity∫
R2

f1(x2)f2(x1)dx =

∫
R

f1

∫
R

f2.

For d = 3 we have∫
R3

f1(x2, x3)
1
2 f2(x1, x3)

1
2 f3(x1, x2)

1
2 dx =

∫
R2

(∫
R

f1(x2, x3)
1
2 f2(x1, x3)

1
2 dx3

)
f3(x1, x2)

1
2 dx ′

≤
∫
R2

(∫
R

f1(x2, ·)
) 1

2
(∫

R
f2(x1, ·)

) 1
2 f3(x1, x2)

1
2 dx ′

≤
(∫

R2
f1
) 1

2
(∫

R2
f2
) 1

2
(∫

R2
f3
) 1

2
.

Proof of this special case of the d-linear restriction conjecture is very rigid - does not extend routinely to
general transversal S1, . . . ,Sd . However, an important aspect of it does: we may indeed reduce the
general case to a positive inequality of Loomis–Whitney type...
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The general (non-flat) case

Claim: the desired inequality

‖ĝ1dσ1 · · · ĝd dσd‖
L

1
d−1 (B(0,R))

≤ C(log R)κ‖g1‖L2(S1) · · · ‖gd‖L2(Sd )

may be reduced to a certain “vector" Loomis–Whitney inequality

, namely∫
Rd

d∏
j=1

( ∑
αj∈Aj

fαj ◦ παj

) 1
d−1 .

d∏
j=1

( ∑
αj∈Aj

∫
Rd−1

fαj

) 1
d−1

,

where for each j , Aj is an indexing set and παj is a linear map which is sufficiently close to the fixed πj
(the j th coordinate hyperplane projection).

This is an equivalent functional form of a Kakeya-type inequality – if we set fαj = χB(αj )
, where B(αj )

denotes a δ-ball in Rd−1, then
fαj ◦ παj = χT (αj )

,

where T (αj ) = π−1
αj B(αj ) is a doubly infinite cylindrical tube in Rd of width ∼ δ and direction kerπαj .

Thus the above inequality becomes

∥∥∥ d∏
j=1

( ∑
αj∈Aj

χT (αj )

)∥∥∥ 1
d−1

L
1

d−1 (Rd )
.

d∏
j=1

(
δd−1#Aj

) 1
d−1

.

This is the endpoint case of the so-called d-linear Kakeya theorem:
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L

1
d−1 (B(0,R))

≤ C(log R)κ‖g1‖L2(S1) · · · ‖gd‖L2(Sd )

may be reduced to a certain “vector" Loomis–Whitney inequality, namely∫
Rd

d∏
j=1

( ∑
αj∈Aj

fαj ◦ παj

) 1
d−1 .

d∏
j=1

( ∑
αj∈Aj

∫
Rd−1

fαj

) 1
d−1

,

where for each j , Aj is an indexing set and παj is a linear map which is sufficiently close to the fixed πj
(the j th coordinate hyperplane projection).

This is an equivalent functional form of a Kakeya-type inequality

– if we set fαj = χB(αj )
, where B(αj )

denotes a δ-ball in Rd−1, then
fαj ◦ παj = χT (αj )

,

where T (αj ) = π−1
αj B(αj ) is a doubly infinite cylindrical tube in Rd of width ∼ δ and direction kerπαj .

Thus the above inequality becomes

∥∥∥ d∏
j=1

( ∑
αj∈Aj

χT (αj )

)∥∥∥ 1
d−1

L
1

d−1 (Rd )
.

d∏
j=1

(
δd−1#Aj

) 1
d−1

.

This is the endpoint case of the so-called d-linear Kakeya theorem:

Jonathan Bennett (Birmingham) Transversal Multilinear Harmonic Analysis El Escorial 2012 36 / 62



The general (non-flat) case

Claim: the desired inequality
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L

1
d−1 (B(0,R))

≤ C(log R)κ‖g1‖L2(S1) · · · ‖gd‖L2(Sd )

may be reduced to a certain “vector" Loomis–Whitney inequality, namely∫
Rd

d∏
j=1

( ∑
αj∈Aj

fαj ◦ παj

) 1
d−1 .

d∏
j=1

( ∑
αj∈Aj

∫
Rd−1

fαj

) 1
d−1

,

where for each j , Aj is an indexing set and παj is a linear map which is sufficiently close to the fixed πj
(the j th coordinate hyperplane projection).

This is an equivalent functional form of a Kakeya-type inequality – if we set fαj = χB(αj )
, where B(αj )

denotes a δ-ball in Rd−1, then
fαj ◦ παj = χT (αj )

,

where T (αj ) = π−1
αj B(αj ) is a doubly infinite cylindrical tube in Rd of width ∼ δ and direction kerπαj .

Thus the above inequality becomes

∥∥∥ d∏
j=1

( ∑
αj∈Aj

χT (αj )

)∥∥∥ 1
d−1

L
1

d−1 (Rd )

.
d∏

j=1

(
δd−1#Aj

) 1
d−1

.

This is the endpoint case of the so-called d-linear Kakeya theorem:

Jonathan Bennett (Birmingham) Transversal Multilinear Harmonic Analysis El Escorial 2012 36 / 62



The general (non-flat) case

Claim: the desired inequality
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Theorem (d-linear Kakeya; B–Carbery–Tao/Guth)

Let T1, . . . ,Td be families of doubly-infinite δ-tubes. If these families are transversal and q ≥ d
d−1 then

∥∥∥ d∏
j=1

(∑
Tj∈Tj

χTj

)∥∥∥
Lq/d (Rd )

.
d∏

j=1

δq/d #Tj .

Remarks.

By scaling we may set δ = 1 here.

The statement is equivalent to the endpoint inequality

∥∥∥ d∏
j=1

(∑
Tj∈Tj

χTj

)∥∥∥
L

1
d−1 (Rd )

.
d∏

j=1

#Tj .

Kakeya problems at lower levels of multilinearity do not have equivalent functional forms.

Theorem due to B–Carbery–Tao for q > d
d−1 (2006) and Guth for q = d

d−1 (2010).

The d-linear Kakeya theorem is a formal consequence of the d-linear restriction conjecture by a
standard Rademacher function argument. Our claim amounts to the reversal of this
implication...
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Near equivalence of d-linear restriction and Kakeya

Fix S1, . . . ,Sd transversal.

For each R � 1 let CRest(R) denote the best constant in the inequality

∥∥∥ d∏
j=1

ĝj dσj

∥∥∥
L

2
d−1 (B(0,R))

≤ C
d∏

j=1

‖gj‖2.

The endpoint d-linear restriction conjecture is thus CRest(R) . 1; we are aiming for CRest(R) . (log R)κ

for some κ > 0.

Similarly, for each 0 < δ � 1 let CKak(δ) denote the best constant in

∥∥∥ d∏
j=1

(∑
Tj∈Tj

χTj

)∥∥∥ 1
d−1

L
1

d−1 (Rd )
≤ Cδd

( d∏
j=1

#Tj

) 1
d−1

over all transversal families T1, . . . ,Td of δ × · · · × δ × 1-tubes. (The d-linear Kakeya theorem tells us
that CKak(δ) . 1.)

Proposition (B–Carbery–Tao revisited)
There exists a constant c ≥ 1 independent of R such that

CRest(R) ≤ cCRest(R1/2)CKak(R−1/2).

Remark. Such restriction–Kakeya bootstrapping results originate in work of Bourgain (1991).
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Proposition
There exists a constant c ≥ 1 independent of R such that

CRest(R) ≤ cCRest(R1/2)CKak(R−1/2).

