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Abstract. Two versions of Rubio de Francia’s extrapolation theorem for multi-
variable operators of functions are obtained. One version assumes an initial esti-
mate with different weights in each space and implies boundedness on all products
of Lebesgue spaces. Another version assumes an initial estimate with the same
weight but yields boundedness on a product of Lebesgue spaces whose indices lie
on a line. Applications are given in the context of multilinear Calderón-Zygmund
operators. Vector-valued inequalities are automatically obtained for them with-
out developing a multilinear Banach-valued theory. A multilinear extension of the
Marcinkiewicz and Zygmund theorem on `2-valued extensions of bounded linear
operators is also obtained.

To appear in J. Geom. Anal.

1. Introduction

The Rubio de Francia extrapolation theorem [17] provides a powerful tool that
enables one to deduce the boundedness of a given operator on all spaces Lp(Rn) for
1 < p < ∞, provided this operator is bounded on Lp0(w) for a single p0 and all
weights w ∈ Ap0 . Our goal in this article is to extend this theorem to operators of
many functions (which may not necessarily be linear in each variable).

Some differences appear in this context compared to the case of operators of one
variable. Multilinear operators may map into Lr for r < 1 (c.f. [11], [14]) and as there
is no appropriate definition for Ar when r < 1 one needs to consider weights that
“match” the spaces in some other natural way. To achieve this, we consider powers
of weights that match each of the domain spaces and products of the rth power of
these weights in the target space Lr, even when r < 1. We also prove a version
of multivariable extrapolation in which only one weight appears in all the spaces in
question. These formulations provide an appropriate setting to study extrapolation
abstractly as they appear in many “natural” examples, such as, for instance, that of
multilinear Calderón-Zygmund operators [11].
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We note that in the case of many weights one obtains boundedness in the full
simplex of exponents possible but in the case of one weight boundedness only follows
for indices lying on a line contained in this simplex. We discuss this issue in Section
5. We also consider the situation in which the initial estimates are of weak type. See
Section 6.

We begin by recalling that, for 1 < p < ∞, an Ap weight w is a locally integrable
function on Rn which satisfies

[w]Ap = sup
Q cubes in Rn

(
1

|Q|

∫
Q

w(x) dx

)(
1

|Q|

∫
Q

w(x)−
1

p−1 dx

)p−1

< ∞ .

The quantity [w]Ap is called the Ap constant of the weight w. For p = 1, we say that
w ∈ A1 if it satisfies

[w]A1 = sup
Q cubes in Rn

(
1

|Q|

∫
Q

w(x) dx

)∥∥w−1
∥∥

L∞(Q)
< ∞ .

We present the general setup. In the sequel, T will be defined on
∏m

j=1 Lpj(w
pj

j )

for all m tuples of indices (p1, . . . , pm) with 1 ≤ pj < ∞ and all tuples of weights
(wp1

1 , . . . , wpm
m ) in (Ap1 , . . . , Apm). It could happen that these weights are all equal. If

T happens to be an m-linear operator, then it only needs to be initially defined on a
dense subspace of all these spaces, such as (C∞

0 (Rn))m. The sort of initial assumption
we will impose is that for some fixed indices 1 ≤ q1, . . . , qm < ∞ and 1

m
≤ q < ∞

that satisfy

(1.1)
1

q1

+ · · ·+ 1

qm

=
1

q

and for all tuples of weights (wq1

1 , . . . , wqm
m ) ∈ (Aq1 , . . . , Aqm) and all functions fj ∈

Lqj(w
qj

j ) we have

(1.2)
∥∥T (f1, . . . , fm)

∥∥
Lq(wq

1...wq
m)
≤ C0

m∏
j=1

∥∥fj

∥∥
Lqj (w

qj
j )

for some constant C0. In this article we show that a single estimate (1.2) allows
one to “extrapolate” other estimates similar to (1.2); in particular, for all indices
1 < p1, . . . , pm < ∞ and 1

m
< p < ∞ that satisfy

(1.3)
1

p1

+ · · ·+ 1

pm

=
1

p

and for all weights (wp1

1 , . . . , wpm
m ) ∈ (Ap1 , . . . , Apm) there is a constant C such that

(1.4)
∥∥T (f1, . . . , fm)

∥∥
Lp(wp

1 ...wp
m)
≤ C

m∏
j=1

∥∥fj

∥∥
Lpj (w

pj
j )

for all fj ∈ Lpj(w
pj

j ). We now precisely state our main theorems.
Throughout this article m will be a fixed integer greater than or equal to 2, although

the results obtained equally apply to the known case m = 1. In both theorems below
T is defined on Lp1(wp1

1 )×· · ·×Lpm(wpm
m ) for all m tuples of indices (p1, . . . , pm) with

1 ≤ pj < ∞ and all tuples of weights (wp1

1 , . . . , wpm
m ) in (Ap1 , . . . , Apm).
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Theorem 1. Let 1 ≤ q1, . . . , qm < ∞ and 1
m
≤ q < ∞ be fixed indices that satisfy

(1.1). We suppose that for all B > 1, there is a constant C0(B) > 0 such that
for all tuples of weights (wq1

1 , . . . , wqm
m ) ∈ (Aq1 , . . . , Aqm) with [w

qj

j ]Aqj
≤ B and all

functions fj ∈ Lqj(w
qj

j ) estimate (1.2) holds with C0 = C0(B). Then for all indices

1 < p1, . . . , pm < ∞ and 1
m

< p < ∞ that satisfy (1.3), all B > 1, and all weights

(wp1

1 , . . . , wpm
m ) in (Ap1 , . . . , Apm) with [w

pj

j ]Apj
≤ B, there is a constant C = C(B)

such that estimate (1.4) is valid.

We also have a version of this theorem in which there is only one weight.

Theorem 2. Let 1 ≤ q1, . . . , qm < ∞ and 1
m
≤ q < ∞ be fixed indices that satisfy

(1.1) and suppose that for every B > 1, there is a constant C0(B) > 0 such that for
all weights w in Aq1 ∩ · · · ∩ Aqm with [w]Aqj

≤ B and all functions fj ∈ Lqj(w) we

have the estimate

(1.5)
∥∥T (f1, . . . , fm)

∥∥
Lq(w)

≤ C0(B)
m∏

j=1

∥∥fj

∥∥
Lqj (w)

.

Then for all indices 1 < p1, . . . , pm < ∞ and 1
m

< p < ∞ that satisfy pj = qj/θ and
p = q/θ for some 0 < θ < ∞, all B > 1, and all weights w ∈ Ap1 ∩ · · · ∩ Apm with
[w]Apj

≤ B for all j, there is a constant C = C(B) such that the estimate below holds

(1.6)
∥∥T (f1, . . . , fm)

∥∥
Lp(w)

≤ C
m∏

j=1

∥∥fj

∥∥
Lpj (w)

for all fj ∈ Lpj(w).

Before we pass to the proofs of these theorems and our applications we make
some comments. The assumption that the initial estimates hold for weights w with
[w]Aqj

≤ B is not new, but as a careful examination shows, is implicitly contained in

all proofs of the Rubio de Francia extrapolation theorem, although not often stated as
a hypothesis. Moreover, this assumption is naturally satisfied in all the applications.
The reason for this is that any dependence on the Aq constant of a weight is usually
in a continuous (or bounded) way and any continuous function ϕ([w]Aq) is bounded
in the set [1, B] for all B > 1; (recall [w]Aq ≥ 1). On the other hand the conclusions
of both theorems above are stronger as stated than they would be, if they had been
stated with a constant simply dependent on the weights in some unspecified way.
The proofs of Theorems 1 and 2 given below are inspired by that of Garćıa-Cuerva
[6] in the one-variable case.

We also note that in neither theorem there is an assumption restricting T to be
a multilinear or multi-sublinear operator (i.e. sublinear in each variable.) The only
assumption needed is that T is well-defined on all products of weighted Lq spaces.
If T happens to be a multilinear operator, then one may relax the hypotheses of
Theorems 1 and 2 by initially assuming that T is well-defined on a dense subspace of
all these spaces, such as (C∞

0 (Rn))m. This is natural in many applications involving
singular integral operators which are not a priori defined on all products of weighted
Lq spaces but only on a dense subspace of them.
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The article is organized as follows. We first discuss the proof of Theorem 1 which
we present in the following three sections. The proof of Theorem 2 is given in Section
5. In Section 6 we discuss some extrapolation results in which the initial estimates
are of weak type. Our proof, that can also be applied to the one-variable case, is new
and shorter compared to the one used in [6]. We take advantage of a fact pointed out
before: there is no need of restricting T to be multilinear or multi-sublinear. This
observation makes the proof easier and reveals a new way of treating weak-type es-
timates. As an application, in Section 7 we obtain weighted vector-valued estimates.
The key idea here is that, because of the generality of the operators, one can apply
the extrapolation results to vector-valued extension of them. In Section 8, we apply
all these results to multilinear Calderón-Zygmund operators, in particular getting
vector-valued estimates for them. We would like to point out that a Banach-valued
theory for Calderón-Zygmund operators as in [1], [18] is not needed, since our extrap-
olation result provides the sequence-valued inequalities in an almost automatic way.
Finally, we use a different technique to obtain another kind of `2-valued estimates
for general multilinear operators. This is discussed in Section 9, in which we prove
a multilinear version of the classical Marcinkiewicz and Zygmund theorem [15] on
`2-valued extensions of linear operators.

The authors would like to thank and Carlos Pérez and Nigel Kalton for some useful
discussions regarding the material in this article.

2. The case p1 > q1, . . . , pm > qm

In this section we prove Theorem 1 when pj > qj for all j. We fix 1 ≤ qj < pj < ∞,
for j = 1, . . . ,m, and 0 < p < ∞ such that

1

p
=

1

p1

+ · · ·+ 1

pm

.

