Mes anteior Día anterior Día siguiente Mes siguiente
Anual Mensual Semanal Hoy Buscar Ir al mes específico
Seminario de Algebra y Combinatoria

 

Seminario de Algebra y Combinatoria

 

Viernes 18 de marzo de 2016


Módulo 17, aula 420, 11:30 hr.

 


Bernd Schober

(Leibniz Universität Hannover)



A polyhedral characterization of quasi-ordinary singularities

Resumen:  Let $ X $ be an irreducible hypersurface given by a polynomial $ f in K{x_1, ldots, x_d}[z] $, where $ K $ denotes an algebraically closed field of characteristic zero. The variety $ X $ is called quasi-ordinary with respect to the projection to the affine space defined by $ K{x_1, ldots, x_d} $ if the discriminant of $ f $ is a monomial times a unit. In my talk I am going to present the construction of an invariant that allows to detect whether a given polynomial $ f $ (with fixed projection) defines a quasi-ordinary singularity. This involves a weighted version of Hironaka's characteristic polyhedron and successive embeddings of the singularity in affine spaces of higher dimensions. Further, I will explain how the construction permits to view $ X $ as an "overweight deformation" of a toric variety which leads then to the proof of our characterization.

Localización Viernes 18 de marzo de 2016 Módulo 17, aula 420, 11:30 hr.