Assuming the truth of this proposition,

if we use the non-endpoint d-linear Kakeya theorem (B–Carbery–Tao) we get CKak(δ) ≤ Cεδ−ε/2,
which on iterating we obtain

CRest(R) ≤ cCεRε/4CRest(R1/2) ≤ (cCε)2Rε/4+ε/8CRest(R1/4) ≤ · · · . C′εR
ε;

if we use the endpoint d-linear Kakeya theorem (Guth) – namely CKak(δ) ≤ C then, on iterating we
obtain

CRest(R) ≤ cCCRest(R1/2) ≤ (cC)2CRest(R1/4) ≤ · · · ≤ (cC)O(log log R) . (log R)κ

for some constant κ.
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The proof of the d-linear restriction theorem now boils down to

proving the inductive proposition; i.e. CRest(R) . CRest(R1/2)CKak(R−1/2), and

proving the d-linear Kakeya theorem; i.e. CKak(δ) . 1.

Next time we will discuss each of these ingredients in turn....
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Last time
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∥∥∥ d∏
j=1

ĝj dσj

∥∥∥
L

2
d−1 (B(0,R))

≤ C
d∏

j=1

‖gj‖2.

The endpoint d-linear restriction conjecture is thus CRest(R) . 1; we are aiming for CRest(R) . (log R)κ

for some κ > 0.

Similarly, CKak(δ) denotes the best constant in

∥∥∥ d∏
j=1

(∑
Tj∈Tj

χTj

)∥∥∥ 1
d−1

L
1

d−1 (Rd )

≤ Cδd
( d∏

j=1

#Tj

) 1
d−1

over all transversal families T1, . . . ,Td of δ × · · · × δ × 1-tubes. (The d-linear Kakeya theorem tells us
that CKak(δ) . 1.)

We now discuss each of these ingredients in turn....

Jonathan Bennett (Birmingham) Transversal Multilinear Harmonic Analysis El Escorial 2012 41 / 62



Last time

Last time we saw that proving the d-linear restriction theorem boils down to

proving the inductive proposition; i.e. CRest(R) . CRest(R1/2)CKak(R−1/2), and

proving the d-linear Kakeya theorem; i.e. CKak(δ) . 1.

Recall that CRest(R) denotes the best constant in the inequality

∥∥∥ d∏
j=1
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ĝj dσj

∥∥∥
L

2
d−1 (B(0,R))

≤ C
d∏

j=1

‖gj‖2.

The endpoint d-linear restriction conjecture is thus CRest(R) . 1;

we are aiming for CRest(R) . (log R)κ

for some κ > 0.

Similarly, CKak(δ) denotes the best constant in

∥∥∥ d∏
j=1

(∑
Tj∈Tj

χTj

)∥∥∥ 1
d−1

L
1

d−1 (Rd )

≤ Cδd
( d∏

j=1

#Tj

) 1
d−1

over all transversal families T1, . . . ,Td of δ × · · · × δ × 1-tubes. (The d-linear Kakeya theorem tells us
that CKak(δ) . 1.)

We now discuss each of these ingredients in turn....

Jonathan Bennett (Birmingham) Transversal Multilinear Harmonic Analysis El Escorial 2012 41 / 62



Last time

Last time we saw that proving the d-linear restriction theorem boils down to

proving the inductive proposition; i.e. CRest(R) . CRest(R1/2)CKak(R−1/2), and

proving the d-linear Kakeya theorem; i.e. CKak(δ) . 1.

Recall that CRest(R) denotes the best constant in the inequality

∥∥∥ d∏
j=1
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ĝj dσj

∥∥∥
L

2
d−1 (B(0,R))

≤ C
d∏

j=1

‖gj‖2.

The endpoint d-linear restriction conjecture is thus CRest(R) . 1; we are aiming for CRest(R) . (log R)κ

for some κ > 0.

Similarly, CKak(δ) denotes the best constant in

∥∥∥ d∏
j=1

(∑
Tj∈Tj

χTj

)∥∥∥ 1
d−1

L
1

d−1 (Rd )
≤ Cδd

( d∏
j=1

#Tj

) 1
d−1

over all transversal families T1, . . . ,Td of δ × · · · × δ × 1-tubes. (The d-linear Kakeya theorem tells us
that CKak(δ) . 1.)

We now discuss each of these ingredients in turn....
Jonathan Bennett (Birmingham) Transversal Multilinear Harmonic Analysis El Escorial 2012 41 / 62



Why is CRest(R) . CRest(R1/2)CKak(R−1/2) true?

We begin with a simpler result of a very similar nature based on ideas of Bourgain/Tao/Wolff (and with
hindsight K. Ball).

Proposition (B–Carbery–Tao revisited)
There exists a constant c ≥ 1 independent of 0 < δ � δ′ � 1 such that

CKak(δ) ≤ cCKak(δ/δ′)CKak(δ′).

Remark. This proposition captures a certain “self-similarity property" or “invariance property" of the
d-linear Kakeya inequality.

Let us prove this carefully...
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Proof. For notational simplicity we write CKak(δ) = C(δ) here.

Tile Rd by cubes Q of side δ′ with δ � δ′ ≤ 1. Clearly,

∥∥∥ d∏
j=1

(∑
Tj∈Tj

χTj

)∥∥∥q/d

Lq/d (Rd )
=
∑

Q

∥∥∥ d∏
j=1

(∑
Tj∈Tj

χTj

)∥∥∥q/d

Lq/d (Q)

=
∑

Q

∥∥∥ d∏
j=1

( ∑
Tj∈TQ

j

χTj∩Q

)∥∥∥q/d

Lq/d (Rd )

. C(δ/δ′)
∑

Q

( d∏
j=1

#TQ
j

)q/d

. C(δ/δ′)
∑

Q

( d∏
j=1

∑
Tj∈Tj

χT̃j
(xQ)

)q/d

. C(δ/δ′)

∫
Rd

( d∏
j=1

∑
Tj∈Tj

χT̃j

)q/d
. C(δ/δ′)C(δ′)δd

( d∏
j=1

#Tj

)q/d
.

Thus
C(δ) . C(δ/δ′)C(δ′)

with implicit constant uniform in 0 < δ < δ′ ≤ 1.
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OK, but we really wanted to prove:

Proposition
There exists a constant c ≥ 1 independent of R such that

CRest(R) ≤ cCRest(R1/2)CKak(R−1/2).

Proof as before but with one extra ingredient: a wave packet decomposition (idea of Bourgain 1991).
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Why is the d-linear Kakeya theorem true?

There are two approaches to this:

(1) Using heat-flow monotonicity formulae (B–Carbery–Tao 2006); this is effective away from the
endpoint,

(2) Using algebraic topology (Guth 2010; see also Carbery–Valdimarsson 2012); this is effective at the
endpoint.

Let us briefly describe the heat-flow approach...

Motivation.

The goal: to show that CKak(δ) . 1 uniformly in δ.

Recall that
CKak(δ) . CKak(δ/δ′)CKak(δ′)

with implicit constant uniform in 0 < δ < δ′ ≤ 1.

This is not enough to deduce the d-linear Kakeya theorem.

However, if we had
CKak(δ) . CKak(δ′)

uniformly in 0 < δ < δ′ ≤ 1, then we’d be done since CKak(1) ∼ 1.

For q > d
d−1 at least, it turns out that this is “effectively" true, although we have to work much harder to

get it...

Jonathan Bennett (Birmingham) Transversal Multilinear Harmonic Analysis El Escorial 2012 45 / 62



Why is the d-linear Kakeya theorem true?

There are two approaches to this:

(1) Using heat-flow monotonicity formulae (B–Carbery–Tao 2006);

this is effective away from the
endpoint,

(2) Using algebraic topology (Guth 2010; see also Carbery–Valdimarsson 2012); this is effective at the
endpoint.

Let us briefly describe the heat-flow approach...

Motivation.

The goal: to show that CKak(δ) . 1 uniformly in δ.

Recall that
CKak(δ) . CKak(δ/δ′)CKak(δ′)

with implicit constant uniform in 0 < δ < δ′ ≤ 1.

This is not enough to deduce the d-linear Kakeya theorem.