Note in particular that 1
m
≤ q < p < ∞. Let us also fix a tuple of weights

(wp1

1 , . . . , wpm
m ) ∈ (Ap1 , . . . , Apm) and fj ∈ Lpj(w

pj

j ) for 1 ≤ j ≤ m. We set

s =
p

q
> 1 , θj =

s′

qj

q

(
pj

qj

)′ , 1 ≤ j ≤ m.

Then 0 < θ < 1 and
∑m

j=1 θj = 1. We have∥∥T (f1, . . . , fm)
∥∥

Lp(wp
1 ...wp

m)
=
∥∥|T (f1, . . . , fm) w1 . . . wm|q

∥∥ 1
q

Ls

= sup
h

(∫
Rn

|T (f1, . . . , fm)|q wq
1 . . . wq

m h dx
) 1

q
(2.1)

where the supremum is taken over all functions 0 ≤ h ∈ Ls′ with ‖h‖Ls′ = 1. Given
a function h0 for which the supremum above is attained, we define functions

hj = h
θj

0 w
− p

s′
j .
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Then we have

‖hj‖
L

s′
θj (w

p
θj
j )

= 1 and wq
1 . . . wq

m h = (h1 wp
1) . . . (hm wp

m) .

At this point we are going to introduce a suitable Rubio de Francia algorithm Rj to
be precisely defined (and shown to exist) later.

Lemma 1. With the notation above, for any nonnegative function h in L
s′
θj (w

p
θj

j )
there exists a function Rj(h) such that :

(a) h(x) ≤ Rj(h)(x) for almost every x ∈ Rn.

(b) ‖Rj(h)‖
L

s′
θj (w

p
θj
j )

≤ 2 ‖h‖
L

s′
θj (w

p
θj
j )

.

(c) w
p
q

qj

j Rj(h)
qj
q ∈ Aqj

, in particular
[
w

p
q

qj

j Rj(h)
qj
q
]
Aqj

≤ C
(
[w

pj

j ]Apj

)
< ∞,

where C is a constant that grows as its argument grows.

We will prove this result at the end of this section. Now write Wj = w
p
q

j Rj(hj)
1
q .

Then, (∫
Rn

|T (f1, . . ., fm)|q wq
1 . . . wq

m h dx

) 1
q

=

(∫
Rn

|T (f1, . . . , fm)|q h1 wp
1 . . . hm wp

m dx

) 1
q

≤
(∫

Rn

|T (f1, . . . , fm)|q R1(h1) wp
1 . . . Rm(hm) wp

m dx

) 1
q

=
∥∥T (f1, . . . , fm)

∥∥
Lq(W q

1 ...W q
m)

≤ C

m∏
j=1

∥∥fj

∥∥
Lqj (W

qj
j )

,

(2.2)

when the first estimate follows from (a) in Lemma 1 and in the last one we used
(1.2) in view of condition (c) of Lemma 1. We note here that if [w

pj

j ]Apj
≤ B, then

[W
qj

j ]Aqj
≤ C(B) and the hypothesis (1.2) applies. Now we analyze each norm above.

First we use Hölder’s inequality with
pj

qj
> 1 to get

∥∥fj

∥∥
Lqj (W

qj
j )

=

(∫
Rn

|fj|qj W
qj

j w
qj

j w
−qj

j dx

) 1
qj

≤
(∫

Rn

|fj|pjw
pj

j dx

) 1
pj

(∫
Rn

W
qj

(
pj
qj

)′
j w

−qj

(
pj
qj

)′
j dx

) 1
qj (pj/qj)′

=
∥∥fj

∥∥
Lpj (w

pj
j )

Ij,

(2.3)
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where Ij stands for the second factor. But this term satisfies:

I
qj

(
pj
qj

)′
j =

∫
Rn

W
qj

(
pj
qj

)′
j w

−qj

(
pj
qj

)′
j dx =

∥∥Rj(hj)
∥∥ θj

s′

L
s′
θj (w

p
θj
j )

≤ 2
θj
s′
∥∥hj

∥∥ θj
s′

L
s′
θj (w

p
θj
j )

= 2
θj
s′ ,

where we used (b) of Lemma 1. Combining this estimate with (2.1), (2.2), and (2.3)
we obtain the desired inequality∥∥T (f1, . . . , fm)

∥∥
Lp(wp

1 ...wp
m)
≤ C

m∏
j=1

∥∥fj

∥∥
Lpj (w

pj
j )

.

Proof of Lemma 1. Set

tj =
pj − qj

pj − 1
≤ 1 and αj = pj +

(p

q
qj − pj

) 1

tj
.

For every 0 ≤ h ∈ L
s′
θj (w

p
θj

j ) we consider the operator

Sj(h) =
(
M
(
h

qj
q

1
tj w

αj

j

)
w
−αj

j

) q
qj

tj
,

where M is the Hardy-Littlewood maximal operator. We observe that Sj is bounded

on L
s′
θj (w

p
θj

j ). Indeed,

‖Sj(h)‖
L

s′
θj (w

p
θj
j )

=
∥∥∥M(h qj

q
1
tj w

αj

j

)∥∥∥ θj
s′ pj

L
p′
j (w

−p′
j

j )
≤ C

∥∥∥h qj
q

1
tj w

αj

j

∥∥∥ θj
s′ pj

L
p′
j (w

−p′
j

j )
= C ‖h‖

L
s′
θj (w

p
θj
j )

,

where we have used the fact that w
pj

j ∈ Apj
or, equivalently that w

−p′j
j ∈ Ap′j

, which

yields the boundedness of M in Lp′j(w
−p′j
j ). We denote the norm of Sj as a bounded

operator in the previous space as ‖Sj‖∗. Now we define the Rubio de Francia algo-
rithm as follows

Rj(h)(x) =
∞∑

k=0

Sk
j (h)(x)

2k ‖Sj‖k
∗
,

where Sk
j is the operator Sj iterated k times for k ≥ 1 and for k = 0 is just the

identity operator. The fact that S0
j is the identity gives part (a). For part (b), note

that s′

θj
> s′ > 1, thus

‖Rj(h)‖
L

s′
θj (w

p
θj
j )

≤
∞∑

k=0

‖Sk
j (h)‖

L
s′
θj (w

p
θj
j )

2k ‖Sj‖k
∗

≤
∞∑

k=0

2−k ‖h‖
L

s′
θj (w

p
θj
j )

= 2 ‖h‖
L

s′
θj (w

p
θj
j )

.

Finally let us check that (c) holds. We observe that Sj is sublinear because
qj

q
1
tj

> 1

and then,

Sj(Rj(h)) = Sj

( ∞∑
k=0

Sk
j (h)

2k ‖Sj‖k
∗

)
≤

∞∑
k=0

Sk+1
j (h)

2k ‖Sj‖k
∗
≤ 2 ‖Sj‖∗

∞∑
k=0

Sk
j (h)

2k ‖Sj‖k
∗

= 2 ‖Sj‖∗ Rj(h).
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This estimate yields

1

|Q|

∫
Q

Rj(h)
qj
q

1
tj w

αj

j dx ≤ M
(
Rj(h)

qj
q

1
tj w

αj

j

)
(x)

= Sj(Rj(h))(x)
qj
q

1
tj wj(x)αj

≤ C Rj(h)(x)
qj
q

1
tj wj(x)αj

for almost every x ∈ Q. If tj = 1, or equivalently qj = 1, this inequality turns out to
be

1

|Q|

∫
Q

Rj(h)
qj
q w

p
q

pj

j dx ≤ C Rj(h)(x)
qj
q wj(x)

p
q

pj

for almost every x ∈ Q. This proves that Rj(h)
qj
q w

p
q

qj

j ∈ A1 = Aqj
with constant

smaller than C. In the other case, tj < 1, we use Hölder’s inequality with exponents
1
tj

and 1
1−tj

to get

1

|Q|

∫
Q

Rj(h)
qj
q w

p
q

qj

j dx =
1

|Q|

∫
Q

Rj(h)
qj
q w

p
q

qj−pj (1−tj)

j w
pj (1−tj)
j dx

≤
(

1

|Q|

∫
Q

Rj(h)
qj
q

1
tj w

αj

j dx

)tj( 1

|Q|

∫
Q

w
pj

j dx

)1−tj

≤ C ess inf
Q

(
Rj(h)

qj
q

1
tj w

αj

j

)tj
(

1

|Q|

∫
Q

w
pj

j dx

)1−tj

.

This last inequality allows us to estimate the Aqj
constant of Rj(h)

qj
q w

p
q

qj

j . Indeed,
for any cube Q we have(

1

|Q|

∫
Q

Rj(h)
qj
q w

p
q

qj

j dx

)(
1

|Q|

∫
Q

(
Rj(h)

qj
q w

p
q

qj

j

)− q′j
qj dx

)qj−1

≤ C

(
1

|Q|

∫
Q

w
pj

j dx

)1−tj( 1

|Q|

∫
Q

Rj(h)−
q′j
q w

− p
q

q′j
j ess inf

Q

(
Rj(h)

qj
q

1
tj w

αj

j

) tj
qj−1

dx

)qj−1

= C

(
1

|Q|

∫
Q

w
pj

j dx

)1−tj( 1

|Q|

∫
Q

w
−p′j
j dx

)(pj−1) (1−tj)

≤ C [w
pj

j ]
1−tj
Apj

,

which proves (c). The proof of Lemma 1 is now complete. �

3. The case p1 < q1, . . . , pm < qm

First of all, we observe that this case does not appear if qj = 1 for some j. Other-
wise, let us fix 1 < pj < qj, for j = 1, . . . ,m, and 0 < p < ∞ such that

1

p
=

1

p1

+ · · ·+ 1

pm

.
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Note that in particular 1
m

< p < q < ∞. We also fix a tuple of weights (wp1

1 , . . . , wpm
m )

in (Ap1 , . . . , Apm) and fj ∈ Lpj(w
pj

j ) for 1 ≤ j ≤ m. We define

(3.1) hj = |fj|
q
qj

(qj−pj)
w

q
qj

( p
q
qj−pj)

j , λj = pj − pj

qj−pj
(p

q
qj − pj),

and we observe that ∥∥hj

∥∥
L

pj
qj−pj

qj
q

(w
λj
j )

=
∥∥fj

∥∥ qj−pj
qj

q

Lpj (w
pj
j )

.

