![]() |
AFA |
![]()
Departamento
de Matemáticas
Facultad de Ciencias |
![]() |
Análisis de Fourier y Aplicaciones
|
Publicaciones y prepublicaciones F. Albiac, J. L. Ansorena, M. Berasategui, P. M. Berná and S. Lasalle, Weaker forms of unconditionality of bases in greedy approximation, Preprint (2021) https://arxiv.org/pdf/2106.00975.pdf F. Albiac, J. L. Ansorena, M. Berasategui, P. M. Berná and S. Lasalle, Bidemocratic bases and their connections with other greedy-type bases, Preprint (2021) https://arxiv.org/pdf/2105.15177.pdf F. Albiac, J. L. Ansorena, P. M. Berná, P. Wojtaszczyk, Greedy approximation for biorthogonal systems in quasi-Banach spaces. Dissertationes Mathematicae 560 (2021), 1-88; http://arxiv.org/abs/1903.11651 F. Albiac, J. L. Ansorena, P. M. Berná, New parameters and Lebesgue-type estimates in greedy approximation, Preprint (2021)https://arxiv.org/pdf/2104.10912.pdf D. Barbieri, E. Hernández, V. Paternostro, Spaces invariant under unitary representations of discrete groups, J. Math. Anal. Appl. 492 (2020) https://arxiv.org/abs/1811.02993 D. Barbieri, C. Cabrelli, E. Hernández, U. Molter, Aproximation by group invariant subspaces, J. Math Pures Appl. 142, (2020), 76-100 https://arxiv.org/abs/1907.08300 D. Barbieri, C. Cabrelli, E. Hernández, U. Molter, Data Approximation with Time-Frequency Invariant System, In: Boggiatto P. et al. (eds) Landscapes of Time-Frequency Analysis. Applied and Numerical Harmonic Analysis. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-56005-8_2 D. Barbieri, E. Hernández, A. Mayeli. Calderón-type inequalities for affine frames, Applied and Computational Harmonic Analysis. 50, (2021), 326-352, https://doi.org/10.1016/j.acha.2019.07.004 D. Barbieri, C. Cabrelli, D. Carvajal, E. Hernández, U. Molter, The structure of group preserving operators, Accepted in SASIDA (Samplnt Theory, Signal Processing, and Data Analysis), March 2021. ArXiv: https://arxiv.org/abs/2009.12551 M. Berasategui, P. M. Berná, S. Lassalle, Strong-partially bases and Lebesgue-type inequalities, To appear in Constructive Approximation, https://arxiv.org/pdf/2001.01226.pdf . M. Berasategui, P. M. Berná, Greedy approximation for sequences with gaps, Preprint 2020, http://arxiv.org/abs/2005.07221 M. Berasategui, P. M. Berná, Extensions of greedy-like bases for sequences with gaps, Preprint, 2020, http://arxiv.org/abs/2009.02257 P.M. Berná, O. Blasco, G. Garrigós, E. Hernández. T. Oikhberg, Lebesgue inequalities for Chebyshev thresholding greedy algorithms, Rev. Mat. Complut (2020) 695-722, https://doi.org/10.1007/s13163-019-00328-9 P. M. Berná, D. Mondéjar, A functional characterization of almost-greedy and semi-greedy bases. To appear in Mathematics (2021). S. Buschenhenke, D. Müller, A. Vargas. A Fourier restriction theorem for a perturbed hyperbolic paraboloid. Proc. London Math. Soc. (3) 120 (2020) 124-154, http://arxiv.org/abs/1803.02711 S. Buschenhenke, D. Müller, A. Vargas, On Fourier restriction for finite type perturbations of the hyperboloid paraboloid. Geometric Aspects of Harmonic Analysis, Springer INdAM Series, 2021.. Available at arXiv: https://arxiv.org/abs/1902.05442 S. Buschenhenke, D. Müller, A. Vargas, Partitions of flat one-variate functions and a Fourier restriction theorem for related perturbations of the hyperbolic paraboloid. The Journal of Geometric Analysis volume 31, 6941–6986 (2021). Available at https://arxiv.org/abs/2002.08726 S. Buschenhenke, D. Müller, A. Vargas, A Fourier restriction theorem for a perturbed hyperbolic paraboloid: polynomial partitioning; Preprint 2020. Avilable at arXiv:2https://arxiv.org/abs/2003.01619
S. Dilworth, G. Garrigós, E. Hernández. D. Kutzarova, V. Temlyakov, Lebesgue-type inequalities for greedy approximation, To appear in J. Funct. Analysis, 280 (2021). https://doi.org/10.1016/j.jfa.2020.108885 G. Garrigós, A. Seeger and T. Ullrich, The Haar system in Triebel-Lizorkin spaces: endpoint results. . Submitted. Preprint 2020, available at https://arxiv.org/pdf/1907.03738.pdf E. Hernández, P. Luthy, H. Sikic, F. Soria, E. N. Wilson, Spaces generated by orbits of unitary representations: A tribute to Guido Weiss, The Journal of Geometric Analysis, Online version, 2020, https://doi.org/10.1007/s12220-020-00396-0 |
|