However, if we had
CKak(δ) . CKak(δ′)

uniformly in 0 < δ < δ′ ≤ 1, then we’d be done since CKak(1) ∼ 1.

For q > d
d−1 at least, it turns out that this is “effectively" true, although we have to work much harder to

get it...

Jonathan Bennett (Birmingham) Transversal Multilinear Harmonic Analysis El Escorial 2012 45 / 62



Why is the d-linear Kakeya theorem true?

There are two approaches to this:

(1) Using heat-flow monotonicity formulae (B–Carbery–Tao 2006); this is effective away from the
endpoint,

(2) Using algebraic topology (Guth 2010; see also Carbery–Valdimarsson 2012); this is effective at the
endpoint.

Let us briefly describe the heat-flow approach...

Motivation.

The goal: to show that CKak(δ) . 1 uniformly in δ.

Recall that
CKak(δ) . CKak(δ/δ′)CKak(δ′)

with implicit constant uniform in 0 < δ < δ′ ≤ 1.

This is not enough to deduce the d-linear Kakeya theorem.

However, if we had
CKak(δ) . CKak(δ′)

uniformly in 0 < δ < δ′ ≤ 1, then we’d be done since CKak(1) ∼ 1.

For q > d
d−1 at least, it turns out that this is “effectively" true, although we have to work much harder to

get it...

Jonathan Bennett (Birmingham) Transversal Multilinear Harmonic Analysis El Escorial 2012 45 / 62



Why is the d-linear Kakeya theorem true?

There are two approaches to this:

(1) Using heat-flow monotonicity formulae (B–Carbery–Tao 2006); this is effective away from the
endpoint,

(2) Using algebraic topology (Guth 2010; see also Carbery–Valdimarsson 2012);

this is effective at the
endpoint.

Let us briefly describe the heat-flow approach...

Motivation.

The goal: to show that CKak(δ) . 1 uniformly in δ.

Recall that
CKak(δ) . CKak(δ/δ′)CKak(δ′)

with implicit constant uniform in 0 < δ < δ′ ≤ 1.

This is not enough to deduce the d-linear Kakeya theorem.

However, if we had
CKak(δ) . CKak(δ′)

uniformly in 0 < δ < δ′ ≤ 1, then we’d be done since CKak(1) ∼ 1.

For q > d
d−1 at least, it turns out that this is “effectively" true, although we have to work much harder to

get it...

Jonathan Bennett (Birmingham) Transversal Multilinear Harmonic Analysis El Escorial 2012 45 / 62



Why is the d-linear Kakeya theorem true?

There are two approaches to this:

(1) Using heat-flow monotonicity formulae (B–Carbery–Tao 2006); this is effective away from the
endpoint,

(2) Using algebraic topology (Guth 2010; see also Carbery–Valdimarsson 2012); this is effective at the
endpoint.

Let us briefly describe the heat-flow approach...

Motivation.

The goal: to show that CKak(δ) . 1 uniformly in δ.

Recall that
CKak(δ) . CKak(δ/δ′)CKak(δ′)

with implicit constant uniform in 0 < δ < δ′ ≤ 1.

This is not enough to deduce the d-linear Kakeya theorem.

However, if we had
CKak(δ) . CKak(δ′)

uniformly in 0 < δ < δ′ ≤ 1, then we’d be done since CKak(1) ∼ 1.

For q > d
d−1 at least, it turns out that this is “effectively" true, although we have to work much harder to

get it...

Jonathan Bennett (Birmingham) Transversal Multilinear Harmonic Analysis El Escorial 2012 45 / 62



Why is the d-linear Kakeya theorem true?

There are two approaches to this:

(1) Using heat-flow monotonicity formulae (B–Carbery–Tao 2006); this is effective away from the
endpoint,

(2) Using algebraic topology (Guth 2010; see also Carbery–Valdimarsson 2012); this is effective at the
endpoint.

Let us briefly describe the heat-flow approach...

Motivation.

The goal: to show that CKak(δ) . 1 uniformly in δ.

Recall that
CKak(δ) . CKak(δ/δ′)CKak(δ′)

with implicit constant uniform in 0 < δ < δ′ ≤ 1.

This is not enough to deduce the d-linear Kakeya theorem.

However, if we had
CKak(δ) . CKak(δ′)

uniformly in 0 < δ < δ′ ≤ 1, then we’d be done since CKak(1) ∼ 1.

For q > d
d−1 at least, it turns out that this is “effectively" true, although we have to work much harder to

get it...

Jonathan Bennett (Birmingham) Transversal Multilinear Harmonic Analysis El Escorial 2012 45 / 62



Why is the d-linear Kakeya theorem true?

There are two approaches to this:

(1) Using heat-flow monotonicity formulae (B–Carbery–Tao 2006); this is effective away from the
endpoint,

(2) Using algebraic topology (Guth 2010; see also Carbery–Valdimarsson 2012); this is effective at the
endpoint.

Let us briefly describe the heat-flow approach...

Motivation.

The goal: to show that CKak(δ) . 1 uniformly in δ.

Recall that
CKak(δ) . CKak(δ/δ′)CKak(δ′)

with implicit constant uniform in 0 < δ < δ′ ≤ 1.

This is not enough to deduce the d-linear Kakeya theorem.

However, if we had
CKak(δ) . CKak(δ′)

uniformly in 0 < δ < δ′ ≤ 1, then we’d be done since CKak(1) ∼ 1.

For q > d
d−1 at least, it turns out that this is “effectively" true, although we have to work much harder to

get it...

Jonathan Bennett (Birmingham) Transversal Multilinear Harmonic Analysis El Escorial 2012 45 / 62



Why is the d-linear Kakeya theorem true?

There are two approaches to this:

(1) Using heat-flow monotonicity formulae (B–Carbery–Tao 2006); this is effective away from the
endpoint,

(2) Using algebraic topology (Guth 2010; see also Carbery–Valdimarsson 2012); this is effective at the
endpoint.

Let us briefly describe the heat-flow approach...

Motivation.

The goal: to show that CKak(δ) . 1 uniformly in δ.

Recall that
CKak(δ) . CKak(δ/δ′)CKak(δ′)

with implicit constant uniform in 0 < δ < δ′ ≤ 1.

This is not enough to deduce the d-linear Kakeya theorem.

However, if we had
CKak(δ) . CKak(δ′)

uniformly in 0 < δ < δ′ ≤ 1, then we’d be done since CKak(1) ∼ 1.

For q > d
d−1 at least, it turns out that this is “effectively" true, although we have to work much harder to

get it...

Jonathan Bennett (Birmingham) Transversal Multilinear Harmonic Analysis El Escorial 2012 45 / 62



Why is the d-linear Kakeya theorem true?

There are two approaches to this:

(1) Using heat-flow monotonicity formulae (B–Carbery–Tao 2006); this is effective away from the
endpoint,

(2) Using algebraic topology (Guth 2010; see also Carbery–Valdimarsson 2012); this is effective at the
endpoint.

Let us briefly describe the heat-flow approach...

Motivation.

The goal: to show that CKak(δ) . 1 uniformly in δ.

Recall that
CKak(δ) . CKak(δ/δ′)CKak(δ′)

with implicit constant uniform in 0 < δ < δ′ ≤ 1.

This is not enough to deduce the d-linear Kakeya theorem.

However, if we had
CKak(δ) . CKak(δ′)

uniformly in 0 < δ < δ′ ≤ 1, then we’d be done since CKak(1) ∼ 1.

For q > d
d−1 at least, it turns out that this is “effectively" true, although we have to work much harder to

get it...

Jonathan Bennett (Birmingham) Transversal Multilinear Harmonic Analysis El Escorial 2012 45 / 62



Why is the d-linear Kakeya theorem true?