We will need a lemma analogous to Lemma 1 used in the previous section.

Lemma 2. With the notation above, for any nonnegative function h in L
pj

qj−pj

qj
q (w

λj

j )
there exists a function Gj(h) such that

(a) h(x) ≤ Gj(h)(x) for almost every x ∈ Rn.

(b) ‖Gj(h)‖
L

pj
qj−pj

qj
q

(w
λj
j )

≤ 2qj−1 ‖h‖
L

pj
qj−pj

qj
q

(w
λj
j )

.

(c) w
p
q

qj

j Gj(h)−
qj
q ∈ Aqj

, in particular
[
w

p
q

qj

j Gj(h)−
qj
q
]
Aqj

≤ C
(
[w

pj

j ]Apj

)
, where

C is a constant that grows as its argument grows.

Using Lemma 2 we can now write

∥∥T (f1, . . ., fm)
∥∥

Lp(wp
1 ...wp

m)

=
∥∥|T (f1, . . . , fm)|q

∥∥ 1
q

L
p
q (wp

1 ...wp
m)

=
∥∥|T (f1, . . . , fm)|qG1(h1) . . . Gm(hm)G1(h1)

−1 . . . Gm(hm)−1
∥∥ 1

q

L
p
q (wp

1 ...wp
m)

≤
∥∥∥|T (f1, . . . , fm)|q

m∏
j=1

Gj(hj)
−1
∥∥∥ 1

q

L1(wp
1 ...wp

m)

∥∥∥ m∏
j=1

Gj(hj)
∥∥∥ 1

q

L
p

q−p (wp
1 ...wp

m)

(3.2)

where in the last step we used Hölder’s inequality. We set

Wj = w
p
q

j Gj(hj)
− 1

q

for j = 1, . . . ,m. Then it follows that∥∥∥|T (f1, . . . , fm)|q
m∏

j=1

Gj(hj)
−1
∥∥∥ 1

q

L1(wp
1 ...wp

m)
=
∥∥|T (f1, . . . , fm)|qW q

1 . . . W q
m

∥∥ 1
q

L1

=
∥∥T (f1, . . . , fm)

∥∥
Lq(W q

1 ...W q
m)

.

Conclusion (c) of Lemma 2 gives that [W
qj

j ]Aqj
≤ C

(
[w

pj

j ]Apj

)
≤ C(B) for all 1 ≤ j ≤

m. By (1.2) we conclude that

(3.3)
∥∥∥|T (f1, . . . , fm)|q

m∏
j=1

Gj(hj)
−1
∥∥∥ 1

q

L1(wp
1 ...wp

m)
≤ C

m∏
j=1

∥∥fj

∥∥
Lqj (W

qj
j )

.
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Using conclusion (a) of Lemma 2 we obtain∥∥fj

∥∥
Lqj (W

qj
j )

=

(∫
|fj|qjw

pqj
q

j Gj(hj)
−

qj
q dx

) 1
qj

≤
(∫

|fj|pjw
pj

j dx

) 1
qj

=
∥∥fj

∥∥ pj
qj

Lpj (w
pj
j )

.

Combining this with (3.3) we get

(3.4)
∥∥|T (f1, . . . , fm)|qG1(h1)

−1 . . . Gm(hm)−1
∥∥ 1

q

L1(wp
1 ...wp

m)
≤ C

m∏
j=1

∥∥fj

∥∥ pj
qj

Lpj (w
pj
j )

.

Since
m∑

j=1

(
pj

qj − pj

qj

q

)−1

=

(
p

q − p

)−1

,

Hölder’s inequality yields∥∥∥ m∏
j=1

Gj(hj)
∥∥∥ 1

q

L
p

q−p (wp
1 ...wp

m)
=
∥∥∥ m∏

j=1

Gj(hj)w
q−p
j

∥∥∥ 1
q

L
p

q−p

≤
m∏

j=1

∥∥Gj(hj)w
q−p
j

∥∥ 1
q

L

pj
qj−pj

qj
q

=
m∏

j=1

∥∥Gj(hj)
∥∥ 1

q

L

pj
qj−pj

qj
q

(w
λj
j )

(3.5)

where we used (3.1) in the last step above. Conclusion (b) of Lemma 2 gives that the
last expression above is bounded by

(3.6) C
m∏

j=1

∥∥hj

∥∥ 1
q

L

pj
qj−pj

qj
q

(w
λj
j )

= C
m∏

j=1

∥∥fj

∥∥ 1
q

qj−pj
qj

q

Lpj (w
pj
j )

= C
m∏

j=1

∥∥fj

∥∥1−
pj
qj

Lpj (w
pj
j )

Combining (3.5) and (3.6) with (3.4) and (3.2) we obtain the required conclusion.
It remains to prove Lemma 2.

Proof of Lemma 2. We set

τj =
qj − pj

qj − 1
, βj =

(
p′j −

p

q
q′j

) 1

τj

− p′j .

For every 0 ≤ h ∈ L
pj
τj

qj
q (w

λj

j ) we define the operator

Sj(h) =
(
M
(
h

qj
q

1
τj w

βj

j

)
w
−βj

j

) q
qj

τj

.

Let us see that Sj is not only well defined on L
pj
τj

qj
q (w

λj

j ) but also bounded on this
space:

‖Sj(h)‖
L

pj
τj

qj
q (w

λj
j )

=
∥∥∥M(h qj

q
1
τj wβj

)∥∥∥τj
q
qj

Lpj (w
pj
j )
≤C

∥∥∥h qj
q

1
τj wβj

∥∥∥τj
q
qj

Lpj (w
pj
j )

= C ‖h‖
L

pj
τj

qj
q (w

λj
j )

,
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where we have used that w
pj

j ∈ Apj
which gives that M is bounded on Lpj(w

pj

j ).
We write ‖Sj‖∗ for the norm of Sj as a bounded operator on that space. For every

0 ≤ h ∈ L
pj

qj−pj

qj
q (w

λj

j ), we define the Rubio de Francia algorithm via

Gj(h)(x) =

 ∞∑
k=0

Sk
j

(
h

1
qj−1

)
(x)

2k ‖Sj‖k
∗


qj−1

,

where Sk
j stands for the operator Sj iterated k times for k ≥ 1 and for k = 0 is just the

identity operator. Let us see that Gj is well defined and bounded on L
pj

qj−pj

qj
q (w

λj

j ).
Indeed,

‖Gj(h)‖
L

pj
qj−pj

qj
q

(w
λj
j )

=

∥∥∥∥∥∥∥
∞∑

k=0

Sk
j

(
h

1
qj−1

)
2k ‖Sj‖k

∗

∥∥∥∥∥∥∥
qj−1

L

pj
τj

qj
q (w

λj
j )

≤

 ∞∑
k=0

∥∥∥Sk
j

(
h

1
qj−1

)∥∥∥
L

pj
τj

qj
q (w

λj
j )

2k ‖Sj‖k
∗


qj−1

≤
( ∞∑

k=0

2−k
)qj−1 ∥∥∥h 1

qj−1

∥∥∥qj−1

L

pj
τj

qj
q (w

λj
j )

= 2qj−1 ‖h‖
L

pj
qj−pj

qj
q

(w
λj
j )

,

where we were allowed to use the triangle inequality because
pj

τj

qj

q
> pj > 1. This

proves conclusion (b) of Lemma 2. On the other hand, in order to get (a) it is enough
to realize that everything is positive and the sum is bigger than the term with k = 0.

Finally we have to show conclusion (c) of Lemma 2, that is, w
p
q

qj

j Gj(h)−
qj
q ∈ Aqj

. We
are going to find a constant C > 0 such that for every cube Q we have,
(3.7)(

1

|Q|

∫
Q

w
p
q

qj

j Gj(h)−
qj
q dx

)(
1

|Q|

∫
Q

(
w

p
q

qj

j Gj(h)−
qj
q

)− q′j
qj dx

)qj−1

≤ C[w
pj

j ]Apj
.

First of all, we observe that Sj is a sublinear operator since
qj

q
1
τj

> 1. Since Gj(h) is

defined as a sum of iterations of Sj we obtain:

Sj

(
Gj(h)

1
qj−1

)
= Sj

 ∞∑
k=0

Sk
j

(
h

1
qj−1

)
2k ‖Sj‖k

∗


≤

∞∑
k=0

Sk+1
j

(
h

1
qj−1

)
2k ‖Sj‖k

∗
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≤ 2 ‖Sj‖∗
∞∑

k=0

Sk
j

(
h

1
qj−1

)
2k ‖Sj‖k

∗

= 2 ‖Sj‖∗ Gj(h)
1

qj−1 .

This fact, which means that Gj(h) is an A1 weight for the operator Sj (see [7]), can
be rewritten in the following way: for almost every x ∈ Q,

1

|Q|

∫
Q

Gj(h)
q′j
q

1
τj w

βj

j dx ≤ M
(
Gj(h)

1
qj−1

qj
q

1
τj w

βj

j

)
(x)

= Sj

(
Gj(h)

1
qj−1

)
(x)

qj
q

1
τj wj(x)βj

≤ C Gj(h)(x)
q′j
q

1
τj wj(x)βj .