There are two approaches to this:

(1) Using heat-flow monotonicity formulae (B–Carbery–Tao 2006); this is effective away from the
endpoint,

(2) Using algebraic topology (Guth 2010; see also Carbery–Valdimarsson 2012); this is effective at the
endpoint.

Let us briefly describe the heat-flow approach...

Motivation.

The goal: to show that CKak(δ) . 1 uniformly in δ.

Recall that
CKak(δ) . CKak(δ/δ′)CKak(δ′)

with implicit constant uniform in 0 < δ < δ′ ≤ 1.

This is not enough to deduce the d-linear Kakeya theorem.

However, if we had
CKak(δ) . CKak(δ′)

uniformly in 0 < δ < δ′ ≤ 1, then we’d be done since CKak(1) ∼ 1.

For q > d
d−1 at least, it turns out that this is “effectively" true, although we have to work much harder to

get it...

Jonathan Bennett (Birmingham) Transversal Multilinear Harmonic Analysis El Escorial 2012 45 / 62



Why is the d-linear Kakeya theorem true?

There are two approaches to this:

(1) Using heat-flow monotonicity formulae (B–Carbery–Tao 2006); this is effective away from the
endpoint,

(2) Using algebraic topology (Guth 2010; see also Carbery–Valdimarsson 2012); this is effective at the
endpoint.

Let us briefly describe the heat-flow approach...

Motivation.

The goal: to show that CKak(δ) . 1 uniformly in δ.

Recall that
CKak(δ) . CKak(δ/δ′)CKak(δ′)

with implicit constant uniform in 0 < δ < δ′ ≤ 1.

This is not enough to deduce the d-linear Kakeya theorem.

However, if we had
CKak(δ) . CKak(δ′)

uniformly in 0 < δ < δ′ ≤ 1, then we’d be done since CKak(1) ∼ 1.

For q > d
d−1 at least, it turns out that this is “effectively" true, although we have to work much harder to

get it...

Jonathan Bennett (Birmingham) Transversal Multilinear Harmonic Analysis El Escorial 2012 45 / 62



Why is the d-linear Kakeya theorem true?

There are two approaches to this:

(1) Using heat-flow monotonicity formulae (B–Carbery–Tao 2006); this is effective away from the
endpoint,

(2) Using algebraic topology (Guth 2010; see also Carbery–Valdimarsson 2012); this is effective at the
endpoint.

Let us briefly describe the heat-flow approach...

Motivation.

The goal: to show that CKak(δ) . 1 uniformly in δ.

Recall that
CKak(δ) . CKak(δ/δ′)CKak(δ′)

with implicit constant uniform in 0 < δ < δ′ ≤ 1.

This is not enough to deduce the d-linear Kakeya theorem.

However, if we had
CKak(δ) . CKak(δ′)

uniformly in 0 < δ < δ′ ≤ 1, then we’d be done since CKak(1) ∼ 1.

For q > d
d−1 at least, it turns out that this is “effectively" true, although we have to work much harder to

get it...

Jonathan Bennett (Birmingham) Transversal Multilinear Harmonic Analysis El Escorial 2012 45 / 62



Why is the d-linear Kakeya theorem true?

There are two approaches to this:

(1) Using heat-flow monotonicity formulae (B–Carbery–Tao 2006); this is effective away from the
endpoint,

(2) Using algebraic topology (Guth 2010; see also Carbery–Valdimarsson 2012); this is effective at the
endpoint.

Let us briefly describe the heat-flow approach...

Motivation.

The goal: to show that CKak(δ) . 1 uniformly in δ.

Recall that
CKak(δ) . CKak(δ/δ′)CKak(δ′)

with implicit constant uniform in 0 < δ < δ′ ≤ 1.

This is not enough to deduce the d-linear Kakeya theorem.

However, if we had
CKak(δ) . CKak(δ′)

uniformly in 0 < δ < δ′ ≤ 1, then we’d be done since CKak(1) ∼ 1.

For q > d
d−1 at least, it turns out that this is “effectively" true, although we have to work much harder to

get it...

Jonathan Bennett (Birmingham) Transversal Multilinear Harmonic Analysis El Escorial 2012 45 / 62



A heat-flow approach to d-linear Kakeya

Idea: Return to the functional form of the d-linear Kakeya inequality∫
Rd

d∏
j=1

( ∑
αj∈Aj

fαj ◦ παj

) 1
d−1 .

d∏
j=1

( ∑
αj∈Aj

∫
Rd−1

fαj

) 1
d−1

,

and regard the fαj as initial temperature distributions.

For each αj let uαj solve the heat equation ∂t u = ∆u with initial data fαj , and consider the functional

Q(t) =

∫
Rd

d∏
j=1

( ∑
αj∈Aj

uαj ◦ παj

) 1
d−1

.

Observations.

The d-linear Kakeya inequality maybe rewritten as Q(0) . limt→∞ Q(t). Thus if Q(t) were
nondecreasing we’d be done!

If παj = πj for all αj ∈ Aj then

Q(t) = QLW (t) :=

∫
Rd

d∏
j=1

uj (t, πj x)
1

d−1 dx ,

where uj =
∑
αj∈Aj

uαj and fj =
∑
αj∈Aj

fαj .

Jonathan Bennett (Birmingham) Transversal Multilinear Harmonic Analysis El Escorial 2012 46 / 62



A heat-flow approach to d-linear Kakeya

Idea: Return to the functional form of the d-linear Kakeya inequality∫
Rd

d∏
j=1

( ∑
αj∈Aj

fαj ◦ παj

) 1
d−1 .

d∏
j=1

( ∑
αj∈Aj

∫
Rd−1

fαj

) 1
d−1

,

and regard the fαj as initial temperature distributions.
For each αj let uαj solve the heat equation ∂t u = ∆u with initial data fαj , and consider the functional

Q(t) =

∫
Rd

d∏
j=1

( ∑
αj∈Aj

uαj ◦ παj

) 1
d−1

.

Observations.

The d-linear Kakeya inequality maybe rewritten as Q(0) . limt→∞ Q(t). Thus if Q(t) were
nondecreasing we’d be done!

If παj = πj for all αj ∈ Aj then

Q(t) = QLW (t) :=

∫
Rd

d∏
j=1

uj (t, πj x)
1

d−1 dx ,

where uj =
∑
αj∈Aj

uαj and fj =
∑
αj∈Aj

fαj .

Jonathan Bennett (Birmingham) Transversal Multilinear Harmonic Analysis El Escorial 2012 46 / 62



A heat-flow approach to d-linear Kakeya

Idea: Return to the functional form of the d-linear Kakeya inequality∫
Rd

d∏
j=1

( ∑
αj∈Aj

fαj ◦ παj

) 1
d−1 .

d∏
j=1

( ∑
αj∈Aj

∫
Rd−1

fαj

) 1
d−1

,

and regard the fαj as initial temperature distributions.
For each αj let uαj solve the heat equation ∂t u = ∆u with initial data fαj , and consider the functional

Q(t) =

∫
Rd

d∏
j=1

( ∑
αj∈Aj

uαj ◦ παj

) 1
d−1

.

Observations.

The d-linear Kakeya inequality maybe rewritten as Q(0) . limt→∞ Q(t). Thus if Q(t) were
nondecreasing we’d be done!

If παj = πj for all αj ∈ Aj then

Q(t) = QLW (t) :=

∫
Rd

d∏
j=1

uj (t, πj x)
1

d−1 dx ,

where uj =
∑
αj∈Aj

uαj and fj =
∑
αj∈Aj

fαj .
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Proposition (B–Carbery–Tao/B–Carbery–Christ–Tao; see also Carlen–Lieb–Loss)
QLW is nondecreasing.