We can use this estimate to bound the second factor on the left hand side in (3.7):

1

|Q|

∫
Q

Gj(h)
q′j
q w

− p
q

q′j
j dx =

1

|Q|

∫
Q

Gj(h)
q′j
q w

− p
q

q′j+p′j (1−τj)

j w
−p′j(1−τj)

j dx

≤
(

1

|Q|

∫
Q

Gj(h)
q′j
q

1
τj w

(− p
q

q′j+p′j (1−τj))
1
τj

j dx

)τj
(

1

|Q|

∫
Q

w
−p′j
j dx

)1−τj

=

(
1

|Q|

∫
Q

Gj(h)
q′j
q

1
τj w

βj

j dx

)τj
(

1

|Q|

∫
Q

w
−p′j
j dx

)1−τj

≤ C ess inf
x∈Q

(
Gj(h)(x)

q′j
q

1
τj wj(x)βj

)τj

(
1

|Q|

∫
Q

w
−p′j
j dx

)1−τj

,

where we used Hölder’s inequality with exponents 1
τj

and 1
1−τj

. Thus,

(
1

|Q|

∫
Q

w
p
q

qj

j Gj(h)−
qj
q dx

)(
1

|Q|

∫
Q

Gj(h)
q′j
q w

− p
q

q′j
j dx

)qj−1

≤C

(
1

|Q|

∫
Q

w
p
q

qj

j Gj(h)−
qj
q ess inf

Q

(
Gj(h)

q′j
q

1
τj w

βj

j

)τj(qj−1)

dx

)
× · · ·

· · · ×
(

1

|Q|

∫
Q

w
−p′j
j dx

)(1−τj)(qj−1)

≤C

(
1

|Q|

∫
Q

w
pj

j dx

)(
1

|Q|

∫
Q

w
−p′j
j dx

)pj−1

≤ C [w
pj

j ]Apj
.

This proves (3.7) and the proof of Lemma 2 is completed. �



12 LOUKAS GRAFAKOS AND JOSÉ MARÍA MARTELL

4. The general case

To obtain the general case we are going to use a bootstrapping argument. First
we define the set of admissible exponents:

U =
{( 1

p1

, . . . ,
1

pm

,
1

p

)
: 1 < p1, . . . , pm < ∞,

1

p
=

1

p1

+ · · ·+ 1

pm

}
.

We also set U defined in the same way but with 1 ≤ p1, . . . , pm < ∞. In Figure 1
below we have represented the two-variable case, that is, the case where m = 2. The
set U corresponds to the points inside the rhombus. In the set U we additionally

include the points that are in the two upper edges. For a fixed
(

1
q1

, . . . , 1
qm

, 1
q

)
∈ U

we also define:

U−(q1, . . . , qm) =
{( 1

p1

, . . . ,
1

pm

,
1

p

)
∈ U : p1 > q1, . . . , pm > qm

}
.

and

U+(q1, . . . , qm) =
{( 1

p1

, . . . ,
1

pm

,
1

p

)
∈ U : p1 < q1, . . . , pm < qm

}
.

As we can see in Figure 2, U+ and U− represents respectively the shaded areas above
and below the given point. We observe that U+ = Ø if some qj = 1 and in this case
this triple of exponents lies in one of the upper edges.

A (m+1)-tuple
(

1
p1

, . . . , 1
pm

, 1
p

)
∈ U is said to be in W(T ) if and only if T satisfies:

(4.8)
∥∥T (f1, . . . , fm)

∥∥
Lp(wp

1 ...wp
m)
≤ C

m∏
j=1

∥∥fj

∥∥
Lpj (w

pj
j )

,

for all weights (wp1

1 , . . . , wpm
m ) ∈ (Ap1 , . . . , Apm). Remember that our only hypothesis

is that
(

1
q1

, . . . , 1
qm

, 1
q

)
∈ W(T ). In Sections 2 and 3 we have respectively shown that

U−(q1, . . . , qm) ⊂ W(T ) and U+(q1, . . . , qm) ⊂ W(T ).

Our goal now is to obtain that W(T ) = U . In Figures 1 and 2, we have started with
some point and we have proved that the shaded regions U+ and U− are contained in
W(T ) or, what it is the same, that there are weighted norm estimates for exponents
in these two sets. The aim now is to show that we can shade the whole rhombus.



EXTRAPOLATION OF OPERATORS OF MANY VARIABLES 13

Figure 1 Figure 2 Figure 3

Let us take
(

1
p1

, . . . , 1
pm

, 1
p

)
∈ U . Then, there exists N big enough such that

1 < max{p1, . . . , pm, q1 . . . , qm} < N < ∞.

We take r1 = r2 = · · · = rm = N and r = N
m

. It is clear that the corresponding
tuple of exponents is in U . Furthermore, the way we have chosen N guarantees the
following( 1

r1

, . . . ,
1

rm

,
1

r

)
∈ U−(q1, . . . , qm) and

( 1

p1

, . . . ,
1

pm

,
1

p

)
∈ U+(r1, . . . , rm).

The fact that U−(q1, . . . , qm) ⊂ W(T ) allows us to use Theorem 1 with starting point(
1
r1

, . . . , 1
rm

, 1
r

)
, which lies in W(T ). In particular, U+(r1, . . . , rm) ⊂ W(T ) which

yields
(

1
p1

, . . . , 1
pm

, 1
p

)
∈ W(T ). This proves that U = W(T ). The idea of this last

part of the proof is given in Figure 3. Namely, we take a point close to (0, 0, 0) that
lies in the shaded area U− (see Figure 2). Then we apply the result proved in Section
3 starting with this point and consequently the shaded region U+ is contained in
W(T ) (see Figure 3). Finally, if we let this point approach to (0, 0, 0) we shade the
whole rhombus.

We now discuss how this result is affected in the case when some qj = 1. First, the
case where all qj = 1 corresponds with the upper vertex and then everything follows
just from Section 2. Otherwise, the tuple of exponents lies in one of the upper edges
(or faces when m ≥ 3). Then U+ = Ø but we still get U− that allows us to use the
previous argument to shade the whole rhombus. �

5. The proof of Theorem 2

Without loss of generality we may assume that

1 ≤ q1 ≤ q2 ≤ · · · ≤ qm < ∞ .

Then we also have 1 < p1 ≤ p2 ≤ · · · ≤ pm < ∞. Fix a weight w ∈ Ap1 ∩ · · · ∩Apm =
Ap1 . We will consider the following two cases: q < p and q > p.
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Case 1: q < p. In this case we set s = 1
θ

= p
q

=
pj

qj
> 1. Fix fj ∈ Lpj(w) and let h

be a function in Ls′(w) with norm at most 1 such that

‖T (f1, . . . , fm)‖Lp(w) =
∥∥∥|T (f1, . . . , fm)|q

∥∥∥ 1
q

Ls(w)

=

(∫
Rn

|T (f1, . . . , fm)|q hw dx

) 1
q

.

(5.9)

We have the following lemma.

Lemma 3. For any nonnegative function h in Ls′(w), there exists a function R(h)
such that

(1) h(x) ≤ R(h)(x) for almost every x ∈ Rn.

(2) ‖R(h)‖Ls′ (w) ≤ 2‖h‖Ls′ (w)

(3) w R(h) ∈ Aq1, in particular [w R(h)]Aq1
≤ C

(
[w]Ap1

)
< ∞, where C is a

constant that grows as its argument grows.

Assuming Lemma 3 we complete Case 1. Using conclusion (1) in Lemma 3 we can
estimate the last expression in (5.9) by(∫

Rn

|T (f1, . . . , fm)|q R(h) w dx

) 1
q

≤ C

m∏
j=1

‖fj‖Lqj (R(h)w)

≤ C
m∏

j=1

‖R(h)‖
1
qj

Ls′ (w)
‖fj‖Lpj (w)

≤ C‖h‖
1
q

Ls′ (w)

m∏
j=1

‖fj‖Lpj (w)

≤ C
m∏

j=1

‖fj‖Lpj (w)

(5.10)

where we used the hypothesis of the Theorem 2, Hölder’s inequality and the fact that
‖h‖Ls′ (w) ≤ 1.

Case 2: q > p. If q1 = 1 there is nothing to prove. Otherwise, we set s = θ = q
p

=
qj

pj
.

Fix fj ∈ Lpj(w). We have the following lemma.

Lemma 4. For any nonnegative function g in L
p

q−p (w), there exists a function G(g)
such that

(4) g(x) ≤ G(g)(x) for almost every x ∈ Rn.

(5) ‖G(g)‖
L

p
q−p (w)

≤ 2q1−1‖g‖
L

p
q−p (w)

(6) w G(g)−1 ∈ Aq1, in particular [w G(g)−1]Aq1
≤ C

(
[w]Ap1

)
, where C is a

constant that grows as its argument grows.
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Assuming Lemma 4 we complete Case 2. We take

h =

(
m∑

j=1

(
|fj|

‖fj‖Lpj (w)

)pj

) q−p
p

and we observe that ‖h‖
L

p
q−p (w)

≤ m
q−p

p < ∞. Using conclusions (4), (5), (6) in

Lemma 4 and the hypothesis of the theorem, we obtain the sequence of inequalities
below:(∫

Rn

|T (f1, . . . , fm)|pw dx

)1
p

=
∥∥|T (f1, . . . , fm)|q

∥∥ 1
q

L
p
q (w)

=
∥∥|T (f1, . . . , fm)|qG(h)−1G(h)

∥∥ 1
q

L
p
q (w)

≤
∥∥|T (f1, . . . , fm)|qG(h)−1

∥∥ 1
q

L1(w)

∥∥G(h)
∥∥ 1

q

L
p

q−p (w)

≤ C

(∫
Rn

|T (f1, . . . , fm)|qG(h)−1w dx

)1
q∥∥h∥∥ 1

q

L
p

q−p (w)

≤ C
m∏

j=1

(∫
Rn

|fj|qjG(h)−1w dx

)1
qj

≤ C

m∏
j=1

(∫
Rn

|fj|qjh−1w dx

)1
qj

.

We use that for all j, (
|fj(x)|

‖fj‖Lpj (w)

)pj
q−p

p

≤ h(x) ,

and that p/q = pj/qj to get that the last expression in the sequence of inequalities
above is bounded by

C

m∏
j=1

(∫
Rn

|fj|pjw dx

)1
pj

which proves the required conclusion.
It remains to prove Lemmata 3 and 4. We are going to sketch here the proof of

these results for the sake of completeness. For the original proofs, which are different
from the ones here, the reader is referred to [6] or [7].

Proof of Lemma 3. Set t =
p′1
s′
≤ 1 and define the sublinear operator

S(h)(x) =
(
M
(
h

1
t w
)
(x) w(x)−1

)t
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which is bounded on Ls′(w) since w ∈ Ap1 . We denote the norm of this operator by
‖S‖∗. Next, we consider the Rubio de Francia algorithm given by

R(h)(x) =
∞∑

k=0

Sk(h)(x)

2k ‖S‖k
∗

.

Conclusions (1) and (2) are left to the reader. On the other hand, by the sublinearity
of S we get S(R(h))(x) ≤ 2 ‖S‖∗ R(h)(x) which gives

1

|Q|

∫
Q

R(h)
1
t w dx ≤ C R(h)(x)

1
t w(x), for a.e. x ∈ Q.

If t = 1 this inequality says that w R(h) ∈ A1 = Aq1 . Otherwise, the fact that
w R(h) ∈ Aq1 follows from Hölder’s inequality with 1

t
> 1 and the previous estimate.

�

Proof of Lemma 4. We set τ = q1−p1

q1−1
< 1 and define S(h)(x) = M

(
h

1
τ

)
(x)τ that is

clearly sublinear. This operator is bounded on L
p1
τ (w), since w ∈ Ap1 , and denote its

norm as ‖S‖∗. The suitable Rubio de Francia algorithm for this case is

G(h)(x) =

 ∞∑
k=0

Sk
(
h

1
q1−1

)
(x)

2k ‖S‖∗

q1−1

.

Condition (4) is automatic because S0 is the identity operator. The boundedness of
S yields (5). To obtain (6) observe that since S is sublinear it follows

S
(
G(h)

1
q1−1

)
(x) ≤ 2 ‖S‖∗ G(h)(x)

1
q1−1

which implies( 1

|Q|

∫
Q

G(h)
1

q1−p1 dx
)q1−p1

≤ C G(h)(x), for a.e. x ∈ Rn.

Use Hölder’s inequality with 1
τ

> 1, this estimate and the fact that w ∈ Ap1 to
conclude that w G(h)−1 ∈ Aq1 . �

The proof of Theorem 2 is shown pictorially in Figure 4 in the two-variable case.
One easily sees that starting at a point yields estimates for all the exponents that lie
on the line passing through this point and the origin. Note that if qj = 1 the initial
point lies in some of the upper edges and we obtain boundedness for points on the
same line.
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Figure 4

6. Extrapolation from weak type estimates

The main goal of this section is to obtain an extrapolation theorem from an initial
weak type estimate.

Theorem 3. Suppose that in Theorem 1 condition (1.2) is replaced by

(6.11)
∥∥T (f1, . . . , fm)

∥∥
Lq,∞(wq

1...wq
m)
≤ C0(B)

m∏
j=1

∥∥fj

∥∥
Lqj (w

qj
j )

.

Then, we obtain that T maps

(6.12) Lp1(wp1

1 )× · · · × Lpm(wpm
m ) −→ Lp,∞(wp

1 . . . wp
m)

for any 1 < p1, . . . , pm < ∞ and 1
m

< p < ∞ such that 1
p

= 1
p1

+ · · ·+ 1
pm

, and for all

weights (wp1

1 , . . . , wpm
m ) ∈ (Ap1 , . . . , Apm).

Theorem 4. Suppose that in Theorem 2 condition (1.5) is replaced by∥∥T (f1, . . . , fm)
∥∥

Lq,∞(w)
≤ C0(B)

m∏
j=1

∥∥fj

∥∥
Lqj (w)

.

Then, we have that T maps Lp1(w) × · · · × Lpm(w) into Lp,∞(w) for any 1 <
p1, . . . , pm < ∞ and 1

m
< p < ∞ that satisfy pj = qj/θ and p = q/θ for some

0 < θ < ∞, and for all weights w ∈ Ap1 ∩ · · · ∩ Apm.

Proof or Theorem 3. For this proof one may follow the ideas of [6]. But we have a new
very short proof. For any λ > 0 we define a new operator Tλ(f1, . . . , fm) = λ χEλ

where Eλ = {y ∈ Rn : |T (f1, . . . , fm)(y)| > λ}. We first see that Tλ satisfies (1.4)
uniformly on λ. This follows from (6.11):∥∥Tλ(f1, . . . , fm)

∥∥
Lq(wq

1...wq
m)

= λ
(
wq

1 . . . wq
m

)
(Eλ)

1
q ≤

∥∥T (f1, . . . , fm)
∥∥

Lq,∞(wq
1...wq

m)

≤ C0

m∏
j=1

∥∥fj

∥∥
Lqj (w

qj
j )
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where we have used the standard notation
(
wq

1 . . . wq
m

)(
Eλ

)
=
∫

Eλ
wq

1 . . . wq
m dx. Then

we apply Theorem 1 to Tλ and since its the norm is uniformly bounded on λ we get

λ
(
wp

1 . . . wp
m

)
(Eλ)

1
p =

∥∥Tλ(f1, . . . , fm)
∥∥

Lp(wp
1 ...wp

m)
≤ C

m∏
j=1

∥∥fj

∥∥
Lpj (w

pj
j )

.

This estimate gives that T maps Lp1(wp1

1 ) × · · · × Lpm(wpm
m ) into Lp,∞(wp

1 . . . wp
m)

because the constant C is independent of λ. �

The proof of Theorem 4 is left to the reader, since the main idea is contained in
the proof of the argument for Theorem 3.

We now discuss two cases in which Theorems 3 and 4 can be applied.

Corollary 1. In Theorem 3 also assume that T is sublinear in each variable. Then
for all 1 < p1, . . . , pm < ∞ and 1/m < p < ∞ which satisfy 1/p = 1/p1 + · · ·+ 1/pm,
T maps Lp1(w) × · · · × Lpm(w) into Lp(w) for all weights w ∈ Ap1 ∩ · · · ∩ Apm. In
particular this estimate holds in the unweighted case.

Proof. The proof is an easy consequence of the multilinear Marcinkiewicz interpola-
tion theorem between m + 1 weak type estimates of the type (6.12). To do that, we
fix the exponents p1, . . . , pm, p as before and a weight w ∈ Ap1 ∩ · · · ∩ Apm . By the
reverse Hölder inequality, it is well known that the Muckenhoupt classes are open
from the left. Then we can apply Theorem 3 to prove weighted weak type estimates
for exponents that lie in a ball whose center is the given point. In all these estimates
the weight remains fixed, or equivalently, the underlying measure in every space is
w(x) dx. Applying the multilinear Marcinkiewicz interpolation theorem (see for in-
stance [8] Theorem 4.6) we obtain the strong type estimate at the desired exponents.
We leave the details for the reader. �

We remark that it is still an open question whether one can extend the conclusion of
Theorem 3 to the case in which the space Lp,∞ is replaced by Lp in (6.12). To achieve
this one needs a multilinear version of the Marcinkiewicz interpolation theorem with
a change of measure, (see Stein and Weiss [20] for the linear case). At present it is
not known to us whether such a theorem holds.

Finally, Theorem 4 is applicable to cases in which the operator T is m-linear and
its adjoints are of the same nature, in the sense that if an estimate holds for the
operator, then it also holds for all of its m adjoints. Then one can apply multilinear
interpolation to obtain boundedness of T on products of unweighted Lebesgue spaces
for a wide range of exponents. The multilinear interpolation is straightforward when
q > 1. When q ≤ 1 one needs to apply multilinear interpolation between adjoint
operators as in [10]. Theorem 4, for instance could be used to obtain unweighted
estimates for the bilinear Hilbert transform in the range of exponents 1 < p1, p2 ≤ ∞,
1/2 < p < ∞, from the family of weighted estimates L2(w)× L2(w) −→ L1,∞(w) for
all w ∈ A2. This line of investigation will be pursued elsewhere.
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7. Vector-valued inequalities

One of the main applications of extrapolation of operators is in the area of vector-
valued inequalities. The use of extrapolation on this context was pioneered by Rubio
de Francia [17] who explored intimate connections between weighted norm inequali-
ties and vector-valued estimates. An analogous connection is valid for multivariable
operators and is investigated in this section. Our results are very general as the
only hypotheses essentially needed for the multivariable operators in question is that
they are well-defined on products of weighted Lebesgue spaces. This application will
require only a very slight modification of the proofs of our results discussed in the
previous sections.

Section 8 deals with multilinear Calderón-Zygmund operators for which we prove
vector-valued inequalities as a consequence of extrapolation. There is no vector-
valued theory developed for multilinear operators in the literature (only recently a
vector-valued estimate for the bilinear Hilbert transforms was obtained by Grafakos
and Li [9]). Our approach is based on theory of the weights but another way to
obtain such estimates would be via a multilinear extension of the results in [1], [18]
for linear Calderón-Zygmund operators.