Proof (BCCT/K. Ball). Observe first that if Ht (y) = (4πt)−
d−1

2 e−
|y|2

4t is the heat kernel on Rd−1 then( d∏
j=1

Ht ◦ πj (x)
) 1

d−1
= (4πt)−

d
2 e−

|x|2
4t

is the heat kernel on Rd . Hence if t, t ′ > 0 we have

QLW (t) =

∫
Rd

d∏
j=1

(Ht ∗ fj (πj x))
1

d−1 dx

=

∫
Rd

( d∏
j=1

Ht ∗ fj (πj ·)
) 1

d−1 ∗
( d∏

j=1

Ht′ (πj ·)
) 1

d−1
(Fubini)

=

∫
Rd

∫
Rd

( d∏
j=1

Ht ∗ fj (πj y)Ht′ (πj x − πj y)
) 1

d−1 dydx (linearity of πj )

≤
∫
Rd

d∏
j=1

(∫
Rd−1

Ht ∗ fj (z)Ht′ (πj x − z)dz
) 1

d−1 dx (Loomis–Whitney)

=

∫
Rd

( d∏
j=1

Ht′ ∗ Ht ∗ fj (πj x)
) 1

d−1 dx = QLW (t + t ′).
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A suitably robust “calculus" proof of the above special case may be adapted to obtain the following:

Theorem (B–Carbery–Tao 2006)

Let q > d
d−1 and ε > 0. Suppose that

‖(π∗αj
παj )

1/2 − (π∗j πj )
1/2‖ < ε

for all αj ∈ Aj and 1 ≤ j ≤ d. Then provided ε is sufficiently small there exists a weight function
W = W (t, x , (παj )

d
j=1, q) = 1 + O(ε) for which

Q̃q(t) := t
1
2 (d−1)(q− d

d−1 )
∫
Rd

d∏
j=1

( ∑
αj∈Aj

uαj (t, παj )
)q/d

W

is nondecreasing.

Non-endpoint d-linear Kakeya follows from the subsequent inequality

Qq(δ2) . Q̃q(δ2) ≤ Q̃q(∞) . Qq(∞).
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Further results

So far we have used bootstrapping arguments (or induction on scales) every step of the way...

in reducing a linear restriction estimate to a multilinear one [BG] –

C ≤ c3K power + c2(K ′)power K
1
2−

1
q K

6
q−2C + c1(K ′)

6
q−2C;

in reducing a multilinear restriction estimate to a multilinear Kakeya estimate [BCT] –

CRest(R) ≤ cCRest(R1/2)CKak(R−1/2);

in proving a multilinear Kakeya estimate [BCT] –

“CKak(δ) . CKak(δ′)” or Q̃q(t) ↑ .

We can get still more out of bootstrapping...
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Curvy d-linear Kakeya.

We may replace the tubes Tj in the d-linear Kakeya problem by
δ-neighbourhoods of smooth (e.g. C2) curves.

Proposition (B–Carbery–Tao revisited)

CCurvyKak(δ) ≤ cCKak(δ1/2)CCurvyKak(δ1/2).

Thus CKak(δ) . 1 =⇒ CCurvyKak(δ) . (log(1/δ))κ for some constant κ.

Remark. If the curves are algebraic with bounded degree then CCurvyKak(δ) . 1 (Bourgain–Guth).

d-linear oscillatory integral operators. If Σ : U(⊂ Rd−1)→ Rd is a smooth parametrisation of S,
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ĝdσ(ξ) =

∫
U

g̃(x)eiξ·Σ(x)dx ,

where g̃(x) = g(Σ(x))J(x).
We may of course consider more general oscillatory integral operators of the form

Tλf (ξ) =

∫
Rd−1

eiλΦ(x,ξ)ψ(x , ξ)f (x)dx ,

where Φ : Rd−1 × Rd → R is smooth in a neighbourhood of a point, say 0.
Attempts to generalise the linear restriction conjecture to cover such operators have had limited
success. The multilinear setting appears to be much better behaved...

Jonathan Bennett (Birmingham) Transversal Multilinear Harmonic Analysis El Escorial 2012 50 / 62



Curvy d-linear Kakeya. We may replace the tubes Tj in the d-linear Kakeya problem by
δ-neighbourhoods of smooth (e.g. C2) curves.

Proposition (B–Carbery–Tao revisited)

CCurvyKak(δ) ≤ cCKak(δ1/2)CCurvyKak(δ1/2).

Thus CKak(δ) . 1 =⇒ CCurvyKak(δ) . (log(1/δ))κ for some constant κ.

Remark. If the curves are algebraic with bounded degree then CCurvyKak(δ) . 1 (Bourgain–Guth).

d-linear oscillatory integral operators.

If Σ : U(⊂ Rd−1)→ Rd is a smooth parametrisation of S,
then we may write
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Suppose we have d such operators Tλ,1, . . . , Tλ,d associated with phase functions
Φ1, . . . ,Φd : Rd−1 × Rd → R.

Theorem (B–Carbery–Tao 2006)

If ker dξdx Φ1(0), . . . , ker dξdx Φd (0) span Rd (e.g. dξdx Φj (0) = πj ) then for each ε > 0 there is a
constant Cε such that ∫

Rd
|Tλ,1f1 · · · Tλ,d fd |

2
d−1 ≤ Cελ−d+ε

d∏
j=1

‖fj‖
2

d−1
2 .

Remark. Setting Φj (x , ξ) = 〈ξ,Σj (x)〉 recovers the d-linear restriction theorem (BCT). Observe that

If Φj (x , ξ) = 〈ξ,Σj (x)〉 then dξdx Φj (0) = (dx Σj (0))∗, and

submanifolds S1, . . . ,Sd are transversal if and only if ker(dx Σ1(x1))∗, . . . , ker(dx Σd (xd ))∗ span
Rd uniformly in xj ∈ Uj , 1 ≤ j ≤ d .

The proof is yet another bootstrapping argument :

“COsc(λ) . COsc(λ1/2)CCurvyKak(λ−1/2)”
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Further applications

The Bourgain–Guth method leads to improved

bounds on the dimensions of “curvy Kakeya sets" (Bourgain–Guth);

bounds on linear oscillatory integral operators of Hörmander-type (Bourgain–Guth);

bounds on Bochner–Riesz multipliers (Bourgain–Guth);

Further applications may be found in:

J. Bourgain, “Moment inequalities for trigonometric polynomials with spectrum in curved
hypersurfaces", preprint 2011.

J. Bourgain, “On the Schrödinger maximal function in higher dimension", preprint 2012.

J. Bourgain, P. Shao, C. Sogge, X. Yao, “On Lp-resolvent estimates and the density of eigenvalues
for compact Riemannian manifolds", preprint 2012.

S. Lee, A. Vargas, “On the cone multiplier in R3", JFA 2012.
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bounds on linear oscillatory integral operators of Hörmander-type (Bourgain–Guth);

bounds on Bochner–Riesz multipliers (Bourgain–Guth);

Further applications may be found in:

J. Bourgain, “Moment inequalities for trigonometric polynomials with spectrum in curved
hypersurfaces", preprint 2011.

J. Bourgain, “On the Schrödinger maximal function in higher dimension", preprint 2012.

J. Bourgain, P. Shao, C. Sogge, X. Yao, “On Lp-resolvent estimates and the density of eigenvalues
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Part 3: Transversal multilinear harmonic analysis - a bigger picture

Multilinear oscillatory integrals of Hörmander type.

Multilinear Radon-like transforms.
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Oscillatory integral operators of Hörmander type

Stein, (ICM 1986): “Often the exploitation of primitive geometrical ideas such as some
notions of "curvature" is intimately connected with oscillatory integrals" – abridged.

To a smooth phase function Φ : Rd′ × Rd → R we may associate an operator

Tλf (ξ) =

∫
Rd′

eiλΦ(x,ξ)ψ(x , ξ)f (x)dx .