Before stating a precise result about vector-valued inequalities we investigate what
kind of estimates one might expect. In the one-variable case the inequalities that
yield from extrapolation are:∥∥∥∥(∑

k

|Tfk|s
) 1

s

∥∥∥∥
Lp(w)

≤ C

∥∥∥∥(∑
k

|fk|s
) 1

s

∥∥∥∥
Lp(w)

for 1 < p, s < ∞ and for every w ∈ Ap. We point out that by convexity one can
prove this estimates with two different powers, namely, if s ≤ r then∥∥∥∥(∑

k

|Tfk|r
) 1

r

∥∥∥∥
Lp(w)

≤
∥∥∥∥(∑

k

|Tfk|s
) 1

s

∥∥∥∥
Lp(w)

≤ C

∥∥∥∥(∑
j

|fk|s
) 1

s

∥∥∥∥
Lp(w)

.

This condition s ≤ r is also necessary. To see this, one only needs to take fj = f for
1 ≤ j ≤ N and fj = 0 otherwise. Applying the inequality above to this sequence we
get

N
1
r ‖Tf‖Lp(w) ≤ C N

1
s ‖f‖Lp(w).

Since C does not depends on N , which can be taken arbitrarily big, it follows that
s ≤ r. In any case, the result with the same power is the optimal and is the one that
arises as a consequence of the classical extrapolation result (see [7]).

We apply the same idea to multivariable operators. The estimates that we would
like to handle are the following:

(7.1)

∥∥∥∥(∑
k

|T (fk
1 , . . . , fk

m)|r
) 1

r

∥∥∥∥
Lp

≤ C
m∏

j=1

∥∥∥∥(∑
k

|fk
j |sj

) 1
sj

∥∥∥∥
Lpj

.

In the Lebesgue spaces involved in this estimate we have intentionally omitted the
underlying measure or weight since the argument below is independent of these. We
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consider exponents 1 < p1, . . . , pm < ∞ and 1
m

< p < ∞ that satisfy (1.3). Compar-
ing with the one-variable case it seems natural to assume that 1 < s1, . . . , sm < ∞
and 0 < r < ∞. In the previous inequality we take fk

j = fj for 1 ≤ k ≤ N ,

1 ≤ j ≤ m, and fk
j = 0 otherwise to obtain

N
1
r

∥∥T (f1, . . . , fm)
∥∥

Lp ≤ C
m∏

j=1

N
1
sj

∥∥fj

∥∥
Lpj .

where C is independent of N . Then we are forced to have

1

r
≤ 1

s1

+ · · ·+ 1

sm

.

Thus estimate (7.1) will be optimal if r is replaced by s where

(7.2)
1

s
=

1

s1

+ · · ·+ 1

sm

,

and therefore 1
m

< s < ∞. We have the following theorem.

Theorem 5. Let 1 ≤ q1, . . . , qm < ∞ and 1
m
≤ q < ∞ be fixed indices that satisfy

(1.1). We suppose that for all B > 1, there is a constant C0(B) > 0 such that
for all tuples of weights (wq1

1 , . . . , wqm
m ) ∈ (Aq1 , . . . , Aqm) with [w

qj

j ]Aqj
≤ B and all

functions fj ∈ Lqj(w
qj

j ) estimate (1.2) holds with C0 = C0(B). Then for all indices

1 < p1, . . . , pm < ∞ and 1
m

< p < ∞ that satisfy (1.3), 1 < s1, . . . , sm < ∞
and 1

m
< s < ∞ that satisfy (7.2), all B > 1, and all weights (wp1

1 , . . . , wpm
m ) in

(Ap1 , . . . , Apm) with [w
pj

j ]Apj
≤ B, there is a constant C = C(B) such that∥∥∥∥(∑

k

|T (fk
1 , . . . , fk

m)|s
) 1

s

∥∥∥∥
Lp(wp

1 ...wp
m)

≤ C
m∏

j=1

∥∥∥∥(∑
k

|fk
j |sj

) 1
sj

∥∥∥∥
Lpj (w

pj
j )

.

Remark 1. Taking wp1

1 = · · · = wpm
m = w for some w ∈ Ap1 ∩ · · · ∩ Apm yields the

following one-weight norm inequality:∥∥∥∥(∑
k

|T (fk
1 , . . . , fk

m)|s
) 1

s

∥∥∥∥
Lp(w)

≤ C
m∏

j=1

∥∥∥∥(∑
k

|fk
j |sj

) 1
sj

∥∥∥∥
Lpj (w)

.

In particular, if w = 1 one obtains the corresponding unweighted vector-valued esti-
mate.

Proof. We introduce some notation: for 1 ≤ j ≤ m,

Fj = {fk
j }k, ‖Fj‖`sj =

(∑
k

|fk
j |sj

) 1
sj

and we define a new multivariable operator

T̃ (F1, . . . , Fm) =
(∑

k

|T (fk
1 , . . . , fk

m)|s
) 1

s
.
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Note that the estimate we want to prove can be written as

(7.3)
∥∥T̃ (F1, . . . , Fm)

∥∥
Lp(wp

1 ...wp
m)
≤ C

m∏
j=1

∥∥∥‖Fj‖`sj

∥∥∥
Lpj (w

pj
j )

.

for all (wp1

1 , . . . , wpm
m ) in (Ap1 , . . . Apm). On the other hand, we can apply Theorem 1

and for all weights (ws1
1 , . . . , wsm

m ) ∈ (As1 , . . . Asm) we have∥∥T̃ (F1, . . . , Fm)
∥∥

Ls(ws
1...ws

m)
=
(∑

k

∥∥T (fk
1 , . . . , fk

m)
∥∥s

Ls(ws
1...ws

m)

) 1
s

≤ C
(∑

k

m∏
j=1

‖fk
j ‖s

Lsj (w
sj
j )

) 1
s

≤ C

m∏
j=1

(∑
k

‖fk
j ‖

sj

Lsj (w
sj
j )

) 1
sj

= C
m∏

j=1

∥∥∥∥(∑
k

|fk
j |sj

) 1
sj

∥∥∥∥
Lsj (w

sj
j )

= C
m∏

j=1

∥∥∥‖Fj‖`sj

∥∥∥
Lsj (w

sj
j )

.

Note that it was in the first inequality where we used the extrapolation result since
we know that T satisfies weighted estimates for all the admissible exponents and in
particular for s1, . . . , sm and s. We also point out that the second estimate is just a
consequence of Hölder’s inequality. We have proved that

(7.4)
∥∥T̃ (F1, . . . , Fm)

∥∥
Ls(ws

1...ws
m)
≤ C

m∏
j=1

∥∥∥‖Fj‖`sj

∥∥∥
Lsj (w

sj
j )

holds for all weights (ws1
1 , . . . , wsm

m ) ∈ (As1 , . . . , Asm). One now needs to extrapo-
late from this estimate to obtain (7.3). However, we cannot use Theorem 1 in a
straightforward way since on the right hand side of (7.4) we have `sj norms of the
sequences Fj instead of a function fj. But a careful examination of the proof of The-
orem 1 yields that at no step it was crucial that we were dealing with scalar-valued
functions. Using this observation and thinking of Fj as a Banach-valued (`sj -valued)
function instead of a scalar-valued function, one obtains that the proof of Theorem 1
equally applies in this setting. Consequently we can extrapolate from (7.4) to obtain
(7.3). �

The argument that we have just shown works actually for more general Banach
spaces. In fact, one can prove extrapolation results for Banach-valued operators. We
have the following:

Proposition 1. Let A1, . . . , Am and B be Banach spaces. Consider T a multi-
variable operator such that for any (A1, . . . , Am)-valued m-tuple of “good” functions
(f1, . . . , fm) we have that T (f1, . . . , fm) is an element of B. Suppose that for some
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fixed exponents 1 ≤ q1, . . . , qm < ∞ and 1
m
≤ q < ∞ such that (1.1) holds, the

operator T satisfies∥∥∥∥∥T (f1, . . . , fm)
∥∥

B

∥∥∥
Lq(wq

1...wq
m)
≤ C

m∏
j=1

∥∥∥∥∥fj

∥∥
Aj

∥∥∥
Lqj (w

qj
j )

for any tuple of weights (wq1

1 , . . . , wqm
m ) ∈ (Aq1 , . . . Aqm). Then we can extrapolate

and the previous estimate holds for all the admissible exponents. As before, some
sequence-valued inequalities can be obtained for T .

Remark 2. One can also obtain vector-valued estimates as a consequence of Theorem
2. We leave precise formulation and the simple details of the verification to the
interested reader.

8. Multilinear Calderón-Zygmund operators

Multilinear operators arise in the study of expressions that involve product-like
operations. The study of this subject has recently enjoyed a resurgence of renewed
interest and activity. In analogy with the linear theory, the class of multilinear singu-
lar integrals with standard Calderón-Zygmund kernels provides a fundamental topic
of investigation within the framework of the general theory. Multilinear Calderón-
Zygmund operators were introduced and first studied by Coifman and Meyer [2], [3],
[4], and later by Grafakos and Torres [11], [12].

We recall the relevant background from the general theory. We start with a function
K(y0, y1, . . . , ym) defined away from the diagonal y0 = y1 = · · · = ym in (Rn)m+1

which satisfies the following estimates

(8.5)
∣∣∂α0

y0
. . . ∂αm

ym
K(y0, y1, . . . , ym)

∣∣ ≤ Aα( m∑
k,l=0

|yk − yl|
)mn+|α| , for all |α| ≤ 1,

where α = (α0, . . . , αm) is an ordered set of n-tuples of nonnegative integers, |α| =
|α0| + · · · + |αm|, and |αj| is the order of each multiindex αj. Such functions K are
called multilinear standard kernels. We assume below that T is a weakly continuous
m-linear operator from S(Rn)×· · ·×S(Rn) → S ′(Rn) such that for some multilinear
standard kernel K, the integral representation below is valid

(8.6) T (f1, . . . , fm)(x) =

∫
Rn

. . .