Here d ′ ≤ d , ψ is a smooth cutoff function on Rd′ × Rd .
It is natural to look for Lp − Lq control of such operators in terms of the large parameter λ, under
nondegeneracy conditions on the phase Φ. Starting point:

Theorem (Hörmander)
If d ′ = d and

det
(∂2Φ(x , ξ)

∂xiξj

)
6= 0

(
i.e. det HessΦ 6= 0

)
on supp(Φ) then

‖Tλf‖2
L2(Rd )

. λ−d‖f‖2
L2(Rd )

.

Rather than impose additional “curvature" conditions on Φ (there is a vast and very important literature
on this – see Seeger, El Escorial 2000), let us move to a multilinear setting and impose “transversality"
conditions...
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We impose no curvature hypotheses and so it is natural to stay in the context of L2 estimates.

We consider inequalities of the form∫
Rd

k∏
j=1

|Tj,λfj |2pj ≤ Cλ−d
k∏

j=1

‖fj‖
2pj

L2(Rdj )
,

where the Tj,λ are associated to phase functions Φj : Rdj × Rd → R, and p = (pj ) ∈ (0, 1]k .

If k = 1, d ′ = d , p = 1 and det(HessΦ) 6= 0 on supp(ψ) then this is Hörmander’s theorem.

If k = d , dj = d − 1, pj = 1
d−1 and Φj (x , ξ) = 〈ξ,Σj (x)〉 then this is the d-linear restriction

conjecture.

In the special case where the phases Φj are nondegenerate bilinear forms Φj (x , ξ) = 〈x , Ljξ〉, we
have Tj,λfj = f̂j ◦ Lj (λ·). By Plancherel’s theorem and scaling the above inequality reduces to∫

Rd

k∏
j=1

(fj ◦ Lj )
pj ≤ C

k∏
j=1

(∫
Rdj

fj

)pj

; fj ∈ L1(Rdj ,R+). (BL)

This is the classical Brascamp–Lieb inequality with datum (L, p) = ((Lj ), (pj )).
We denote by BL(L, p) the smallest value of C for which (BL) holds (the “Brascamp–Lieb
constant"). Important example: if (L, p) is such that L∗j Lj is an orthogonal projection and

k∑
j=1

pj L∗j Lj = I

then BL(L, p) = 1 (this is the “Geometric Brascamp–Lieb inequality" of Ball/Barthe).
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(fj ◦ Lj )
pj ≤ C

k∏
j=1

(∫
Rdj

fj

)pj

; fj ∈ L1(Rdj ,R+). (BL)

This is the classical Brascamp–Lieb inequality with datum (L, p) = ((Lj ), (pj )).
We denote by BL(L, p) the smallest value of C for which (BL) holds (the “Brascamp–Lieb
constant").

Important example: if (L, p) is such that L∗j Lj is an orthogonal projection and

k∑
j=1

pj L∗j Lj = I

then BL(L, p) = 1 (this is the “Geometric Brascamp–Lieb inequality" of Ball/Barthe).
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Tentative Conjecture (Oscillatory Brascamp–Lieb)
Let (L, p) be a Brascamp–Lieb datum for which BL(L, p) <∞, and for each 1 ≤ j ≤ k suppose that
Φj : Rdj × Rd → R is smooth in a neighbourhood of the origin in Rdj × Rd and satisfies
dξdx Φj (0) = Lj for each 1 ≤ j ≤ k. Then

∫
Rd

k∏
j=1

|Tj,λfj |2pj . λ−d
k∏

j=1

‖fj‖
2pj

L2(Rdj )
.

Squeezing “as much as possible" out of our bootstrapping arguments we obtain:

Theorem (B–Carbery–Tao revisited)
Suppose (L, p) is such that L∗j Lj is an orthogonal projection for each 1 ≤ j ≤ k and

k∑
j=1

pj L∗j Lj = I.

If dξdx Φj (0) = Lj for each 1 ≤ j ≤ k then given any ε > 0 there exists a constant Cε <∞ such that

∫
Rd

k∏
j=1

|Tj,λfj |2pj ≤ Cελ−d+ε
k∏

j=1

‖fj‖
2pj

L2(Rdj )
.
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Transversal multilinear Radon-like transforms

A natural description of a multilinear Radon-like transform is a mapping R of the form

Rg(x) =

∫
Rd1×···×Rdm

g1(y1) · · · gm(ym)δ(F(y , x))ψ(y , x)dy ,

where g = (gj )
m
j=1, gj : Rdj → C is a suitable test function, x ∈ Rn and

F : Rd1 × · · · × Rdm × Rn → RN is a suitably smooth function. It is natural to seek “Lp-improving"
estimates for such transforms; that is, given F , find exponents r1, . . . , rm and q for which R extends to a
bounded mapping from Lr1 (Rd1 )× · · · × Lrm (Rdm ) into Lq(Rn). By duality these qualities may be
expressed as bounds on multilinear forms of the form∫

Rd1×···×Rdm+1

m+1∏
j=1

gj (yj )δ(F(y))ψ(y)dy .
m+1∏
j=1

‖gj‖Lrj (Rdj )
.

By parametrising the support of the distribution δ ◦ F we may often write the above inequality in the form∫
Rd

m+1∏
j=1

gj (Bj (x))ψ(x)dx .
m+1∏
j=1

‖gj‖Lrj (Rdj )

for some typically nonlinear maps Bj : Rd → Rdj . Setting fj = g
rj
j and pj = 1

rj
, this becomes

∫
Rd

m+1∏
j=1

(fj ◦ Bj )
pjψ .

m+1∏
j=1

(∫
Rdj

fj

)pj

;

i.e. a Brascamp–Lieb inequality, but with nonlinear maps Bj .

Jonathan Bennett (Birmingham) Transversal Multilinear Harmonic Analysis El Escorial 2012 57 / 62



Transversal multilinear Radon-like transforms

A natural description of a multilinear Radon-like transform is a mapping R of the form

Rg(x) =

∫
Rd1×···×Rdm

g1(y1) · · · gm(ym)δ(F(y , x))ψ(y , x)dy ,

where g = (gj )
m
j=1, gj : Rdj → C is a suitable test function, x ∈ Rn and

F : Rd1 × · · · × Rdm × Rn → RN is a suitably smooth function.

It is natural to seek “Lp-improving"
estimates for such transforms; that is, given F , find exponents r1, . . . , rm and q for which R extends to a
bounded mapping from Lr1 (Rd1 )× · · · × Lrm (Rdm ) into Lq(Rn). By duality these qualities may be
expressed as bounds on multilinear forms of the form∫

Rd1×···×Rdm+1

m+1∏
j=1

gj (yj )δ(F(y))ψ(y)dy .
m+1∏
j=1

‖gj‖Lrj (Rdj )
.

By parametrising the support of the distribution δ ◦ F we may often write the above inequality in the form∫
Rd

m+1∏
j=1

gj (Bj (x))ψ(x)dx .
m+1∏
j=1

‖gj‖Lrj (Rdj )

for some typically nonlinear maps Bj : Rd → Rdj . Setting fj = g
rj
j and pj = 1

rj
, this becomes

∫
Rd

m+1∏
j=1

(fj ◦ Bj )
pjψ .

m+1∏
j=1

(∫
Rdj

fj

)pj

;

i.e. a Brascamp–Lieb inequality, but with nonlinear maps Bj .

Jonathan Bennett (Birmingham) Transversal Multilinear Harmonic Analysis El Escorial 2012 57 / 62



Transversal multilinear Radon-like transforms

A natural description of a multilinear Radon-like transform is a mapping R of the form

Rg(x) =

∫
Rd1×···×Rdm

g1(y1) · · · gm(ym)δ(F(y , x))ψ(y , x)dy ,

where g = (gj )
m
j=1, gj : Rdj → C is a suitable test function, x ∈ Rn and

F : Rd1 × · · · × Rdm × Rn → RN is a suitably smooth function. It is natural to seek “Lp-improving"
estimates for such transforms;

that is, given F , find exponents r1, . . . , rm and q for which R extends to a
bounded mapping from Lr1 (Rd1 )× · · · × Lrm (Rdm ) into Lq(Rn). By duality these qualities may be
expressed as bounds on multilinear forms of the form∫

Rd1×···×Rdm+1

m+1∏
j=1

gj (yj )δ(F(y))ψ(y)dy .
m+1∏
j=1

‖gj‖Lrj (Rdj )
.

By parametrising the support of the distribution δ ◦ F we may often write the above inequality in the form∫
Rd

m+1∏
j=1

gj (Bj (x))ψ(x)dx .
m+1∏
j=1

‖gj‖Lrj (Rdj )

for some typically nonlinear maps Bj : Rd → Rdj . Setting fj = g
rj
j and pj = 1

rj
, this becomes

∫
Rd

m+1∏
j=1

(fj ◦ Bj )
pjψ .

m+1∏
j=1

(∫
Rdj

fj

)pj

;

i.e. a Brascamp–Lieb inequality, but with nonlinear maps Bj .

Jonathan Bennett (Birmingham) Transversal Multilinear Harmonic Analysis El Escorial 2012 57 / 62



Transversal multilinear Radon-like transforms

A natural description of a multilinear Radon-like transform is a mapping R of the form

Rg(x) =

∫
Rd1×···×Rdm

g1(y1) · · · gm(ym)δ(F(y , x))ψ(y , x)dy ,

where g = (gj )
m
j=1, gj : Rdj → C is a suitable test function, x ∈ Rn and

F : Rd1 × · · · × Rdm × Rn → RN is a suitably smooth function. It is natural to seek “Lp-improving"
estimates for such transforms; that is, given F , find exponents r1, . . . , rm and q for which R extends to a
bounded mapping from Lr1 (Rd1 )× · · · × Lrm (Rdm ) into Lq(Rn).

By duality these qualities may be
expressed as bounds on multilinear forms of the form∫

Rd1×···×Rdm+1

m+1∏
j=1

gj (yj )δ(F(y))ψ(y)dy .
m+1∏
j=1

‖gj‖Lrj (Rdj )
.

By parametrising the support of the distribution δ ◦ F we may often write the above inequality in the form∫
Rd

m+1∏
j=1

gj (Bj (x))ψ(x)dx .
m+1∏
j=1

‖gj‖Lrj (Rdj )

for some typically nonlinear maps Bj : Rd → Rdj . Setting fj = g
rj
j and pj = 1

rj
, this becomes

∫
Rd

m+1∏
j=1

(fj ◦ Bj )
pjψ .

m+1∏
j=1

(∫
Rdj

fj

)pj

;

i.e. a Brascamp–Lieb inequality, but with nonlinear maps Bj .

Jonathan Bennett (Birmingham) Transversal Multilinear Harmonic Analysis El Escorial 2012 57 / 62



Transversal multilinear Radon-like transforms

A natural description of a multilinear Radon-like transform is a mapping R of the form

Rg(x) =

∫
Rd1×···×Rdm

g1(y1) · · · gm(ym)δ(F(y , x))ψ(y , x)dy ,

where g = (gj )
m
j=1, gj : Rdj → C is a suitable test function, x ∈ Rn and

F : Rd1 × · · · × Rdm × Rn → RN is a suitably smooth function. It is natural to seek “Lp-improving"
estimates for such transforms; that is, given F , find exponents r1, . . . , rm and q for which R extends to a
bounded mapping from Lr1 (Rd1 )× · · · × Lrm (Rdm ) into Lq(Rn). By duality these qualities may be
expressed as bounds on multilinear forms of the form∫

Rd1×···×Rdm+1

m+1∏
j=1

gj (yj )δ(F(y))ψ(y)dy .
m+1∏
j=1

‖gj‖Lrj (Rdj )
.

By parametrising the support of the distribution δ ◦ F we may often write the above inequality in the form∫
Rd

m+1∏
j=1

gj (Bj (x))ψ(x)dx .
m+1∏
j=1

‖gj‖Lrj (Rdj )

for some typically nonlinear maps Bj : Rd → Rdj . Setting fj = g
rj
j and pj = 1

rj
, this becomes

∫
Rd

m+1∏
j=1

(fj ◦ Bj )
pjψ .

m+1∏
j=1

(∫
Rdj

fj

)pj

;

i.e. a Brascamp–Lieb inequality, but with nonlinear maps Bj .

Jonathan Bennett (Birmingham) Transversal Multilinear Harmonic Analysis El Escorial 2012 57 / 62



Transversal multilinear Radon-like transforms

A natural description of a multilinear Radon-like transform is a mapping R of the form

Rg(x) =

∫
Rd1×···×Rdm

g1(y1) · · · gm(ym)δ(F(y , x))ψ(y , x)dy ,

where g = (gj )
m
j=1, gj : Rdj → C is a suitable test function, x ∈ Rn and

F : Rd1 × · · · × Rdm × Rn → RN is a suitably smooth function. It is natural to seek “Lp-improving"
estimates for such transforms; that is, given F , find exponents r1, . . . , rm and q for which R extends to a
bounded mapping from Lr1 (Rd1 )× · · · × Lrm (Rdm ) into Lq(Rn). By duality these qualities may be
expressed as bounds on multilinear forms of the form∫

Rd1×···×Rdm+1

m+1∏
j=1

gj (yj )δ(F(y))ψ(y)dy .
m+1∏
j=1

‖gj‖Lrj (Rdj )
.

By parametrising the support of the distribution δ ◦ F we may often write the above inequality in the form∫
Rd

m+1∏
j=1

gj (Bj (x))ψ(x)dx .
m+1∏
j=1

‖gj‖Lrj (Rdj )

for some typically nonlinear maps Bj : Rd → Rdj .

Setting fj = g
rj
j and pj = 1

rj
, this becomes

∫
Rd

m+1∏
j=1

(fj ◦ Bj )
pjψ .

m+1∏
j=1

(∫
Rdj

fj

)pj

;

i.e. a Brascamp–Lieb inequality, but with nonlinear maps Bj .

Jonathan Bennett (Birmingham) Transversal Multilinear Harmonic Analysis El Escorial 2012 57 / 62



Transversal multilinear Radon-like transforms

A natural description of a multilinear Radon-like transform is a mapping R of the form

Rg(x) =

∫
Rd1×···×Rdm

g1(y1) · · · gm(ym)δ(F(y , x))ψ(y , x)dy ,

where g = (gj )
m
j=1, gj : Rdj → C is a suitable test function, x ∈ Rn and

F : Rd1 × · · · × Rdm × Rn → RN is a suitably smooth function. It is natural to seek “Lp-improving"
estimates for such transforms; that is, given F , find exponents r1, . . . , rm and q for which R extends to a
bounded mapping from Lr1 (Rd1 )× · · · × Lrm (Rdm ) into Lq(Rn). By duality these qualities may be
expressed as bounds on multilinear forms of the form∫

Rd1×···×Rdm+1

m+1∏
j=1

gj (yj )δ(F(y))ψ(y)dy .
m+1∏
j=1

‖gj‖Lrj (Rdj )
.

By parametrising the support of the distribution δ ◦ F we may often write the above inequality in the form∫
Rd

m+1∏
j=1

gj (Bj (x))ψ(x)dx .
m+1∏
j=1

‖gj‖Lrj (Rdj )

for some typically nonlinear maps Bj : Rd → Rdj . Setting fj = g
rj
j and pj = 1

rj
, this becomes

∫
Rd

m+1∏
j=1

(fj ◦ Bj )
pjψ .

m+1∏
j=1

(∫
Rdj

fj

)pj

;

i.e. a Brascamp–Lieb inequality, but with nonlinear maps Bj .