∫
Rn

K(x, y1, . . . , ym)
m∏

j=1

fj(yj) dy1 . . . dym,

whenever fj are smooth functions with compact support and x /∈ ∩m
j=1suppfj. In

the case m = 1 conditions (8.5) are called standard estimates and operators given
by (8.6) are called Calderón-Zygmund if they are bounded from L2(Rn) to L2(Rn).
In the multilinear case we call T a multilinear Calderón-Zygmund operator if it is
associated to a multilinear standard kernel as in (8.6) and has a bounded extension
from a product of some Lqj spaces into another Lq space for some choice of 1 < qj < ∞
with 1/q = 1/q1 + · · ·+ 1/qm. If this is the case, it was shown in [11], [13] that these
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operators map any other product of Lebesgue spaces
∏m

j=1 Lpj(Rn) with pj > 1 into

the corresponding Lp(Rn) space and they also map
∏m

j=1 L1(Rn) into L1/m,∞(Rn).
The kind of weighted estimates we want to study for multilinear Calderón-Zygmund

operators have been considered in [12]. By means of a good-λ inequality it was shown
in [12] that for any w ∈ A∞, one has

(8.7)
∥∥T (f1, . . . , fm)

∥∥
Lp(w)

≤ C
∥∥∥ m∏

j=1

Mfj

∥∥∥
Lp(w)

whenever the left-hand side is finite, where M is the Hardy-Littlewood maximal
operator. We point out that this inequality is a consequence of the one proved for
the multilinear maximal singular integral T∗ defined as

T∗(f1, . . . , fm)(x) = sup
δ>0

∣∣∣∣ ∫
· · ·
∫

|x−y1|2+···+|x−ym|2>δ2

K(x, y1, . . . , ym)f1(y1) . . . fm(ym) dy1 . . . dym

∣∣∣∣.
This inequality is not stated there in this way but (8.7) can be easily derived from
the good-λ estimate in [12]. As a consequence of (8.7), in that paper it was shown
that T and T∗ map Lp1(w)× · · · × Lpm(w) into Lp(w) for 1 < p1, . . . , pm < ∞ and p
satisfying (1.3) and for any w ∈ Ap1 ∩ · · · ∩Apm . Using the sharp maximal function,
an alternative approach to (8.7) was later given in [16].

These inequalities allow us also to derive some other weighted estimates using
Theorem 1. We need the following lemma.

Lemma 5. For (w1, . . . , wm) ∈ (Ap1 , . . . , Apm) with 1 ≤ p1, . . . , pm < ∞ and for

0 < θ1, . . . , θm < 1 such that θ1 + · · ·+ θm = 1, we have wθ1
1 . . . wθm

m ∈ Amax{p1,...,pm}.

Proof. Note that each weight wj ∈ Amax{p1,...,pm} and then the result follows from
Hölder’s inequality. �

This result allows us to prove more general weighted estimates for multilinear
Calderón-Zygmund operators.

Corollary 2. Let T be an m-linear Calderón-Zygmund operator as above. Consider
an m-tuple (wp1

1 , . . . , wpm
m ) ∈ (Ap1 , . . . , Apm) where 1 < p1, . . . , pm < ∞ and 1

m
< p <

∞ satisfy 1
p1

+ · · ·+ 1
pm

= 1
p
. Then there exists a constant C that only depends on the

pj’s, on the weights, and on size estimate constants for the kernel K of T such that∥∥T (f1, . . . , fm)
∥∥

Lp(wp
1 ...wp

m)
≤ C

m∏
j=1

‖fj‖Lpj (w
pj
j )

and ∥∥T∗(f1, . . . , fm)
∥∥

Lp(wp
1 ...wp

m)
≤ C

m∏
j=1

‖fj‖Lpj (w
pj
j )

.

Proof. We use Lemma 5 to obtain

wp
1 . . . wp

m =
(
wp1

1

) p
p1 . . .

(
wpm

m

) p
pm ∈ Amax{p1,...,pm} ⊂ A∞.
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Then we can apply (8.7) with this A∞ weight to get∥∥T (f1, . . . , fm)
∥∥

Lp(wp
1 ...wp

m)
≤ C

∥∥∥ m∏
j=1

Mfj

∥∥∥
Lp(wp

1 ...wp
m)

≤ C
m∏

j=1

‖Mfj‖Lpj (w
pj
j )

≤ C

m∏
j=1

‖fj‖Lpj (w
pj
j )

,

where we have used Hölder’s inequality and that w
pj

j ∈ Apj
for 1 ≤ j ≤ m. For T∗

the proof is similar. �

The previous result is just a consequence of the good-λ estimate obtained in [12].
Our extrapolation Theorem 1 may be applied to show that if one had a weighted
estimate for some fixed exponents then weighted estimates hold for all exponents.
Nevertheless, we are going to use the results in Section 7 to obtain a stronger vector-
valued weighted estimate for multilinear Calderón-Zygmund operators. The following
corollary arises as a straightforward application of Theorem 5. Note that Corollary
2 yields the “starting” estimate for the result in Corollary 3 below.

Corollary 3. Let T be a multilinear Calderón-Zygmund operator as before. Consider
an m-tuple (wp1

1 , . . . , wpm
m ) ∈ (Ap1 , . . . , Apm) where 1 < p1, . . . , pm < ∞ and 1

m
< p <

∞ satisfy 1
p1

+ · · · + 1
pm

= 1
p
. Take 1 < s1, . . . , sm < ∞ and 1

m
< s < ∞ such that

1
s1

+ · · ·+ 1
sm

= 1
s
. Then there exists a constant C that depends only on the allowable

parameters such that

(8.8)

∥∥∥∥(∑
k

|T (fk
1 , . . . , fk

m)|s
) 1

s

∥∥∥∥
Lp(wp

1 ...wp
m)

≤ C

m∏
j=1

∥∥∥∥(∑
k

|fk
j |sj

) 1
sj

∥∥∥∥
Lpj (w

pj
j )

and ∥∥∥∥(∑
k

|T∗(fk
1 , . . . , fk

m)|s
) 1

s

∥∥∥∥
Lp(wp

1 ...wp
m)

≤ C
m∏

j=1

∥∥∥∥(∑
k

|fk
j |sj

) 1
sj

∥∥∥∥
Lpj (w

pj
j )

.

Remark 3. As a consequence of this result one can prove estimates for just one
weight. Namely, suppose that the exponents satisfy the previous hypotheses. Then for
any weight w ∈ Ap1 ∩ · · · ∩ Apm we have

(8.9)

∥∥∥∥(∑
k

|T (fk
1 , . . . , fk

m)|s
) 1

s

∥∥∥∥
Lp(w)

≤ C
m∏

j=1

∥∥∥∥(∑
k

|fk
j |sj

) 1
sj

∥∥∥∥
Lpj (w)

and ∥∥∥∥(∑
k

|T∗(fk
1 , . . . , fk

m)|s
) 1

s

∥∥∥∥
Lp(w)

≤ C

m∏
j=1

∥∥∥∥(∑
k

|fk
j |sj

) 1
sj

∥∥∥∥
Lpj (w)

In particular, one can take w = 1 and the corresponding unweighted vector-valued
estimates for T and T∗ hold.
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Remark 4. These vector-valued inequalities can be independently proved using some
extrapolation results obtained in [5]. This approach employs estimates of another
nature, more in the spirit of (8.7), where the weights involved are in A∞. The reader
is referred to this article for details.

9. A multilinear extension of a theorem of Marcinkiewicz and
Zygmund

In addition to the vector-valued inequalities proved as a consequence of the multi-
variable extrapolation theory developed in the previous sections, there are `2-valued
estimates that arise from a multilinear version of the classical theorem of Marcinkie-
wicz and Zygmund [15] on `2-valued extensions of linear operators. Let us note that
from the extrapolation results proved here, one can not derive the expected vector-
valued weighted weak type norm estimates when some of the exponents pj are equal
to 1. This can be done, however, with this technique that we discuss next.

The classical result of Marcinkiewicz and Zygmund [15] says that every linear
operator that maps Lp into Lq for some 0 < p, q < ∞ admits an `2 bounded extension.
In this section we extend this theorem to the multilinear setting. The following result
holds for general measure spaces (Xj, µj) and (Y, ν).

Theorem 6. (a) Let T be an m-linear operator that maps

Lp1(X1, µ1)× · · · × Lpm(Xm, µm) → Lq(Y, ν)

for some 0 < p1, p2, . . . , pm, q < ∞ with norm ‖T‖. Then there is a constant C such
that for all sequences of functions {fk

j }k∈Z in Lpj(Xj), 1 ≤ j ≤ m, we have

(9.10)
∥∥∥(∑

k1

· · ·
∑
km

|T (fk1
1 , . . . , fkm

m )|2
)1

2

∥∥∥
Lq
≤ C ‖T‖

m∏
j=1

∥∥∥(∑
k

|fk
j |2
)1

2

∥∥∥
Lpj

and in particular one has the estimate

(9.11)
∥∥∥(∑

k

|T (fk
1 , . . . , fk

m)|2
)1

2

∥∥∥
Lq
≤ C ‖T‖

m∏
j=1

∥∥∥(∑
k

|fk
j |2
)1

2

∥∥∥
Lpj

.