Jonathan Bennett (Birmingham) Transversal Multilinear Harmonic Analysis El Escorial 2012 57 / 62



Transversal multilinear Radon-like transforms

A natural description of a multilinear Radon-like transform is a mapping R of the form

Rg(x) =

∫
Rd1×···×Rdm

g1(y1) · · · gm(ym)δ(F(y , x))ψ(y , x)dy ,

where g = (gj )
m
j=1, gj : Rdj → C is a suitable test function, x ∈ Rn and

F : Rd1 × · · · × Rdm × Rn → RN is a suitably smooth function. It is natural to seek “Lp-improving"
estimates for such transforms; that is, given F , find exponents r1, . . . , rm and q for which R extends to a
bounded mapping from Lr1 (Rd1 )× · · · × Lrm (Rdm ) into Lq(Rn). By duality these qualities may be
expressed as bounds on multilinear forms of the form∫

Rd1×···×Rdm+1

m+1∏
j=1

gj (yj )δ(F(y))ψ(y)dy .
m+1∏
j=1

‖gj‖Lrj (Rdj )
.

By parametrising the support of the distribution δ ◦ F we may often write the above inequality in the form∫
Rd

m+1∏
j=1

gj (Bj (x))ψ(x)dx .
m+1∏
j=1

‖gj‖Lrj (Rdj )

for some typically nonlinear maps Bj : Rd → Rdj . Setting fj = g
rj
j and pj = 1

rj
, this becomes

∫
Rd

m+1∏
j=1

(fj ◦ Bj )
pjψ .

m+1∏
j=1

(∫
Rdj

fj

)pj

;

i.e. a Brascamp–Lieb inequality, but with nonlinear maps Bj .

Jonathan Bennett (Birmingham) Transversal Multilinear Harmonic Analysis El Escorial 2012 57 / 62



Tentative Conjecture (Nonlinear Brascamp–Lieb)
Let (L, p) be a Brascamp–Lieb datum for which BL(L, p) <∞, and for each 1 ≤ j ≤ k let
Bj : Rd → Rdj be a smooth submersion in a neighbourhood of a point x0 ∈ Rd with dBj (x0) = Lj for
each 1 ≤ j ≤ k.

Then there exists a neigbourhood U of x0 such that∫
U

k∏
j=1

(fj ◦ Bj )
pj .

k∏
j=1

(∫
Rdj

fj

)pj

.

Remarks.

This conjecture follows from the Oscillatory Brascamp–Lieb conjecture on specialising to phases of
the form Φj (x , ξ) = 〈x ,Bj (ξ)〉.
Linear Radon-like transforms have been studied under higher order nondegeneracy (or
“curvature") hypotheses on the mappings Bj for some years – see for example Tao–Wright for
further discussion.

Verified in the Loomis–Whitney case; i.e. when k = d , pj = 1
d−1 and Lj = πj for 1 ≤ j ≤ d

(B–Carbery–Wright 2005; see also Bejenaru–Herr–Tataru 2010).
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This conjecture follows from the Oscillatory Brascamp–Lieb conjecture on specialising to phases of
the form Φj (x , ξ) = 〈x ,Bj (ξ)〉.
Linear Radon-like transforms have been studied under higher order nondegeneracy (or
“curvature") hypotheses on the mappings Bj for some years – see for example Tao–Wright for
further discussion.

Verified in the Loomis–Whitney case; i.e. when k = d , pj = 1
d−1 and Lj = πj for 1 ≤ j ≤ d

(B–Carbery–Wright 2005; see also Bejenaru–Herr–Tataru 2010).
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A nonlinear Brascamp–Lieb theorem...

Theorem (B–Bez 2010)
Conjecture true under the additional assumption that

k⊕
j=1

ker Lj = Rd ;

i.e. if
k⊕

j=1

ker dBj (x0) = Rd

then there exists a neighbourhood U of x0 ∈ Rd such that∫
U

k∏
j=1

(fj ◦ Bj )
pj .

k∏
j=1

(∫
Rdj

fj

)pj

.

Remark. Under the above hypotheses BL(L, p) <∞ if and only if p1 = · · · = pk = 1
k−1 , and in which

case

BL(L, p) =

∣∣∣∣∣∣?
k∧

j=1

?Xj (Lj )

∣∣∣∣∣∣
− 1

k−1

,

where Xj (Lj ) ∈ Λdj (Rd ) denotes the wedge product of the rows of the dj × d matrix Lj , and ? the Hodge
star.
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A palatable multilinear Radon-like transform corollary...

Corollary (B–Carbery–Wright 2005 (d = 3); B–Bez, 2010 (d > 3))

If G : (Rd−1)d−1 → R is a smooth function such that

| det(∇y1 G(0), . . . ,∇yd−1 G(0))| ≥ ε,

then there exists a neighbourhood V of the origin in (Rd−1)d−1, and a constant C such that

∫
V

g1(y1) · · · gd−1(yd−1)gd (y1 + · · ·+ yd−1)δ(G(y)) dy ≤ Cε−
1

d−1

d∏
j=1

‖gj‖(d−1)′

for all nonnegative gj ∈ L(d−1)′ (Rd−1), 1 ≤ j ≤ d.

Remarks.

This is a convolution-type Radon-like transform estimate; i.e. of the form∫
Rd1×···×Rdm+1

m+1∏
j=1

gj (yj )δ(F(y))ψ(y)dy .
m+1∏
j=1

‖gj‖Lrj (Rdj )

with F(y) = (yd − yd−1 − · · · − y1,G(y1, . . . , yd−1)).

There are versions with symmetric hypotheses on F (non-convolution type, naturally requiring
exterior-algebraic formulations): B–Bez–Gutiérrez 2012.
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Some applications...

Corollary (B–Carbery–Wright 2005 (d = 3); B–Bez, 2010 (d > 3))

If Suppose S1, . . . ,Sd are transversal, 1 ≤ q ≤ ∞ and p′ ≤ (d − 1)q′, then

‖g1dσ1 ∗ · · · ∗ gd dσd‖Lq (Rd ) . ‖g1‖Lp(dσ1) · · · ‖gd‖Lp(dσd ).

Setting q = 2 gives the (modest) sharp d-linear restriction estimate

‖ĝ1dσ1 · · · ĝd dσd‖L2(Rd ) . ‖g1‖(2d−2)′ · · · ‖gd‖(2d−2)′ .

Remarks.

The above result generalises to submanifolds S1, . . . ,Sm (m 6= d) of variable codimension under a
suitable transversality condition (B–Bez–Gutiérrez 2012).

Such inequalities have been successfully applied to the well-posedness of the Zakharov system
(Bejenaru–Herr–Holmer–Tataru, Bejenaru–Herr 2010/11), handling certain “transverse interaction
terms" in certain bilinear Xs,b estimates.
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‖ĝ1dσ1 · · · ĝd dσd‖L2(Rd ) . ‖g1‖(2d−2)′ · · · ‖gd‖(2d−2)′ .

Remarks.

The above result generalises to submanifolds S1, . . . ,Sm (m 6= d) of variable codimension under a
suitable transversality condition (B–Bez–Gutiérrez 2012).

Such inequalities have been successfully applied to the well-posedness of the Zakharov system
(Bejenaru–Herr–Holmer–Tataru, Bejenaru–Herr 2010/11), handling certain “transverse interaction
terms" in certain bilinear Xs,b estimates.

Jonathan Bennett (Birmingham) Transversal Multilinear Harmonic Analysis El Escorial 2012 61 / 62



Some applications...

Corollary (B–Carbery–Wright 2005 (d = 3); B–Bez, 2010 (d > 3))

If Suppose S1, . . . ,Sd are transversal, 1 ≤ q ≤ ∞ and p′ ≤ (d − 1)q′, then

‖g1dσ1 ∗ · · · ∗ gd dσd‖Lq (Rd ) . ‖g1‖Lp(dσ1) · · · ‖gd‖Lp(dσd ).

Setting q = 2 gives the (modest) sharp d-linear restriction estimate
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The end

– thank you!
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