(b) Suppose that T be an m-linear operator that maps Lp1(X1, µ1)×· · ·×Lpm(Xm, µm)
into Lq,∞(Y, ν) for some 0 < p1, p2, . . . , pm, q < ∞ with norm ‖T‖weak. Then T has
an `2-valued extension, i.e.

(9.12)
∥∥∥(∑

k1

· · ·
∑
km

|T (fk1
1 , . . . , fkm

m )|2
)1

2

∥∥∥
Lq,∞

≤ C ‖T‖weak

m∏
j=1

∥∥∥(∑
k

|fk
j |2
)1

2

∥∥∥
Lpj

for some constant C that depends only on pj and q. In particular one has the estimate

(9.13)
∥∥∥(∑

k

|T (fk
1 , . . . , fk

m)|2
)1

2

∥∥∥
Lq,∞

≤ C ‖T‖weak

m∏
j=1

∥∥∥(∑
k

|fk
j |2
)1

2

∥∥∥
Lpj

.
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Proof. The result in part (a) is an easy consequence of the estimate below valid for
the Rademacher functions rj:
(9.14)

Bm
q

(∑
k1

· · ·
∑
km

|ck1,...,km|2
) 1

2

≤
∥∥Fm

∥∥
Lq([0,1]m)

≤ Dm
q

(∑
k1

· · ·
∑
km

|ck1,...,km|2
) 1

2

where

Fm(t1, . . . , tm) =
∑
k1

· · ·
∑
km

ck1,...,kmrk1(t1) . . . rkm(tm),

0 < q < ∞, 0 < Dq, Bq < ∞, tj ∈ [0, 1], and ck1,...,kn is a sequence of complex
numbers. We refer the reader to the Appendix in [19] for a proof of this estimate.
The proof of (9.10) follows by a linearization of the square function and an application
of (9.14). Indeed, we let 1/p = 1/p1 + · · ·+ 1/pm and we consider the following two
cases:

Case 1: q ≤ p. In this case we fix a positive integer n. Using both estimates in
(9.14) and the multilinearity of T we obtain

∥∥∥( ∑
|k1|≤n

· · ·
∑

|km|≤n

|T (fk1
1 , . . . , fkm

m )|2
)1

2
∥∥∥q

Lq

≤ B−qm
q

∫
Y

∫
[0,1]m

∣∣∣ ∑
|k1|≤n

· · ·
∑

|km|≤n

T (fk1
1 , . . . , fkm

m )rk1(t1) . . . rkm(tm)
∣∣∣qdt1 . . . dtm dν

≤ B−qm
q

∫
[0,1]m

∫
Y

∣∣∣T( ∑
|k1|≤n

rk1(t1)f
k1
1 , . . . ,

∑
|km|≤n

rkm(tm)fkm
m

)∣∣∣qdν dt1 . . . dtm

≤ B−qm
q ‖T‖q

∫
[0,1]m

m∏
j=1

∥∥∥ ∑
|kj |≤n

rkj
(tj)f

kj

j

∥∥∥q

Lpj (Xj)
dt1 . . . dtm

≤ B−qm
q ‖T‖q

m∏
j=1

(∫ 1

0

∥∥∥ ∑
|kj |≤n

rkj
(tj)f

kj

j

∥∥∥pj

Lpj (Xj)
dtj

) q
pj

≤ B−qm
q ‖T‖q

m∏
j=1

(
Dpj

pj

∥∥∥( ∑
|kj |≤n

|fkj

j |2
)1

2
∥∥∥pj

Lpj (Xj)

) q
pj

≤ B−qm
q Dq

p1
. . . Dq

pm
‖T‖q

m∏
j=1

∥∥∥(∑
kj∈Z

|fkj

j |2
)1

2
∥∥∥q

Lpj (Xj)

where we used the fact that each pj ≥ q in Hölder’s inequality in the fourth inequality
above. Letting n →∞ yields the required conclusion in case 1.
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Case 2: p < q. Using duality we can write∥∥∥(∑
k1∈Z

· · ·
∑
km∈Z

|T (fk1
1 , . . . , fkm

m )|2
)1

2
∥∥∥

Lq

= sup
‖g‖

L(q/p)′≤1

(∫
Y

(∑
k1∈Z

· · ·
∑
km∈Z

|T (fk1
1 , . . . , fkm

m )|2
) p

2 |g| dν

)1
p

(9.15)

and motivated by this we define an m-linear operator Tg by setting

Tg(f1, . . . , fm) = |g|
1
p T (f1, . . . , fm)

for some fixed function g in L(q/p)′ with norm at most 1. We can easily verify that
Tg is bounded from Lp1 × · · · × Lpm into Lp with norm at most ‖T‖. Indeed, for all
‖fj‖Lpj (Xj) ≤ 1, we have

∥∥Tg(f1, . . . , fm)
∥∥

Lp =

(∫
Y

|g| |T (f1, . . . , fm)|pdν

)1
p

≤ ‖g‖
L

(
q
p )′
∥∥|T (f1, . . . , fm)|p

∥∥ 1
p

L
q
p

≤ ‖T‖
since ‖g‖L(q/p)′ ≤ 1. Applying case 1 to Tg yields(∫

Y

(∑
k1∈Z

· · ·
∑
km∈Z

|T (fk1
1 , . . . , fkm

m )|2
) p

2 |g| dν

)1
p

≤ Cpj ,q,m‖T‖
m∏

j=1

∥∥∥(∑
k

|fk
j |2
) 1

2
∥∥∥

Lpj

and this estimate combined with (9.15) gives (9.10) in case 2.
We now turn our attention to part (b) of the theorem. We recall the following

well-known characterization of weak Lq:

(9.16) ‖f‖Lq,∞ ≤ sup
0<ν(E)<∞

ν(E)
1
q
− 1

r

(∫
E

|f |r dν

)1
r

≤
( q

q − r

)1
r ‖f‖Lq,∞ ,

where 0 < r < q and the supremum is taken over all E subsets of Y of positive and
finite ν measure. Using (9.16) we obtain∥∥∥(∑

k1

· · ·
∑
km

|T (fk1
1 , . . . , fkm

m )|2
)1

2
∥∥∥

Lq,∞(ν)

≤ sup
0<ν(E)<∞

ν(E)
1
q
− 1

r

(∫
E

(∑
k1

· · ·
∑
km

|T (fk1
1 , . . . , fkm

m )|2
)r

2
dν

)1
r

= sup
0<ν(E)<∞

ν(E)
1
q
− 1

r

(∫
Y

(∑
k1

· · ·
∑
km

|χE T (fk1
1 , . . . , fkm

m )|2
)r

2
dν

)1
r

≤ sup
0<ν(E)<∞

ν(E)
1
q
− 1

r ‖TE‖Lp1×···×Lpm→Lr

m∏
j=1

(∫
Xj

(∑
k

|fk
j |2
)pj

2
dµj

) 1
pj

(9.17)

where we defined TE(f1, . . . , fm) = χE T (f1, . . . , fm) and we used the result in part
(a). (We denote by ‖ · ‖Lp1×···×Lpm→Lr the norm of an m-linear operator from Lp1 ×
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· · ·×Lpm into Lr.) But since for all m-tuples of functions (f1, . . . , fm) ∈ Lp1×· · ·×Lpm

we have

ν(E)
1
q
− 1

r ‖TE(f1, . . . , fm)‖Lr ≤
( q

q − r

)1
r ‖T (f1, . . . , fm)‖Lq,∞

≤
( q

q − r

)1
r ‖T‖weak

m∏
j=1

‖fj‖Lpj ,

it follows that for any measurable set E of finite measure the estimate

(9.18) ν(E)
1
q
− 1

r ‖TE‖Lp1×···×Lpm→Lr ≤
( q

q − r

)1
r ‖T‖weak

is valid. Now returning to (9.17) and using (9.18) we obtain the required conclusion.
We note that our proof in the spirit of that given in [7] for linear operators. �

The following corollary easily follows from part (b) in Theorem 6 and the weak
type weighted inequalities

‖T (f1, . . . , fm)‖Lp,∞(w) ≤ C

m∏
j=1

‖fj‖Lpj (w),

for 1 ≤ p1, . . . , pm < ∞ and 1
m
≤ p < ∞, w ∈ A1 and some of the pj = 1. These

estimates were proved in [12].

Corollary 4. Let 1 ≤ p1, . . . , pm < ∞ and 1
m
≤ p < ∞ satisfy 1

p1
+ · · ·+ 1

pm
= 1

p
and

let T be a multilinear Calderón-Zygmund operator as those considered in Section 8.
Suppose that at least one pj = 1. Then for every w ∈ A1 we have∥∥∥∥(∑

k

|T (fk
1 , . . . , fk

m)|2
) 1

2

∥∥∥∥
Lp,∞(w)

≤ C
m∏

j=1

∥∥∥∥(∑
k

|fk
j |2
) 1

2

∥∥∥∥
Lpj (w)

,

and, in particular,∥∥∥∥(∑
k

|T (fk
1 , . . . , fk

m)|2
) 1

2

∥∥∥∥
L1/m,∞(w)

≤ C
m∏

j=1

∥∥∥∥(∑
k

|fk
j |2
) 1

2

∥∥∥∥
L1(w)

.

We note that these `2-valued estimates do not follow from the extrapolation results
that we have obtained.

References

[1] A. Benedek, A.-P. Calderón and R. Panzone, Convolution operators on Banach space valued
functions, Proc. Nat. Acad. Sci. U.S.A. 48 (1962), 356–365.

[2] R. R. Coifman and Y. Meyer, On commutators of singular integrals and bilinear singular
integrals, Trans. Amer. Math. Soc. 212 (1975), 315–331.

[3] R. R. Coifman and Y. Meyer, Commutateurs d’ intégrales singulières et opérateurs multi-
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